
Building Your First Process with Oracle BPM 11g

This tutorial contains the following sections:

Purpose

Time to Complete

Overview

Scenario

Software and Hardware Requirements

Prerequisites

Creating the Basic Hello World Application

Enhancing the Basic Hello World Process

Deploying and Testing the Application

Summary

Resources

Purpose

This tutorial shows you how to build a simple Hello World application using Oracle BPM Suite 11gR1. It also shows you
how to deploy the process to the BPM engine and test it in the BPM Workspace.

Time to Complete

Approximately 2 hours

Overview

In this tutorial, you use Studio, the JDeveloper based IDE, to create a simple Hello World process. This process
demonstrates the use of a file service, interactive tasks implemented by the human workflow engine, and by conditional
branching. The conditions for the conditional branching are determined through the use of a business object and a
business rule. You also use a script task to initialize a variable. After building the process, you deploy it to the BPM engine
and test it in the runtime environment.

Scenario

There are two roles involved in the Hello World process, the sender of the message, acting in the Requester role, and a
reviewer, acting in the Reviewer role. The requester is prompted, through the Request Hello activity, to enter a Hello
message, greeting, and a date for the message. After the form is submitted, a business rule is applied to the message
content to determine whether the message requires a review, based on the length of the greeting and message fields.

If the message does not require review, the process flows to a script task, which initializes a variable needed by the next
task, then the message is sent to the Write Message activity to be written to the file system. If the message requires review,
the reviewer is prompted to review the message and either accept or reject it. If the message is rejected, it returns to the
Request Hello activity so that the requester can correct the message, otherwise, it goes directly to the Write Message
activity for file processing.

Software and Hardware Requirements

In order to perform this tutorial, you must have previously installed Oracle BPM 11gR1 and JDeveloper 11.1.1.3 with both
the SOA and BPM extensions. You will also need to have at least one user in the internal LDAP database of your
WebLogic server in the OBPM installation in order to map this user to the roles that you define in your Hello World
process. You can take care of both of these tasks (installation and seeding of the LDAP database) by performing the
Installing Oracle BPM 11g OBE.

Prerequisites
If you have not yet installed OBPM 11gR1, perform the Installing OBPM 11g OBE. Performing this OBE will also seed
your LDAP database.
If you already have an OBPM 11gR1 installation, but still wish to seed the Demo Community in the WebLogic server's
internal LDAP database, download the zip file containing ANT files needed to perform this task. This is available from
OTN as a SOA 11g Human Workflow sample code download. You will need to modify some parameters in the ANT
build file to match your particular installation. A ReadMe file is included in the zip file to assist you.

Creating the Basic Hello World Application

In this section you create the basic starting point for the Hello World process using the JDeveloper Studio. You add two
activities - an interactive activity and a service activity. The end user will be able to enter a Hello message, using the BPM
Workspace. The message will be captured in a business object and passed to a file service, which, in turn will write the
message to a disk file. Later, you expand upon this to add more complexity to the process.

You create several process elements throughout this section of the tutorial. The following naming convention will be used
throughout this section:

Name Description

HelloWorld_OBE Application name

HelloWorldProject Main project name

HelloWorld_UI
Project containing user
task web form(s)

HelloWorldProcess Process name

Creating the Process Model

Creating the Business Object

Implementing the User Task

Implementing the File Service

Creating the Process Model

1. Open JDeveloper Studio 11.1.1.3 from the Windows Start menu. When prompted to select a role, choose the
Default Role. Click OK.

Close the Daily Tips window.

2. Create a new application. Click the New Application bar in the left panel.

The BPM Application wizard opens. Name the application "HelloWorld_OBE" and accept the default directory

for storing application files (C:\JDeveloper\mywork). Select BPM Application in the Application Template

panel.

Click Next.

3. In Step 2 of the Create BPM Application wizard, you create a project for the HelloWorld_OBE application. Enter
HelloWorldProject as the Project Name. Notice that BPM and SOA are selected as project technologies by

default. Click Finish.

In the upper left corner of the JDeveloper Studio window, you see the Navigator panel. This contains two tabs that
will be important to you as you perform this tutorial: The Application Navigator tab and the BPM Project
Navigator tab. Currently the Application Navigator tab is selected by default. You can see the HelloWorld_OBE
application appearing in the drop-down list just above the panel and the HelloWorldProject appearing as the parent
node within the panel. The fact that it appears in italics indicates that there are unsaved changes.

Click the Save All icon on the main toolbar.

4. To create a new process within this project, first click the BPM Project Navigator tab. Then right click on
Processes and select New > Process .

In the BPM Process wizard, select the From Pattern radio button, and then the Manual Process pattern. Click

Next.

In the next screen, name the process "HelloWorldProcess" and click Finish.

The process model appears in the design editor panel in the middle of the JDeveloper window. The tab name will be
same as the name of your new process.

Click the Save All icon again.

You may wish to close the other tabs, as you will not be using these. An X will appear in the upper right corner of
the tab when your cursor approaches it. The X will close the tabbed pane. All of these can be easily reopened later
from either the menu or one of the navigator panels.

5. Change the name of the user task in the design model. Notice that the model begins and ends with two circular
icons. The circle on the left is a Start activity and the circle on the right is an End activity. Connecting the two circles
is a line that represents the flow of activities through the process. This is called the sequence flow and sometimes
is referred to as the "transition line". Between the Start and End activities is a User Task type activity. Right click on
this and select Properties.

When the Properties dialog box appears, on the Basic tab, change the name of the activity to "Request

Hello". Click OK.

Don't worry about the warning message indicating that no implementation has been defined. You will do this later.

Click Save All.

6. Add the Component Palette to the JDeveloper window by selecting View > Component Palette from the menu. The
palette will appear in the right pane of the window.

Select BPM from the drop-down list at the top of the Component Palette, then expand the Activities accordion
panel as shown below.

7. Add a service activity to the process. You'll need to first make room for another activity on the sequence flow.

Click on the End activity and drag it to the right, dropping it on the right side of the design panel, allowing enough
room for another activity icon to fit between the Request Hello activity and the End activity.

Now click the Service activity icon in the Component Palette and drag it to the Sequence flow between Request

Hello and End. Drop it there. Notice that the transition line turns blue when the drop target area approaches the
line.

Important: The transition line must be blue when you drop the object in order for the transition line to be connected
to the activity.

When you drop it, the Properties dialog box for the activity opens. On the Basic tab, change the activity name to
"Write Message".

Click OK.

8. Click Save All. Your process model should now look similar to this.

Creating the Business Object

1. Now you will create a business object capable of storing multiple pieces of data, related to the message that the
user enters in the Request Hello activity. This object will be populated when the user enters the message. It will then
be passed to the Write Message activity so that the message can be written to a file.

Business objects are stored in modules within the Business Catalog. In the BPM Project Navigator, expand the
HelloWorldProject node. Right click on Business Catalog and select New > Module.

When prompted to name the new module, enter "HelloTypes" and click OK.

The HelloTypes module now appears beneath the Business Catalog node.

2. Right click the HelloTypes module and select New > Business Object.

In the Create Business Object window, enter "HelloObject" as the Name and accept HelloTypes as the

Destination Module. Click OK.

The HelloObject editor now opens in the editor.

3. Add the following three attributes to HelloObject:

Attribute Name Type

date Time

greeting String

message String

The following instructions describe how to create the date attribute.

Click the plus sign next to the Attributes section of the Business Object editor as shown below:

The Create Attribute popup appears. Enter "date" as the Name value. Select Time as the Type from the drop-

down list. Click OK.

The date attribute now appears in the Attributes section of the Business Object editor.

Continue working in this way to create the other two attributes. When you finish, the Business Object editor should
look like this:

Click Save All and close the HelloObject tab in the editor panel.

4. Now create a process data object of type HelloObject so that you can use it in your process.

If the HelloWorldProcess tab is still open in the editor panel, click anywhere in the design editor to put the focus on
the HelloWorldProcess. (If it is not open, select it within the BPM Project navigator by expanding HelloWorldProject
> Processes to find it)

When a process has been given focus, a detailed outline of its structure appears in the Structure pane in the lower
left corner of the JDeveloper window.

Right click on Process Data Objects in the Structure pane and select New.

In the Create Data Object popup, enter "hello" as the Name and click the ellipses button to open another

window to search for complex data types.

In the Browse Types window, select <Component> as the Type and then select HelloObject from the list of
components appearing below. Click OK.

Back in the Create Data Object window, click OK again. The hello data object now appears in the Structure pane.

Click Save All.

Implementing the User Task

1. Every interactive activity must be bound to a task service to provide its implementation. In the case of a User Task
(such as Request Hello), it must be bound to a Human Task type task service. You will create the Human Task in
this step.

Right click the Request Hello activity in the design editor and select Properties to open the Properties window.

Click the Implementation tab. Next to the Human Task field, click the plus sign button as shown below.

In the Create Human Task dialog box, enter or select the following values for fields in the top portion of the dialog:

Field Value

Name SayHello

Pattern Initiator

Value Please Enter a Hello Message

Outcomes
Submit <This is auto selected for you when
you choose the pattern>

Add a parameter by clicking the plus icon above and to the right of the Parameters panel.

This opens the Data Object window displaying available data objects that you can drag into the Parameters panel.
Click on the hello data object and drag it into the parameters panel. Select the Editable checkbox for the new
parameter.

Close the Data Object window and then click OK in the Create Human Task window..

You are returned to the Properties window for the Request Hello activity. Click OK.

Click Save All.

2. Now you must provide a form for the user to enter the Hello message, ensuring that the form is linked to the hello

data object.

In the BPM Project Navigator, expand Business Catalog > Human Tasks. Here you see the SayHello.task
object. This is the human task that you just defined.

Double click it to open it in the editor. When it opens, click the Create Form drop-down list in the editor toolbar on
the left and select Auto-Generate Task Form ...

The Create Project window opens. It is necessary to create a separate project to contain UI elements (ADF forms).
Enter HelloWorld_UI as the Project Name and accept the default directory. Click OK when finished.

It will take several seconds (even up to a minute, depending on resources) to create the form and open the
necessary editor. Eventually, you will see the editor shown below (partial view). The highlighted section is the
portion that will be visible to the end user. Notice the Date, Greeting, and Message fields.

Select the Message field as shown above. When you do so, the properties for this field appear in a panel in the
lower right corner of the JDeveloper window. Expand the Appearance accordion panel within this panel and change
the value of the Rows property to 5.

Tab out of the field so that the change will take effect in the form.

Click Save All. Close all tabs in the editor except for the HelloWorldProcess tab.

Implementing the File Service

1. Create the implementation for the Write Message service activity using the SOA Composite editor. Click the Goto
Composite Editor button on the Design Editor toolbar as shown below.

The SOA Composite editor opens. To view the design editor, rather than the XML source, click the Design tab at
the bottom left margin of the Composite Editor panel. The HelloWorldProcess BPMN component and the SayHello
human task component are shown in the composite editor. These are considered components of the SOA
composite.

2. Click the File Adapter service adapter from the Component Palette. Notice that the Component Palette is now
showing SOA components, by default.

Drag and drop the File Adapter into the External Reference column of the editor.

The Adapter Configuration Wizard opens when you drop it.

3. Click Next on the Welcome page of the Adapter Configuration Wizard.

On the Service Name page of the wizard, name the service MessageWriter. Click Next.

On the Adapter Interface page, select Define from operation and schema (specified later) . Click Next.

On the Operation page, select Write File. The Operation Name will be pre-populated with the name Write. Accept

this value and click Next.

On the File Configuration page, select Physical Path as the Directory specified. Enter a dot ('.') for the Directory
for Outgoing Files (physical path) field. Also enter a File Naming Convention of:

Hello_%SEQ%.xml

Click Next.

In the Messages page, you determine what should be written to the file. Click the magnifying glass icon next to the
URL field to open the Type Chooser popup. Expand Project Schema Files and HelloObject.xsd to find and select
HelloObject. as shown below. Click OK to accept the selection and return to the Messages window of the wizard.

Click Next in the Messages window.

Click Finish in the final page of the wizard. The service is created and appears in the SOA Composite editor.

Click Save All and close the Composite editor tab.

4. Now you must wire the service implementation you just created to the Write Message activity in the BPM process.
You need to be in the BPM Process design editor for this.

Note: If necessary, open the HelloWorldProcess in the design editor by double clicking on it in the BPM Project
Navigator.

Right click on the Write Message activity and select Properties.

In the Properties window, click the Implementation tab.

Select Service Call as the Implementation. Click the magnifying glass icon next to the Name field to browse for a
service. The Type popup window appears, displaying your MessageWriter service. Select it and click OK.

Back in the Properties window, notice that the Operation field has now been automatically set to write.

In the Data Associations panel, click the Use Associations checkbox, then click the pencil icon next to it. This
opens an editor that allows you map data into the activity. In this case, you want to map the hello object into the

activity so that the MessageWriter service can write the message.

In the Data Associations window that opens next, drag the hello data object from the right column over to the

Inputs field on the left side of the window. Notice that this maps the hello data object to the helloObject

expected as input to the activity's service implementation.

Click OK in the Data Associations window to save the mapping and return to the Properties window.

Click OK in the Properties window.

Click Save All.

Enhancing the Basic Hello World Process

In this section, you enhance the basic process you just built by adding a review capability for the message entered by the
user. You add another business object to hold review-related data and use this business object in conjunction with a
business rule that tests the length of the greeting and message. You also add another human interaction that allows the
user with the Reviewer role to review the entered message and accept or reject the message. Then you change the
process model, itself, so that it conditionally branches to the Review Message activity and potentially back to the Request
Hello activity if the message was rejected. A script task will also be needed in order to initialize a variable used in the
conditional branching logic.

You begin the enhancement by changing the name of the role assigned to the user who executes the Request Hello
activity to something more meaningful. Then you add a new role for the user who reviews the message.

Adding the ReviewNeeded Business Object

Adding a Business Rule

Defining a Decision Table for the Business Rule

Adding the Review Message Human Interaction

Adding Conditional Branching

Adding a Script Task

Adding the ReviewNeeded Business Object

1. Change the name of the Role role. In the BPM Navigator, right click on the Organization node beneath
HelloWorldProject and select Open.

The Organization editor opens in the center panel. Select the Role role and click the pencil icon to edit it.

The Role popup window appears. Enter the name Requester and click OK.

2. With the Organization editor still open, click the green plus sign button to add a new role.

Enter the name Reviewer in the Name field of the Role popup window and click OK.

Your Organization editor should now look like this:

3. Click Save All and close the Organization editor.

4. Add a new business object in the same manner that you did in the Creating the Business Object section above.
Follow Steps 2 and 3 of that section, placing the new business object in the HelloTypes module and substituting
the name and attributes mentioned below.

Name the object ReviewObject and add the following attributes to it:

Attribute Name Type

review String

reason String

Click Save All and close the object editor. The ReviewObject should now appear in the BPM Navigator beneath the
HelloTypes folder.

5. Declare a process data object of type ReviewObject in the same manner that you did in the Creating the
Business Object section above. Follow the instructions in Step 4, substituting review as the data object name.

6. Add one more process data object of type String, called reviewOutcome. Follow the same procedure as the

previous step, except choose String as the type.

Adding a Business Rule

1. Add a business rule to the design model.

Begin by making more room on the sequence flow between the Request Hello and Write Message activities.Move the
End activity and the Write Message activity further to the right.

Expand the Activities accordion panel in the Component palette, then click and drag a Business Rule into the design
editor, dropping it onto the sequence flow between Request Hello and Write Message.

The Properties dialog for the business rule appears when you drop the object. Enter ReviewNeeded in the Name

field. Click OK.

Click Save All.

2. In the next step, you will define the implementation of the ReviewNeeded business rule using the Composite editor. In
order to make the two business objects available to the Composite editor, you must copy the xsd files that were

generated for each object when you created them from the businessCatalog\HelloTypes folder to the xsd

folder within the directory structure of your project. [This is a workaround to a known bug in this release of the product]

Open Windows File Explorer and navigate to:

C:\JDeveloper\mywork\HelloWorld_OBE\HelloWorldProject\businessCatalog\HelloTypes

In this folder, find and copy the following two xsd files:
HelloObject.xsd
ReviewObject.xsd

Paste them into the following folder:

C:\JDeveloper\mywork\HelloWorld_OBE\HelloWorldProject\xsd

3. Open the Composite editor by clicking the Goto Composite Editor button on the Design editor toolbar.

4. Add a Business Rule component to the Composite Editor. From the Component palette panel on the right, click and
drag a Business Rule from the Service Components section of the palette and drop it in the Components column of the
Composite Editor.

When you drop the component, the Properties dialog appears. Enter HelloRules in the Name field. Then click the

green plus button above the Inputs/Outputs section and select Input...

The Type Chooser popup window appears. Expand the second HelloObject.xsd entry, then select the HelloObject
beneath it and click OK.

Click the green plus button once more and this time select Output... When the Type Choose popup window appears,
expand the second ReviewObject.xsd entry and select ReviewObject. Click OK.

Back in the Business Rule properties window, click OK.

Click Save All.

5. You now need to wire the implementation that you just created (the HelloRules business rule) to the ReviewNeeded

business rule activity in the BPM process. Click the HelloWorldProcess tab to bring the focus back to the BPM Design
Editor.

Right click the ReviewNeeded activity to open its properties window. Click the browse button to the right of the
Business Rule field.

When the Browse Business Rules window opens, you should now see your HelloRules business rule implementation.
Select it and click OK.

6. In the Properties window, click the checkbox next to Use Associations. Keep the default setting for Type, which is
Simple associations and click the Edit Data Associations button (the pencil icon).

The Data Associations window opens. In this window, you map process data objects (hello and review) to the

Inputs and Outputs that you defined for the HelloRules business rule implementation. From the right column, click and
drag the review data object, dropping it into the Outputs field as shown below.

Now click and drag the hello data object from the right column, dropping it on the Inputs field. Click OK to save this

mapping and close the Data Associations window.

Click OK in the Properties window. Click Save All.

Defining a Decision Table for the Business Rule

In this section you define a set of rules that will be applied when the user enters a hello message and greeting. The
following table illustrates what those rules are and how they will be applied.

The lengths of the HelloObject.greeting and HelloObject.message strings will be evaluated. You will define

four rules that determine the combination of greeting and message lengths and then set the appropriate values to the
ReviewObject properties: reason and review. For example, if the greeting length is Medium and message length is

Short, the ReviewObject's reason property would be set to "Length is too short" and its review property would be set to
"true". Consequently, the process would flow to a ReviewNeeded activity and could be accepted or rejected by the
reviewer.

A decision table can be designed in many different ways. In our scenario, the decision table consists of four elements as
described here:

A set of Conditions - In this case, each condition is the length of either the greeting or the message string

variable
A Range of Values, called a bucketset - For example a variable might be < 5 characters in length, or between 5 and
50 characters in length, and so on. These are ranges within a bucketset.
An Action - This is the act that should occur when a rule is evaluated. For example, the review property might be set

to "true".
A Rule - This is a specific mapping of condition > range > action.

The Decision table is created in five high level steps:

1. Define the conditions (Step 2 below)
2. Define a bucketset (Step 3)
3. Assign that bucketset to each condition (Step 4)
4. Define the action (Step 5)
5. Define the rules (Steps 6 - 9)

1. Open the Rules Editor .

In the BPM Navigator, expand Business Catalog > Rules > Helloworldproject. Double click on
HelloRules.rules.

The Rules Editor opens and, by default, the Ruleset_1 node in the left panel of the editor is selected.

2. Create a decision table for the rule.

Click the green plus sign button on the toolbar and select Create Decision Table from the drop-down menu.

The Ruleset_1 editor changes to provide a table for you to define the decision table. Change the default name of
the decision table from DecisionTable_1 to ReviewDecisionTable. Click on the field containing the default

name. A text field appears below it. Enter the new name and hit Enter to accept the value.

Add two conditions to be checked for the table:

HelloObject.greeting.length()
HelloObject.message.length()

Add the first condition by clicking on the <insert_condition> field in the table as shown below. This will
automatically add a condition row, with a link that says <edit_ condition>.

Right click on the <edit_condition> field and select Edit Condition. A drop-down list appears, displaying the
defined data object types within the project. Expand HelloObjectType and select greeting.

Right click on HelloObjectType.greeting and select Edit Condition again.

This time, the drop-down list that appears presents more options. Expand HelloObjectType > greeting and select
the length() function.

Add the second condition by clicking the green plus sign button directly above the Conditions table and selecting
Condition from the drop-down menu.

Right click on the newly added condition as you did for the first condition and select Edit Condition. This time, you
can go directly to adding the length() function as part of the condition. Expand HelloObjectType > message and
select length().

Click Save All.

3. The rule will compare each condition against a range of values, called a "bucketset". Click the Bucketset node in
the left panel of the Rules editor to create the bucketset.

Click the green plus sign button and select List of Ranges from the drop-down menu.

A new bucketset row is inserted. With this row selected, click the pencil icon to edit the list of ranges.

In the Edit Bucketset window that appears, change the value of the Name field to Lengths. Leave the Data Type

field set to int.

The Range Bucket Values table has an initial default row in which the Endpoint is set to -Infinity. Click the green
plus sign button twice more to add two more rows.

Change the 0 (zero) Endpoint value to 5 by clicking on the value and typing the new value. Notice that this

changes the Range for this row to [5..50] and also changes the Range of the row whose endpoint is 'Infinity to

<5.

Change the Alias for each row to Short, Medium, and Long as shown below. Double clicking on the default

Alias value makes it editable.

Click OK to close the Edit Bucketset window.

Click Save.

4. Assign the Lengths range of values bucketset to each of the conditions in your conditions table. Click the Ruleset_1
node in the Ruleset editor to bring back the decision table editor.

Click the C1 condition to select it and then click the Local List of Ranges drop-down list above the Conditions table
and select Lengths.

Do the same thing for the C2 condition.

5. You are almost ready to start defining the rules to be applied to each combination of range of values and condition.
First you must define an Action to be performed when a rule is implemented.

Create a new Action. In the Actions panel, click the <insert_action> field and select Assert New.

Once the assert new () line appears, right click it and select Edit.

The Action Editor window opens. Select ReviewObjectType from the Facts panel. The properties of this object
type now appear in the Properties panel in the lower portion of the window. Check the Parmeterized and Constant
checkboxes for both the reason and the review properties.

Notice that the effect of this is that an assert new() statement is being constructed in the Value field. It

instantiates a ReviewObject with values for the reason property (a String), and the review property (a String)

You can see this assert statement in the screenshot above. Each rule that you define in the next step will provide
specific values for these parameters.

Click OK, then Save.

6. Define the first rule. Click on the C1 row beneath the R1 column. A drop-down list appears representing the
bucketset you defined for this ruleset. Check Short and click OK.

Click the R1 column for the C2 row. This is the length for the message property. In this case, it doesn't matter what

the length is, so enter a dash (-) and click OK.

In the Actions panel, click the checkbox in the column to the right of the assert new statement, indicating that

you do want the ReviewObject asserted for this rule. Then click the row beneath the checkbox, next to the reason

property. When the text field appears, type: "Greeting is too short". Hit Enter when finished.

Click the column next to the review property and enter the value "true" into the text field. Hit Enter when finished.

You have just defined Rule 1, indicating that if the greeting is "Short" (<5 characters), the message is subject to

review (review = "true") and the ReviewObject.reason should be set to "Greeting is too short".

7. Define the second rule. Click the green plus sign button above the Rules column and select Rule.

Notice that when the new rule column is added, it is added with the heading R1 and the rule you just defined is
moved over to the right, under the heading R2.

Beware: When you make the first edit to the new rule, it will switch back to its original location and original heading
name. Always be sure that you are editing the rule you intended to edit.

Make edits to this rule, just as you did the previous rule, using the following table to guide you:

Section of Decision Table Property Value to Set

Condition HelloObject.greeting.length() Medium

Condition HelloObject.message.length() Short

Action ReviewObject.reason
"Length is too

short"

Action ReviewObject.review "true"

8. Define the last rule that appears in the table as shown at the beginning of this section. Define it in the same way you
defined the rule in the preceding step. The table below provides the values you will use.

Section of Decision Table Property Value to Set

Condition HelloObject.greeting.length() Long

Condition HelloObject.message.length() -

Action ReviewObject.reason null

Action ReviewObject.review "false"

Note that you must select the null from the drop-down list, rather than type it into the text field.

9. Run the Gap Analysis tool to automatically create the final rule. It will determine which conditions have not been
covered by the existing rules. Click the Gap Analysis button on the Decision Table editor toolbar.

The Gap Analysis window opens showing the rule that it determined was missing. Click the checkbox above the rule
to allow the rule to be included in the decision table. Click OK.

The rule now appears in the decision table as Rule 3 and the rule that you defined in the last step moves to the

The rule now appears in the decision table as Rule 3 and the rule that you defined in the last step moves to the
Rule 4 position. Assert the action for Rule 3 (Column R3) and add the following action values:

reason = null

review = "false"

Click Save and close the HelloRules.Rules tab.

Adding the Review Message Human Interaction

1. Add a new human interaction activity to the HelloWorldProcess. If necessary, click the HelloWorldProcess tab in the
Design Editor to bring it to the front.

Expand the Activities accordion panel in the Component Palette and, from the Interactive section, click and drag a
User activity, dropping it outside of the Requester lane and directly below the ReviewNeeded activity.

When the Properties window opens, name the activity Review Message and click OK.

You will then be prompted to assign a role to this activity. Select the Reviewer role from the drop-down list. Click
OK.

2. Define the implementation for the Review Message activity. In the Design Editor, right click Review Message and
select Properties.

In the Properties window, click the green plus sign button next to the Human Task field to define a new human task
implementation.

In the Create Human Task window, define the following properties. Accept the other default values.

Name: ReviewMessage

Title: Review the Message

Click the green plus sign button next to the Parameters panel as shown above to add parameters.

The Data Object popup window appears next to the Create Human Task window. Drag the hello and review

process data objects into the Parameters panel. Select the Editable checkbox for the hello data object only. Also
drag the reviewOutcome process data object into the Outcome Target field.

Click Close in the Data Object popup window and click OK in the Create Human Task window.

Click OK in the Properties window.

Click Save All.

3. Create a new task flow, based on the ReviewMessage human task that you created in the previous step.

Click on the Application Navigator tab and then right click on the HelloWorld_UI project node and select New...

The New Gallery wizard opens. Click the All Technologies tab. Expand the Web Tier category and select JSF.
From the Items panel, select ADF Task Flow Based on Human Task. By using this approach to creating the
taskflow, you can store the taskflow in the same project that is storing your earlier human taskflow, rather than have
separate projects for each taskflow.

Click OK.

You are now prompted to identify the XML file that was generated when you defined the ReviewMessage human
task. The SOA Resource Browser window opens.

It is currently looking at the HelloWorld_UI folder. Navigate up one level to the HelloWorld_OBE folder

and then open the HelloWorldProject folder. Select the file, ReviewMessage.task.

Click OK.

In the Create Task Flow window, accept all the default values and click OK.

4. The bounded task flow that you just created, using the wizard, now appears in the Task Flow editor (Diagram tab).
It does not yet have a web page associated with the taskDetails2_jspx. This is the reason that you see an error
indication. Recall that in the basic Hello World process, you allowed Studio to automatically generate a form for the
Request Hello task flow. For the Review Message task flow, you create your own.

Double click the taskDetails2_jspx icon in the Task Flow editor. The Create JSF Page window opens. Accept all
defaults and click OK.

It will take several seconds for the JSF page designer to become initialized.

5. You should resize some of the accordion panels in the left side of the Studio window now in order to make the
Data Controls accordion panel larger, since you will be selecting components from it in this step.

Expand HelloWorld_UI_ReviewMessage > getTaskDetails > Return. Click Task and drag it into the Taskflow
Design editor. When you drop it, a menu appears. Select Human Task > Complete Task with Payload.

6. The Edit Action Binding window opens next. If you are unable to expand the HelloWorld_UI_ReviewMessage
node, click OK in this window.

A second Edit Action Binding window will appear. Expand HelloWorld_UI_ ReviewMessage >
getTaskDetails(...) > Return. Select the Task object. Click OK.

After a few seconds, the JSF page appears in the design editor (in design mode). Notice that it contains two boxes,
the upper one to accommodate the contents of the message entered by the user, and the lower one to
accommodate the review comments by the reviewer.

You are now finished with the taskflow and JSF page. Click Save All. You can close all tabs except for the
HelloWorldProcess tab.

Adding Conditional Branching

1. Add an Exclusive Gateway to the process model.

You will be moving design elements around quite a bit in this section and, by default, the Design Editor has
Automatic Layout turned ON. You may wish to turn it off so that it does not undo your moves. Click the Layout
button on the toolbar.

On the Automatic Layout menu that appears, click the ON button, which toggles it to an OFF button. Note that you
can come back to this menu and get a one time auto-layout at any time or choose to turn automatic layout back on.

Make room for changes to the process model by moving the End and Write Message activities further to the right.

From the Gateway accordion panel of the Component Palette, click and drag an Exclusive Gateway, dropping it on
the sequence flow between ReviewNeeded and Write Message.

Important: The line must appear blue when you drop the gateway in order for the transition line to connect to it
properly. You will probably have to drop it near the center of the space between activities in order to pick up the
blue line. You can move the gateway further to the left after you have finished placing it.

When you drop it, the Properties window opens. Change the name of the gateway to g1 and click OK.

Move the g1 gateway over to the left to make room for another exclusive gateway that you will add in the next step.

2. Add a second exclusive gateway to the transition line between g1 and Write Message. Follow the same procedure
you did in the last step. Name this gateway g2.

3. Add a conditional sequence flow from g1 to Review Message. Right click on g1 and select Add conditional
sequence flow.

Connect the transition line by clicking on Review Message. Do not worry about the warning message regarding lack
of default sequence flow. You will fix that in the next step.

Reshape the transition line as shown below by clicking and dragging it into the desired shape.

4. Add a default sequence flow from Review Message to g2. Right click on Review Message and select Add default
sequence flow.

Connect the other end of the sequence flow by clicking on g2. Reshape the transition line as shown below, as you
did in the previous step.

5. Add a conditional sequence flow from g2 back to Request Hello. Reshape the transition line as you have the other
two transition lines. (It will be obscured by the existing main sequence flow) It should look like this when you've
finished.

6. Define the condition for the sequence flow from g1 to Review Message. Double click on the transition line between
the two objects. The Transition properties window opens.

On the Description tab, name the transition Review Needed.

Click the Properties tab. On this tab, you define an expression whose outcome determines whether the process
flows down this transition to the Review Message activity. In other words, you define the condition for the conditional
sequence flow. Click the Expression Builder button on the right side of the window.

The Expression Builder opens. Build the expression in 3 steps:

1. In the Variables panel, expand review and select the review attribute.
2. Click the Insert Into Expression button. This puts review.review into the Expression panel at the top.

3. In the Expression panel, add:

= "true" to the existing variable reference.

Click OK when finished to close the Expression Builder.

Click OK to close the Transition properties window.

7. Define the condition for the sequence flow from g2 to Request Hello. Double click on the transition line between
the two objects. The Transition properties window opens.

On the Description tab, name the transition Message Rejected.

Click the Properties tab. Click the Expression Builder button to open the Expression Builder and define the
following expression, using the same procedure as you did in the last step:

reviewOutcome = "REJECT"

Click OK to save the expression.

Click OK in the Properties window.

8. Your process should now look like this:

Adding a Script Task

1. When the process flow reaches the second gateway (g2), it checks the value of the reviewOutcome variable.

There must be a value in the reviewOutcome variable in order for the process to move on to the Write Message
activity. If the value is REJECT, the process returns to Request Hello. When a message is flagged for review, the

reviewer clicks either REJECT or ACCEPT, thereby populating the reviewOutcome variable.

If the process skips the review branch and moves from the g1 gateway directly to the g2 gateway, the
reviewOutcome variable has no value.

Add a script task to initialize reviewOutcome between g1 and g2. From the Activities accordion panel of the
Components Palette, click and drag a Script task, dropping it on the transition line between g1 and g2.

When the Properties window appears, name the activity InitApproval on the Basic tab and click OK.

2. Define the implementation for the InitApproval task. Right click on InitApproval and select Properties.

When the Properties window opens, click the Implementation tab. Then select the Use Associations checkbox.
Click the pencil icon to open the Data Associations window.

In the Data Associations window, drag the reviewOutcome process data object from the right panel into the gray
box in the left panel labeled "Custom Assignments". In the text field to the left of the gray box, provide an initial
value for the reviewOutcome variable of "ACCEPT".

Click OK in the Data Associations window.

Click OK in the Properties window.

Click Save All. The Hello World process is now complete!

Deploying and Testing the Application

In this section, you deploy the Hello World application to the BPM engine running in the WebLogic server that is part of
your SOA installation. This tutorial assumes that your server is running on a remote Linux machine. You need to know:

The server hostname and port
The WebLogic domain in which SOA is running
The username and password for the WebLogic administrative user
The name of the specific WebLogic server to which you will deploy. This tutorial assumes a single server (i.e. not
managed instances) configuration and will deploy to the Admin Server.

Before deploying the application, you connect to the internal LDAP realm within the WebLogic server and map the
Reviewer and Requester roles to a user in the LDAP.

After deployment, you run the Oracle BPM Workspace web application to test the Hello World application.

Mapping the Studio Role to an LDAP Role

Deploying the Process

Testing the Process in Workspace

Mapping the Studio Role to an LDAP Role

1. In the BPM Project Navigator, expand the HelloWorldProject and right click on the Organization node, selecting
Open.

It may take several seconds to open the Organization editor.

2. Add user members to the Requester role. In the Organization editor, select the Requester role. Click the green
plus sign button to the right of the Members panel.

The Identity Lookup window opens. Studio is not yet aware of your remote server, so the only application server
that appears is the integrated weblogic server that was installed with JDeveloper.

Create a new profile for your remote server. Click the green plus sign icon next to the Application Server field to
launch the Create Application Server Connection wizard.

3. In the Name and Type page of the wizard, enter Remote_WLServer as the Connection Name. Make sure that

the Connection Type is WebLogic 10.3, and click Next.

In the Authentication page of the wizard, enter weblogic as the Username and welcome1 as the Password (or

substitute your weblogic password). Click Next.

In the Configuration page of the wizard, enter your Weblogic Hostname, accept the default values for Port and
SSL Port, and enter domain1 in the Weblogic Domain field. Click Next.

In the Test page of the wizard, click the Test Connection button. You should see results similar to those shown
below. If not, click the Back button, correct any errors and test again.

Click Finish.

You are now returned to the Identity Lookup window.

4. Select the Remote_WLServer profile from the Application Server list. After a few seconds, Studio will connect to
the LDAP server in the remote server and you see jazn.* appearing in the Realm field.

Click the browse icon next to the User Name field to bring up a list of all users in the Demo Community from the
LDAP server. Select jcooper from the list and click the Select button.

jcooper will appear in the Selected Users panel of this window. Click OK. You are returned to the Organization

editor.

5. Follow the same procedure as in the previous step to add jcooper to the Reviewer role as well.

6. Click Save All and close the Organization editor.

Deploying the Process

1. Deploy the HelloWorldProject.

In the Application Navigator, right click HelloWorldProject and select Deploy > HelloWorldProject...

The Deploy HelloWorldProject wizard opens.

2. In the Deployment Action page of the wizard, select Deploy to Application Server and click Next.

In the Deploy Configuration page, click the Overwrite any existing composites with the same revision ID
checkbox and click Next.

In the Task flow deployment page, select the checkbox next to Projects. This selects all taskflow projects in the
HelloWorldProject, so you will see the HelloWorld_UI project selected now also.

Click Next.

In the Select Server page, select Remote_WLServer and click Finish. Deployment will begin.

Check the Deployment tab in the Log panel in the lower central portion of the Studio window to watch the progress
and determine when deployment has finished. This first deployment of the SOA Composite (shown as
sca_HelloWorldProject_rev1.0.jar in the log viewer screenshot below) will be very quick. The deployment of the
WAR file containing the taskflows (HelloWorld_UI.war) will take much longer. Total deployment time will be around
15 minutes, depending upon your environment.

Testing the Process in Workspace

1. Open a browser (either on the server or from your windows machine) and enter the following URL:

http://<your server hostname>:7001/bpm/workspace

When the Welcome page of the Workspace appears, enter jcooper in the Username field and welcome1 in the

Password field. Click Log In.

The main Workspace window opens.

2. Instantiate the process by clicking the HelloWorldProcess v1.0 link under Applications in the Tasks tab on the
left side of the window.

Note: If the HelloWorldProcess v1.0 link does not appear in the Applications panel on the Tasks tab, click the
Process Tracking tab. It should appear there. You can instantiate the process from that tab.

This action executes the first task of the process, Request Hello.

3. First enter a message that will not require review. In the Please Enter a Hello Message popup window that
appears, enter a value in the Date field using the format MMM d, yyyy (example: Jun 2, 2010) Also enter a value

in both the Greeting and Message fields (Greeting field length > 5, Message field length > 5). Click Submit.

After submitting the message, the process goes to the ReviewNeeded business rule. Since both the Greeting and
the Message are considered "Medium" in length, the message does not require a review. Hence the process goes
through the g1 gateway, the reviewOutcome variable is initialized in the script task, and the process flows on

through the g2 gateway to the Write Message activity.

The Write Message activity is a service type activity, not an interactive activity., therefore there will be no indication

of its action within the Tasks panel of the Workspace.

4. Open the file that was created by the Write Message implementation. Recall that you configured the file adaptor to
write the file to the file path "." (dot). This is relative to the domain1 directory within the WebLogic file structure.

On the server, using either a terminal window or an Explorer style window as shown here, navigate to:

<path to your mwhome>/mwhome/user_projects/domains/domain1

Find the file Hello_1.xml. Open it in a text editor to view the outcome from your process.

It should look something like this:

5. Create another instance of the HelloWorld process by once more clicking the HelloWorldProcess v1.0 link. This
time, enter a message that will be routed to the Review Message activity.

When the Please enter a hello message window appears, enter a date and some text that has a length < 5 in the
Greeting field. Leave the Message field blank. Click Submit.

6. The process now flows, as before, to the business rule where the greeting is found to be "Short". As you'll recall,
when the greeting is "short", the message requires review, regardless of what is in the Message field. Consequently,
the process now flows to the Review the Message activity, which is assigned to the Reviewer role.

The Review the Message activity now appears in the My Tasks tab (remember that jcooper also has the Reviewer

role). Click it to see the details in the lower panel of this tab.

In the details panel, you can see the taskflow form that you created for this activity, containing form elements for
both the HelloObject and the ReviewObject. Notice that the ReviewObject attributes have been assigned by the
Business Rules engine after executing the business rule for this message.

Click Reject when you've finished examining the details.

7. The process now flows to the g2 gateway where the value of the reviewOutcome variable is examined. It has

been set to REJECT by the reviewer, so the process now flows back to Request Hello.

The Please enter a hello message link appears in the My Tasks panel. This is the Title string for the human
taskflow associated with the Request Hello task. Previously, this window was launched immediately upon
instantiation of the process. This time it appears within the My Tasks panel.

Click the link to view the input form and enter a more appropriate message that will not require review as you did in
Step 3. Click Submit when finished.

The process will now flow through the two gateways to the Write Message activity and to the End activity. The My

