IQ3201 TERMODINAMICA APLICADA SEMESTRE PRIMAVERA 2010

SERIE TA - 6

5.11.10

MATERIA: BALANCES DE CALOR Y MASA.

FECHA DE ENTREGA: Lunes 8.11.10 a la hora del ejercicio TA-6.

- 1. Se quema propanol (C_3H_7OH) con 50% de exceso de aire. Escriba la reacción balanceada para la combustión completa, y determine la relación masa aire/ masa combustible.
- 2. Un cierto gas natural tiene la siguiente composición volumétrica: 65% CH_4 , 8% H_2 , 18% N_2 , 3% O_2 y 6% CO_2 . El gas se quema completamente con la cantidad estequiométrica de aire. Determine la masa de dióxido de carbono generado por cada metro cúbico de gas en condiciones normales.
- 3. Se quema octano (C_8H_{18}) con aire seco. El análisis de los gases en el producto de la combustión en base seca (sin considerar el agua producida, que sale como líquido), es: 9,21% CO_2 , 0,61 % CO, 7,06 % O_2 y 83,12% N_2 (fracciones volumétricas). Determine:
 - a) la razón aire combustible
 - b) el porcentaje de exceso de aire utilizado.
- 4. Determine la entalpía de combustión de metano (CH_4) a 25°C y 1 atm. Considere que el agua en los productos está como agua líquida.
- 5. Un recipiente adiabático de volumen constante contiene una mezcla de 1 kmol de hidrógeno (H_2) gaseoso y la cantidad estequiométrica de aire para su combustión, a 25°C y 1 atm. Suponiendo combustión completa, determine la temperatura final en el recipiente (temperatura de llama adiabática).

Datos:

Cp = a + bT + cT2 (T en K, Cp en kJ/k-mol K) Rango de temperatura: 273-1800 K

Fórmula	$\Delta { m H_f}^0$	a	b	C
	(kJ/k-mol)			
H_2	0	29,11	$-0,1916x10^{-2}$	$0,4003x10^{-5}$
02	0	25,48	$1,520x10^{-2}$	-0,7155x10 ⁻⁵
N_2	0	28,90	$-0,1571x10^{-2}$	0,8081x10 ⁻⁵
H ₂ O(g)	-241.820	32,24	$0,1923x10^{-2}$	1,055x10 ⁻⁵
H ₂ O(1)	-285.830			
CO ₂ (g)	-393.520	22,26	5,981x10 ⁻²	$-3,501x10^{-5}$
CH ₄ (g)	-74.850	19,89	$5,04x10^{-2}$	1,269x10 ⁻⁵