MA1102-3- Álgebra Lineal.

Profesor: Felpe Célèry C.

Auxiliares: Sebastián Barbieri, Pedro Montealegre B.

Auxiliar 5

29 de Septiembre de 2010

Sean Π_1 el plano de ecuación: x+y+2z=1 y Π_2 el plano de ecuación: -x+y=2. Sea además la recta que pasa por el punto $P_1=\begin{bmatrix}0\\1\\1\end{bmatrix}$ con vector director $D_1=\begin{bmatrix}1\\0\\0\end{bmatrix}$.

- a. Encuentre la ecuación de la recta L_2 , que se obtiene como la intersección de los planos Π_1 y Π_2 . Entregue un vector director de dicha recta.
- b. Encuentre el punto P_2 de intersección de la recta L_1 con el plano Π_1 .
- c. Calcular el punto P_3 de intersección de L_2 con el plano perpendicular a L_2 que pasa por el punto P_2 .
- d. Encuentre la ecuación paramétrica o vectorial de la recta contenida en π_2 que pasa por el punto P_3 y es perpendicular a L_2 .

P2. 1. Verifique que las rectas L_1 : $\begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} + t \begin{bmatrix} -1 \\ 2 \\ -5 \end{bmatrix}$ y L_2 : $\begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ -5 \end{bmatrix}$ se intersectan en un único punto, encúentrelo.

2. Sea Π el plano con vectores directores $d_1=\begin{bmatrix}1\\2\\3\end{bmatrix}$ y $d_2=\begin{bmatrix}4\\0\\4\end{bmatrix}$ que pasa por $P=\begin{bmatrix}0\\-2\\1\end{bmatrix}$. Y

considere la recta L que pasa por $P' = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}$ y tiene vector director $d' = \begin{bmatrix} 1 \\ b \\ 0 \end{bmatrix}$. Con a y b en

- \mathbb{R} . Encuentre los valores de a y b tales que
- a) $L \subseteq \Pi$
- b) $L \cap \pi = \phi$
- c) $L \cap \pi$ contenga exactamente un solo punto.
- P3. Sea α y $\beta \in \mathbb{R}$ y considere el siguiente sistema lineal de ecuaciones en las variables x_1 , x_2 , x_3 y x_4 con α y β en \mathbb{R} .

$$\begin{cases} x_1 + 2x_2 + x_3 + 3x_4 = 1 \\ x_1 + 3x_2 + x_3 + (3 - \alpha)x_4 = \alpha \\ x_1 + x_2 + (\alpha + \beta + 3)x_4 = \beta \\ x_1 + 3x_2 + 2x_3 + 3x_4 = 2\alpha + 2\beta \end{cases}$$

- a. Determine los valores de α y β para que (i) el sistema no tenga solución, (ii) el sistema tenga infinitas soluciones y (iii) el sistema tenga una única solución.
- b. Sea $\alpha = -2$ y $\beta = 2$. Encuentre el conjunto solución.
- P4. Sea \mathcal{M}_{nn} el conjunto de todas las matrices cuadradas de orden n, se define la traza de una matriz cuadrada de orden n como $Tr(A) = \sum_{i=1}^n A_{i,i}$ es decir, la suma de la diagonal. Probar las siguientes propiedades:

1.
$$Tr(A+B) = Tr(A) + Tr(B)$$

2.
$$Tr(\lambda A) = \lambda Tr(A)$$

3.
$$Tr(AB) = Tr(BA)$$

- 4. Sea P invertible probar que: $Tr(A) = Tr(PAP^{-1})$
- 5. Probar que $Tr(AA^T) \ge 0$. Y que $Tr(AA^T) = 0 \Leftrightarrow A = 0$.
- $\overline{\mathrm{P5.}}$ La matriz U en \mathcal{M}_{nn} se dice unitaria si $UU^T=I_n.$
 - 1. Sean U y V matrices en \mathcal{M}_{nn} unitarias, muestre que son invertibles, y pruebe que UV es unitaria.
 - 2. Sea u en \mathbb{R}^n tal que $u^Tu=1$. Pruebe que $H=I_n-2uu^T$ es unitaria.
 - 3. Sea θ en \mathbb{R} y $G(\theta) = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$. Pruebe que $G(\theta)$ es unitaria, y que para cualquier A en \mathcal{M}_{22} existe θ tal que $A_{2,1} = 0$.
 - 4. Sea ${\cal U}$ triangular superior y unitaria. Pruebe que ${\cal U}$ es diagonal, y determine que coeficientes puede tomar su diagonal.