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Would rational voters acquire costly information?
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Abstract

We analyze an election in which voters are uncertain about which of two alternatives is better for
them. Voters can acquire some costly information about the alternatives. In agreement with Downs’s
rational ignorance hypothesis, individual investment in political information declines to zero as the
number of voters increases. However, if the marginal cost of information is near zero for nearly
irrelevant information, there is a sequence of equilibria such that the election outcome is likely to
correspond to the interests of the majority for arbitrarily large numbers of voters. Thus, “rationally
ignorant” voters are consistent with a well-informed electorate.
© 2005 Elsevier Inc. All rights reserved.

JEL classification: D72; D82

Keywords: Rational ignorance; Information acquisition; Strategic voting

1. Introduction

One of the most influential contributions of Anthony Downs’s An Economic Theory of
Democracy to the economic modelling of politics is the concept of “rational ignorance.”
Given that each individual voter has a negligible probability of affecting the outcome in
a large election, voters will not have an incentive to acquire political information before
voting. In a situation in which discovering their interests or “true views” takes time and
effort from individual citizens, the result may be a failure of democracy to produce a result
consistent with the interests of the majority. In Downs’s words,
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If all others express their true views, he [the voter] gets the benefit of a well-informed
electorate no matter how well-informed he is; if they are badly informed, he cannot
produce those benefits himself. Therefore, as in all cases of individual benefits, the
individual is motivated to shirk his share of the costs: he refuses to get enough infor-
mation to discover his true views. Since all men do this, the election does not reflect
the true consent of the governed. [8, p. 246]
We can actually draw a distinction between two versions of the rational ignorance hypoth-

esis. The “weak version” is that individual voters, realizing that each vote has a negligible
probability of affecting the outcome of the election, invest very little or no effort in acquiring
political information. The “strong version” is that the election outcome itself will not be
more likely to reflect the interests of the majority than, say, a fair coin toss. In this paper, we
develop a formal model that is consistent with the weak version of the rational ignorance
hypothesis, but contradicts the strong version.

A good deal of the literature on the influence activities of interest groups assumes that
a decisive fraction of the electorate is uninformed because individual voters have little
incentive to get political information (see [5] for an explicit discussion). Becker [6] argues
that efficiency may be restored in the voting market because of the activity of influence
groups. Coate and Morris [7] point out that the re-election motive may induce incumbent
politicians to behave efficiently unless voters are uncertain about politicians’ types. (In their
view, and Becker’s, efficiency does not mean that transfers from the majority to interest
groups do not occur; it only means that those transfers are carried out with minimum dead
weight costs.) Closer to our point, Wittman [20] calls into question the idea that the costs
of information fall on the voter instead of on political entrepreneurs.

We provide a different rationale for elections to reflect the interests of the majority. In our
model, there are no interest groups or active politicians. Voters do not have access to free
information. Instead, they may acquire some information, at a cost. Crucially, acquiring
poor information is cheap. We show that, as the number of voters increases, voters acquire
less and less information. However, there is an equilibrium sequence such that along the
sequence the outcome of the election is very likely to correspond to the interests of a majority
of voters. Thus, the electorate may be quite well-informed even if individual voters are (at
least asymptotically) rationally ignorant.

We study an election in which voters have common preferences, but they do not know
which of two alternatives is better for them. Voters may acquire a costly signal about the
alternatives. The signal is correct with probability 1

2 +x, where x is chosen by the voter. We
refer to x as the quality of the signal. The cost of acquiring the signal is given by some convex
function C(x). Our first three theorems describe information acquisition and aggregation
under the assumption that voters would be indifferent between the alternatives if they were
to decide solely on the basis of their prior beliefs.

Theorem 1 shows that, if C′(0) = 0, then there is an equilibrium in which the quality
of information acquired by voters is positive for an arbitrarily large electorate. In agree-
ment with the weak version of the rational ignorance hypothesis, individual investment in
information approaches zero as the size of the electorate increases.

Theorem 2 provides an estimate of the limit probability of choosing the best alternative
along the sequence of equilibria in which voters acquire some information. If C′′(0) < ∞,
this probability is strictly larger than 1

2 . Moreover, this probability goes to one as C′′(0)
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approaches zero, or as the importance attached by voters to the election grows unboundedly.
If C′′(0) = 0, the limit probability of choosing the best alternative is actually one. Successful
information aggregation is possible because the information acquired by each voter goes to
zero but it does so slowly enough to allow the effect of large numbers to kick in.

It is reasonable to believe that voters are involuntarily exposed to a flow of political in-
formation in the course of everyday activities—a point already acknowledged by Downs
[8, p. 245], who relies on the unwillingness of voters to assimilate even freely available
information in order to support the rational ignorance hypothesis. If the function C simply
reflects the cost of “paying a little attention,” the conditions for at least partially success-
ful information aggregation, that is C′(0) = 0 and C′′(0) < ∞, do not appear unduly
restrictive.

Theorem 3 establishes that the aggregate cost of information acquisition declines to zero as
the number of voters increases if C′(0) = C′′(0) = 0. If C′(0) = 0 and C′′(0) > 0, then the
aggregate cost converges to a positive constant. Combining Theorems 2 and 3, we obtain that
the equilibrium with information acquisition is asymptotically efficient if C′(0) = C′′(0) =
0. Moreover, universal or near universal participation in elections is desirable in that case.
However, if C′(0) = 0 and C′′(0) > 0, the equilibrium with information acquisition is not
asymptotically efficient, and the optimal size of the electorate may be small in relation to
the size of the society.

Political information in our model is a public good. As in other instances of privately
provided public goods, there is an incentive to free ride on other voters, and in fact voters
underinvest in political information in relation to a symmetric optimal profile. In the tra-
ditional problem of private provision of public goods in large economies [2], the marginal
cost of contributing is constant, and the contributions of others reduce the marginal utility of
additional units of the public good up to the point where it does not compensate most agents
to contribute. In our model, the marginal cost is small for small contributions. The marginal
benefit of contributing is positive because the probability of being pivotal is nonzero, though
it decreases with the number of voters. Opposite to what happens in the traditional problem,
approximate efficiency can be obtained in the limit.

Next, we relax the assumption that voters are ex ante indifferent between the alternatives.
Theorem 4 shows that the previous results hold as long as the asymmetry in prior beliefs
and preferences is small or C′′(0) is close enough to zero. In equilibria with information
acquisition, voters randomize between acquiring information and voting according to the
signal received, or acquiring no information and voting for the alternative favored ex ante.
The beliefs of voters, conditional on being decisive, are kept very close, so that very little
information can change the behavior of voters at the booth. This, in turn, makes voters to
be willing to acquire vanishingly little information.

Theorems 5 and 6, finally, deal with a situation in which voters’ preferences are hetero-
geneous. In that case, the fraction of voters who acquire information goes to zero as the size
of the electorate increases. This is reminiscent of the work by Feddersen and Pesendorfer
[11]. Feddersen and Pesendorfer show that the fraction of “swing” voters who use their
private information in order to decide whom to vote for declines to zero in large elections.
Our model shows that the quality of information acquired by (individual) swing voters also
declines to zero. However, the best alternative is chosen with probability strictly larger
than 1

2 as long as C′(0) = C′′(0) = 0, and with probability approaching one as long as
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C′(0) = C′′(0) = C′′′(0) = 0. These conditions are considerably more stringent than those
that apply when voters have common preferences. Intuitively, we are a step closer to the
traditional problem of public good provision in that most voters do not contribute to a better
informed electorate.

Taken together, our results support the idea that elections serve the interests of the majority
better than what the rational ignorance hypothesis would seem to indicate at first glance, at
least if swing voters have common preferences. They suggest that models of public opinion
that take into account the production of information by the media, interest groups, and the
like, can be enriched by considering the aggregate implications of voters investing some
small (but positive) effort in costly information processing.

Our model is related to the literature on information aggregation in elections inspired by
Condorcet’s jury theorem [15,3,11,14,9]. This literature typically assumes that there is some
information dispersed among the voters, while in our paper the distribution of information
arises endogenously through the actions of voters. As a consequence, we obtain that larger
electorates are beneficial for society in some circumstances, but not in others. (Lack of
information aggregation in large elections is obtained also by Yariv [21] in a context in
which private signals carry less information as the electorate grows, and by Razin [19] in a
context in which voters use their vote as a message to influence the policy of the winning
candidate.)

Recently, Mukhopadhaya [16] and Persico [17] have proposed other models of endoge-
nous information in collective decision making. In their models, the quality of the signal
is given; voters can either acquire or not acquire information. As a consequence, in their
models it is not possible to have arbitrarily large numbers of voters acquiring arbitrarily
poor information. Persico, in particular, is concerned with the optimal design of commit-
tees, i.e. the optimal selection of committee size and voting rule in situations in which large
elections are inefficient, while we concern ourselves with the endogenous production and
aggregation of information in situations in which large elections may be asymptotically
efficient.

2. The model

We analyze an election with two alternatives, A and B. There are 2n + 1 voters (i =
1, . . . , 2n + 1). A voter’s utility depends on the chosen alternative d ∈ {A, B}, the state
z ∈ {zA, zB}, and the quality of information acquired by the voter before the election
x ∈ [0, 1

2 ]. Acquiring information of quality x has a utility cost given by C(x), so the utility
of a voter can be written as

U(d, z) − C(x).

At the beginning of time, nature selects the state. The prior probability of state zA is
qA ∈ (0, 1) and the prior probability of state zB is qB = 1 − qA. Voters are uncertain about
the realization of the state. After the realization of the state, each voter must decide the
quality of her information. After deciding on x, the voter receives a signal s ∈ {sA, sB}. The
probability of receiving signal sA in state zA is equal to the probability of receiving signal
sB in state zB and is given by 1

2 + x. That is, the likelihood of receiving the “right” signal
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is increasing in the quality of information acquired by the voter; if the voter acquires no
information the signal is uninformative. Signals are private information.

The election takes place after voters receive their signals. A voter can either vote for A or
vote for B. (That is, there are no abstentions.) The alternative with most votes is chosen.

We assume

U(A, zA) − U(B, zA) = rA > 0 and U(B, zB) − U(A, zB) = rB > 0.

That is, A is the “right” alternative in state zA and B is the “right” alternative in state zB .
The cost function C is strictly increasing, strictly convex, and twice continuously differ-

entiable on (0, 1
2 ). We assume that C(0) = 0, so that acquiring no information is costless.

Note that C′(0) ∈ [0, ∞). If C′′(x) grows unboundedly as x goes to zero, we use the notation
C′′(0) = ∞. Thus, C′′(0) ∈ [0, ∞].

We may prefer to think of the probability of receiving the right signal as a function 1
2+m(e)

of some underlying “effort level” by the voter with utility cost �(e). In that case, the quality
of information x is defined as m(e), and the cost of information C is defined as � ◦ m−1. C
satisfies the assumptions of the model if m is concave and � is convex (one of them strictly
so), and both are strictly increasing and twice continuously differentiable on (0, e) for some
e > 0, with �(0) = m(0) = 0 and m(e)� 1

2 . Intuitively, the requirements on C are satisfied
if the marginal productivity of a voter’s effort in the acquisition of information is constant or
diminishing, and the marginal cost of effort is increasing. Note that we can always recover
the effort level associated to a given information quality by using the one-to-one relation
e = m−1(x).

After describing the environment, we turn now to the description of strategies and the
definition of equilibrium in the model. A pure strategy is a triple (x, vA, vB), where x ∈
[0, 1

2 ] specifies a quality of information, vA ∈ {A, B} specifies which alternative to vote
for after receiving signal sA, and vB ∈ {A, B} specifies which alternative to vote for after
receiving signal sB . A mixed strategy for voter i is a probability distribution �i over the set
of pure strategies.

A voting equilibrium � (�i = � for all i) is a symmetric Nash equilibrium. An equilibrium
with information acquisition is a voting equilibrium such that the equilibrium distribution
assigns positive probability to the set of pure strategies with x > 0.

Obviously, there are at least two equilibria without information acquisition: for every
voter to adopt the pure strategy (0, A, A) with probability one, and for every voter to
adopt the pure strategy (0, B, B) with probability one. In either case, the probability that
a single voter is decisive is zero, so it is a best response to acquire no information and
vote for the alternative favored by every other voter. In fact, as long as qArA �= qBrB or
C′(0) = 0, there is no other equilibrium without information acquisition. If voters adopt
any other mixed strategy without information acquisition, the probability that a single voter
is decisive is positive and the same in both states. But then, if, say, qArA > qBrB , the pure
strategy (0, A, A) has a higher payoff than any other pure strategy with x = 0. If, instead,
qArA = qBrB and C′(0) = 0, it is a best response for a voter to acquire some information
with probability one. (See the proof of Theorem 1.) We focus on equilibria with information
acquisition in the remainder of the paper.
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3. Rational ignorance

For the ease of presentation, from here to Section 5 we consider the case in which qArA =
qBrB , so that neither alternative is favored by prior beliefs and preferences. The following
theorem states that C′(0) = 0 is a necessary and sufficient condition for the existence
of an equilibrium with information acquisition in a large election, and characterizes this
equilibrium.

Theorem 1. (i) If C′(0) = 0 and qArA = qBrB , there is an equilibrium with information
acquisition, and it is unique within the class of equilibria with information acquisition. The
equilibrium strategy gives probability one to the pure strategy (x∗, A, B), where x∗ solves

2

(
2n

n

) (
1
4 − x2

)n

qArA = C′(x). (1)

(ii) If C′(0) > 0, there is some n such that for every n�n (holding the other parameters of
the model constant) there is no equilibrium with information acquisition.

(The proof of this and other results in the paper is in the Appendix.) Intuitively, if a pure
strategy with information acquisition is played with positive probability in equilibrium, then
it must equate the marginal cost with the marginal benefit of acquiring information. The
marginal benefit of acquiring information, in turn, is equal to the sum of the probabilities
of being decisive, conditional on each state being realized, multiplied by the utility gain
in choosing the right alternative. A voter is decisive if n other voters vote for A and n
other voters vote for B. Since the probability of this event converges uniformly to zero as
the size of the electorate increases for any symmetric strategy profile, it follows that there
cannot be an equilibrium with information acquisition for n large enough if C′(0) > 0.
Therefore,C′(0) = 0 is a necessary condition for the existence of equilibria with information
acquisition in large elections.

To check that C′(0) = 0 is also sufficient whenever qArA = qBrB , consider a symmetric
strategy profile in which every voter adopts a pure strategy (x, A, B) (with x > 0) with
probability one. Eq. (1) equates the marginal benefit with the marginal cost of acquiring
information for that strategy profile. In particular, the probability of being decisive for that
profile is the same for both states and is given by(

2n

n

)
( 1

2 + x)n( 1
2 − x)n =

(
2n

n

) (
1
4 − x2

)n

.

As explained in the proof, the other equilibrium requirement is that the pure strategy with
information acquisition played with positive probability in equilibrium must have a higher
or equal payoff than the pure strategies of acquiring no information and voting for a fixed
alternative. This requirement is easily verified if qArA = qBrB .

As described in the previous section, we can consider C as composed from two more
primitive functions, � and m, representing respectively the utility cost of effort and the gain
in information quality as a function of effort. Since C′(x) = �′(e)/m′(e) for x = m(e), it
follows that C′(0) = 0 iff either �′(0) = 0 or m′(0) = ∞. Thus, Theorem 1 states that there
is a equilibrium with information acquisition in large elections if and only if the marginal
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Table 1
The quadratic example C(x) = 5x2; qArA = qBrB = 1

2

Electorate size Information quality Probability of right decision Aggregate cost

1 0.10000 0.60000 0.05000
11 0.02432 0.56558 0.03253

101 0.00786 0.56293 0.03121
1001 0.00249 0.56265 0.03107

10001 0.00079 0.56262 0.03105
100001 0.00025 0.56262 0.03105

Table 2
The cubic example C(x) = 33 1

3 x3; qArA = qBrB = 1
2

Electorate size Information quality Probability of right decision Aggregate cost

1 0.10000 0.60000 0.03333
11 0.04845 0.62913 0.04170

101 0.02632 0.70220 0.06139
1001 0.01330 0.80018 0.07859

10001 0.00613 0.89002 0.07688
100001 0.00258 0.94868 0.05729

utility cost of effort is arbitrarily small for small effort, or if the marginal productivity of a
voter’s effort in the acquisition of information is arbitrarily large for small effort. Intuitively,
we can think of the voter as having access to a wealth of useful information in exchange
for exercising a little effort in paying attention.

Let xn represent the value of x∗ for a given n. Since the left-hand side of Eq. (1) converges
to zero as n goes to infinity for any sequence of x ∈ [0, 1

2 ], xn converges to zero as n goes to
infinity. Note that in the equilibrium with information acquisition the probability of reaching
the right decision is the same in both states and is given by

∑2n+1
m=n+1

(
2n + 1

m

)
( 1

2 + xn)
m( 1

2 − xn)
2n+1−m.

Though xn goes to zero, this probability may not go to 1
2 since the number of terms in the

summation increases with n. That is, the strong version of the rational ignorance hypothesis
may fail even if the weak version holds, as suggested by the examples below.

Consider this quadratic example: C(x) = 5x2 and qArA = qBrB = 1
2 . The second

column of Table 1 gives us the values of xn for different electorate sizes (2n+ 1), including
the case of a single decision-maker. The third column gives us the probability of reaching the
right decision. Though this probability decreases with n, it seems to converge to 0.56262.
The aggregate cost of information acquisition, (2n + 1)C(xn), also decreases with n and it
seems to converge around 0.031.

Now consider this cubic example: C(x) = 33 1
3x3 and qArA = qBrB = 1

2 , illustrated
by Table 2. In contrast with the previous example, the probability of reaching the right
decision seems to approach one. Though initially increasing, the aggregate cost is eventually
decreasing in the electorate size. The next section reveals that these examples are, in fact,
representative of general results.
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4. Information acquisition in large elections

In this section we analyze the limiting properties of the sequence of equilibria with
information acquisition obtained by increasing the size of the electorate.

4.1. Information aggregation

We investigate here the limit probability of reaching the right decision. If C′′(0) = c ∈
(0, ∞), let k be the solution to

2
√

2 �(2
√

2k) qArA = kc. (2)

(We use � to denote the standard normal density and � to denote the standard normal
distribution function.) Note that k is strictly decreasing in c and grows unboundedly as c
goes to zero. For the sake of completeness, we define k = ∞ if C′′(0) = 0 and k = 0 if
C′′(0) = ∞, and we use the convention �(∞) = 1. As we will see below, k is an indicator
of the information held by the electorate in large elections. We have

Theorem 2. Assume C′(0) = 0 and qArA = qBrB . Along the sequence of equilibria
with information acquisition, the probability of choosing the right alternative converges to
�(2

√
2k). In particular, it converges to one if C′′(0) = 0.

The first part of the proof of Theorem 2 establishes that n1/2xn goes to k as n goes to
infinity. To provide an intuition, we can obtain from Eq. (1), using a Taylor approximation
in the right-hand side and a Stirling approximation in the left-hand side,

2qArA�−1/2n−1/2(1 − 4x2
n)n ≈ xnC

′′(0).

Rearranging,

2qArA�−1/2[1 − 4(n1/2xn)
2/n]n ≈ n1/2xnC

′′(0).

Using an approximation (for large n and fixed n1/2xn) for the term in brackets on the
left-hand side we get

2qArA�−1/2 exp{−4(n1/2xn)
2} ≈ n1/2xnC

′′(0).

If C′′(0) = 0, this expression cannot hold unless n1/2xn goes to +∞; otherwise the right-
hand side goes to zero and the left-hand side remains bounded away from zero. If C′′(0) =
c ∈ (0, ∞), k ∈ (0, ∞) can be obtained directly from the expression above.

With respect to the rest of the proof, note that a voter votes for the right alternative with
probability equal to 1

2 + xn. Thus, the expected number of votes for the right alternative
of (2n + 1)( 1

2 + xn) and the variance is (2n + 1)( 1
4 − x2

n). A normal approximation to the
probability of the right alternative winning the election would give us

�

⎛
⎜⎝−n − (2n + 1)( 1

2 + xn)√
(2n + 1)( 1

4 − x2
n)

⎞
⎟⎠ .
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Taking limits, we get �(2
√

2k). A “naive” application of the central limit theorem as de-
scribed is not really appropriate because the distribution representing the decision of a given
voter changes with the electorate size. Instead, we use a normal approximation result for
finite samples, the Berry–Esseen theorem.

We can interpret Eq. (2) as a “first order condition” at infinity if C′(0) = 0, C′′(0) =
c ∈ (0, ∞) and qArA = qBrB . To see this, if every voter acquires some information, the
expected utility of voter i (up to a positive affine transformation) is approximately

�

⎛
⎜⎝ (2n + 1)x√

(2n + 1)( 1
4 )

⎞
⎟⎠ (2qArA) − cx2

i /2,

where x is the average quality acquired by the 2n + 1 voters and xi the information quality
acquired by voter i. Maximizing this expression with respect to xi we get

2(2n + 1)−1/2 �(2(2n + 1)1/2x)(2qArA) = xic,

or for large n,
√

2 �(2
√

2n1/2x)(2qArA) ≈ n1/2xic.

Eq. (2) follows from k ≈ n1/2xi = n1/2x.
To illustrate Theorem 2, note that for the quadratic example we can calculate k as

0.055723. In fact, in this example 50001/2x5000=0.055721 and 500001/2x50000=0.055723.
Moreover, the limit probability of society making the right decision is 0.56262. Thus, The-
orem 2 provides an excellent approximation for the quadratic example with 10,000 voters
or more. For the cubic example, k = +∞, and the limit probability of society making the
right decision is one. With 100,000 voters we are still some way off the limit.

In terms of the decomposition of C in � and m, we have that

C′′(x) = (�′′(e)m′(e) − �′(e)m′′(e))/(m′(e))3

for x = m(e). Thus, the condition for the society making the right decision with probability
one in the limit, C′(0) = C′′(0) = 0, is obtained if m′′(e) and �′′(e) are uniformly bounded
and, in addition, either �′(0) = �′′(0) = 0 or m′(0) = ∞.

A result related to Theorem 2 is that elections with information acquisition will tend to be
very close. Define the winning margin to be a random variable representing the difference
between the number of votes for the winner and the number of votes for the loser, divided
by 2n + 1. We have

Proposition 1. Assume C′(0) = 0 and qArA = qBrB . For any � > 0, the probability that
the winning margin is larger than � converges to zero along the sequence of equilibria with
information acquisition as the size of the electorate increases.

Intuitively, the mean of the distribution of the percentage of votes for the right alternative
is 1

2 + xn, which converges to 1
2 from above. If C′′(0) = 0, however, the distribution of the

percentage of votes for the right alternative concentrates very fast around its central terms
as n goes to infinity, so that the probability that this percentage is larger than 1

2 goes to one.
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4.2. The cost of information

We turn now to the cost of information acquisition in large elections. The following
theorem gives us an estimate of the aggregate cost of information acquisition ((2n+1)C(xn))
in large elections.

Theorem 3. Assume C′(0) = 0 and qArA = qBrB . If C′′(0) = c ∈ (0, ∞), then the ag-
gregate cost converges to ck2 along the sequence of equilibria with information acquisition
as the size of the electorate increases. If either C′′(0) = 0 or C′′(0) = ∞, the aggregate
cost converges to zero.

To see this, note that

lim
n→∞ {(2n + 1)C(xn)} = 2 lim

n→∞ {(n1/2xn)
2 C(xn)/x

2
n}.

If C′′(0) = c ∈ (0, ∞), the statement of the theorem follows from n1/2xn → k (from the
proof of Theorem 2) and C(xn)/x

2
n → c/2 (by L’Hôpital’s rule).

Substituting z = ck2 in Eq. (2), we get

2qArA�−1/2 exp{−z/c} = √
zc.

It is simple to check that z → 0 if either c → 0 or c → +∞. This shows that the aggregate
cost of information is near 0 in a large election if C′′(0) is very small or very large. An
argument in theAppendix (similar to the proof of Theorem 2) shows that in fact the aggregate
cost converges to 0 if either C′′(0) = 0 or C′′(0) = ∞.

To illustrate this result, in the quadratic example we can compute ck2 = 0.03105, so that
we have an excellent approximation with 10,000 voters or more. In the cubic example, the
aggregate cost should go to zero; with 100,000 voters we are still some way off.

In terms of the decomposition of C in � and m, we can write the aggregate cost of
information acquisition as (2n + 1)�(en), where en is the equilibrium effort level. Since
en must satisfy the relation en = m−1(xn), we get

(2n + 1)�(en) = (2n + 1)�(m−1(xn))

= (2n + 1)(� ◦ m−1)(xn)

= (2n + 1)C(xn).

In other words, to determine the aggregate cost of information acquisition for any electorate
size we do not need to know the functions � and m separately; we only need to know the
composite function C = � ◦ m−1.

5. Efficiency and design

In this section we deal with normative issues such as the asymptotic efficiency of equilibria
with information acquisition and the optimal size of the electorate.
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5.1. Efficiency of large elections

In this section we investigate whether the equilibrium with information acquisition is
efficient in the limit. For any (symmetric or asymmetric) strategy profile �n, the utilitarian
social welfare is, up to a positive affine transformation,

V �n = (2n + 1)(P �n

A qArA + P �n

B qBrB) − C�n

T ,

where P �n

d is the probability of choosing alternative d in state zd under the strategy profile �n,
and C�n

T is the total expected cost invested in information acquisition by society members.
Note that V �n �(2n + 1)(qArA + qBrB).

Let �n∗ be the information acquisition equilibrium strategy profile. We say that the equi-
librium with information acquisition is asymptotically efficient if for every ε > 0 there is
some finite m such that for all n�m,

V �n∗
/V �n �1 − ε

for all strategy profiles �n = (�1, . . . , �2n+1).
From Theorems 2 and 3, we know that along the sequence of equilibria with information

acquisition the probability of choosing the right alternative converges to one and the aggre-
gate cost converges to zero as n goes to infinity if C′(0) = C′′(0) = 0 and qArA = qBrB .
Thus, under those conditions, V �n∗

/[(2n+ 1)(2qArA)] → 1, so the equilibrium with infor-
mation acquisition is asymptotically efficient.

If C′′(0) > 0, however, the equilibrium with information acquisition is not asymptotically
efficient. To see this, note that

V �n∗
/[(2n + 1)(2qArA)] → �(2

√
2k) < 1.

Let �no represent the optimal symmetric profile. We have

Proposition 2. If C′(0) = 0, C′′(0) < ∞, and qArA = qBrB ,

V �no

/[(2n + 1)(2qArA)] → 1.

The proof is similar to those of Theorems 2 and 3, and establishes that the probability
of choosing the right alternative converges to one, and the average cost (as opposed to the
aggregate cost) converges to zero, along the sequence of optimal symmetric profiles. The
asymptotic inefficiency of the equilibrium with information acquisition follows from the
proposition if 0 < C′′(0) < ∞.

If C′′(0) = ∞, we can compare the information acquisition equilibrium profile with the
asymmetric profile in which only the first voter is asked to acquire some positive amount of
information � and vote according to the signal received, while n voters vote for A and n voters
vote for B regardless of the signal. The ratio of social welfare under the information acquisi-
tion equilibrium profile to social welfare under the asymmetric profile described converges
to ( 1

2 )/( 1
2 + �) < 1. Thus, the equilibrium with information acquisition is asymptotically

inefficient if C′′(0) = ∞. Of course, a similar argument shows that equilibria without
information acquisition are never asymptotically efficient.
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For instance, consider the quadratic example. Social welfare in the information acquisition
equilibrium with 100,001 voters is given by 56,263. The optimal symmetric profile would
prescribe x around 0.007, which yields a social welfare of 99,976. Now consider the cubic
example. Social welfare in the information acquisition equilibrium is given by 94,869. The
optimal symmetric profile would prescribe x around 0.008 which yields a social welfare
of 99,999, very close to the upper bound, 100,001. Both in the quadratic and the cubic
example, any equilibrium without information acquisition would yield a social welfare of
50000.5.

5.2. The optimal size of the electorate

Consider a society with N members, where N is an odd number. If the society gets to
choose the size of the electorate 1�2n + 1�N , anticipating that the voters will play the
information acquisition equilibrium, what would be the optimal choice? We now let n = 0
represent the choice of a single decision-maker.

Since per capita social welfare converges to its upper bound qArA + qBrB as the size of
the electorate increases whenever C′(0) = C′′(0) = 0 and qArA = qBrB , it follows that
under those conditions for a large society the optimal size of the electorate is either the size
of the society or near it. That is, universal suffrage is at least nearly optimal. Moreover,
under the (quite mild) condition C′( 1

2 ) > 2qArA, guaranteeing that a single decision-maker
would not acquire perfect information, social welfare under universal suffrage is larger than
under delegation to a small committee for a large society. In the cubic example, for instance,
a society with 100,001 members would find that social welfare is increasing in participation
in elections.

Universal suffrage, however, is not necessarily nearly optimal if C′(0) = 0 and C′′(0) >

0. In the quadratic example, for instance, a society with 100,001 members would be better
off by delegating the decision on a single person rather than holding elections. If we replace
the cost function in this example with

C(x) =
{

5x2 if x�0.02,

−0.0008 + 0.12x − x2 + 100x3 if x�0.02,

then the society would be better off by delegating the decision on a committee with eleven
members. If we further replace the cost function with

C(x) = 5x2 + 3000x3,

then the society would be better off by holding elections with universal suffrage. That is,
by changing the shape of the cost function away from 0 we can get any electorate size to
be optimal.

Finally, if C′(0) > 0, universal suffrage cannot be optimal or nearly optimal in a large
society as long as C′(0) < 2qArA; that is, as long as a single-decision maker is willing to
acquire some information. A sufficient condition for a single-decision maker to be optimal
in a large society is qArA �C′(0) < 2qArA; in this case the free-riding problem is so severe
that committee members would not acquire any information. If C′(0) < qArA, then, as
in the previous case, the optimal size of the electorate depends on the shape of the cost
function away from 0.
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6. Robustness

In this section we show that our previous results hold under certain conditions if prior
beliefs and preferences are asymmetric. Relaxing the common preference assumption of
the model, however, is more problematic.

6.1. Asymmetric preferences

In this section we relax the assumption that qArA = qBrB . As it turns out, if C′′(0) = 0
a (mixed strategy) information acquisition equilibrium exists in large elections, and perfect
information aggregation and zero aggregate costs are obtained in the limit regardless of
any asymmetry in preferences (and prior beliefs). However, if C′′(0) > 0, an information
acquisition equilibrium in a large election exists if and only if the asymmetry in preferences
is moderate.

If qArA �= qBrB , adopting with probability one the pure strategy that equates the marginal
benefit and cost of acquiring information (as in Section 3) cannot be an equilibrium for n
large enough. For this strategy profile, beliefs about the states, conditional on being pivotal,
are equal to prior beliefs, and hence independent of n. It is easy to check that this establishes
a lower bound, independent of n, on the information that a voter is willing to acquire.
Intuitively, if prior beliefs favor voting for A, a voter will acquire costly information only
if after receiving a signal favoring B, her posterior beliefs about the states change enough
to induce the voter to vote for B. However, the information acquired by each voter must
converge to zero as n increases. The solution to this difficulty consists in allowing voters
to randomize between the pure strategy of voting for the alternative favored by preferences
and the pure strategy of acquiring information and voting according to the signal received.
Under this mixed strategy, beliefs about the states conditional on being decisive remain
close enough to make it worth acquiring vanishingly little information.

The difficulty alluded above when qArA �= qBrB is a simple illustration of a classic
result by Radner and Stiglitz [18] on the nonconcavity of the value of information. Radner
and Stiglitz show that it is unprofitable to acquire “very little” information when there
is a decision that is favored by prior beliefs, and posterior beliefs and the payoff from
the corresponding optimal decision vary continuously with the amount of information. In
our setup, however, what matters for voters are not their prior beliefs over the states, but
their beliefs about the states conditional on being decisive. This gives us a way around the
nonconcavity of the value of information.

If C′′(0) = c ∈ (0, ∞) and qArA �= qBrB , let (k̂, ĥ) be the solution to the system
√

2 �(
√

2(2k′ + h′)) qArA + √
2 �(

√
2(2k′ − h′)) qBrB = k′c, (3.1)

�(
√

2(2k′ + h′)) qArA = �(
√

2(2k′ − h′)) qBrB, (3.2)

k′ > |h′/2|, (3.3)

if a solution exists. As shown in the Appendix, the system (3.1)–(3.3) has a solution if qArA
and qBrB are close enough or c is close enough to zero, and the solution is unique. Moreover,
if (k̂, ĥ) exists, ĥ > 0 iff qArA > qBrB , and ĥ < 0 iff qArA < qBrB . If C′′(0) > 0 and
qArA = qBrB , we let (k̂, ĥ) = (k, 0), where k is as defined in Section 4.
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As shown in the proof of Theorem 4, if (k̂, ĥ) exists and qArA > qBrB , there is an
equilibrium with information acquisition in large elections in which voters adopt the pure
strategy (0, A, A) with probability �n, and the pure strategy (x̂n, A, B) with probability
1 − �n. Moreover, n1/2x̂n converges to k̂, and n1/2�n converges to ĥ. (Similarly, if qArA <

qBrB , the pure strategy (0, B, B) is adopted with probability �n, and n1/2�n converges
to −ĥ.)

Theorem 4. (i) If C′(0) = C′′(0) = 0, there is some n such that for every n�n, there
is an equilibrium with information acquisition. Moreover, along a sequence of equilibria
with information acquisition, the probability of choosing the right alternative in either state
converges to one and the aggregate cost of information converges to zero.

(ii) If C′(0) = 0, C′′(0) = c > 0, and (k̂, ĥ) exists, there is some n such that for every
n�n, there is an equilibrium with information acquisition. Moreover, along a sequence
of equilibria with information acquisition, the probability of choosing the right alternative
converges to �(

√
2(2k̂+ĥ)) in state zA and to �(

√
2(2k̂−ĥ)) in state zB , and the aggregate

cost of information converges to ck̂2.
(iii) If C′′(0) = ∞, or if C′′(0) = c ∈ (0, ∞) and there is no solution to the system (3.1)–

(3.2), there is some n such that for every n�n, there is no equilibrium with information
acquisition.

As in Section 4.1, we can interpret Eq. (3.1) as a “first-order condition” at infinity, equating
the marginal benefit with the marginal cost of information at the limit for a given voter. Eq.
(3.2) makes the voter indifferent in the limit between voting for A or voting for B, in the
absence of additional information coming from the signal. This is necessary to keep voters
acquiring arbitrarily little information. Inequality (3.3) allows us to show that if there is a
“limit” equilibrium, given by a solution to (3.1)–(3.2), then there is actually an information
acquisition equilibrium for large n. 1

Though the equilibria with information acquisition described in case (ii) are asymptoti-
cally inefficient, they yield a higher social welfare than any equilibria without information
acquisition. If, say, qArA > qBrB , this is the case in a large election if

�(
√

2(2k̂ + ĥ)) qArA + �(
√

2(2k̂ − ĥ)) qBrB > qArA

or, using (3.2) and symmetry of the normal distribution,

�(−√
2(2k̂ + ĥ))/�(−√

2(2k̂ + ĥ)) > �(
√

2(2k̂ − ĥ))/�(
√

2(2k̂ − ĥ)),

which is satisfied because the normal hazard rate is strictly decreasing.
Note that, when preferences are asymmetric, adopting a rule other than simple majority

may alleviate the need to randomize between acquiring or not information. For instance,
suppose that qArA > qBrB . If the voting rule requires less than n+1 votes to choose A, then
the ratio of the probability of being pivotal in state zA to the probability of being pivotal in
state zB would fall below 1

2 for any given symmetric pure strategy profile (x, A, B). This is

1 There is gap between the cases covered by (ii) and (iii) in Theorem 3, so that in principle it may be possible
to relax (3.3) and preserve existence of an equilibrium with information acquisition.
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potentially important if C′(0) = 0 and C′′(0) > 0, as in this case information acquisition
equilibria under simple majority are asymptotically inefficient or may even fail to exist.

6.2. Heterogenous preferences

In this section we modify the model to allow for heterogeneous preferences among
voters. In particular, we assume that, for each voter i, Ui(A, zA) = ui , where ui is a
random variable uniformly distributed over [0, 1]. The remaining preference parameters
are given by Ui(B, zB) = 1 − ui and Ui(A, zB) = Ui(B, zA) = 0. The random variables
{ui} are independently distributed (from each other, from the distribution of the state, and
from the distribution of signals about the state). The utility of voter i can be written now
as Ui(d, z) − C(x). We keep the assumptions about the cost of information acquisition
from Section 2, and we add that C is thrice continuously differentiable. Each voter decides
how much information to acquire after learning privately the realization of the preference
parameter ui . As in Section 2, the election takes place after voters receive their signals about
the state z ∈ {zA, zB}. For simplicity, we assume qA = qB = 1

2 .
An action in the model with heterogenous preferences is defined as a triple (x, vA, vB),

where x ∈ [0, 1
2 ] specifies a quality of information, vA ∈ {A, B} specifies which alternative

to vote for after receiving signal sA, and vB ∈ {A, B} specifies which alternative to vote for
after receiving signal sB . A strategy for voter i is now a (measurable) mapping

�i (ui) : [0, 1] → [0, 1
2 ] × {A, B} × {A, B},

specifying an action for every realization of the preference parameter ui . (For simplicity, we
omit considering strategies that allow for randomizing over actions.)An equilibrium � (�i =
� for all i) is a symmetric Nash equilibrium. An equilibrium with information acquisition
is an equilibrium such that the distribution over actions (induced by the distribution of
preferences and by the equilibrium mapping) assigns positive probability to the set of
actions with x > 0.

We have

Theorem 5. In the model with heterogeneous preferences, if C′(0) = 0, there is an equi-
librium with information acquisition, and it is unique (a.e.) within the class of equilibria
with information acquisition. The equilibrium mapping is (a.e.)

�(ui) =

⎧⎪⎪⎨
⎪⎪⎩

(0, B, B) if ui < 1
2 − x̃n + C(x̃n)/C′(x̃n),

(0, A, A) if ui > 1
2 + x̃n − C(x̃n)/C′(x̃n),

(x̃n, A, B) otherwise,

where x̃n satisfies(
2n

n

) (
1
4 − 4(x̃n − C(x̃n)/C′(x̃n))

2x̃2
n

)n = 2C′(x̃n). (4)

Finally, if C′(0) > 0, there is some n such that for n�n there is no equilibrium with
information acquisition.



240 C. Martinelli / Journal of Economic Theory 129 (2006) 225–251

Intuitively, the probability of being decisive is too small for a voter with a strong bias in
favor of A or in favor of B to be willing to acquire any costly information.

Since x̃n converges to zero as n goes to infinity, the fraction of voters who acquire
information (2x̃n − 2C(x̃n)/C′(x̃n)) converges to zero. We may wonder whether “good”
information aggregation results are possible with a vanishing fraction of voters acquiring
vanishingly little information. The answer to this question is yes, but under more restrictive
conditions than in the model with common preferences.

If C′(0) = C′′(0) = 0 and C′′′(0) = c̃ ∈ (0, ∞), let k̃ be the solution to

2
√

2 �(2
√

2k̃) = (3/2)k̃c̃.

If C′(0) = C′′(0) = C′′′(0) = 0, let k̃ = ∞. If C′′′(0) = ∞, let k̃ = 0. We have

Theorem 6. Assume C′(0) = 0. In the model with heterogeneous preferences, along the
sequence of equilibria with information acquisition, the probability of choosing the right
alternative converges to �(2

√
2k̃). In particular, it converges to one if C′′(0) = C′′′(0) = 0.

Moreover, the expected aggregate cost of information converges to c̃k̃2/4 if C′′(0) = 0 and
C′′′(0) = c̃ < ∞, and it converges to 0 otherwise.

The proof of Theorem 6 hinges on the fact that, with a large n, the fraction of voters who
acquire information is approximately 4x̃n/3. Thus, the probability of choosing the right
alternative depends on 4x̃2

nn1/2/3. The limit of this expression is precisely k̃.
Theorems 5 and 6 are reminiscent of similar results by Feddersen and Pesendorfer [11].

In a model with free information and heterogeneous preferences, they show that a vanishing
fraction of voters takes into account their private information when casting a vote. However,
perfect information aggregation is obtained in the limit. In our model, not only the fraction
of swing voters but also the information acquired by each swing voter goes to zero. Thus,
perfect information aggregation is obtained only under special assumptions with respect to
the cost function. If those assumptions fail, the equilibrium with information acquisition is
asymptotically inefficient.

In terms of the decomposition of C in � and m, we have

C′′′(x) = (�′′′(e)m′(e) − �′(e)m′′′(e))/(m′(e))4

−3m′′(e)(�′′(e)m′(e) − �′(e)m′′(e))/(m′(e))5

for x = m(e). Thus, the assumption for perfect information aggregation, C′(0) = C′′(0) =
C′′′(0), is obtained if the second and third derivatives of � and m are uniformly bounded and,
in addition, either �′(0) = �′′(0) = �′′′(0) = 0 or m′(0) = ∞. From this perspective,
perfect information aggregation can be obtained with heterogeneous preferences if the
marginal productivity of a voter’s effort in the acquisition of information is arbitrarily large
for small effort.

7. Final remarks

In a setting in which acquiring political information is costly, we have shown that
the electorate as a whole may be much better informed than individual voters. In some
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circumstances, a result analogous to Condorcet’s jury theorem is upheld: increasing the
size of the electorate improves social welfare even taking into account the voters’ costs. In
some other circumstances, though, Condorcet’s contention about the superiority of larger
electorates fails.

In the environment we study, a small deviation from rationality by voters—ignoring
completely the effects of a single opinion—would have important negative effects on the
responsiveness of collective decision making to the interests of the majority. Akerlof [1]
has approached the issue of rational ignorance from that perspective. However, deviations
from strictly rational beliefs may be as likely to occur in the direction of overestimating the
importance of a single opinion as in the direction of underestimating it. Voters may derive
some satisfaction from the belief that their vote counts for more than it actually does, and
overinvest in political information for that reason.

We have represented information acquisition by voters as a strictly individual endeavor.
If voters can communicate their information to others before the election, if different voters
have access to the same sources of information, or if sources of information compete for
subscribers, strategic considerations will differ from those in the current framework in
nontrivial ways. There is clearly a need for more formal research on the issue of endogenous
production and aggregation of information in large elections, perhaps in connection with
the recent interest in pre-election communication by privately informed voters [4,13], and
our individualistic framework is meant as a first step.

Appendix

For any symmetric strategy profile � and for any given voter, we define P�(piv|z) as the
probability that n other voters vote for A and n other voters vote for B in state z ∈ {zA, zB}.
P�(piv|z) represents the probability that a single vote is pivotal (i.e. decisive) in state z.
Letting p�(d|z) denote the probability that a voter votes for alternative d in state z, as
induced by the strategy �, we have

P�(piv|z) = (2n)!
n!n! (p�(A|z)p�(B|z))n .

Since p�(A|z)p�(B|z) is bounded above by 1
4 , P�(piv|z) is bounded above by (2n)!/

(22nn!n!), which converges to zero as n goes to infinity. Thus, the probability of being
decisive in either state converges uniformly to zero for any sequence of symmetric strategy
profiles as n goes to infinity. We use this fact throughout the proofs.

Proof of Theorem 1. It is easy to show that, for any x > 0, the pure strategies (x, A, A),
(x, B, B), and (x, B, A) are strictly dominated. Thus, for any pure strategy played in equi-
librium with positive probability, x > 0 implies vA = A and vB = B.

Now, suppose that every voter other than i adopts the strategy �. Then, the expected utility
for voter i of adopting any pure strategy (xi, A, B) for xi �0 is given by

G�(xi) = [
P�(piv|zA)qArA + P�(piv|zB)qBrB

]
( 1

2 + xi) − C(xi)
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plus a term that does not depend on the action chosen by i. Note that this expected util-
ity is a strictly concave function of xi . Thus, it is maximized by a unique choice of xi ,
say x′. It follows that a best-responding voter plays at most one pure strategy with infor-
mation acquisition with positive probability, the pure strategy (x′, A, B). Moreover, the
expected payoff of the pure strategy (0, A, B) is a convex combination of the expected
payoffs of (0, A, A) and (0, B, B). It follows that if x′ > 0, then (x′, A, B) has a higher
payoff than either (0, A, A) or (0, B, B). Moreover, if the expected payoffs of (0, A, A) and
(0, B, B) are not equal, one of these pure strategies has a higher payoff than (0, A, B) and
(0, B, A). Thus, if a best-responding voter plays an strategy with information acquisition,
the support of this strategy is either (I) {(x′, A, B)}, (II) {(x′, A, B), (0, A, A)}, or (III)
{(x′, A, B), (0, B, B)}.

Since the term in brackets in the definition of G� converges to zero for any sequence of
symmetric strategy profiles (and is independent of xi), x′ must be equal to 0 for n large
enough if C′(0) > 0. This proves part (ii) of the theorem.

Now consider a possible information acquisition equilibrium strategy of type (I). Since
the term in brackets in G� is equal to zero if every voter adopts the pure strategy ( 1

2 , A, B),
it follows that the information acquired by every voter satisfies 0 < x∗ < 1

2 . Thus, the
solution to the problem of maximizing G�(xi) is interior, so that x∗ must satisfy

P�(piv|zA)qArA + P�(piv|zB)qBrB = C′(x∗).

Moreover, if every voter adopts the pure strategy (x∗, A, B) with probability one, we get

P�(piv|z) =
(

2n

n

)
( 1

2 + x∗)n( 1
2 − x∗)n =

(
2n

n

)
( 1

4 − (x∗)2)n

for z = zA, zB . Using these two equations we obtain the equilibrium condition(
2n

n

)
( 1

4 − (x∗)2)n(qArA + qBrB) = C′(x∗).

Note that x∗ exists and is unique for every n as long as C′(0) = 0. Additionally, the
pure strategy (x∗, A, B) must yield a higher payoff than the pure strategies (0, A, A) and
(0, B, B). That is,

G�(x
∗)� max{P�(piv|zA)qArA, P�(piv|zB)qBrB}.

Using the two equilibrium conditions we obtain

x∗ − 1

2

|qArA − qBrB |
qArA + qBrB

� C(x∗)
C′(x∗)

. (5)

This inequality is always satisfied for qArA = qBrB , so that if C′(0) = 0 and qArA = qBrB
there is a unique equilibrium of type (I) and it is as described in part (i) of the theorem.

Consider a possible information acquisition equilibrium strategy of type (II). Let � be
the probability that (0, A, A) is played under the proposed strategy and let (x, A, B) the
strategy with information acquisition that is played with probability (1 − �). Then if every
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voter other than i adopts the proposed strategy,

P�(piv|zA) =
(

2n

n

)
(( 1

2 + x)(1 − �) + �)n(( 1
2 − x)(1 − �))n

=
(

2n

n

)
( 1

4 − (x + �( 1
2 − x))2)n

and

P�(piv|zB) =
(

2n

n

)
(( 1

2 − x)(1 − �) + �)n(( 1
2 + x)(1 − �))n

=
(

2n

n

)
( 1

4 − (x − �( 1
2 + x))2)n.

The equilibrium conditions are

P�(piv|zA)qArA + P�(piv|zB)qBrB = C′(x) (6)

(for n large enough) and

G�(x) = P�(piv|zA)qArA �P�(piv|zB)qBrB. (7)

It is easy to check that P�(piv|zA) < P�(piv|zB), so that the last inequality cannot be
satisfied if qArA = qBrB . It follows that if qArA = qBrB , there cannot be an equilibrium
of type (II). A similar argument holds with respect to type (III). �

Proof of Theorem 2. The first part of the proof shows that n1/2xn goes to k as n goes to
infinity. Letting yn = n1/2xn we get from Eq. (1)(

2n

n

) (
1
4 − y2

n/n
)n

(2qArA) = C′(n−1/2yn).

Using the mean value theorem for C′ and rearranging slightly we have

(2n)!
n!n!

n1/2

22n

(
1 − 4y2

n/n
)n

(2qArA) = yn C′′(�n) (8)

for some �n between zero and n−1/2yn.
Note that

(2n)!
n!n!

n1/2

22n
→ �−1/2

(from Stirling’s formula) and

0 <
(

1 − 4y2
n/n

)n

< 1

(because 0 < yn < n1/2).
Now consider the case C′(0) = C′′(0) = 0. Suppose that along some subsequence yn

converges to a finite L�0. Then, along the subsequence the right-hand side of Eq. (8)
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converges to zero. However, the left-hand side converges to a positive number, as can be
seen from the fact that(

1 − 4y2
n/n

)n → exp {−4L2}
[10, Theorem 4.2, p. 94]. Thus, if C′(0) = C′′(0) = 0, yn diverges to +∞.

Consider the case C′(0) = 0 and C′′(0) = c < ∞. Suppose that along some subsequence
yn converges to a finite L�0. Following the steps of the previous case, we get that L must
satisfy 2qArA�−1/2 exp {−4L2} = Lc or, equivalently, L = k. It remains to show that
along no subsequence yn diverges to +∞. To see this, note that the right-hand side of
Eq. (8) grows without bound if yn goes to infinity, while for any positive 	, the left-hand
side is smaller than (�−1/2 + 	)(2qArA) for n large enough.

Finally, consider the case C′(0) = 0 and C′′(0) = ∞. If along some subsequence yn

converges to a finite L > 0 or diverges to +∞, the right-hand side of Eq. (8) grows without
bound, while the left-hand side is bounded by the argument above. Thus, if C′(0) = 0 and
C′′(0) = ∞, yn converges to 0.

The second part of the proof uses a probabilistic argument to establish the desired result.
Suppose the state is zA (similar calculations hold if the state is zB ). Given the equilibrium
strategy described in Theorem 1(i), the event of a given voter voting for A in state zA

corresponds to a Bernoulli trial with probability of success 1
2 + xn. For n = 1, 2, . . . and

i = 1, . . . , 2n + 1 define the random variables

V n
i =

{ 1
2 − xn if voter i votes for A,

− 1
2 − xn if voter i votes for B.

For each n, the random variables V n
i are iid. Moreover,

E(V n
i ) = 0,

E((V n
i )2) = 1

4 − x2
n,

and

E(|V n
i |3) = 1/8 − 2x4

n.

Let Fn stand for the distribution of the normalized sum

(V n
1 + · · · + V n

2n+1)/

√
E((V n

i )2)(2n + 1).

Note that A loses the election if it obtains n or fewer votes, that is, if

V n
1 + · · · + V n

2n+1 + (2n + 1)( 1
2 + xn)�n

or equivalently

V n
1 + · · · + V n

2n+1 � − 1
2 − (2n + 1)xn.

Then, the probability of A winning the election is 1 − Fn(Jn), where

Jn = − 1
2 − (2n + 1)xn√

E((V n
i )2)(2n + 1)

.
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Using the Berry–Esseen theorem [12, p. 542]; [10, p. 106], for all w,

|Fn(w) − �(w)|� 3E(|V n
i |3)

E((V n
i )2)3/2

√
2n + 1

.

The right-hand side of the equation above converges to zero as n goes to infinity, so we
obtain an increasingly good approximation using the normal distribution even though the
distribution of V n

i changes with n. Thus,

lim
n→∞ |Fn(Jn) − �(Jn)| = 0.

If limn→∞ n1/2xn = k < ∞, then Jn converges to −2
√

2k. Since � is continuous,

lim
n→∞ |�(Jn) − �(−2

√
2k)| = 0.

Thus, the probability of A winning converges to 1 − �(−2
√

2k) = �(2
√

2k).
If n1/2xn goes to infinity with n, then Jn goes to −∞. Thus, for arbitrarily large L, the

probability of A winning the election is larger than 1 − Fn(−L) for n large enough. Using
the normal approximation above we can see that the probability of A winning must go to
one. �

Proof of Proposition 1. Suppose the state is zA (similar calculations hold if the state is
zB ). Using the notation of the proof of Theorem 2, the number of votes for A is given by

V n
1 + · · · + V n

2n+1 + (2n + 1)( 1
2 + xn).

Then, the winning margin is∣∣∣∣∣∣
2

(∑2n+1
i=1 V n

i + (2n + 1)( 1
2 + xn)

)
− (2n + 1)

2n + 1

∣∣∣∣∣∣
or equivalently,

2

∣∣∣∣ 1

2n + 1

∑2n+1
i=1 V n

i + xn

∣∣∣∣ .
Therefore, the probability that the winning margin is smaller or equal to � is equal to
Fn(Dn) − Fn(In), where

Dn

(2n + 1)(�/2 − xn)√
E((V n

i )2)(2n + 1)

and

In

(2n + 1)(−�/2 − xn)√
E((V n

i )2)(2n + 1)

.
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Note that Dn goes to +∞ and In goes to −∞ with n. Following the last steps of the proof
of Theorem 2, we have that the probability that the winning margin is smaller or equal to �
must go to one. �

Proof of Theorem 3. In the text for the case C′′(0) ∈ (0, ∞). Consider the case C′′(0) =
∞. As in Eq. (8) in the proof of Theorem 2, we can write

(2n)!
n!n!

n1/2

22n

(
1 − 4y2

n/n
)n

(2qArA) = n1/2C′(xn).

Recall that, using Stirling’s formula, (2n)!n1/2/(n!n!22n) → �−1/2. Also, since in this
case yn → 0,

(
1 − 4y2

n/n
)n → 1 [10, Theorem 4.2, p. 94]. Thus, n1/2C′(xn) converges

to 2qArA�−1/2. Since xnnC′(xn) = ynn
1/2C′(xn), we get that xnnC′(xn) converges to

zero. Using C(xn)�xnC
′(xn), we get that nC(xn) converges to zero. The statement of the

theorem follows.
Now consider the case C′′(0) = 0. As in Eq. (8) in the proof of Theorem 2, we can write

(2n)!
n!n!

n1/2

22n
yn

(
1 − 4y2

n/n
)n

(2qArA) = xnnC′(xn).

Since in this case yn → ∞, we claim that limn→∞ yn

(
1 − 4y2

n/n
)n = 0. To see this, using

Lemmas 4.3 and 4.4 in Durrett [10, p. 94],∣∣∣(1 − 4y2
n/n

)n − exp(−4y2
n)

∣∣∣ �16y4
n/n3.

The claim follows from yn exp(−4y2
n) → 0 and 16y5

n/n3 → 0 as n → ∞. Recall that,
using Stirling’s formula, (2n)!n1/2/(n!n!22n) → �−1/2. Thus, xnnC′(xn) converges to zero.
The statement of the theorem follows from C(xn)�xnC

′(xn). �

Proof of Proposition 2. Letting xo
n be the amount of information acquired by voters in the

optimal symmetric profile, we have

2

(
2n

n

) (
1
4 − (xo

n)2
)n

(2n + 1)qArA = C′(xo
n). (9)

That is, the optimal amount of information is what the voters would acquire if they internalize
the gains of choosing the right alternative for the entire society. Letting yo

n = n1/2xo
n and

rewriting the equation above,

(2n)!
n!n!

n1/2

22n

(
1 − 4yo

n
2
/n

)n

(2qArA) = yo
n C′′(�n)/(2n + 1)

for some �n between zero and n−1/2yo
n . Since the right-hand side of this equation converges

to zero, an argument similar to the first part of the proof of Theorem 2 establishes that
yo
n → ∞. Thus, the probability of choosing the right alternative converges to one along the

sequence of optimal symmetric profiles.
Rewriting Eq. (9) again, we have

(2n)!
n!n!

n1/2

22n
yo
n

(
1 − 4yo

n
2
/n

)n

(2qArA) = yo
nn1/2 C′(xo

n)/(2n + 1).
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An argument similar to the proof of Theorem 3 shows that the left-hand side converges
to zero. Thus, xo

nnC′(xo
n)/(2n + 1) → 0. Using xo

nC′(xo
n)�C(xo

n), we get that nC(xo
n)/

(2n + 1) → 0 which implies C(xo
n) → 0. �

Existence of a solution to (3.1)–(3.3). System (3.1)–(3.2) is equivalent to

2�−1/2 exp{−4(k′ + h′/2)2}qArA = k′c, (10.1)

2�−1/2 exp{−4(k′ − h′/2)2}qBrB = k′c (10.2)

or

h′ = 1

8k′ ln

(
qArA

qBrB

)
,

2�−1/2 exp

{
−4

(
k′ − 1

16k′ ln

(
qArA

qBrB

))2
}

qBrB = k′c.

If, say, qArA > qBrB , this system has a solution satisfying h′ < 2k′ iff

64(qBrB)2/(�c2) > ln((qArA)/(qBrB)), (11)

and the solution (if it exists) is unique. Thus, if qArA > qBrB , the inequality (11) is
necessary and sufficient for the existence of a solution to (3.1)–(3.3). A similar condition is
easily obtained if qArA < qBrB . �

Proof of Theorem 4. We continue the argument from the proof of Theorem 1. If qArA �=
qBrB , inequality (5) cannot be satisfied for n large enough since x∗ is positive but converges
to zero as n goes to infinity. Thus, if qArA �= qBrB there is no equilibrium of type (I) for large
n.We consider the case qArA > qBrB in the remainder of the proof, as the case qArA < qBrB
can be dealt with similarly. It is easy to check that there cannot be an equilibrium of type
(III) if qArA > qBrB because under any strategy of type (III), P�(piv|zA) > P�(piv|zB). It
remains to find out conditions under which there is an equilibrium of type (II) for large n.

Using the equilibrium conditions (6) and (7) for qArA > qBrB we obtain(
2n

n

)
( 1

4 − (x + �( 1
2 − x))2)n = (( 1

2 + x)C′(x) − C(x))/(qArA), (12.1)

(
2n

n

)
( 1

4 − (x − �( 1
2 + x))2)n = (( 1

2 − x)C′(x) + C(x))/(qBrB). (12.2)

(Note that the inequality in (7) is strictly satisfied if qArA > qBrB .) Let H = �/x and


(n) =
(

2n
n

)
4−n. (
(n) is strictly decreasing in n and goes to zero as n goes to infinity.)

Rewriting (12.1)–(12.2),


(n)(1 − 4[(1 + H/2)x − Hx2]2)n = (( 1
2 + x)C′(x) − C(x))/(qArA), (13.1)


(n)(1 − 4[(1 − H/2)x − Hx2]2)n = (( 1
2 − x)C′(x) + C(x))/(qBrB). (13.2)

The expressions in the RHS of (13.1) and (13.2) are strictly increasing in x, while those
in the LHS are decreasing in x for every H. It is easy to check that for any given H �0 and
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for n large, there is a unique xI
n(H) and a unique xII

n (H) solving respectively Eqs. (13.1)
and (13.2). Moreover, xI

n(H) and xII
n (H) are positive, continuous in H, and converge to

zero as n goes to infinity.
Note that

(( 1
2 + x)C′(x) − C(x))/(( 1

2 − x)C′(x) + C(x))

converges to one from above as x goes to zero. Thus, the RHS of (13.1) is smaller than the
RHS of (13.2) for x close to zero. Since the LHS of (13.1) and (13.2) are equal for every x
if H = 0, we get xI

n(0) > xII
n (0) for large n.

We claim first that, under the conditions stated in part (i) of the theorem, for every H > 0
there is some n such that xI (H) < xII (H) for n�n. It follows that there is a sequence of
solutions to (12.1)–(12.2) (i.e. a sequence of information acquisition equilibria) such that
along that sequence �/x converges to zero. To establish the claim it is sufficient to prove
that for any H > 0, for n large enough, the RHS is larger than the LHS of (13.1), evaluating
them at xII

n (H). That is,(
1 − 4[(1 + H/2)x − Hx2]2

1 − 4[(1 − H/2)x − Hx2]2

)n

<
qBrB

qArA

( 1
2 + x)C′(x) − C(x)

( 1
2 − x)C′(x) + C(x)

, (14)

where x = xII
n (H). Letting yn(H) = n1/2xII

n (H) and using the mean value theorem, we
get from (13.2)


(n)n1/2(1 − 4[(1 − H/2)yn(H)/n1/2 − H(yn(H))2/n]2)n

= yn(H)( 1
2 − �n)C

′′(�n)/(qBrB)

for some �n between zero and n−1/2yH
n . Following the steps of the first part of the proof

of Theorem 2, we get yn(H) → ∞. Using Lemmas 4.3 and 4.4 in Durrett [10, p. 94],
the LHS of (14) is approximately exp{−8H(yn(H))2} for large n. Thus, it converges to 0.
Since the RHS of (14) is bounded below by (qArA)/(qBrB), (14) is satisfied for large n.
This establishes the claim.

Now let x̂n and �n denote the information acquired by each voter and the probability of
playing the pure strategy (0, A, A) according to a sequence of equilibria with information
acquisition in case (i) of the theorem. Using (12.1) and following the steps of the first part
of the proof of Theorem 2, we get x̂nn

1/2 → ∞. A minor variation on the second part
of the proof of Theorem 2 establishes that the probability of choosing the right alternative
converges to one. Similarly, a minor variation on the proof of Theorem 3 establishes that
the aggregate cost converges to zero.

Second, we claim that, under the conditions stated in part (ii) of the theorem, xI
n(2) <

xII
n (2) for large n, so that there is an equilibrium satisfying x > �/2. To see this, letting

kII = limn→∞ yn(2) from (13.2) we get kII = 2�−1/2qBrB/c. Since, for H = 2, the LHS
of (14) converges to exp{−16k2

II } and the RHS is bounded below by (qArA)/(qBrB), (14)
is satisfied for large n if Eq. (11) is satisfied, that is, if (3.1)–(3.3) has a solution.

Now let x̂n and �n denote the information acquired by each voter and the probability
of playing the pure strategy (0, A, A) according to a sequence of information acquisition
equilibria satisfying�n/x̂n < 2 in case (ii) of the theorem. Using (12.1)–(12.2) and following
the steps of the first part of the proof of Theorem 2, we get x̂nn

1/2 → k′ and �nn
1/2 → h′.
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Minor variations on the proofs of Theorems 2 and 3 establish the statement about social
welfare in part (ii) of the theorem.

To prove part (iii) of the theorem, we proceed by contradiction. If C′′(0) = c ∈ (0, ∞)

and there is a sequence {x̂n, �n} that solves (12.1)–(12.2) for arbitrarily large n, then along
that sequence we must get x̂nn

1/2 → k′′ and �nn
1/2 → h′′, where k′′, h′′ solve (10.1)–

(10.2). But this system is equivalent to (3.1)–(3.2). Finally, if C′′(0) = ∞, from (12.1) we
get x̂nn

1/2 → 0. But using (12.1)–(12.2) we get

exp{−4((1 − �n)x̂nn
1/2 + �nn

1/2/2)2}
exp{−4((1 − �n)x̂nn1/2 − �nn1/2/2)2} → qBrB

qArA
,

which is impossible unless qArA = qBrB . �

Proof of Theorem 5. It is straightforward to show that there is no equilibrium with in-
formation acquisition for large n if C′(0) > 0. Assume C′(0) = 0. It is easy to show
that a best-responding voter will put probability zero on the set of actions {(x, vA, vB) �=
(x, A, B) and x > 0}. Thus, if all other voters put positive probability on the set of ac-
tions with x > 0, the probability that a given voter is decisive, conditional on either state,
will be positive. But then, if C′(0) = 0, a best-responding voter will put probability zero
on the actions (0, A, B) and (0, B, A). The reason is that if the realization of ui is such
that the voter is indifferent between (0, A, A) and (0, B, B), then it will pay the voter to
acquire some information. Thus, if C′(0) = 0, an information acquisition equilibrium map-
ping can put positive probability only on the actions (0, A, A) and (0, B, B) and on the set
{(x, A, B) : x > 0}. It is easy to check that an information acquisition equilibrium mapping
must order the action (0, B, B) for ui < u and (0, A, A) for ui > u for some pair u, u

satisfying 0 < u < u < 1. We claim that u = 1 − u. Suppose, e.g., u > 1 − u. Then
the probability that a voter is decisive in state zA would be larger than the probability the
voter is decisive in state zB . But then if the voter is indifferent between acquiring informa-
tion or playing (0, A, A) if ui = u, then the voter should prefer to acquire information if
ui ∈ (1 − u, u). Since u = 1 − u, the probability of being decisive in an equilibrium with
information acquisition is the same in both states. Denoting this probability P�(piv) we get
that for ui ∈ (u, u), the information quality chosen in equilibrium x̃ must maximize

( 1
2 )P�(piv)( 1

2 + x) − C(x).

(Note that the specific realization of ui drops from the objective function because the
probability of being decisive is the same in both states.) For a voter to be indifferent between
acquiring information and playing (0, A, A) if ui = u, it is necessary that

(u/2)P�(piv) = ( 1
2 )P�(piv)( 1

2 + x̃) − C(x̃)

or equivalently,

u = 1
2 + x̃ − 2C(x̃)/P�(piv).

Thus, x̃ < 1
2 . But then it must satisfy the first-order condition

( 1
2 )P�(piv) = C′(x̃).
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Hence,

u = 1
2 + x̃ − C(x̃)/C′(x̃)

and

P�(piv) =
(

2n

n

) (
1 − u + (u − u)( 1

2 + x̃)
)n (

u + (u − u)( 1
2 − x̃)

)n

=
(

2n

n

) (
1
4 − 4(x̃n − C(x̃n)/C′(x̃n))

2x̃2
n

)n

.

Eq. (4) follows. It is simple to verify that (4) has a unique solution for each n. �

Proof of Theorem 6. Using Theorem 5, the probability that a voter votes for the right
alternative is equal to

1
2 + 2x̃n(x̃n − C(x̃n)/C′(x̃n))

or

1
2 + 2x̃2

n(1 − C(x̃n)/(x̃nC
′(x̃n))).

As in the proof of Theorem 2, we are interested in calculating the limit of

2x̃2
nn1/2(1 − C(x̃n)/(x̃nC

′(x̃n))).

Let Q = 1 − limx↓0 C(x)/(xC′(x)). Using L’Hôpital’s rule, it is easy to check that Q ∈
[0, 1] if C′(0) = 0, Q ∈ [ 1

2 , 1] if in addition C′′(0) = 0, and Q = 2/3 if in addition
C′′′(0) = c̃ ∈ (0, ∞). Using Eq. (4) as in the first part of the proof of Theorem 2, we get
x̃2
nn1/2 → 0 if C′(0) = 0 and C′′(0) > 0, or if C′(0) = C′′(0) = 0 and C′′′(0) = ∞.

Similarly, x̃2
nn1/2 → ∞ if C′(0) = C′′(0) = C′′′(0) = 0. Finally, if C′(0) = C′′(0) = 0

and C′′′(0) = c̃ ∈ (0, ∞), from (4) we can get that the limit L̃ of 2Qx̃2
nn1/2 must satisfy

�−1/2 exp{−4L̃2} = (3/4)L̃c̃, or equivalently L̃ = k̃. The probability of choosing the
right alternative can be obtained following the steps of the second part of the proof of
Theorem 2.

With respect to the aggregate cost of information, suppose that C′(0) = C′′(0) = 0 and
C′′′(0) = c̃ ∈ (0, ∞). Note that, using Theorem 5, the probability that a voter acquires
information is given by 2x̃n(1 − C(x̃n)/(x̃nC

′(x̃n))). Thus, the expected aggregate cost in
the limit is given by

lim
n→∞{(2n + 1)(2x̃n)(1 − C(x̃n)/(x̃nC

′(x̃n)))C(x̃n)}
= lim

n→∞{(2n1/2x̃2
n)2(1 − C(x̃n)/(x̃nC

′(x̃n)))C(x̃n)/x̃
3
n}.

Using

2x̃2
nn1/2(1 − C(x̃n)/(x̃nC

′(x̃n))) → k̃ and 1 − C(x̃n)/(x̃nC
′(x̃n)) → 2/3

(from the previous paragraph) and

C(x̃n)/x̃
3
n → c̃/6,
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(by L’Hôpital’s rule) we get that the expected aggregate cost converges to c̃k̃2/4, as
stated in the theorem. Other cases can be dealt with following the steps of the proof of
Theorem 3. �
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