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Benjaḿın Villena Roldán CEA, Universidad de Chile Economic Growth Theory



Neoclassical Growth References

Neoclassical growth with Dynamic Programming

• Also known as Ramsey or Cass-Koopmans model.
• Standard assumptions: in this economy households,

• Are risk averse (u(·) is concave) and live forever.
• Own capital stock.
• Supply one unit of labor inelastically.
• Discount future at rate β.
• Freely transform 1 unit of c into an unit of k.

• Households’ objective is to maximize lifetime utility subject
to technological constraints.

max
{ct ,kt+1}∞t=0

{
∞∑
t=0

βtu(ct)

}
subject to ct + kt+1 ≤ f (kt) + (1− δ)kt
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Neoclassical growth (2)

• We can write the problem as

max
{kt+1}∞t=0

{
∞∑
t=0

βtu(f (kt) + (1− δ)kt − kt+1)

}
• Household decide how much to consume and how much

capital to accumulate by choosing kt+1

• kt fully determines the amount of resources available in t (k
is a state variable)

• Given state variable kτ , we can completely describe a feasible
plan {kt+1}∞t=τ+1 of choice variables.

• State variables fully characterize the value of the objective
function.

• Control variables are current period’s choices to maximize
objective.
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Neoclassical growth (3)

• Find the optimal sequence that maximizes lifetime utility
{kt+1}∞t=0

• The problem can be rewritten as

V (k0) = max
k1

{
u(f (k0) + (1− δ)k0 − k1)

+ β max
{kt+1}∞

t=1

{ ∞∑
t=0

βtu(f (kt) + (1− δ)kt − kt+1)

}}
V (k0) = max

k1

{u(f (k0) + (1− δ)k0 − k1) + βV (k1)}

• If there exists the function V (k), we can use standard
optimization techniques.
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Neoclassical growth (4)

• Recursive approach allows to solve a functional equation:
Bellman equation.

V (k) = max
k ′
{u(f (k) + (1− δ)k − k ′) + βV (k ′)}

• Does V (k) exist? What are the properties of the Value
Function?

• Contraction Mapping Theorem also known as Banach Fixed
Point Theorem.

• Once existence is determined, it’s a standard maximization
problem.
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Neoclassical growth (5)

• First-order condition is

−uc(c) + βV ′(k ′) = 0

• Envelope theorem V ′(k) = uc(c)(fk(k) + 1− δ). Why?

• Remember that k ′ = g(k), hence

V ′(k) = dV (k)/dk = uc(c)(fk + 1− δ − g ′(k)) + βV ′(g(k))g ′(k)

= uc(c)(fk + 1− δ) + g ′(k)(−uc + βV ′(k ′))︸ ︷︷ ︸
=0 FOC
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Euler Equation

• Replacing previous result yields the Euler equation

uc(c) = βuc(c ′)(fk(k ′) + 1− δ)

• Usual Constant Relative Risk Aversion (CRRA) preferences:
u(c) = c1−σ/(1− σ). If σ = 1, u(c) = log c . Why?
−u′′(c)c/u′(c) = σ.

• CRRA preferences are compatible with balanced growth path
for constant return of capital

gc = c ′/c = (β(fk(k ′) + 1− δ))1/σ
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Transversality Condition (1)

• Remember that FOC are necessary but not sufficient for a
maximum.

• Suppose that we have a finite horizon economy.

max
{kt+1}Tt=0

{
T∑
t=0

βtu(f (kt) + (1− δ)kt − kt+1)

}
s.t. k0 > 0, kt+1 ≥ 0

• This is a finite-dimensional optimization problem → directly
solved using Kuhn-Tucker theorem.

• Suppose that solution k?t+1 > 0 so that no complementary
slackness conditions are required.

Benjaḿın Villena Roldán CEA, Universidad de Chile Economic Growth Theory



Neoclassical Growth References

Transversality Condition (2)

• Since ct = f (kt) + (1− δ)kt − kt+1, FOC are

0 = −u′(c0) + βu′(c1)(f ′(k1) + 1− δ)

.......

0 = −u′(cT−1) + βu′(cT )(f ′(kT ) + 1− δ)

• However, for the choice of kT+1, the complementary
slackness condition is important.

βTu′(cT )kT+1 = 0

• Either no capital is left at the end of the world or the shadow
price of that capital is zero.

• Since k can be transformed into c and utility increases in c ,
it’s clear that kT+1 = 0.

Benjaḿın Villena Roldán CEA, Universidad de Chile Economic Growth Theory



Neoclassical Growth References

Transversality Condition (3)

• What happens if T →∞? Heuristic extension suggests

L = lim
T→∞

βTu′(cT )kT+1 = 0

• If L > 0 a higher lifetime utility is achieved by consuming the
excessive capital accumulation.

• If households hold assets instead of capital and the
transversality condition is violated such that
L = lim

T→∞
βTu′(cT )aT+1 < 0, households roll over the debt

forever.
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Transversality Condition (4)

• Ponzi game: using new debt to pay the interests of previous
debt. The principal is never paid back, so that consumption
can grow without bound. L = 0 is also called no-Ponzi
condition.

• Bottom line: Euler equation + Transversality are necessary
and sufficient conditions for optimal growth path {k?t+1}∞t=0

for a given k0 > 0.
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Steady state and Balanced Growth (1)

• As in most cases “guess-and-verify” a balanced growth path:
all endogenous variables grow at (possible different) constant
rate.

• Capital law-of-motion

c/k + gk = 1− δ + f (k)/k

• c and k must grow at same rate; otherwise, budget
constraint is violated or growth rate isn’t constant.

• f (k)/k is strictly decreasing and f satisfies Inada conditions,
so at some point crosses (c/k)? + gk − 1 + δ.
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Steady state and Balanced Growth (2)

• It follows there is unique k? and that gk = 1 because k is
constant in the long-run, i.e. there is a steady-state.

• Steady state c ′ = c = c? and k ′ = k = k?

β(fk(k?) + 1− δ) = 1 ⇒ k? = f −1
k (1/β − 1 + δ)

• Moreover, the consumption is c(k?) = f (k?)− δk?.
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Competitive Equilibrium (1)

• Result can be decentralized in several ways

• No distortions, no frictions in the economy so that First
Welfare Theorem applies: the competitive equilibrium is
Pareto Optimal.

• Alternative setup: Households accumulate assets and finance
firms which own the capital.

max
{ct ,at+1}∞t=0

{
∞∑
t=0

βtu(ct)

}
s.t. ct + at+1 ≤ w(K , L)l + (1 + r(K , L))at

a0 given

lt ≤ 1
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Competitive Equilibrium (2)

• Firms maximize profits π = F (K , L)− w(K , L)L− R(K , L)K
by choosing how much labor to hire and how much capital to
rent

• In equilibrium firms are price-takers and hire Kt and Lt up to
the point FK (Kt , Lt) = R(Kt , Lt) and FL(Kt , Lt) = w(Kt , Lt).

• Households face interest rate r(Kt , Lt) = R(Kt , Lt)− δ.

• In equilibrium at = Kt and lt = Lt = 1 such that markets
clear at competitive prices.

Benjaḿın Villena Roldán CEA, Universidad de Chile Economic Growth Theory



Neoclassical Growth References

Competitive Equilibrium (3)

• Formally a competitive equilibrium is a set of paths
{Yt ,Ct ,Kt+1}∞t=0 and sequences of prices {rt ,Rt ,wt}∞t=0 such
that
• Given an initial a0 and prices {rt ,wt}∞t=0, households

maximize their lifetime utility.
• Given prices {Rt ,wt}∞t=0, firms maximize their profits.
• Markets clear, that is at = Kt and lt = Lt = 1.

• Same allocation as in previous setup where households own
capital and produce directly.
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Studying dynamics around steady state (1)

• Euler is also second-order nonlinear dynamic equation in k

uc(f (k)+(1−δ)k−k ′) = βuc(f (k ′)+(1−δ)k ′−k ′′)(fk(k ′)+1−δ)

• To study local dynamics we log-linearize around steady state

0 = uccdc − βucc(fk + 1− δ)︸ ︷︷ ︸
=β−1 in SS

dc ′ − βuc fkkdk ′

• It is also true that

dc = (fk + 1− δ)dk − dk ′ = β−1dk − dk ′

• Hence, if k̂ = dk/k? we have that

0 = β−1k̂ −
(

1 + β−1 + β
uc
ucc

fkk

)
k̂ ′ + k̂ ′′

• How to solve this dynamic equation?
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Studying dynamics around steady state (2)

• “Guess-and-verify” + Undetermined coefficients method.

• Conjecture: Solution has the form k̂ ′ = φk̂ .

• Replacing the conjecture and denoting a = (1 + β−1 + βχ)
and χ = uc

ucc
fkk > 0 we obtain

β−1k̂ − aφk̂ + φk̂ ′ = 0 (a − β−1/φ)k̂ = k̂ ′

• Conjecture was right!

• Solution: quadratic equation φ2 − aφ + β−1 = 0. Two roots:

φ =
a ±

√
a2 − 4β−1

2

φ =
(1 + β−1 + βχ)±

√
(1 + β−1 + βχ)2 − 4β−1

2
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Studying dynamics around steady state (3)

• If χ = 0, then the solutions are φ(−) = 1 and φ(+) = β−1.
• Now, let’s determine how χ affects φ

∂φ

∂χ
=

1

2

(
β ± (1 + β−1 + βχ)β√

1 + β−1 + βχ− 4β−1

)

=
β

2

1± 1√
1− 4β−1

(1+β−1+βχ)2


• Second expression in parenthesis is greater than 1. Hence
φ(−) decreases in χ while φ(+) increases in χ.

• Then φ(−) < 1→ stable solution: system goes back to
steady state.

• Then φ(+) > β−1 > 1→ unstable solution: system diverges
from steady state.
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Optimal Control Approach

• Alternative approach to Dynamic Programming. It
conceptually yields the same result.

• Key difference: time is continuous. Instead of determining an
optimal sequence, we look for an optimal function.

• Households maximize ∫ ∞
0

e−ρtu(c(t))dt

s.t. (a)k̇ = f (k)− δk − c

(b)k(0) = k0 > 0

(c)lim
t→0

k(t)e−r̄(t)t = 0

• Heuristic derivation and Cookbook recipe in Barro and
Sala-i-Martin (2004) Appendix. More complete treatment in
Acemoglu (2009) chapter 7.
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