Neoclassical Growth Applications 00000 00000000000

Economic Growth Theory

Benjamín Villena Roldán CEA, Universidad de Chile

September 9, 2010

Benjamín Villena Roldán CEA, Universidad de Chile

Economic Growth Theory

Endogenous growth: spillovers

- Romer (1986) model based on two ideas:
- Learning-by-doing: Capital accumulation generates learning that causes efficiency gains (cost reductions)
- Capital accumulation generated knowledge is public non-rival good, which is freely exploited.
- Capital accumulation of one firm increases productivity of all other firms
- Firm *i* technology: $Y_i = F(K_i, AL_i)$
- Linear technological change: A = K.
- Consumer side is standard: assume CRRA preferences.

Endogenous growth: spillovers (2)

- Competitive markets: $r + \delta = f'(k, K)$ and w = f(k, K) - f'(k, K)k with $f(k_i, K) = F(K_i/L_i, K)$.
- All agents behave in the same way, i.e. $L_i = L$ and $K_i = k_i L = K$.
- Average product of capital in firm *i* is

$$Y_i/K_i = y_i/k_i = f(1, K/k_i) \equiv \widetilde{f}(K/k_i)$$

• In equilibrium $y_i/k_i = \tilde{f}(L)$, hence average productivity does not decrease in k and neither does the marginal productivity of capital

$$\frac{dy_i}{dk_i} = \frac{d}{k_i} k_i \tilde{f}(k_i/K) = \tilde{f}(k_i/K) - \tilde{f}'(k_i/K)K/k_i$$
$$= \tilde{f}(L) - L\tilde{f}'(L) = B(L)$$

Endogenous growth: spillovers (3)

• Using Euler equation and conjecturing a balanced growth path solution

$$(1+g_c) = [eta(\widetilde{f}(L) - L\widetilde{f}'(L) - \delta)]^{1/\sigma}$$

• Using budget constraint and assuming constant growth rate for capital

$$c/K = -K'/K + 1 - \delta + Y/K = c/K = \widetilde{f}(L) - g_K - \delta$$

- So $g_K = g_C$. Since $Y = \tilde{f}(L)K$, $g = g_K = g_C = g_Y$
- Notice that private productivity of capital < social productivity of capital.
- Room for government intervention.

Endogenous growth: spillovers (4)

• Social planner's problem

$$V(k) = \max_{k'} \{ u(\widetilde{f}(L)k' + (1-\delta)k - k') + \beta V(k') \}$$

- Euler: $u_c = \beta(u'_c(\widetilde{f}(L) + 1 \delta))$
- Using CRRA: $1 + g = (\beta(\widetilde{f}(L) + 1 \delta))^{1/\sigma}$
- Key: planner's consider both private return of capital and the positive externality it generates on other firms.

Endogenous growth: spillovers (5)

- Optimal policy: subsidize capital to increase accumulation using revenue from lump-sum taxation.
- Scale effect: countries with large *L* benefit the most from spillover.
- Caveat: What's the right definition of *L* in this case...?

Research and Competition

- Attempt to explain technological change, i.e. how productivity grows.
- If innovation is costly and imitation is free, no firm would pay Research and Development (R&D) because equilibrium profits are zero.
- Innovator would make negative profits while imitators get 0.
- Usual solution is *ex post* monopoly power for the innovator via property right law or patent system.
- If it is feasible to prevent other firms from using the innovation, the new good (or idea) is said to be *excludable*.
- If ideas or goods can simultaneously be used with no congestion, i.e. the marginal return of the use does not decrease in the number of users, they are called *nonrival*.

R&D model: preliminaries

- Firms are compensated for their R&D via ex post monopoly.
- We can think of this as patents, that is (temporary) monopoly over the created idea (partially excludable good).
- Scale effects: due to nonrival use of an idea, the bigger the market, the bigger the profits. Corollary: no perfect competition.
- How are new ideas generated? What's the relation between old and new ideas?
- Ideas are embedded into intermediate perishable new goods (for the sake of simplicity).
- Endogenous Technological Change (Romer 1987; Romer 1990).

Lab-equipment model (Romer 1987)

- Let x_n be the the *n*-th idea or capital good. There are N goods at some time t.
- Technology: $Y_t = L_t^{1-lpha} \sum_{n=1}^{N_t} x_t(n)^{lpha}$
- Full depreciation of intermediate goods or capital.
- Aggregate resource constraint $C_t + \eta X_t + Z_t \leq Y_t$ with $X_t \equiv \sum_{n=1}^{N_t} x_t(n)$.
- η units of consumption good are needed to create 1 unit of input x(n).
- New inputs x(n) are generated by paying a fixed cost, i.e $Z_t = \lambda(N_{t+1} N_t)$.
- Final good Y is sold in a competitive market.

Lab-equipment model (Romer 1987) (2)

• Hence, profit maximization leads to

$$w_t = (1 - \alpha)L_t^{-\alpha} \sum_{n=1}^{N_t} x_t(n)^{\alpha} = (1 - \alpha)Y_t/L_t$$
$$p_t(n) = \alpha L^{1-\alpha} x_t(n)^{\alpha-1}$$

- where w_t is the wage and $p_t(n)$ is the price of input n.
- The cost of supplying 1 unit of x(n) is η units of consumption.
- Capital good producers can prevent other firms from producing its good.

Lab-equipment model (Romer 1987) (3)

• Static optimization problem. Every period they produce *x*(*n*) to maximize their profits

$$\pi(n) = (p(n) - \eta)x(n) = \alpha L^{1-\alpha}x(n)^{\alpha} - \eta x(n)$$

- From FOC the optimal production is $x(n)^* = x^* = \alpha^{\frac{2}{1-\alpha}} \eta^{-\frac{1}{1-\alpha}} L$ and the price is $p(i) = \eta/\alpha$.
- Optimal profit flow is $\pi(i)^{\star} = (1-\alpha)\alpha^{\frac{1+\alpha}{1-\alpha}}\eta^{-\frac{1}{1-\alpha}}L$

Lab-equipment model (Romer 1987) (4)

 In equilibrium, at any time t the present value of the stream of profits must equal the fixed cost of invention of a capital good λ. Then,

$$\lambda = \sum_{\tau=t}^{\infty} \frac{\pi_t}{(1+r)^t} = \pi(i)^* \sum_{\tau=t}^{\infty} (1+r)^{-t}$$

- Since this relation must hold for all τ and the profit stream is constant, r must be constant
- It may occur that λ is higher than the present value of profits for any {r_τ}[∞]_{τ=t} → no innovation.

Lab-equipment model (Romer 1987) (5)

- If λ is sufficiently low, then $r^{\star} = (1 \alpha) \alpha^{\frac{1+\alpha}{1-\alpha}} \eta^{-\frac{1}{1-\alpha}} (L/\lambda)$
- Profits increase in *L* because firms can make more profits in larger economies.
- Households own labor and buy assets *a*. They maximize lifetime utility with CRRA preferences

$$\sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma}$$

s.t $c_t + a_{t+1} \le w_t l + (1+r_t)a_t$

• As usual, this leads to the standard Euler equation

$$\mathsf{g}_{\mathsf{c}}=\mathsf{c}'/\mathsf{c}=(eta(1+\mathsf{r}_t))^{rac{1}{\sigma}}$$

Lab-equipment model (Romer 1987) (6)

- In equilibrium $r^* = r_t$ so that g_c is constant.
- Replacing $x(n) = x^*$ in output we get

$$Y_t = N_t L \alpha^{\frac{2\alpha}{1-\alpha}} \eta^{-\frac{1}{1-\alpha}} = N L \psi$$

- which implies $g_N = g_Y$
- Finally using the budget constraint

$$egin{aligned} & \mathcal{N}_t L \psi = \mathcal{C}_t + \mathcal{N}_t x^\star + \lambda (\mathcal{N}_{t+1} - \mathcal{N}_t) \ & L \psi = rac{\mathcal{C}_t}{\mathcal{N}_t} + x^\star + c(g_\mathcal{N} - 1) \end{aligned}$$

• Hence, constant g_N implies C and N grow at the same rate. Then, $g = g_N = g_Y = g_C$

Lab-equipment model (Romer 1987) (7)

- Is the decentralized outcome socially efficient?
- Intuition: Necessary *ex post* monopoly generates too low input quantity.
- Once an input is created, it can be used for the whole economy by only paying the marginal cost of production.
- Optimal benevolent planner's problem

$$\max_{\substack{\{c_t\}_{t=0}^{\infty}, \{\{x_t(n)\}_{n=1}^{N_t}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \frac{c_t^{1-\sigma}}{1-\sigma}$$

s.t. $Y_t \ge Lc_t + X_t + Z_t$

Lab-equipment model (Romer 1987) (8)

• Recursive formulation is

$$V(N) = \max_{N', \{x(n)\}_{n=1}^{N}} \left\{ u \left(L^{-\alpha} \sum_{n=1}^{N} x(n)^{\alpha} - (\eta/L) \sum_{n=1}^{N} x(n) - (\lambda/L)(N'-N) \right) + \beta V(N') \right\}$$

• First-order condition wrt x(n) yields

$$0 = L^{-\alpha} \alpha x(n)^{\alpha - 1} - \eta/L \quad \Rightarrow x(n) = \alpha^{\frac{1}{1 - \alpha}} \eta^{-\frac{1}{1 - \alpha}} L \equiv \tilde{x}$$

Lab-equipment model (Romer 1987) (9)

• It's optimal to produce same quantity of inputs for all *n*, *t*. Hence, the problem simplifies to

$$V(N) = \max_{N'} \left\{ u \left(L^{-\alpha} N \tilde{x}^{\alpha} - (\eta/L) N \tilde{x} - (\lambda/L) (N' - N) \right) + \beta V(N') \right\}$$

• First-order condition wrt to N' and envelope conditions are

$$0 = -u_c(\lambda/L) + \beta V'(N')$$

$$V'(N) = u_c(L^{-\alpha}\tilde{x}^{\alpha} - \eta \tilde{x}/L + \lambda/L)$$

Lab-equipment model (Romer 1987) (10)

• Replacing the value of \tilde{x} , we obtain the following Euler equation

$$u_c = u_c'eta(1+r_s) \quad o \quad g_c = c'/c = (eta(1+r_s))^{rac{1}{\sigma}}$$

• Where
$$r_s = (1 - \alpha) \alpha^{\frac{\alpha}{1 - \alpha}} \eta^{-\frac{1}{1 - \alpha}} (L/\lambda)$$

• Comparing market interest rate r and social planner's r_s we realize that

$$r_s = \alpha^{\frac{1}{1-\alpha}} r$$

- Hence, social return of R&D investment is higher than private since $\alpha < 1$.
- Optimal intervention: subsidize input production financed with lump-sum tax.

Neoclassical Growth Applications

Romer, P. (1986). Increasing Returns and Long-Run Growth. Journal of Political Economy 94(5), 1002–1037.

Romer, P. M. (1987). Growth Based on Increasing Returns Due to Specialization. *The American Economic Review* 77(2), 56–62.

Romer, P. M. (1990). Endogenous Technological Change. The Journal of Political Economy 98(5), 71–102.