Auxiliar 1 - Cálculo Diferencial e Integral

Escuela de Ingeniería, Universidad de Chile Viernes 20 de Agosto, 2010

Profesor Cátedra: Leonardo Sánchez Profesores Auxiliares: Orlando Rivera Letelier - Matías Godoy Campbell

Pregunta 1. Considere una sucesión $(u_n)_n$ que verifica las siguientes propiedades:

$$\lim_{n \to \infty} u_{2n} = l \quad \lim_{n \to \infty} |u_{n+1} - u_n| = 0$$

- a) Pruebe que: $\forall \varepsilon > 0$, $\exists k_0 \in \mathbb{N}$, $\forall k \geq k_0, k \text{ par } \Rightarrow |u_k l| < \varepsilon$ b) Pruebe que $\lim_{n \to \infty} u_{2n+1} = l$, y deduzca que:

$$\forall \varepsilon > 0, \ \exists k_1 \in \mathbb{N}, \ \forall k \geq k_1, k \ \text{impar} \Rightarrow |u_k - l| < \varepsilon$$

c) Concluya que $\lim_{k\to\infty} u_k = l$

Pregunta 2. Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua. Sea $(a_n)_n$ una sucesión en [a, b], no necesariamente convergente, tal que $\lim_{n\to\infty} f(a_n) = l$. Demuestre que $\exists \bar{x} \in [a,b]$ tal que $f(\bar{x}) = l$

Pregunta 3. Probaremos que, dadas F,G continuas en x_0 y tales que $F(x_0) < G(x_0)$ entonces $\exists \delta > 0 \text{ tal que } \forall x \in (x_0 - \delta, x_0 + \delta), \ F(x) < G(x).$ Para ello:

- a) Pruebe la propiedad cuando $F \equiv 0$.
- b) Definiendo una función continua apropiada y usando la parte anterior concluya.

Pregunta 4. Considere la función definida por:

$$f(x) = \begin{cases} |x|^{\beta} (1 - e^x) \sin \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- a) Justifique porque f es continua $\forall x \in \mathbb{R} \setminus \{0\}, \forall \beta \in \mathbb{R}$
- **b)** Pruebe que si $\beta > -1$, entonces f es continua $\forall x \in \mathbb{R}$
- c) Para $\beta = -1$, utilice la sucesión $x_n = \frac{1}{2n\pi + \pi/2}$ para probar que f no es continua en x = 0. Justifique.

Pregunta 5. Sea $f:A\subset\mathbb{R}\to\mathbb{R}$ y $r_n>0$ una sucesión tal que $r_n\to0$. Pruebe que f es continua en \bar{x} si y solo si la sucesión:

$$s_n := \sup_{x} \{ |f(x) - f(\bar{x})| : |x - \bar{x}| \le r_n \}$$

converge a cero.

Pregunta 6.

- a) Sean $f,g:[a,b]\to[a,b]$ funciones continuas y sobreyectivas. Demuestre que $\exists c\in[a,b]$ tal que f(c) = g(c). Concluya que la existencia de puntos fijos para f es decir, que existe $\bar{x} \in [a, b]$ tal que $f(\bar{x}) = \bar{x}$.
- b) Sean f, g funciones continuas en [a, b] con a < b, tales que $f(a) \neq f(b)$, f(a) = -g(b) y f(b) = -g(a). Pruebe que $\exists x_0 \in [a,b]$ tal que $f(x_0) = -g(x_0)$ y para $f(x) = (x-a)^n$ y $g(x) = -(b-x)^n$ con $n \in \mathbb{N} \setminus \{0\}$, verifique que se cumplen las hipótesis anteriores y calcule, para este caso, el valor de $x_0 \in [a, b]$

1