Auxiliar Álgebra Lineal

Profesor: Alejandro Maass, Auxiliares: Andrés Fielbaum y César Vigouroux

Р1

Sean u, v dos vectores en \mathbb{R}^2 no paralelos y ninguno nulo. Probar que el único vector que es ortogonal a ambos es el origen.

P2

Sean las rectas
$$L_1: \begin{pmatrix} -1\\2\\1 \end{pmatrix} + t \begin{pmatrix} 1\\2\\-1 \end{pmatrix}, L_2: \begin{pmatrix} 3\\1\\-1 \end{pmatrix} + t \begin{pmatrix} 0\\1\\-2 \end{pmatrix}$$

- (i) Probar que no se intersectan
- (ii) Encuentre la ecuación normal al plano Π que contiene a L_1 y que es paralelo a L_2 (i.e. el vector director de L_2 es un vector director de Π)
 - (iii) Considere $P = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}$ que pertenece a L_2 . Encuentre su proyección

ortogonal sobre Π

(iv) Encuentre la ecuación del plano paralelo a Π y que está a la misma distancia de L_1 que de L_2

P3

Sean Π_1, Π_2 los planos en \mathbb{R}^3 dados por las ecuaciones x+y+2z=1, -x+y=2 respectivamente. Sea L_1 la recta con vector posición $P_1=\begin{pmatrix} 0\\1\\1 \end{pmatrix}$ y vector

director $d_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

- (i) Encuentre la ecuación y el vector director de la recta $L_2=\Pi_1\cap\Pi_2$
- (ii) Encuentre el punto $P_2 = L_1 \cap \Pi_1$
- (iii) Encuentre el punto P_3 de intersección de L_2 con el plano ortogonal a L_2 y que pasa por P_2
- (iv) Encuentre la ecuación vectorial de la recta contenida en Π_2 que pasa por P_3 y es ortogonal a L_2