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A NEW PROOF OF UZAWA’S STEADY-STATE GROWTH THEOREM

Charles I. Jones and Dean Scrimgeour*

Abstract—This note revisits the proof of the steady-state growth theorem,
first given by Uzawa in 1961. We provide a clear statement of the theorem,
discuss intuition for why it holds, and present a new, elegant proof due to
Schlicht (2006).

I. Introduction

THE steady-state growth theorem says that if a neoclassical growth
model exhibits steady-state growth, then technical change must be

labor augmenting, at least in steady state. It is sometimes added that
an alternative is for the production function to be Cobb-Douglas. But
this is really subsumed in the original version of the theorem since
technical change can always be written in the labor-augmenting form
in steady state if the production function is Cobb-Douglas.

It did not escape the attention of economists, either in the 1960s or
more recently, that this is a very restrictive theorem. We often want
our models to exhibit steady-state growth, but why should technical
change be purely labor augmenting? The induced-innovation litera-
ture associated with Fellner (1961), Kennedy (1964), Sanmelson
(1965), and Drandakis and Phelps (1966) explicitly pondered this
question without achieving a clear answer. Recently, Acemoglu
(2003) and Jones (2005) have returned to this puzzle.

Perhaps surprisingly, given its importance in the growth literature,
we have been unable to find a clear statement and proof of the
theorem. In addition, exactly why the result holds is not something
that is well understood. What is the intuition for why technical change
must be labor augmenting?

Uzawa (1961) is typically credited with the proof of the result,1 and
there is no doubt that he proved the theorem. However, Uzawa is
primarily concerned with showing the equivalence of Harrod-neutral
technical change (that is, technical change that leaves the capital share
unchanged if the interest rate is constant) and labor-augmenting
technical change, formalizing the graphical analysis of Robinson
(1938). It is, of course, only a small and well-known step to show that
steady-state growth requires technical change to be Harrod neutral.
But the modern reader of Uzawa will be struck by two things. First is
the lack of a statement and direct proof of the steady-state growth
theorem. Second is the absence of economic intuition, both in the
method of proof and more generally in the paper.

Barro and Sala-i-Martin (1995, chapter 2) come close to providing
a clear statement and proof of the theorem. However, their statement
of the theorem is more restrictive: if technical change is factor
augmenting at a constant exponential rate, then steady-state growth
requires it to be labor augmenting. This leaves the door open to the
possibility that there might be some perverse nonfactor augmenting
twist of technical change that could be consistent with steady-state
growth. McCallum (1996) also comes close, providing a proof of the
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general theorem very similar to Uzawa’s approach: by sticking so
closely to Uzawa, however, the intuition for the result remains elusive.

This note fills the gap in the literature. We provide a clear statement
and proof of the steady-state growth theorem, together with a concise
intuition for why it holds.

The working paper version of this paper (Jones & Scrimgeour,
2005) contained a proof inspired by Uzawa (1961) and focused on
developing intuition. Building on our working paper, a number of
authors have constructed more straightforward proofs. Russell (2004)
provides a quick mathematical proof of the theorem that exploits some
methods from the physics literature on a class of partial differential
equations called advective equations.

However, the holy grail of an elegant, intuitive proof has been
claimed by Schlicht (2006). The Uzawa-style proof now seems
tedious by comparison. Therefore, in what follows, we have replaced
our previous proof with the new one provided by Schlicht—it is his
new proof to which we refer in the title of this paper. The proof is
quite straightforward and will surely be taught in first-year graduate
macro courses from this point forward. We fix a small technical
omission in Schlicht’s original proof related to the fact that investment
must be positive for the theorem to be valid. We conclude with a
paragraph of intuition from our earlier working paper that captures the
essence of Schlicht’s proof and that explains why the steady-state
growth theorem holds.2

II. Stating and Proving the Theorem

The steady-state growth theorem applies to the one-sector neoclas-
sical growth model. We begin by defining the model precisely and
then defining a balanced growth path. We will follow the usual
convention of also referring to a balanced growth path as a steady
state. Following the definitions, we state and prove the theorem.

Definition 2.1. A neoclassical growth model is given by the
following economic environment:

Yt � F(Kt, Lt; t), (1)

Ct � It � Yt, (2)

K̇t � It � �Kt, K0 � 0, � � 0, (3)

Lt � L0e
nt, L0 � 0, n � 0. (4)

The production function F satisfies the standard neoclassical proper-
ties: constant returns to scale in K and L, and positive and diminish-
ing marginal products of K and L.

Definition 2.2. A balanced growth path in the neoclassical growth
model is a path along which all quantities {Yt, Kt, Lt, Ct, It} grow at
constant exponential rates (possibly zero) for all t � � � 0.

Theorem 2.1 (The Steady-State Growth Theorem, Uzawa, 1961).
Suppose the neoclassical growth model exhibits a steady state starting
at date � where output per worker grows at rate g and It � 0 for t �

�. Then for all t � �,

Yt � F�Kt, At Lt;�, (5)

where Ȧt/At � g. That is, technical change is labor augmenting in
steady state.

Proof: (Schlicht, 2006). From the production function, Y� �
F(K�, L�;�). Let gx denote the growth rate of quantity x in steady state.
Then Y� � Yte

�gY(t��), for example, so that for all t � �

Yte
�gY�t�� � F�Kte

�gK�t��,Lte
� n�t � �;�.

Because F exhibits constant returns in K and L, we can divide through
by the exponential to get

Yt � F�Kte
�gY�gK�t��,Lte

�gY�n�t��;�. (6)

If gY � gK, the result is proved, with At � eg(t��). But it is well-known
that this holds—for example, it is an immediate result in the model
with a constant investment rate. In the more general framework here,
it follows from some slightly tedious algebra.

In particular, the capital accumulation in equation (3) requires gI �
gK, so if gI � gY we are done. Differentiating Yt � Ct � It with respect
to time for t � � gives

gY �
Ct

Yt
gC �

It

Yt
gI.

Differentiating this expression again with respect to time and rear-
ranging gives

gC�gY � gCCt � gI�gI � gYIt.

If Ct � 0, the right side must be 0 so gI � gY and we are done. If Ct �
0, this expression can hold only if Ct and It grow at the same rate, but
this too requires gI � gY. Therefore, gY � gK.

III. Discussion

Notice that our assumption in the statement of the theorem that
investment is positive plays its role in the last step of the proof, where
we showed that gY � gK. In particular, if investment were equal to 0,
it is possible to have a steady state with gY � gK, but only if technical
change is both capital- and labor-augmenting. With zero investment,
the capital stock declines exponentially at the rate of depreciation.
Since capital is not accumulating with output, the logic of the
steady-state growth theorem does not apply. Instead, technical change
needs to augment capital: first to offset depreciation, and second to get
“effective capital” growing at the same rate as output—look back at
equation (6). The theorem and proof as stated in Schlicht (2006) omit
the requirement that It � 0.

In addition to its simplicity, Schlicht’s proof has another advantage
relative to Uzawa (1961). Uzawa’s proof ends with a new production
function G such that F(Kt,Lt;t) � G(Kt,AtLt). Schlicht shows in
equation (5) that technical change is labor augmenting in the original
production function.

IV. Conclusion

The only asymmetry between capital and labor in the neoclassical
growth model is that capital is accumulated as units of the output

2 After this paper was accepted, Lutz Arnold brought another proof to
our (and Ekkehart Schlicht’s) attention, found in Wan (1971, p. 59). Wan
proves the result in the context of a Solow model—that is, a model with
a fixed saving rate—and uses some arguments similar to those rediscov-
ered by Schlicht (2006).
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good, while labor is not. This asymmetry must be behind the steady-
state growth theorem, and this is confirmed in the proof.

Here is a simple way to connect this intuition with the labor-
augmenting result. Divide both sides of the production function by
output, yielding the “balance” expression 1 � F(Kt/Yt, Lt/Yt;t). Capital
accumulates and inherits the trend in output, so the capital-output ratio
is constant in steady state. Labor does not inherit the trend in output,
however, so Lt/Yt falls in steady state. To satisfy the balance equation,
technical change must exactly offset the decline in Lt/Yt. That is,
technical change must be labor augmenting.
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THE YIELD CURVE AS A PREDICTOR OF GROWTH: LONG-RUN EVIDENCE, 1875–1997

Michael D. Bordo and Joseph G. Haubrich*

Abstract—This paper brings historical evidence to bear on the stylized
fact that the yield curve predicts future growth. The spread between
corporate bonds and commercial paper reliably predicts future growth
over the period 1875–1997. This predictability varies over time, however,
and has been strongest in the post–World War II period.

I. Introduction

By now, the ability of the yield curve to predict recessions has
reached the hallowed status of “stylized fact” among macro-

economists. Inversions (short rates higher than long rates) predict
recessions (Estrella & Hardouvelis, 1991) and more generally, a steep
yield curve predicts fast growth and a flat curve, slow growth (Harvey,
1988, 1991; Haubrich & Dombrosky, 1996).1 The late 1990s appeared

somewhat anomalous in that a relatively flat yield curve accompanied
fast growth; however, an inversion did precede the recession that
began in March of 2001.

The evidence for this stylized fact comes primarily from the
post–World War II experience of the United States, though an
increasing amount of work has looked at other countries (Harvey,
1991; Stock & Watson, 2003; Gonzalez, Spencer, & Walz, 2000).
The predictive content of the yield curve for longer historical
periods, however, has been curiously neglected.2 Whether the yield
curve’s ability to predict emerges as a general property of the
American business cycle or depends sensitively on the structure of
the economy, financial markets, and monetary policy seems an
obvious question. A broader historical perspective may also shed
some light on the reasons behind the yield curve’s ability to predict
future output—for example, one simply cannot ascribe twists in the
yield curve during the 1880s to an FOMC ratcheting up short-term
rates.

In this paper we look at the relationship between the term spread
and movements in real economic activity, focusing on the United
States from 1875 to 1997. We examine this relationship using a
consistent series for both interest rate spreads and real activity at
quarterly frequency. Section II discusses data construction, and sec-
tion III reports the results of predictive regressions.
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