
StarUML 5.0 Developer Guide

http://staruml.sourceforge.net/docs/developer-guide(en)/toc.html

StarUML 5.0 Developer Guide

Copyright © 2005 Minkyu Lee.

Copyright © 2005 Hyunsoo Kim.

Copyright © 2005 Jeongil Kim.

Copyright © 2005 Jangwoo Lee.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no

Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section

entitled "GNU Free Documentation License".

Table of Contents

Chapter 1. Introduction

StarUML Overview

Why UML/MDA Platform

Chapter 2. StarUML Architecture

Platform Architecture

Organizing a Module

Open API Overview

Chapter 3. HelloWorld Example

"Hello, world" Example

Creating Script

Creating Menu Extension File

Add-In Deployment

Add-In Registration

Verification and Excution of Added Add-In

Chapter 4. Using Open API

Using APIs for Projects

Using APIs for Elements

Using APIs for Application Objects

Using APIs for Meta-Objects

Chapter 5. Writing Approaches

Basic Concept of Approach

Registering New Approach

Using Approach-Related Methods

Chapter 6. Writing Frameworks

Basic Concepts of Model Framework

Creating New Model Framework

Registering New Model Framework

Using Model Framework-Related Methods

StarUML 5.0 Developer Guide

http://staruml.sourceforge.net/docs/developer-guide(en)/toc.html

Using Model Framework-Related Methods

Chapter 7. Writing UML Profiles

Basic Concept of UML Profile

Creating UML Profile

Registering UML Profile

Extension Element Object Management

Chapter 8. Extending Menu

Basic Concepts of Menu Extension

Creating Menu Extension File

Registering Menu Extension File

Chapter 9. Writing Add-in COM Object

Basic Concepts of Add-In COM Object

IStarUMLAddIn Interface Methods

Add-In COM Object Example

Writing Add-In Description File

Registering Add-In Description File

Option Extension

Writing Option Schema

Registering Option Schema

Accessing Option Values

Basic Concepts of Event Subscription

Kinds of Events

Subscribing to Events

Chapter 10. Extending Notation

Why Notation Extension?

Notation Extension Language

Creating a New Type of Diagram

Chapter 11. Writing Templates

Component elements of Template

Writing a Text-Based Template

Writing a Word Template

Writing an Excel Template

Writing a PowerPoint Template

Registering Templates

Making a Template Distribution Package

StarUML 5.0 Developer Guide (Introduction)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch01.html

Chapter 1. Introduction

The StarUML™ Developer Guide

provides essential information for developers to use the extension mechanism of StarUML™, a UML-based software

modeling platform, to develop StarUML™ Add-Ins.

StarUML OverView

StarUML™ is a software modeling platform which supports UML (Unified Modeling Language). It is based on UML

version 1.4 and provides UML version 2.0 notations and eleven different types of diagram. It actively supports the

MDA (Model Driven Architecture) approach by supporting the UML profile concept. StarUML™ is excellent in

customizability to the user’s environment and has a high extensibility in its functionality.

UML Tool which Adjusts to the User

StarUML™ provides maximum customization to the user’s environment by offering customizing variables that can

be applied in the user’s software development methodology, project platform, and language.

True MDA Support

Software architecture is a critical process that can reach 10 years or more into the future. The intention of the OMG

(Object Management Group) is to use MDA (Model Driven Architecture) technology to create platform independent

models and allow automatic acquisition of platform dependent models or codes from platform independent models.

StarUML™ complies truly with UML 1.4 standards and supports UML 2.0 notations. It provides the UML Profile

concept, allowing creation of platform independent models. Users can easily obtain their end products with simple

scripting through external COM interfaces or writing document template.

StarUML 5.0 Developer Guide (Introduction)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch01.html

Excellent Extensibility and Flexibility

StarUML™ provides excellent extensibility and flexibility. It provides Add-In frameworks for extending the

functionality of the tool. It is designed to allow access to all functions of the model/meta-model and tool through

COM Automation, and it provides extension of menu and option items. Also, users can create their own approaches

and frameworks according to their methodologies. The tool can also be integrated with any external tools.

Why UML/MDA Platform

StarUML™ is a Software Modeling Platform. Why do we need a modeling platform rather than just a UML tool?

End users want customizable tools. Providing a variety of customizing variables to meet the requirements of

the user environment can ensure high productivity and quality.

No modeling tool provides a complete set of all possible functionalities. A good tool must allow future addition

of functions to protect the user’s investment costs in purchasing the tool.

MDA (Model Driven Architecture) technology requires not only independent platforms but multi-platform

functionality. Modeling tools confined to specific development environments are not suitable for MDA. The tool

itself should become a modeling platform to provide functionality for various platform technologies and tools.

Integration with other tools is vital for maximization of the tool’s efficiency. The tool must provide a high level

of extensibility, and allow integration with existing tools or user’s legacy tools.

StarUML 5.0 Developer Guide (StarUML Architecture)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch02.html

Chapter 2. StarUML Architecture

This chapter discusses the basic architecture of StarUML™. It mainly describes the structures of the platform

architecture, Add-Ins, and external API.

Platform Architecture

StarUML™ is an extensible software modeling platform; it does not just provide pre-defined functions but allows

addition of new functions. The diagram below illustrates the architecture of StarUML™. Blue indicates the platform

and green the extensible parts. The extensible parts can be developed by the user or a third party and then added

to the platform for integration.

Approach: Approach defines the model of the project and basic organization of the diagrams. For details on

approach, see "Chapter 5. Writing Approaches".

UML Profile & Notation Extension

: UML Profile allows extension of expression for the software model through the extension mechanism of UML.

For details on UML profile, see "Chapter 7. Writing UML Profiles" and "Chapter 10. Extending

Notation"

Model Framework: Model Framework makes software models reusable and allows them to be used when

defining other software models. For details on model framework, see "Chapter 6. Writing Frameworks".

Add-In COM Object: Add-In COM allows addition of new functionality to StarUML™. For details on Add-In

COM objects, see "Chapter 9. Writing Add-In COM Object".

Menu Extension: The StarUML™ application menu (main menu and pop-up menu) can be added by the

user. For details on menu extension, see "Chapter 8. Extending Menu".

Option Extension: The StarUML™ option items can be added by the user. For details on option extension,

see "Chapter 9. Writing Add-in COM Object".

Event Subscription: Various events occurring in StarUML™ can be subscribed to. For details on subscribing

to events, see "Chapter 9. Writing Add-in COM Object".

External API: The external API from StarUML™ allows access to various functionalities and information.

Details on API are discussed throughout this developer guide, and the example included in StarUML™

installation 'StarUML Application Model.uml' provides a good illustration. See "Appendix A. Plastic

Application Model."

Organizing a Module

Module is a software package which allows addition of new functionalities and features by extending StarUML™.

Module consists of various extension mechanisms of StarUML™. As illustrated in the diagram below, an Add-In

package can consist of various approaches, various model frameworks, various UML profiles, various scripts, menu

extensions, option extensions, help, and Add-In COM Objects.

StarUML 5.0 Developer Guide (StarUML Architecture)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch02.html

extensions, option extensions, help, and Add-In COM Objects.

Application of Modules

Modules can contain various elements, it can be developed for different purposes. Modules can be used for

supporting specific processes, languages or platforms, integrating with other tools, or extending functions.

Support for Specific Processes: UML Components, RUP, Catalysis, XP, ...

Support for Specific Programming Languages: C/C++, Python, C#, Visual Basic, Java, Perl, Object

Pascal, ...

Integration with Specific Tools: Visual SourceSafe, CVS, MS Word, Eclipse, Visual Studio.NET, ...

Extension of Other Functionalities: Traceability Manager, Design Patterns Support, Rule Checking, ...

Building Individual (or Enterprise) Specific Environment

Elements of Module

Approach: Approach is applied in the beginning of the project to determine the initial model structure. For

example, when making an Add-In for a specific process, approach can be used to pre-define the structure

which manages the models produced at each stage of the process.

Model Framework: When developing a module related to specific languages or platforms, model framework

can produce Class Library or Application Framework. Other basic services (e.g. Event, Transaction, Security,

Directory, ...) can also be developed and added as models.

UML Profile: UML Profile can be defined to extend expression of UML for specific processes, languages or

frameworks, or to use additional properties. This has a global effect in the module.

Menu Extension: Menu Extension is used to add most of the new functionality in Add-In, and to extend the

main menu or pop-up menu to allow the user to select and run the functions. This is a critical element in

Add-In development.

Option Extension: Add-In itself can have various selection items. Utilizing them allows use of option dialogs

in StarUML™ as option items.

Add-In COM Object: Extensible functionalities can be created using languages and tools like Visual Basic,

Delphi, Visual C++, and C#. In general, COM objects are used for additional GUI or complex functionalities,

and Scripts are used for simple functionalities. This is usually programmed through external API.

Script: Simple functionality extension can be done by using Scripting Languages (JScript, VBScript, Python,

...). This is usually programmed through external API.

Help: Help for Add-In can be created as HTML and registered with local or remote path.

Open API Overview

StarUML™ provides a wide array of API (Application Programming Interface). The external API of StarUML™ is a

standardized programming interface that allows use of the internal program functionalities from outside.

As illustrated in the diagram below, the external API of StarUML™ can be divided into three main parts: Modeling

Elements, Non_Modeling Elements and Application Objects. The Modeling Elements part provides an

interface for access to modeling elements, and the Non_Modeling Elements part provides an interface for MOF

(Meta-Object Facility) and various elements other than modeling elements. The Application Objects part provides

StarUML 5.0 Developer Guide (StarUML Architecture)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch02.html

(Meta-Object Facility) and various elements other than modeling elements. The Application Objects part provides

various interfaces which manage the application itself.

The Application Objects Part

The Application Objects

part includes interfaces which manage the application itself. The interfaces included in this part are

IStarUMLApplication as the basic interface, ISelectionManager for managing element selection, IUMLFactory

for creating elements, IProjectManager for managing projects, and interfaces related to events and GUI.

The Modeling Elements Part

The Modeling Elements

part includes interfaces for managing modeling elements. This part can be further divided into many parts. The

Core Elements part defines the top interface of model, view, and diagram elements. The ExtCore Elements part

includes interfaces for extensible model elements, and the UML Model Elements part defines the UML modeling

elements based on the ExtCore Elements. The ViewCore Elements part includes interfaces for basic components

of view elements, and the UML View Elements

part also defines the UML view elements based on the ViewCore Elements.

The Non_Modeling Elements Part

The Non_Modeling Elements

part includes interfaces for elements other than modeling elements. This part can be further divided into many

parts: the Extension Elements

part which includes interfaces for elements related to the UML extension mechanism, the Document Elements part

which manages StarUML™’s saved files, and the Metamodeling Elements part which manages meta-level

elements.

StarUML 5.0 Developer Guide (StarUML Architecture)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch02.html

StarUML 5.0 Developer Guide (HelloWord Example)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch03.html

Chapter 3. HelloWord Example

This chapter briefly describes methods and processes of developing Add-In, using the "Hello, world" example.

"Hello, world" Example

The "Hello, world" example is the first and easiest example for learning any technique. In this chapter, we will use

this example to learn about Add-Ins. The "Hello, world" example does not use all Add-In elements, but only the

basic ones. It comprises the following elements.

One Menu Extension

One Script

This "Hello, world" example adds [Hello, world!]

to the menu, and adds a function to change the project title to "Helloworld" when the user selects the menu item.

Creating Script

First, use Jscript to create a script that changes the project title to "Helloworld." Use a text editor to enter the script

source code as below and save it as helloworld.js.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var prj = app.GetProject();

prj.Title = "Helloworld";

The first line of the script creates an object called StarUMLApplication. This object must be created as it provides

the initial point for handling StarUML™. The second line acquires an object for the project, and the third line assigns

the title of the project object acquired as "Helloworld."

Creating Menu Extension File

A menu extension file (.mnu) must be created in order to extend the StarUML™ menu. In this example, we will add

[Hello, world!] under the menu item [Tools].

<?xml version="1.0"?>

<ADDINMENU addInID="StarUML.HelloworldAddIn">

 <BODY>

 <MAINMENU>

 <MAINITEM base="TOOLS" caption="Hello, world!" availableWhen="PROJECT_OPENED"

 script="helloworld.js"/>

 </MAINMENU>

 </BODY>

</ADDINMENU>

A menu extension file starts with the <ADDINMENU> tag and consists of <HEADER> and <BODY>. The <HEADER>

section may be omitted, and the <BODY> section contains the information for menu extension. In this example, the

<MAINITEM> element is added under the <MAINMENU> item for extending the main menu. For the <MAINITEM>

element, the 'base' attribute is the location of the menu item to be added, 'caption' is the menu item name,

'availableWhen' is the condition for activating the menu, and 'script' is the script to execute when the menu item is

selected.

Note: For details on menu extension, see "Chapter 8. Extending Menu".

Add-In Deployment

StarUML 5.0 Developer Guide (HelloWord Example)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch03.html

The script file (helloworld.js) and menu extension file (helloworld.mnu) must be placed in the same directory. Under

the installation directory of StarUML™, there is a directory called "modules." Make a subdirectory called

"HelloworldAddIn" under this directory and place the two files in it.

Add-In Registration

If you deployed the Add-In files properly, you must write Add-In description file so as to recognize the Add-In to

StarUML. Add-In Description file is a XML document file which extension file name is '.aid'. It contains overall

information about the Add-In that is a name of Add-In, COM object name, file name of executable module, menu

extension file name, help url, and so on. For details on Add-In Description file, see "Chapter 9. Writing Add-in

COM Object".

The following is Add-In Description file of HelloWord example.

<?xml version="1.0" encoding="UTF-8"?>

 <ADDIN>

 <NAME>Helloworld AddIn</NAME>

 <DISPLAYNAME>Helloworld Sample</DISPLAYNAME>

 <COMPANY>Plastic Software, Inc.</COMPANY>

 <COPYRIGHT>Copyright 2005 Plastic Software, Inc. All rights reserved.</COPYRIGHT>

 <HELPFILE>http://www.staruml.com</HELPFILE>

 <ICONFILE>Helloworld.ico</ICONFILE>

 <ISACTIVE>True</ISACTIVE>

 <MENUFILE>helloworld.mnu</MENUFILE>

 <VERSION>1.0.1.35</VERSION>

</ADDIN>

Save the Add-In description file in the directory that Add-In is deployed.

Verification and Excution of Added Add-In

If the steps above have been performed properly, the "Hello, world" Add-In should have been added to StarUML™.

Start StarUML™ and select [Tools] → [Add-In Manager] to check whether the Add-In has been added correctly.

StarUML 5.0 Developer Guide (HelloWord Example)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch03.html

If the installation was successful, it can be verified that [Hello, world!] has been added under the [Tools] menu.

When this menu is selected, the file helloworld.js will be executed to change the project title to "Helloworld."

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

Chapter 4. Using Open API

StarUML™ supports COM automation and exposes API to outside to access most programs that is uml meta model,

application object and so on.

This chapter discuss that using the external API of StarUML™.

Using APIs for Projects

This section describes methods of managing projects, units and model fragments in StarUML™.

Basic Concepts of Project Management

In order to manage projects, it is important to understand the concepts related to projects (projects, units, and

model fragments).

Project

A project is the most basic unit of management in StarUML™. A project manages one or more software models, and

it can be understood as a top-level package that does not change. One project is usually saved as one file. A project

contains and manages the following modeling elements.

Element Description

Model Element for managing one software model.

Subsystem Element for managing the elements that express one subsystem.

Package Most basic element for managing elements.

Project files are saved in the XML format, and the extension name is ".UML". While all models, views, and diagrams

created in StarUML™ are saved in one project file, a project may be divided and saved in multiple files by using

units that are described in the next section. The following information is saved in project files.

UML profiles referenced by the project

Unit files referenced by the project

All model information contained in the project

All diagram and view information contained in the project

Unit

While a project is usually saved in one file, there may be cases where a project has to be divided and saved in

multiple files because many people have to work on it concurrently and so on. In cases such as this, a project can

be managed in multiple units. Units can be organized hierarchically, and one unit can have many sub-units. A unit

is saved in a ".UNT" file, and it is referenced by project files (.UML) and other unit files (.UNT).

Only a package, subsystem, or model element can be one unit. Any element belonging to these groups is saved as

a respective unit file (.UNT).

Just as a project can manage multiple units under it, a unit can manage many sub-units. Upper units have

references to sub-units, and units form a hierarchical structure.

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

Model Fragment

A model fragment is a part of a project saved in a separate file. Only a model, subsystem, or package element can

be a model fragment, and it is saved as a ".MFG" file. A model fragment file can easily be added to any project at

any time. Model fragments are essentially different from units because they can completely be merged.

Document Object Management

Concept of Document

A document is an abstracted object of a part saved as a file in StarUML™. In other words, it provides various

properties and methods to access a .UML or .UNT part as one object. While a model fragment (.MFG) is also one

file, it does not have a document object as it is used for importing/exporting and is not internally managed by the

StarUML™ application. The following diagram illustrates hierarchical structure of document interfaces.

IDocument: The top interface for documents.

IUMLDocument: Upper interface for documents related to UML models.

IUMLUnitDocument: Interface for documents managed as units (.UNT) in StarUML™.

IUMLProjectDocument: Interface for documents managed as projects (.UML) in StarUML™. Since a project

document is regarded as a unit document, it inherits its properties from the unit document interface.

Accessing Document Objects

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

Accessing Document Objects

In order to access a project or unit document object, the IProjectManager object reference must be acquired. This

allows direct access to the project or unit document object.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var prjmgr = app.ProjectManager;

// Get project document object.

var prj_doc = prjmgr.ProjectDocument;

// Get unit document objects.

for (var i = 0; i < prjmgr.GetUnitDocumentCount(); i++) {

 var unit_doc = prjmgr.GetUnitDocumentAt(i);

}

While IProjectManager

allows direct access to documents, document objects can also be acquired through the respective modeling

elements that contain them. The following example illustrates acquiring reference for a project document object

from an element and saving it.

var elem = ... // Assign specific element(i.e. Class, Package, etc)

var elem_doc = elem.GetContainingDocument();

elem_doc.Save();

Document Properties and Methods

The IDocument interface provides the following properties and methods.

Property Description

FileName: String Acquires file name of the document. File name includes the full path and

extension.

Version: String Acquires version of the document.

Modified: Boolean Determines if the document has been modified by the user.

ReadOnly: Boolean Determines if the document file is read-only.

Method Description

GetDocumentSymbol(): String Acquires document symbol. Returns 'PROJECT' string for project documents and

'UNIT' string for unit documents.

GetDocumentElement():

IElement

Returns the top element for the document.

Save() Saves the document with the current file name.

SaveAs(FileName: String) Saves the document with a different file name and changes the current file

name.

Project Object Management

Accessing Project Object

In order to directly manage a project, reference for the project object must be acquired. The following is the Jscript

code for acquiring reference for a project object.

var app = new ActiveXObject("StarUML.StarUMLApplication");

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

var prj = app.GetProject();

...

While reference for project objects can be acquired directly from the application object (app), project objects can

also be accessed using the following method.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var prjmgr = app.ProjectManager;

var prj = prjmgr.Project;

...

Modifying Project Title and Properties

Once reference for a project object has been acquired, the title, properties and various methods of the project

become accessible. In order to change the title of the project, the "Title" property must be modified. Other

properties like "Copyright", "Author", and "Company can also be modified in the same way.

...

prj.Title = "MyProject";

...

Caution:

Although generic modeling elements use the "Name" property, project objects must not use the "Name" property. A

project is a top package and it cannot have a name. This is because pathnames are commonly used for reference

between elements and all pathnames can become invalid if the project title is modified.

Adding Packages under Project

Only model, subsystem, and package elements can be added under a project. The IUMLFactory object must be

used to create and add new elements. See the following example for adding packages under a project.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var factory = app.UMLFactory;

var prj = app.GetProject();

var newPackage = factory.CreatePackage(prj);

newPackage.Name = "NewPackage";

Creating New Project

To make a new project, acquire reference for the IProjectManager object and call up the NewProject method.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var prjmgr = app.ProjectManager;

prjmgr.NewProject();

To create a new project with a specific approach rather than creating an empty project, use the

NewProjectByApproach

method. The following example illustrates creating a new project using the "UMLComponents" approach.

var app = new ActiveXObject("StarUML.StarUMLApplication");

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

var prjmgr = app.ProjectManager;

prjmgr.NewProjectByApproach("UMLComponents");

Opening Project

To open a project file (.UML), acquire reference for the IProjectManager object and then use the OpenProject

method.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var prjmgr = app.ProjectManager;

prjmgr.OpenProject("C:\\MyProject.uml");

Saving Project

To save the project currently open in StarUML™, acquire reference for the IProjectManager object and then use

the SaveProject method. Use the SaveProjectAs method to save with a different name, and use the

SaveAllUnits method to save all units under the project.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var prjmgr = app.ProjectManager;

prjmgr.SaveProject();

prjmgr.SaveProjectAs("MyProject2.uml");

prjmgr.SaveAllUnits();

Closing Project

To close a project, acquire reference for the IProjectManager object and then use the CloseProject method.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var prjmgr = app.ProjectManager;

prjmgr.CloseProject();

Unit Managment

Separating New Unit

To separate a new unit for managing a package, model, or subsystem as a separate file, acquire reference for the

IProjectManager object and then use the SeparateUnit method.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var prjmgr = app.ProjectManager;

var pkg = ... // Assign reference for the package to separate as a new unit.

var new_unit = prjmgr.SeparateUnit(pkg, "NewUnit.unt");

Merging Unit

If a separated package, model, or subsystem unit does not need to be managed as a separate file and needs to be

merged, acquire reference for the IProjectManager object and then use the MergeUnit method.

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

var app = new ActiveXObject("StarUML.StarUMLApplication");

var prjmgr = app.ProjectManager;

var pkg = ... // Assigns reference for the package that will no longer be managed as a unit.

prjmgr.MergeUnit(pkg);

Accessing Sub-Unit

Units can be organized hierarchically. A project can have many units under it, and each unit can have many

sub-units. The following example illustrates accessing the sub-units within a unit.

var unit = ... // Assigns reference for the unit that contains sub-units to access.

for (var i = 0; i < unit.GetSubUnitDocumentCount(); i++) {

 var sub_unit = unit.GetSubUnitDocumentAt(i);

 ...

}

Model Fragment Management

Making Model Fragment from Package

Package, model, or subsystem can be saved as a separate model fragment file. Acquire reference for the

IProjectManager object and then use the ExportModelFragment method.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var prjmgr = app.ProjectManager;

var pkg = ... // Assigns package to make as a model.

prjmgr.ExportModelFragment(pkg, "MyFragment.mfg");

Importing Model Fragment

A model fragment file can be added to a package, model, or subsystem. Acquire reference for the

IProjectManager object and then use the ImportModelFragment method.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var prjmgr = app.ProjectManager;

var pkg = ... // Assigns package to add a model fragment.

prjmgr.ImportModelFragment(pkg, "MyFragment.mfg");

Using APIs for Elements

This section introduces interface types that are modeling elements of StarUML™ external API, and describes their

usage. Modeling elements refer to the UML model, view, and diagram elements that are used when modeling

software. Model elements such as package, class, and actor, view elements that correspond to each model element,

and diagram elements such as class diagram and use case diagram are examples of modeling elements. Model,

view, and diagram elements can be created, deleted or modified using external API for modeling elements.

Note: Please refer to "Appendix B. List of UML Modeling Elements" for a complete listing of UML modeling

elements.

Modeling Element Structure

Modeling elements are organized in the following logical groups.

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

Core Elements: The Core Elements group defines the top interface for model, view, and diagram elements.

ExtCore Elements: The ExtCore Elements group defines the common top interface for extensible model

elements.

ViewCore Elements: The ViewCore Elements group defines the core types for view elements.

UML Model Elements: Defines the UML model elements. The UML standard modeling elements fall into this

category.

UML View Elements: The UML View Elements group defines the UML view elements.

Modeling elements are largely divided into model, view, and diagram types. However, the diagram type is

actually a part of the model or view types, and thus it is more accurate for the division to be made into model type

and view

type. Model is the element that contains actual information for the software model, and view is a visual expression

of information contained in a specific model. One model can have multiple views and a view generally has reference

to one model.

Simple Example of Using Modeling Elements

Before introducing the external API interfaces for modeling elements, let us look at a simple example of using

modeling elements. Suppose we want to track StarUML™ application’s top-level project element through

namespace type elements like package, class, and interface, all the way down to the sub-elements of each

namespace type element. In this case, the modeling element structure must be utilized. The following is the Jscript

code for utilizing the modeling element structure.

var app, prj;

app = new ActiveXObject("StarUML.StarUMLApplication");

prj = app.GetProject();

VisitOwnedElement(prj);

function VisitOwnedElement(owner){

 var elem;

 for (var i = 0; i < owner.GetOwnedElementCount(); i++){

 elem = owner.GetOwnedElementAt(i);

 ...

 if (elem.IsKindOf("UMLNamespace")) VisitOwnedElement(elem);

 }

}

In this example, all sub-elements that are in "OwnedElement" relationships with the top project element are

recursively obtained. The most crucial part of this code is the user-defined function called VisitOwnedElement.

This function takes an IUMLNamespace type element (which is a modeling element) as an argument and uses

GetOwnedElementCount and GetOwnedElementAt, which are IUMLNamespace interface methods.

Information required for structuring the VisitOwnedElement function can be obtained from the relationships of the

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

Information required for structuring the VisitOwnedElement function can be obtained from the relationships of the

modeling elements. The following diagram illustrates the relationships between StarUML™ external API interface

types that are related to the IMULNamespace interface example above.

The IUMLNamespace interface is inherited from IUMLModelElement, which is a shared upper type for

IUMLPackage, IUMLClass, and IUMLInterface types. IUMLNamespce also has an association called

Namespace-OwnedElement. The diagram illustrates that the IUMLNamespace type modeling elements like

IUMLPackage, IUMLClass, etc. have IUMLModelElement type elements below them known as

OwnedElements.

As such, external API modeling elements interfaces are defined according to the relationships between the modeling

elements.

Note: Modeling element names that fall into the category of standard UML elements start with an "UML" prefix

before the standard UML element names. For example, the name of a UML element called Actor is UMLActor. And

for external API, the prefix "I" is used according to coding procedures, as in IUMLActor. Please refer to "Appendix

B. List of UML Modeling Elements" for a complete listing of UML modeling elements and their names.

Convention for Expressing Association for External API

The diagram above illustrates that IUMLModelElement and IUMLNamespace interface types have an

OwnedElement-Namespace association. Such associations are expressed as references in StarUML™'s external API

interface. For example, Namespace association in the IUMLModelElement interface is expressed as below.

IUMLModelElement

Namespace: IUMLNamespace

Further, OwnedElement association in the IUMLNamespace interface is expressed as below. This is because the

Multiplicity attribute of the metamodel is * and groups or list structures are used in the internal implementation of

the program. As all associations in external API interface definition are expressed using the same convention, this

applies to all other interfaces as well as IUMLModelElement-IUMLNamespace.

IUMLNamespace

function GetOwnedElementCount(): Integer;

function GetOwnedElementAt(Index: Integer): IUMLModelElement;

Core Elements

Core Elements are top parent interfaces for modeling elements. IElement, IModel, IView, IDiagram, and

IDiagramView

interfaces fall into this category, and they are organized as illustrated in the diagram below. The organization below

should be given special attention as core group interface types are quite frequently used and they play critical roles.

Associations between the interfaces should be given special emphasis here.

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

Associations between the interfaces should be given special emphasis here.

Interface name Description

IElement Interface type that defines the top shared element for all modeling elements.

IModel Interface type that defines the shared parent element for model elements.

IView Interface type that defines the shared parent element for view elements.

IDiagram Interface type that defines the shared parent element for diagram model elements.

IDiagramView Interface type that defines the shared parent element for diagram view elements.

IElement

IElement

interface defines the top shared type for all modeling elements, and provides the following main methods.

Main method Description

GetGUID(): String Function that returns the GUID (Global Unique Identifier) of

modeling elements. GUID is encoded as Base64.

GetClassName(): String Function that returns class names of modeling elements. Return

value example: "UMLClass"

IsKindOf(ClassName: String): Boolean Function that verifies whether the modeling element is the same

type of element received as an argument. Argument value

example: "UMLClass"

IsReadOnly(): Boolean Function that verifies whether the modeling element is read-only.

Attributes of read-only modeling elements cannot be modified.

MOF_GetAttribute(Name: String): String Returns in strings the default type attribute values of modeling

elements as defined by arguments.

MOF_GetReference(Name: String): IElement Returns the reference type attribute (object reference) values of

modeling elements as defined by arguments.

MOF_GetCollectionCount(Name: String):

Integer

Returns the count number of items in reference collection as

defined by arguments.

MOF_GetCollectionItem(Name: String;

Index: Integer): IElement

Returns the attribute value (object reference) of the 'index' order

item in the reference collection of modeling elements as defined

by arguments.

Among the methods of IElement interface, the MOF_XXX methods provide consistent ways to access the attribute

values of each modeling element by string names. For instance, IUMLModelElement, a sub-type of IElement,

has an attibribute called "Visibility". In general, the expression IUMLModelElement.Visibilty is used to get the

value of this attribute. But the IElement.MOF_GetAttribute method can be used as illustrated below to get the

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

value of this attribute. But the IElement.MOF_GetAttribute method can be used as illustrated below to get the

value of the attribute by a string name called "Visibility". As such, MOF_XXX methods allow access to the attributes

of basic type / reference type / reference collection type of each modeling element by string names, and this is very

useful in many cases.

Note: String names of attributes, which are used as arguments in MOF_XXX methods, are the same as the

respective attribute names.

The following example reads the value of the attribute "Visibility" of an IUMLModelElement type element using

the IElement.MOF_GetAttribute method. It should be noted that the MOF_GetAttribute method uses strings as

return values. In this example, return values can be "vkPrivate", "vkPublic", etc.

...

var elem = ... // Get reference to IUMLModelElement type element object.

var val = elem.MOF_GetAttribute("Visibility");

...

The IElement.MOF_GetReference

method is used when reading reference type attribute values of modeling elements. The MOF_GetReference

method returns reference to the IElement

type objects. The following example reads the "Namespace" reference attribute value of IUMLModelElement type

elements.

...

var elem = ... // Get reference to IUMLModelElement type element object.

var refElem = elem.MOF_GetReference("Namespace");

...

The IElement.MOF_GetCollectionItem

method is used when reading reference collection type attribute values of modeling elements. The

MOF_GetCollectionItem

method receives the name of the reference collection type attribute and the item index as arguments. Collection

item count number can be obtained using the MOF_GetCollectionCount method. Also, the

MOF_GetCollectionItem method, like the MOF_GetReference method, returns reference to the IElement type

objects. The following example reads the "Attributes" reference collection attribute values of IUMLClassifier type

elements.

...

var elem = ... // Get reference to IUMLClassifier type element object.

var colCount = elem.MOF_GetCollectionCount("Attributes");

for (var i = 0; i < colCount; i++){

 var colItem = elem.MOF_GetCollectionItem("Attributes", i);

 ...

}

Note: An error occurs if argument values for MOF_XXX methods are not defined with names of existing attributes.

IModel

IModel

interface defines the shared parent type of model elements, and provides the following main properties and

methods.

Main Property Description

Name: String Name attribute.

Documentation: String Documentation attribute.

Pathname: String Path name of model element. Path name format includes the "::" indicator

for all upper level elements except the top project element. Path name

example: "::Application Model::Modeling Elements::UML Model Elements".

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

example: "::Application Model::Modeling Elements::UML Model Elements".

* Read-only.

Main Method Description

AddAttachment(Attach: String); Adds values to attachment file attributes (file path, URL).

FindByName(AName: String):

IModel

Returns names of lower level model elements that are identical to the

names received as arguments.

FindByRelativePathname(RelPath:

String): IModel

Returns relative path names of overlapped lower level model elements that

are identical to the relative path names received as arguments. The Name

of the model itself is excluded in the argument. Argument value example:

"Model_Management::UMLPackage"

ContainsName(AName: String):

Boolean

Verifies whether there exists a lower level model element with the same

name as defined by the argument.

CanDelete(): Boolean Verifies whether the current model element is read-only.

GetViewCount: Integer Returns count of view elements of the current model.

GetViewAt(Index: Integer): IView Returns the (index)th view element of the current model.

GetOwnedDiagramCount: Integer Returns count of diagram elements contained in the current model.

GetOwnedDiagramAt(Index:

Integer): IDiagram

Returns the (index)th diagram element contained in the current model.

The following example shows reading basic attribute values of a model element and resetting them.

function DoingSomething(elem){

 if (elem.GetClassName() == "UMLClass"){

 if (elem.IsReadOnly() != true){

 elem.Name = "class_" + elem.Name;

 elem.Documentation = "I am a class";

 elem.AddAttachment("http://www.staruml.com");

 }

 }

}

The FindByName method and FindByRelativePathname method can be used to find lower level elements of a

model element. The FindByName

method returns the name of the first lower level element that is identical to the string value received as argument.

The FindByName

method performs a search only for the lower levels of the model element. To search for all lower level elements

when the lower level elements are in an overlapped structure, the FindByRelativePathname method can be used.

The following example shows how to use the FindByName and FindByRelativePathname methods.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var rootElem = app.FindByPathname("::Application Model::Modeling Elements::UML Model Elements");

var elem = rootElem.FindByName("Model_Management");

var elem2 = rootElem.FindByRelativePathname("Model_Management::UMLPackage");

As shown in the diagram above, IModel interface and IView interface are in a Model-View association. An IModel

type element can have many IView type elements, and each IView type element must have one IModel type

element. The following example shows how to get reference to all IView type elements for each IUMLClass type

element.

var elem = ... // Get reference to IModel type element.

if (elem.GetClassName() == "UMLClass"){

 for (var i = 0; i < elem.GetViewCount(); i++){

 var view = elem.GetViewAt(i);

 ...

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

 }

}

As illustrated in the diagram above, the IModel interface and IDiagram interface are in a

DiagramOwner-OwnedDiagram association. Since the IDiagram interface is a parent type for all diagram model

types, reference to diagram elements contained in the model element can be obtained using the method shown in

the following example.

var elem = ... // IModel type element

for (int i = 0; i < elem.GetOwnedDiagramCount(); i++){

 var dgm = elem.GetOwnedDiagramAt(i);

 ...

}

IView

IView interface defines the shared parent type of view elements, and provides the following main properties.

Main property Description

LineColor: String Defines line color. Uses BGR format.

Examples: "0xff0000" (blue); "0x00ff00" (green); "0x0000ff" (red); "0x000000"

(black); "0xffffff" (white)

FillColor: String Defines fill color. Uses BGR format.

FontFace: String Defines font. Example: "Times New Roman"

FontColor: String Defines font color. Uses BGR format.

FontSize: String Defines font size.

FontStyle: Integer Defines font style. Integers 1 (bold), 2 (italic), 3 (underline), and 4 (strikeout) can

be used separately or in combination. Example: 1 + 2 (bold & italic)

* Does not apply to view elements with pre-defined default styles.

Selected: Boolean Defines whether the current view element is selected.

* Read-only.

Model: IModel Defines reference to model element corresponding to the current view element.

* Read-only.

OwnerDiagramView:

IDiagramView

Defines diagram view element containing the current view element.

* Read-only.

The following example shows setting basic attribute values for an IVew type element.

var view = ... // IView type element

view.LineColor = "0x0000ff";

view.FillColor = "0x00ffff";

view.FontFace = "Times New Roman";

view.FontColor = "0x0000ff";

view.FontSize = "12";

view.FontStyle = 1;

View elements other than IUMLNoteView, IUMLNoteLinkView, and IUMLTextView type view elements have

references to the model element. The following code can be used to obtain information on an IModel type element

referenced by an IView type element.

var view = ... // IView type element

var mdl = view.Model;

...

The following code can be used to obtain information on diagrams that contain an IView type element.

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

The following code can be used to obtain information on diagrams that contain an IView type element.

var view = ... // IView type element

var dgmView = view.OwnerDiagramView;

...

IDiagram

IDiagram interface is inherited from IModel

interface, and is the shared parent type of all diagram type model elements. IDiagram interfaces have the

following main properties.

Main property Description

DefaultDiagram:

Boolean

Defines whether the current diagram is the Default Diagram. Default Diagram is the

diagram that automatically opens when a project is opened. Only class / use case /

component / deployment diagrams can be set as the Default Diagram.

DiagramOwner:

IModel

Defines an upper level model element that contains the current diagram.

* Read-only.

DiagramView:

IDiagramView

Defines the diagram view element that corresponds to the current diagram model.

* Read-only.

IDiagramView

IDiagramView interface is inherited from IView

interface, and is the shared parent type of all diagram view elements.

Main property Description

Diagram: IDiagram Defines diagram model elements that correspond to the current

diagram view element.* Read-only.

Main method Description

GetSelectedViewCount: Integer Returns count of view elements currently selected in the diagram.

GetSelectedViewAt(Index: Integer):

IView

Returns the (index)th view element that is currently selected in the

diagram.

GetOwnedViewCount: Integer Returns count of view elements contained in the diagram.

GetOwnedViewAt(Index: Integer): IView Returns the (index)th view element contained in the diagram.

LayoutDiagram() Automatically reorganizes the diagram layout.

ExportDiagramAsBitmap(FileName:

String)

Converts the diagram into a bitmap image and saves it as a file using

the path name and file name defined.

ExportDiagramAsMetafile(FileName:

String)

Converts the diagram into a Windows Metafile and saves it as a file

using the path name and file name defined.

ExportDiagramAsJPEG(FileName: String) Converts the diagram into a JPEG image and saves it as a file using the

path name and file name defined.

ExtCore Elements

ExtCore elements provide a platform structure for model elements where UML extension functions can be applied.

All model elements, which are applied with UML extension functions, are inherited from the IExtensibleModel

interface. IExtensibleModel interface can have many constraints and tagged values as illustrated in the

diagram below.

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

Interface name Description

IExtensibleModel Shared upper level type of model elements that can be applied with UML extension functions.

IConstraint Constraint element.

ITaggedValue Tagged value element.

IExtensibleModel

IExtensibleModel interface defines the following main properties and methods.

Main property Description

StereotypeProfile: String Defines name of the UML profile that defines the stereotype

applied in the current model element.

* Read-only.

StereotypeName: String Defines name of the stereotype applied in the current model

element.

* Read-only.

Main method Description

GetConstraintCount: Integer Returns count of constraint elements contained in the current

model element.

GetConstraintAt(Index: Integer): IConstraint Returns (index)th constraint element contained in the current

model element.

AddConstraint(Name: String; Body: String):

IConstraint

Creates a constraint element with name and value defined by

arguments.

IndexOfConstraint(AConstraint: IConstraint):

Integer

Returns index of the constraint element defined by arguments.

DeleteConstraint(Index: Integer) Deletes (index)th constraint element contained in the current

model element.

GetTaggedValueCount: Integer Returns count of tagged value elements contained in the current

model element.

GetTaggedValueAt(Index: Integer):

ITaggedValue

Returns (index)th tagged value element contained in the current

model element.

GetStereotype: IStereotype Returns stereotype element applied in the current model

element.

SetStereotype(const Name: WideString) Defines stereotype value with string instead of using IStereotype

element.

SetStereotype2(Profile: String; Name: String) Defines UML profile with stereo definition and stereotype values.

By convention, stereotype and tagged values should be defined through the UML profile. However, StarUML™ allows

definition of stereotypes by string values for those unfamiliar with UML profiles. The following example shows

reading the stereotype value from a certain IExtensibleModel type element and resetting it.

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

var elem = ... // Get reference to model element.

if (elem.IsKindOf("ExtensibleModel")){

 var stereotypeStr = elem.StereotypeName;

 if (stereotypeStr == ""){

 elem.SetStereotype("Stereotype1");

 }

}

Unlike stereotype, tagged values must be defined through the UML profile only. Please refer to "Chapter 7.

Writing UML Profiles" for a detailed description of UML profile, stereotypes, and tagged values.

IConstraint

Constraints can be added or edited at the constraints editor in the StarUML™ application as illustrated above. In

external API, constraints can be added or edited using the IConstraint interface. The IConstraint interface

provides the following properties.

Main property Description

Name: String Name of constraint.

Body: String Contents of constraint.

ConstrainedModel: IExtensibleModel IExtensibleModel type element applied with the constraint.

Constraint elements can be created through the method provided by an IExtensibleModel type element. The

following example shows adding, editing, and deleting a constraint for a certain IExtensibleModel type element.

var elem = ... // Get reference to IExtensibleModel type element.

var AConstraint = elem.AddConstraint("Constraint1", "Constraint Value1");

var constrName = AConstraint.Name;

var constrValue = AConstraint.Body;

var idx = elem.IndexOfConstraint(AConstraint);

elem.DeleteConstraint(idx);

ITaggedValue

ITaggedValue

interface defines tagged value elements, and provides the following properties and methods. Please refer to

"Chapter 7. Writing UML Profiles" for a detailed description of tagged value elements.

Main property Description

ProfileName: String Defines the name of the UML profile that defines the current tagged value.

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

ProfileName: String Defines the name of the UML profile that defines the current tagged value.

* Read-only.

TagDefinitionSetName: String Defines the tag definition set that contains the current tagged value.

* Read-only.

Name: String Defines the name of the tagged value defined in the UML profile.

* Read-only.

DataValue: String Defines tagged value.

* Read-only.

TaggedModel: IExtensibleModel Defines reference to the IExtensibleModel type element applied with the

current tagged value.

* Read-only.

Main method Description

GetTagDefinition: ITagDefinition Returns tag definition element for the current tagged value.

GetTagDefinitionSet:

ITagDefinitionSet

Returns tag definition set element for the current tagged value.

GetProfile: IProfile Returns the UML profile element that defines the current tagged value.

ViewCore Elements

ViewCore group interface types are inherited from IView

interface and provide a platform structure for all view type elements. ViewCore group contains many interface

types. This section describes INodeView and IEdgeView interfaces, which are the most important interfaces.

Interface name Description

INodeView The top level interface type for node type views.

IEdgeView The top level interface type for edge type views.

INodeView

INodeView

interface is a platform type for node type view elements. A node type view is a view element that has an area like

class views. INodeView interface provides the following main properties.

Main property Description

Left: Integer Location information of the view (Left).

Top: Integer Location information of the view (Top).

Width: Integer Size information of the view (Width).

Height: Integer Size information of the view (Height).

MinWidth: Integer Defines the minimum size of the current view element (Width).

* Read-only.

MinHeight: Integer Defines the minimum size of the current view element (Height).

* Read-only.

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

AutoResize: Boolean Defines the autoresize property of the current view element.

The following example shows changing the location and size of an INodeView type view.

var nodeView = ... // Get reference to INodeView type element.

var l = nodeView.Left;

var t = nodeView.Top;

var w = nodeView.Width;

var h = nodeView.Height;

nodeView.Left = l * 2;

nodeView.Top = t * 2;

nodeView.Width = w * 2;

nodeView.Height = h * 2;

IEdgeView

IEdgeView

interface is a platform type for edge type view elements. An edge type view is a line-based view element like

dependency views. IEdgeView interface provides the following main properties.

Main property Description

LineStyle: LineStyleKind Defines line style.

Points: IPoints Defines line coordinates.

Tail: IView Defines view element at the starting point of the line.

Head: IView Defines view element at the ending point of the line.

The following values defined in LineStyleKind enumeration can be used for the line style of edge type views.

Value Description

lsRectilinear Rectilinear shape line style.

lsOblique Oblique shape line style.

The following example shows changing the line style for an edge type view.

lsRectilinear = 0;

lsOblique = 1;

var view = ... // Get reference to view element.

if (view.IsKindOf("EdgeView")){

 view.LineStyle = lsRectilinear;

}

Accessing UML Model Elements

UML Model Elements group is further grouped into various packages as illustrated below. It should be noted that the

UML model elements defined in the UML Model Elements group are StarUML™'s implementation of standard UML

elements as defined in the UML standard specifications; they are almost identical to the standard UML elements. We

will skip the detailed description of UML model elements in the UML Model Elements group here.

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

Creating UML Model Elements

When creating a UML model element, IUMLFactory interface must be used. IUMLFactory interface provides

creation methods not only for UML model elements but also UML diagram elements, UML view elements and all

other UML modeling elements. An IUMLFactory type object can be obtained through an IStarUMLApplication

type object as illustrated below.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var facto = app.UMLFactory;

...

IUMLFactory provides the following UML model element creation methods.

UML model element Creation method

UMLModel CreateModel(AOwner: UMLNamespace): IUMLModel

UMLSubsystem CreateSubsystem(AOwner: UMLNamespace): IUMLSubsystem

UMLPackage CreatePackage(AOwner: UMLNamespace): IUMLPackage

UMLClass CreateClass(AOwner: UMLNamespace): IUMLClass

UMLInterface CreateInterface(AOwner: UMLNamespace): IUMLInterface

UMLEnumeration CreateEnumeration(AOwner: UMLNamespace): IUMLEnumeration

UMLSignal CreateSignal(AOwner: UMLNamespace): IUMLSignal

UMLException CreateException(AOwner: UMLNamespace): IUMLException

UMLComponent CreateComponent(AOwner: UMLNamespace): IUMLComponent

UMLComponentInstance CreateComponentInstance(AOwner: UMLNamespace): IUMLComponentInstance

UMLNode CreateNode(AOwner: UMLNamespace): IUMLNode

UMLNodeInstance CreateNodeInstance(AOwner: UMLNamespace): IUMLNodeInstance

UMLUseCase CreateUseCase(AOwner: UMLNamespace): IUMLUseCase

UMLActor CreateActor(AOwner: UMLNamespace): IUMLActor

UMLActivityGraph CreateActivityGraph(AContext: UMLModelElement): IUMLActivityGraph

UMLStateMachine CreateStateMachine(AContext: UMLModelElement): IUMLStateMachine

UMLCompositeState CreateCompositeState(AOwnerState: UMLCompositeState): IUMLCompositeState

UMLCollaboration CreateCollaboration(AOwner: UMLClassifier): IUMLCollaboration

UMLCollaboration CreateCollaboration2(AOwner: UMLOperation): IUMLCollaboration

UMLCollaborationInstanceSet CreateCollaborationInstanceSet(AOwner: UMLClassifier):

IUMLCollaborationInstanceSet

UMLCollaborationInstanceSet CreateCollaborationInstanceSet2(AOwner: UMLOperation):

IUMLCollaborationInstanceSet

UMLInteraction CreateInteraction(ACollaboration: UMLCollaboration): IUMLInteraction

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

UMLInteractionInstanceSet CreateInteractionInstanceSet(ACollaborationInstanceSet:

UMLCollaborationInstanceSet): IUMLInteractionInstanceSet

UMLActionState CreateActionState(AOwnerState: UMLCompositeState): IUMLActionState

UMLSubactivityState CreateSubactivityState(AOwnerState: UMLCompositeState): IUMLSubactivityState

UMLPseudostate CreatePseudostate(AOwnerState: UMLCompositeState): IUMLPseudostate

UMLFinalState CreateFinalState(AOwnerState: UMLCompositeState): IUMLFinalState

UMLPartition CreatePartition(AActivityGraph: UMLActivityGraph): IUMLPartition

UMLSubmachineState CreateSubmachineState(AOwnerState: UMLCompositeState):

IUMLSubmachineState

UMLAttribute CreateAttribute(AClassifier: UMLClassifier): IUMLAttribute

UMLAttribute CreateQualifier(AAssociationEnd: UMLAssociationEnd): IUMLAttribute

UMLOperation CreateOperation(AClassifier: UMLClassifier): IUMLOperation

UMLParameter CreateParameter(ABehavioralFeature: UMLBehavioralFeature): IUMLParameter

UMLTemplateParameter CreateTemplateParameter(AClass: UMLClass): IUMLTemplateParameter

UMLTemplateParameter CreateTemplateParameter2(ACollaboration: UMLCollaboration):

IUMLTemplateParameter

UMLEnumerationLiteral CreateEnumerationLiteral(AEnumeration: UMLEnumeration):

IUMLEnumerationLiteral

UMLUninterpretedAction CreateEntryAction(AState: UMLState): IUMLUninterpretedAction

UMLUninterpretedAction CreateDoAction(AState: UMLState): IUMLUninterpretedAction

UMLUninterpretedAction CreateExitAction(AState: UMLState): IUMLUninterpretedAction

UMLUninterpretedAction CreateEffect(ATransition: UMLTransition): IUMLUninterpretedAction

UMLSignalEvent CreateSignalEvent(ATransition: UMLTransition): IUMLSignalEvent

UMLCallEvent CreateCallEvent(ATransition: UMLTransition): IUMLCallEvent

UMLTimeEvent CreateTimeEvent(ATransition: UMLTransition): IUMLTimeEvent

UMLChangeEvent CreateChangeEvent(ATransition: UMLTransition): IUMLChangeEvent

UMLClassifierRole CreateClassifierRole(ACollaboration: UMLCollaboration): IUMLClassifierRole

UMLObject CreateObject(ACollaborationInstanceSet: UMLCollaborationInstanceSet):

IUMLObject

UMLObject CreateObject2(AOwner: UMLNamespace): IUMLObject

UMLTransition CreateTransition(AStateMachine: UMLStateMachine; Source: UMLStateVertex;

Target: UMLStateVertex): IUMLTransition

UMLDependency CreateDependency(AOwner: UMLNamespace; Client: UMLModelElement; Supplier:

UMLModelElement): IUMLDependency

UMLAssociation CreateAssociation(AOwner: UMLNamespace; End1: UMLClassifier; End2:

UMLClassifier): IUMLAssociation

UMLAssociationClass CreateAssociationClass(AOwner: UMLNamespace; AAssociation: UMLAssociation;

AClass: UMLClass): IUMLAssociationClass

UMLGeneralization CreateGeneralization(AOwner: UMLNamespace; Parent: UMLGeneralizableElement;

Child: UMLGeneralizableElement): IUMLGeneralization

UMLLink CreateLink(ACollaborationInstanceSet: UMLCollaborationInstanceSet; End1:

UMLInstance; End2: UMLInstance): IUMLLink

UMLAssociationRole CreateAssociationRole(ACollaboration: UMLCollaboration; End1: UMLClassifierRole;

End2: UMLClassifierRole): IUMLAssociationRole

UMLStimulus CreateStimulus(AInteractionInstanceSet: UMLInteractionInstanceSet; Sender:

UMLInstance; Receiver: UMLInstance; Kind: UMLFactoryMessageKind):

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

UMLInstance; Receiver: UMLInstance; Kind: UMLFactoryMessageKind):

IUMLStimulus

UMLStimulus CreateStimulus2(AInteractionInstanceSet: UMLInteractionInstanceSet; Sender:

UMLInstance; Receiver: UMLInstance; CommunicationLink: UMLLink; Kind:

UMLFactoryMessageKind): IUMLStimulus

UMLMessage CreateMessage(AInteraction: UMLInteraction; Sender: UMLClassifierRole;

Receiver: UMLClassifierRole; Kind: UMLFactoryMessageKind): IUMLMessage

UMLMessage CreateMessage2(AInteraction: UMLInteraction; Sender: UMLClassifierRole;

Receiver: UMLClassifierRole; CommunicationConnection: UMLAssociationRole;

Kind: UMLFactoryMessageKind): IUMLMessage

UMLInclude CreateInclude(AOwner: UMLNamespace; Includer: UMLUseCase; Includee:

UMLUseCase): IUMLInclude

UMLExtend CreateExtend(AOwner: UMLNamespace; Extender: UMLUseCase; Extendee:

UMLUseCase): IUMLExtend

UMLRealization CreateRealization(AOwner: UMLNamespace; Client: UMLModelElement; Supplier:

UMLModelElement): IUMLRealization

The following example shows creating UML model elements using IUMLFactory.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var facto = app.UMLFactory;

var pjt = app.GetProject();

var mdlElem = facto.CreateModel(pjt); // Create UMLModel element.

var pkgElem = facto.CreatePackage(mdlElem); // Create UMLPackage element.

var clsElem1 = facto.CreateClass(pkgElem); // Create UMLClass element.

var clsElem2 = facto.CreateClass(pkgElem); // Create UMLClass element.

var attrElem = facto.CreateAttribute(clsElem1); // Create UMLAttribute element.

var opElem = facto.CreateOperation(clsElem1); // Create UMLOperation element.

var paramElem1 = facto.CreateParameter(opElem); // Create UMLParameter element.

var paramElem2 = facto.CreateParameter(opElem); // Create UMLParameter element.

paramElem1.TypeExpression = "String";

paramElem2.Type_ = clsElem2;

...

Deleting UML Model Element

The DeleteModel method of IStarUMLApplication interface can be used to delete UML model elements. The

CanDelete method of IModel

interface can be used to check whether the current model element can be deleted. If the current model element is

read-only, the CanDelete

method returns "false". Additional caution should be taken because when a model element is deleted, all its lower

level model elements, and all the view elements related to the current model element are automatically deleted

altogether. The following example is a continuation of the example above, showing deleting a class element.

...

if (clsElem1.CanDelete() == true){

 app.DeleteModel(clsElem1);

}

...

Managing UML Diagram

Creating UML Diagram Elements

IUMLFactory can be used to create UML diagram elements like creating UML model elements. IUMLFactory

provides the following diagram-related creation methods.

UML diagram element Creation method

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

UML diagram element Creation method

UMLClassDiagram CreateClassDiagram(AOwner: Model): IUMLClassDiagram

UMLUseCaseDiagram CreateUseCaseDiagram(AOwner: Model): IUMLUseCaseDiagram

UMLSequenceDiagram CreateSequenceDiagram(AOwner: UMLInteractionInstanceSet):

IUMLSequenceDiagram

UMLSequenceRoleDiagram CreateSequenceRoleDiagram(AOwner: UMLInteraction):

IUMLSequenceRoleDiagram

UMLCollaborationDiagram CreateCollaborationDiagram(AOwner: UMLInteractionInstanceSet):

IUMLCollaborationDiagram

UMLCollaborationRoleDiagram CreateCollaborationRoleDiagram(AOwner: UMLInteraction):

IUMLCollaborationRoleDiagram

UMLStatechartDiagram CreateStatechartDiagram(AOwner: UMLStateMachine): IUMLStatechartDiagram

UMLActivityDiagram CreateActivityDiagram(AOwner: UMLActivityGraph): IUMLActivityDiagram

UMLComponentDiagram CreateComponentDiagram(AOwner: Model): IUMLComponentDiagram

UMLDeploymentDiagram CreateDeploymentDiagram(AOwner: Model): IUMLDeploymentDiagram

The method for creating UML diagram elements is almost identical to the method for creating UML model elements.

One difference for UML diagram elements is that view type elements are automatically created when creating model

type elements. The following example shows creating a UML diagram element and accessing the automatically

created UML diagram view element.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var pkgElem = ... // Upper level model element to contain UML diag

var dgmElem = facto.CreateClassDiagram(pkgElem); // Create UMLClassDiagram.

var dgmViewElem = dgmElem.DiagramView; // Automatically created diagram view element.

app.OpenDiagram(dgmElem);

...

Deleting UML Diagram Element

Since UML diagram elements are regarded as UML model elements, they can be deleted using the DeleteModel

method of IStarUMLApplication interface, like deleting UML model elements. The CanDelete method of IModel

interface can be used to check whether the diagram element can be deleted.

Handling View Elements

Creating View Elements

IUMLFactory can also be used when creating view elements. IUMLFactory methods related to view element

creation are as follows.

UML view element Creation method

UMLNoteView CreateNoteView(ADiagramView: DiagramView): IUMLNoteView

UMLNoteLinkView CreateNoteLinkView(ADiagramView: DiagramView; ANote: UMLNoteView;

LinkTo: View): IUMLNoteLinkView

UMLTextView CreateTextView(ADiagramView: DiagramView): IUMLTextView

UMLModelView CreateModelView(ADiagramView: DiagramView; AModel: UMLModel):

IUMLModelView

UMLSubsystemView CreateSubsystemView(ADiagramView: DiagramView; AModel:

UMLSubsystem): IUMLSubsystemView

UMLPackageView CreatePackageView(ADiagramView: DiagramView; AModel: UMLPackage):

IUMLPackageView

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

IUMLPackageView

UMLClassView CreateClassView(ADiagramView: DiagramView; AModel: UMLClass):

IUMLClassView

UMLInterfaceView CreateInterfaceView(ADiagramView: DiagramView; AModel: UMLInterface):

IUMLInterfaceView

UMLEnumerationView CreateEnumerationView(ADiagramView: DiagramView; AModel:

UMLEnumeration): IUMLEnumerationView

UMLSignalView CreateSignalView(ADiagramView: DiagramView; AModel: UMLSignal):

IUMLSignalView

UMLExceptionView CreateExceptionView(ADiagramView: DiagramView; AModel: UMLException):

IUMLExceptionView

UMLComponentView CreateComponentView(ADiagramView: DiagramView; AModel:

UMLComponent): IUMLComponentView

UMLComponentInstanceView CreateComponentInstanceView(ADiagramView: DiagramView; AModel:

UMLComponentInstance): IUMLComponentInstanceView

UMLNodeView CreateNodeView(ADiagramView: DiagramView; AModel: UMLNode):

IUMLNodeView

UMLNodeInstanceView CreateNodeInstanceView(ADiagramView: DiagramView; AModel:

UMLNodeInstance): IUMLNodeInstanceView

UMLActorView CreateActorView(ADiagramView: DiagramView; AModel: UMLActor):

IUMLActorView

UMLUseCaseView CreateUseCaseView(ADiagramView: DiagramView; AModel: UMLUseCase):

IUMLUseCaseView

UMLCollaborationView CreateCollaborationView(ADiagramView: DiagramView; AModel:

UMLCollaboration): IUMLCollaborationView

UMLCollaborationInstanceSetView CreateCollaborationInstanceSetView(ADiagramView: DiagramView; AModel:

UMLCollaborationInstanceSet): IUMLCollaborationInstanceSetView

UMLGeneralizationView CreateGeneralizationView(ADiagramView: DiagramView; AModel:

UMLGeneralization; Parent: View; Child: View): IUMLGeneralizationView

UMLAssociationView CreateAssociationView(ADiagramView: DiagramView; AModel:

UMLAssociation; End1: View; End2: View): IUMLAssociationView

UMLAssociationClassView CreateAssociationClassView(ADiagramView: DiagramView; AModel:

UMLAssociationClass; AssociationView: View; ClassView: View):

IUMLAssociationClassView

UMLDependencyView CreateDependencyView(ADiagramView: DiagramView; AModel:

UMLDependency; Client: View; Supplier: View): IUMLDependencyView

UMLRealizationView CreateRealizationView(ADiagramView: DiagramView; AModel: UMLRealization;

Client: View; Supplier: View): IUMLRealizationView

UMLIncludeView CreateIncludeView(ADiagramView: DiagramView; AModel: UMLInclude; Base:

View; Addition: View): IUMLIncludeView

UMLExtendView CreateExtendView(ADiagramView: DiagramView; AModel: UMLExtend; Base:

View; Extension: View): IUMLExtendView

UMLColObjectView CreateObjectView(ADiagramView: DiagramView; AModel: UMLObject):

IUMLColObjectView

UMLSeqObjectView CreateSeqObjectView(ADiagramView: UMLSequenceDiagramView; AModel:

UMLObject): IUMLSeqObjectView

UMLColClassifierRoleView CreateClassifierRoleView(ADiagramView: DiagramView; AModel:

UMLClassifierRole): IUMLColClassifierRoleView

UMLSeqClassifierRoleView CreateSeqClassifierRoleView(ADiagramView: UMLSequenceRoleDiagramView;

AModel: UMLClassifierRole): IUMLSeqClassifierRoleView

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

UMLLinkView CreateLinkView(ADiagramView: DiagramView; AModel: UMLLink; End1: View;

End2: View): IUMLLinkView

UMLAssociationRoleView CreateAssociationRoleView(ADiagramView: DiagramView; AModel:

UMLAssociationRole; End1: View; End2: View): IUMLAssociationRoleView

UMLColStimulusView CreateStimulusView(ADiagramView: UMLCollaborationDiagramView; AModel:

UMLStimulus; LinkView: View): IUMLColStimulusView

UMLSeqStimulusView CreateSeqStimulusView(ADiagramView: UMLSequenceDiagramView; AModel:

UMLStimulus; Sender: View; Receiver: View): IUMLSeqStimulusView

UMLColMessageView CreateMessageView(ADiagramView: UMLCollaborationRoleDiagramView;

AModel: UMLMessage; AssociationRoleView: View): IUMLColMessageView

UMLSeqMessageView CreateSeqMessageView(ADiagramView: UMLSequenceRoleDiagramView;

AModel: UMLMessage; Sender: View; Receiver: View): IUMLSeqMessageView

UMLStateView CreateStateView(ADiagramView: UMLStatechartDiagramView; AModel:

UMLCompositeState): IUMLStateView

UMLSubmachineStateView CreateSubmachineStateView(ADiagramView: UMLStatechartDiagramView;

AModel: UMLSubmachineState): IUMLSubmachineStateView

UMLPseudostateView CreatePseudostateView(ADiagramView: DiagramView; AModel:

UMLPseudostate): IUMLPseudostateView

UMLFinalStateView CreateFinalStateView(ADiagramView: DiagramView; AModel: UMLFinalState):

IUMLFinalStateView

UMLActionStateView CreateActionStateView(ADiagramView: UMLActivityDiagramView; AModel:

UMLActionState): IUMLActionStateView

UMLSubactivityStateView CreateSubactivityStateView(ADiagramView: UMLActivityDiagramView;

AModel: UMLSubactivityState): IUMLSubactivityStateView

UMLSwimlaneView CreateSwimlaneView(ADiagramView: UMLActivityDiagramView; AModel:

UMLPartition): IUMLSwimlaneView

UMLTransitionView CreateTransitionView(ADiagramView: DiagramView; AModel: UMLTransition;

Source: View; Target: View): IUMLTransitionView

The following example creates IUMLClassView type elements in the class diagram view, and creates the

IUMLDependencyView and IUMLAssociationView

that link the two elements. As model elements are required for creating view elements, model elements are created

first.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var factory = app.UMLFactory;

// Get reference to existing model elements.

var rootElem = app.FindByPathname("::Logical View");

if (rootElem != null){

 app.BeginUpdate();

 try{

 // Create model elements.

 var class1 = factory.CreateClass(rootElem);

 var class2 = factory.CreateClass(rootElem);

 var dependency = factory.CreateDependency(rootElem, class1, class2);

 var association = factory.CreateAssociation(rootElem, class1, class2);

 var diagram = factory.CreateClassDiagram(rootElem);

 var diagramView = diagram.DiagramView;

 // Create view elements.

 var classView1 = factory.CreateClassView(diagramView, class1);

 var classView2 = factory.CreateClassView(diagramView, class2);

 var dependencyView = factory.CreateDependencyView(diagramView, dependency,

 classView1, classView2);

 var associationView = factory.CreateAssociationView(diagramView, association,

 classView1, classView2);

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

 classView1, classView2);

 // Adjust view element attributes.

 classView1.Left = 100;

 classView1.Top = 100;

 classView2.Left = 300;

 classView2.Top = 100;

 app.OpenDiagram(diagram);

 }

 finally{

 app.EndUpdate();

 }

}

Deleting UML View Elements

The DeleteView method of IStarUMLApplication interface can be used to delete UML view elements. Caution

should be taken in that when a model element is deleted, its view elements are automatically deleted together, but

when a view element is deleted its model element is not deleted.

The following example shows deleting view elements that were created in the example above.

...

app.DeleteView(dependencyView);

app.DeleteView(associationView);

Using APIs for Application Objects

Application Object Management

StarUMLApplication Object

The first thing to acquire in order to use StarUML™'s external API is reference to a StarUMLApplication object. All

other objects can be access through this. The IStarUMLApplication interface is an abstraction of the StarUML™

application itself and contains the following methods.

User action related methods (Undo, Redo, ClearHistory, BeginUpdate, EndUpdate, BeginGroupAction,

EndGroupAction, ...)

Element editing related methods (Copy, Cut, Paste, ...)

Model, view, and diagram deletion related methods (DeleteModel, DeleteView, ...)

Reading values of option items (GetOptionValue)

Log, message, and web browsing related methods (Log, AddMessageItem, NavigateWeb, ...)

Opened diagram management (OpenDiagram, CloseDiagram, ...)

Others (FindByPathname, SelectInModelExplorer, ...)

Managing Opened Diagrams

In the StarUML™'s diagram area, opened diagrams are managed under tabs as illustrated below. The currently

activated diagram is called active diagram.

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

To open a diagram, use the following code. If the diagram is not currently open, the diagram will open and

automatically become active. If the diagram is already opened, it will be set as the active diagram.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var dgm = ... // Assign a diagram to open.

app.OpenDiagram(dgm);

To obtain reference to opened diagrams, use the GetOpenedDiagramCount and GetOpenedDiagramAt

methods.

var app = new ActiveXObject("StarUML.StarUMLApplication");

...

for (i=0; i<app.GetOpenedDiagramCount(); i++) {

 var dgm = app.GetOpenedDiagramAt(i);

 ...

}

Opened diagrams can also be closed. In this case, the CloseDiagram method can be used. Use the

CloseAllDiagram method to close all diagrams, or use the CloseActiveDiagram method to close the active

diagram.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var dgm = ... // Assign a diagram to close.

app.CloseDiagram(dgm);

Recording Log

The [Output]

tab in StarUML™'s information area provides the interface for recoding and showing the application execution log to

the user.

To record log in the [Output] section, use the Log method as shown in the following example.

var app = new ActiveXObject("StarUML.StarUMLApplication");

app.Log("This is a test log...");

Managing Message Items

StarUML™ uses message items to display specific messages to the user. Message items are used to notify details or

elements that were not found in element find or did not pass model verification. There are three types of message

item: general items, element find result items, and model verification result items.

Value literal Description

0 mkGeneral General message items.

1 mkFindResult Message items for element find results.

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

1 mkFindResult Message items for element find results.

2 mkVerificationResult Message items for model verification results.

When adding a message item, the message item's type, content and related element must be referenced. The

following example shows adding three types of message with different message contents to reference a project

element. The result is shown in the following illustration.

var app = new ActiveXObject("StarUML.StarUMLApplication");

app.AddMessageItem(0, "This is general message...", app.GetProject());

app.AddMessageItem(1, "This is find result message...", app.GetProject());

app.AddMessageItem(2, "This is verification result message...", app.GetProject());

Double-clicking a message automatically selects the related element in the model explorer, and if the element is

expressed in a diagram, the diagram becomes active.

Finding Element by Pathname

Elements can be searched by pathnames. For example, the pathname for element Class1 located under Package2

and under Package1 is "::Package1::Package2::Class1". A pathname is a series of element names linked by the

"::" delimiter. The search always starts from the top level project. Since the name of the top level project is always

a null string, any pathname starts with "::". However, it is possible to omit the initial "::". In other words, an

expression such as "Package1::Package2::Class2" is regarded as the same pathname as the one above. The

following example shows obtaining reference to a model element by pathname.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var elem = app.FindByPathname("::Logical View::Class1");

...

Controlling Application Updates

When the user makes a specific modification or performs a specific command through API, the modification is

immediately updated and shown in StarUML™. However, when performing complex tasks through API, many

commands have to be executed in one go, and if each task is applied each time, the display will clog up and

processing speed will decrease. In such a case, it is better to stop the modification update, perform the various

complex tasks, and then apply the changes all together at the same time. StarUMLApplication object provides

such functions through the BeginUpdate and EndUpdate methods.

The user can call the BeginUpdate method before performing complex and long process tasks, and call the

EndUpdate

method immediately after the tasks to apply the changes. Care must be taken in that no changes will be applied at

all if EndUpdate cannot be called, due to errors or other problems while processing tasks after calling

BeginUpdate. To prevent such problems, exception process techniques (especially, try … finally) should be used as

shown in the following example.

var app = new ActiveXObject("StarUML.StarUMLApplication");

...

app.BeginUpdate();

try {

 ... // Place tasks to process here.

}

finally {

 app.EndUpdate(); // The finally block will be executed even if an exception occurs in the try b

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

 app.EndUpdate(); // The finally block will be executed even if an exception occurs in the try b

}

...

For indicating the end of modifications and triggering application of the changes, the EndUpdate2 method can also

be used instead of the EndUpdate method. Both methods have the same effect, but EndUpdate2 allows more

detailed control. This method performs more detailed control through the following two arguments.

Argument Type Description

CompletelyRebuild Boolean Rebuilds all tree structures displayed in the model explorer from the beginning.

Setting the value of this argument to 'True' may allow faster application of changes

if the changes include creation or modification of large quantities of model

elements. The EndUpdate() method is the same as having this value set as

'False'.

UseUpdateLock Boolean Applies the insert/delete/modify results of the tree items in the model explorer in

one go. In other words, changes in the tree items are not visually displayed in the

GUI but are processed at at the same time. Setting the value of this argument to

'True' when the model is very large will cause the process to take a relatively

longer time, even if the model elements modified are few. When this value is 'True',

the process time is proportional to the total number of model elements rather than

the number of model elements modified. The EndUpdate() method is the same as

having this value set as 'True'.

Using Group Actions

It is possible to undo or redo any user-performed actions. The same applies for any commands performed through

API. If a command is executed twice and the user wishes to undo the tasks, undo must be performed twice.

However, there are many cases where the user wants a combination of different commands to be processed as a

single action. For instance, when performing undo after writing code to automatically add Get function and Set

function for a specific attribute, the undo should be able to revert the code to the time before Get function and Set

function were added. However, to add Get/Set functions, many commands must be used together in combinations.

In such a case, multiple commands can be handled as a single group and processed as one action.

StarUMLApplication object allows the execution of many commands as a single action by using the

BeginGroupAction and EndGroupAction methods. When calling the BeginGroupAction method, a new virtual

group action is created. All other tasks performed after this are added to the group action, and when the

EndGroupAction method is called, the action grouping is complete. After executing BeginGroupAction, even if an

error occurs in the tasks included in the group, EndGroupAction must be called, and therefore exception processes

(especially try … finally) must be handled properly. This group action can be managed as a single action through

undo or redo.

var app = new ActiveXObject("StarUML.StarUMLApplication");

...

app.BeginGroupAction();

try {

 ...

}

finally {

 app.EndGroupAction();

}

...

When calling the BeginGroupAction method, the result is the same as calling BeginUpdate. In the same way,

when calling the EndGroupAction method, the result is the same as calling EndUpdate. In other words, changes

are not applied until the group is properly completed. Therefore the BeginUpdate or EndUpdate methods must

not be used between BeginGroupAction and EndGroupAction.

Element Selection Management

StarUML™ allows ways to acquire information on the model elements or view elements selected by the user, and to

select certain elements by force. All of these functions are defined in ISelectionManager interface.

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

Acquiring Selected Elements

In order to acquire the list of model elements or view elements currently selected, reference to SelectionManager

must be acquired first. And then codes like the following example can be used to acquire reference to the selected

model elements or view elements.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var selmgr = app.SelectionManager;

// List selected model elements.

for (i=0; i<selmgr.GetSelectedModelCount(); i++) {

 var m = selmgr.GetSelectedModelAt(i);

 ...

}

// List selected view elements.

for (i=0; i<selmgr.GetSelectedViewCount(); i++) {

 var v = selmgr.GetSelectedViewAt(i);

 ...

}

Acquiring Currently Active Diagram

Reference can be made to the currently active diagram (the diagram currently displayed on the StarUML™ screen).

A diagram is always managed by two separate objects: Diagram and DiagramView. References to both Diagram

object and DiagramView object can be acquired directly.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var selmgr = app.SelectionManager;

var dgm = selmgr.ActiveDiagram // Diagram object of the currently active diagram

var dgmview = selmgr.ActiveDiagram // DiagramView object of the currently active diagram

Selecting Model Elements

To select specific model elements (e.g. Class, Interface, Component, ...), use the SelectModel method. Calling this

method deselects all of the currently selected elements and selects just one of the elements. To maintain the

current selection and add model elements to the selection, the SelectAdditionalModel method must be used.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var selmgr = app.SelectionManager;

var m = ... // Assign reference to model element to select.

...

selmgr.SelectModel(m); // Select only the model element 'm'.

...

selmgr.SelectAdditionalModel(m); // Add model element 'm' to selection.

...

To cancel the selection of model elements, use the DeselectModel method as shown in the example below.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var selmgr = app.SelectionManager;

var m = ... // Assign reference to model element to deselect.

...

selmgr.DeselectModel(m); // Deselect model element 'm'.

...

selmgr.DelselectAllModels(); // Deselect all model elements.

...

Selecting View Elements

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

To select view elements illustrated in a diagram, use the SelectView method. Calling this method deselects all of

the currently selected view elements and selects just one of them. To maintain the current selection and add model

view elements to the selection, the SelectAdditionalView method must be used.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var selmgr = app.SelectionManager;

var v = ...

...

selmgr.SelectView(v);

...

selmgr.SelectAdditionalView(v);

...

To cancel the selection of view elements, use the DeselectView method as shown in the example below.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var selmgr = app.SelectionManager;

var v = ... // Assign reference to view element to add.

...

selmgr.DeselectView(v); // Select only the view element 'v'.

...

selmgr.DelselectAllViews(); // Add view element 'v' to the selection.

...

Selecting Diagram Areas

View elements in certain areas can be selected by entering coordinates for the area in the currently active diagram.

Use the SelectArea method to do this, or use the SelectAdditionalArea method to add elements to the selection.

The following example selects all view elements located within the area of the coordinates (100, 100, 500, 300) in

the currently active diagram.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var selmgr = app.SelectionManager;

selmgr.SelectArea(100, 100, 500, 300);

Element Selection Dialog Management

StarUML™ provides two types of dialog for selecting specific elements: a tree view type, ElementSelector, and a

list view type, ElementListSelector. ElementSelector is the most commonly used method as it allows selection

of elements in a tree view structure just as in the model explorer. ElementListSelector is used to list and select

elements of the same types.

Managing ElementSelector Object

ElementSelector

is a dialog that displays a tree view structure and allows the user to select an element just like the model explorer

as shown in the illustration below. The user can select an element or set it to select nothing at all (set a null value).

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

Reference to an ElementSelector dialog object can be acquired through a StarUMLApplication object as shown

in the example below.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var sel_dlg = app.ElementSelector;

ElementSelector dialog provides the following property and methods.

Main property Description

AllowNull: Boolean Defines whether to allow no selection (setting a null value).

Main method Description

Filter(Filtering: ElementFilteringKind) Defines what type of modeling elements to display. Value can be any

one of the following.

 fkAll (0): Shows all modeling elements.

 fkPackages (1): Shows UMLPackage type elements (UMLPackage,

UMLModel, UMLSubsystem) only.

 fkClassifiers (2): Shows UMLClassifier type elements only.

ClearSelectableModels Clears selectable element type list.

AddSelectableModel(ClassName: String) Adds the selected type to the selectable element type list. Argument

value example: "UMLClass"

RemoveSelectableModel(ClassName:

String)

Removes the selected type from the selectable element type list.

Argument value example: "UMLClass"

Execute(Title: String): Boolean Executes the dialog. Sets the dialog title with the argument string.

GetSelectedModel: IModel Returns reference to the user-selected elements.

The following example shows the whole process of executing ElementSelector dialog and acquiring the selected

elements.

fkClassifiers = 2;

var app = new ActiveXObject("StarUML.StarUMLApplication");

var sel_dlg = app.ElementSelector;

sel_dlg.AllowNull = false;

sel_dlg.Filter(fkClassifiers)

sel_dlg.ClearSelectableModels();

sel_dlg.AddSelectableModel("UMLModel");

sel_dlg.AddSelectableModel("UMLSubsystem");

sel_dlg.AddSelectableModel("UMLPackage");

if (sel_dlg.Execute("Select a classifier type element.")){

 var elem = sel_dlg.GetSelectedModel;

 ...

}

else{

 // If canceled, ...

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

}

Managing ElementListSelector Object

ElementListSelector

is a dialog that displays a list of selectable elements in a list view and allows the user to select an element.

Reference to an ElementListSelector dialog object can be acquired through a StarApplication object as shown in

the example below.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var sel_dlg = app.ElementListSelector;

ElementListSelector dialog provides the following property and methods.

Main property Description

AllowNull: Boolean Defines whether to allow no selection (setting a null value).

Main method Description

ClearListElements Clears the list.

AddListElement(AModel: IModel) Adds the model element defined by argument to the list.

AddListElementsByCollection(AModel: IModel;

CollectionName: String; ShowInherited: Boolean)

Adds the collection elements of the model element defined

by argument to the list. 'ShowInherited' argument defines

whether to trace the inheritance structure of the selected

model element and add collection items of upper level

elements to the list.

AddListElementsByClass(MetaClassName: String;

IncludeChildInstances: Boolean)

Adds the elements of the types defined by argument to the

list. If the 'IncludeChildInstances' argument is 'true', child

elements of the selected type are also added to the list.

Execute(Title: String): Boolean Executes the dialog. Sets the dialog title with the argument

string.

GetSelectedModel: IModel Returns reference to the user-selected elements.

The following example executes ElementListSelector dialog, and prompts the user to select an element from the

operation collection of a specific class element. Since the "ShowInherited" argument is "true", if there are parent

classes for the selected class element, the operation collection of this class element can also be selected.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var sel_dlg = app.ElementListSelector;

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

sel_dlg.AllowNull = false;

sel_dlg.ClearListElements();

var class = ... // Get reference to class element.

sel_dlg.AddListElementsByCollection(class, "Operations", true);

if (sel_dlg.Execute("Select an operation element.")){

 var selElem = sel_dlg.GetSelectedModel;

 ...

}

else{

 // If canceled, ...

}

The example above used the AddListElementsByCollection method. The following example now uses the

AddListElementsByClass

method. Since the "IncludeChildInstances" argument is "true", elements of the selected types and all their child

elements are added to the list.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var sel_dlg = app.ElementListSelector;

sel_dlg.AllowNull = false;

sel_dlg.ClearListElements();

sel_dlg.AddListElementsByClass("UMLClassifier", true);

if (sel_dlg.Execute("Select a classifier type element.")){

 var selElem = sel_dlg.GetSelectedModel;

 ...

}

else{

 // If canceled ...

}

Using APIs for Meta-Objects

This section describes the concept of StarUML™ meta-model elements and their usage. As introduced in "Chapter

2. StarUML Architecture" StarUML™ meta-model elements are elements that belong to the Non_Modeling

Elements::MetaModeling Elements package.

Basic Concept of Meta-Model

StarUML™ meta-model elements provide methods for meta-level access to the StarUML™ modeling elements

described in above section. In short, meta-model elements are the elements that define these modeling elements.

Using meta-model elements allows listing of elements for each modeling element and accessing information on

modeling elements in the currently open project. Although the concept of meta-model may seem difficult for novice

users, it is highly recommended that you read the following descriptions, as meta-model comes in really handy

when using StarUML™.

Simple Example of Using Meta-Model

Before explaining the meta-model concept, let us look at the following simple example for a brief overview of using

StarUML™ meta-model elements. First, suppose we need to get a list of all Class elements in the currently running

StarUML™ application through external API. Although a search can be conducted from the top-level project element

through all of the lower level elements, using meta-model elements can simplify the process. Look at the following

code.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var meta = app.MetaModel;

var metaClass = meta.FindMetaClass("UMLClass");

for (var i = 0; i < metaClass.GetInstanceCount(); i++){

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

for (var i = 0; i < metaClass.GetInstanceCount(); i++){

 var AClassElem = metaClass.GetInstanceAt(i);

 ...

}

This example uses meta-model elements to get reference to all Class elements. The modeling element name

"UMLClass" is given as the argument of the IMetaModel.FindMetaClass method to access the Class elements.

The argument can be replaced by "UMLAttribute" if a list of all Attribute elements is required. In other words,

this can be applied to all modeling elements in the same way.

Note: See "Appendix B. List of UML Modeling Elements" for element name conventions.

The second example shows how to access information for modeling elements. How do we find out what attributes

Class

elements—which are UML modeling elements—have in the program implementation code? This question is not

about what attributes are defined in a user-created Class element, but what attributes are defined in the Class

element itself, which is a UML modeling element. For instance, Class modeling elements have attributes such as

"Name", "Visibility", and "IsAbstract".

var app = new ActiveXObject("StarUML.StarUMLApplication");

var meta = app.MetaModel;

var metaClass = meta.FindMetaClass("UMLClass");

for (var i = 0; i < metaClass.GetMetaAttributeCount(); i++){

 var metaAttr = metaClass.GetMetaAttributeAt(i);

 var attrName = metaAttr.Name;

 ...

}

This example acquires the names of all the attributes owned by the Class modeling element. Just like the first

example, the argument for the IMetaModel.FindMetaClass method can be changed to perform the same task on

other modeling elements.

UML Metamodeling Architecture

This section briefly introduces the UML metamodeling architecture. This is helpful for understanding StarUML™

meta-model.

The OMG (Object Management Group) uses a method called metamodeling architecture for defining specifications

for UML elements. This meta-modeling architecture consists of the following layers.

Meta-metamodel

Metamodel

Model

User Objects

The definitions of UML modeling elements described in the UML Specification fall into the category of metamodel.

In other words, the common elements in UML like Package, Class, Use Case, and Actor are metamodel elements.

And the UML elements that are created during software modeling, i.e., the Class elements named as "Class1" or

"Class2" are instances of metamodels, which fall into the category of model. More specifically put, "Class1" and

"Class2" are instances of a metamodel element called Class (UMLClass in StarUML™).

The platform layer for defining UML metamodels like Package, Class, Use Case, and Actor is meta-metamodel;

StarUML™ meta-models fall into this meta-metamodel layer. In other words, all modeling elements can be seen

as instances of the MetaClass type explained below. However, StarUML™ meta-model plays the role of facilitating

consistent access to modeling elements at the meta-level rather than defining modeling elements.

Meta-Model Organization

The following diagram illustrates the components and organization of StarUML™ meta-model elements. Some

components are omitted due to space constraints. Please refer to the ::Application Model::Non_Modeling

Elements::Metamodeling Elements package of StarUML Application Model for the complete diagram.

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

Elements::Metamodeling Elements package of StarUML Application Model for the complete diagram.

StarUML™ meta-model comprises the relatively small number of meta-model elements as shown in the diagram.

IMetaElement is the top-level element of meta-model elements and has attributes of Name and GUID. Since

modeling elements are instances of a meta-model element (specifically, IMetaClass), the Name attribute value of

IMetaElement should be one of the modeling elements' names described in "Chapter 5. Modeling Element

Management". Examples are "Model", "View", "UMLClass", and "UMLAttribute".

The top-level IMetaElement has meta-model elements like IMetaClassifier and IMetaSlot. IMetaClassifier is a

meta-element for the definition of modeling elements themselves, and IMetaSlot is for the definition of modeling

element attributes and reference attributes. Also, concrete elements like IMetaClass, IMetaAttribute,

IMetaReference, IMetaCollection, and IMetaModel are derived from IMetaClassifier and IMetaSlot; they play the

most important roles in the StarUML™ meta-model architecture.

Meta-Model Element Management

IMetaModel

IMetaModel

element maintains and manages meta-model elements as a collection and provides use of other meta-model

elements. Only one IMetaModel

exists in one StarUML™ application. Reference to the object can be obtained through the IStarUMLApplication

interface.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var meta = app.MetaModel;

It has been mentioned that IMetaModel

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

It has been mentioned that IMetaModel

element provides use of other meta-model elements. The following example shows obtaining reference to

IMetaClass meta-elements by using IMetaModel. It will be explained again in the IMetaClass element section

that the number of references to IMetaClass

types and the number of modeling elements are the same (check with the following example).

var app = new ActiveXObject("StarUML.StarUMLApplication");

var meta = app.MetaModel;

for (var i = 0; i < meta.GetMetaClassCount(); i++){

 var metaClass = meta.GetMetaClassAt(i);

 ...

}

Although omitted in the class diagram above, there are IMetaEnumeration, IMetaDataType, and

IMetaPrimitiveType meta-model elements in similar relationships with IMetaClass, and the IMetaModel interface

provides reference to these elements. The IMetaEnumeration element is a meta-element for defining

enumeration type related to modeling elements. UMLVisibilityKind and UMLAggregationKind are examples of

IMetaEnumeration element instances. IMetaDataType is a meta-element for defining data type other than

enumeration and primitive type. Points type is the only instance of this. And IMetaPrimitiveType element is a

meta-element for defining primitive types, which are Integer, Real, Boolean, and String.

The IMetaModel

interface provides a find method for meta-elements. The following example is a section of the first example in this

chapter. It shows the obtaining of reference to IMetaClass elements for the UMLClass modeling element using the

IMetaModel.FindMetaClass

method (the number of references to IMetaClass types is same as the number of the modeling elements).

var app = new ActiveXObject("StarUML.StarUMLApplication");

var meta = app.MetaModel;

var metaClass = meta.FindMetaClass("UMLClass");

...

Like the IMetaClass, the IMetaModel interface provides a find method to other meta-elements like

FindMetaClassifier, FindMetaEnumeration, FindMetaDataType, and FindPrimitiveType.

The IMetaModel interface is a GUID for modeling elements and provides the FindInstanceByGuid method that

acquires reference to respective modeling elements. The FindInstanceByGuid method returns the IElement type

reference. The following code can be used as an extension of the example above.

...

var guid = ...

var elem = meta.FindInstanceByGuid(guid);

...

IMetaClass

The IMetaClass

element is a meta-element that provides definition for each modeling element, and maintains and manages

instances of each modeling element as a collection. In the StarUML™ application, the number of IMetaClass

elements is the same as the number of modeling elements. The following code shows obtaining IMetaClass type

reference for each modeling element using the IMetaModel.FindMetaClass method.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var meta = app.MetaModel;

var metaClassOfPackage = meta.FindMetaClass("UMLPackage");

var metaClassOfClass = meta.FindMetaClass("UMLClass");

var metaClassOfAttribute = meta.FindMetaClass("UMLAttribute");

...

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

Another way to obtain reference to the IMetaClass

type elements is to use the GetMetaClass method of the IElement interface, which is the top-level type of modeling

element.

elem = ... // Get reference to modeling elements.

var metaClass = elem.GetMetaClass();

The IMetaClass

interface provides methods to obtain superclasses and subclasses in the inheritance structure of each modeling

element. The superclass of the IElement type element—which is the top-level modeling element—is null.

var metaClass = ... // Get IMetaClass type reference.

var superCls = metaClass.Superclass;

...

for (var i = 0; i < metaClass.GetSubclassCount(); i++){

 var subCls = metaClass.GetSubclassAt(i);

 ...

}

The IMetaClass interface is a GUID for modeling elements and provides the FindInstanceByGuid method, which

is similar to IMetaModel.FindInstanceByGuid, to obtain reference to respective modeling elements.

IMetaClass's

method is more efficient than IMetaModel's method since it searches for modeling elements of specific types only. If

no matching result is found in the respective type, FindInstanceByGuidRecurse can be used to search all

derivative modeling elements as well.

The first example in this section illustrated searching for instances of a specific modeling element using the

GetInstanceCount and GetInstanceAt methods of the IMetaClass interface. Instances of modeling elements

refer to user-created elements.

var metaClass = ... // Get IMetaClass type reference.

for (var i = 0; i < metaClass.GetInstanceCount(); i++){

 var AElem = metaClass.GetInstanceAt(i);

 ...

}

IMetaAttribute

The IMetaAttribute

interface can be used to read the specifications for attributes of each modeling element. Reference to

IMetaAttribute can be obtained through the IMetaClass interface as shown below. The IMetaClass interface also

provides the ExistsAttribute method that checks for the existence of an attribute with a specific name, and the

GetAttributeByName method that returns IMetaAttribute type elements of a specific name.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var metaClass = app.MetaModel.FindMetaClass("UMLClass");

for (var i = 0; i < metaClass.GetMetaAttributeCount(); i++){

 var metaAttr = metaClass.GetMetaAttributeAt(i);

 ...

}

The following example shows reading the specifications for attributes of modeling elements.

var metaAttr = ... // Get IMetaAttribute type reference.

var metaType = metaAttr.TypeRef;

var attrName = metaAttr.Name;

var attrType = metaType.Name;

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

var attrType = metaType.Name;

...

Also, IMetaSlot, the upper-level interface for IMetaAttribute, provides the IsReadOnly and IsDerived

properties. IsReadOnly indicates whether the respective attribute is read-only, and IsDerived indicates whether

the respective attribute actually does not exist but is resembled by other attributes.

IMetaReference and IMetaCollection

The IMetaReference and IMetaCollection

elements define the reference attributes that specify references between different modeling elements. These

references all express associations. While IMetaReference shows references with multiplicity of '1' or less,

IMetaCollection

shows references that have to be expressed as collections. This is the only difference between the IMetaReference

and IMetaCollection interfaces (IMetaReference and IMetaCollection are both derived from the

IMetaAssociationEnd interface).

First, let us look at an example of obtaining reference to IMetaReference and IMetaCollection objects. Just like

IMetaAttribute, the IMetaClass interface can be used.

var metaClass = ... // Get IMetaClass type reference for a specific modeling element.

// Get references to IMetaReference type objects.

for (var i = 0; i < metaClass.GetMetaReferenceCount(); i++){

 var metaAttr = metaClass.GetMetaReferenceAt(i);

 ...

}

// Get references to IMetaCollection type objects.

for (var i = 0; i < metaClass.GetMetaCollectionCount(); i++){

 var metaAttr = metaClass.GetMetaCollectionAt(i);

 ...

}

The IMetaAssociationEnd interface, the shared upper-level type for IMetaReference and IMetaCollection,

provides properties and methods for defining specifications of reference attributes (associations) for the respective

modeling element.

The Kind

property simply determines whether the respective association is a simple reference type or a collection reference

type. The IMetaReference type is a simple reference type and the IMetaCollection type is a collection reference

type. The Aggregate property shows the AggregationKind attribute of the respective association. This value is an

enumerative type and can be one of the following values:

makNone (0): None

makAggregate (1): Aggregation association, or

makComposite (2): Composition association.

The OtherSide property shows the name of the AssociationEnd on the other side of the association, and the

OtherSideKind property shows whether the AssociationEnd on the other side is a simple reference type or a

collection reference type.

The GetOtherSideEnd method returns the IMetaAssociationEnd type reference at the AssociationEnd on the

other side of the association. The following example shows how to use the properties and methods provided by the

IMetaAssociationEnd interface that is the shared upper-level type of IMetaReference and IMetaCollection.

var metaSlot = ... // Get IMetaReference or IMetaCollection type reference.

var kind = metaSlot.Kind;

var aggregate = metaSlot.Aggregate;

var otherSide = metaSlot.OtherSide;

var otherSideKind = metaSlot.OtherSideKind;

var otherSideEnd = metaSlot.GetOtherSideEnd();

StarUML 5.0 Developer Guide (Using Open API)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch04.html

var otherSideEnd = metaSlot.GetOtherSideEnd();

...

The TypeRef reference attribute of the IMetaSlot interface can be used to find out the IMetaClass element for an

IMetaReference or IMetaCollection

type object. The following example shows how to read the element on the opposite side of the association for a

modeling element.

var metaSlot = ... // Get IMetaReference or IMetaCollection type reference.

var otherSideEnd = metaSlot.GetOtherSideEnd();

var otherSideMetaClass = otherSideEnd.TypeRef;

...

StarUML 5.0 Developer Guide (Writing Approaches)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch05.html

Chapter 5. Writing Approaches

Basic Concept of Approach

There are countless methodologies for software development, and each company or organization has its own, or

uses an existing one that is modified to meet the requirements of its development team or projects. Application

domains, programming languages, and platforms are also different for each piece of software developed.

Consequently, many items have to be configured in the initial phase of software modeling. Approaches to facilitate

this initial configuration of the environment for a project depend on the software development methodology or

platform requirements. Users can specify appropriate approaches in order to create projects in certain forms.

Approaches perform the following tasks in creating projects.

Approaches configure profiles for use in projects. The profiles defined in approaches are automatically included

in projects when the projects are being created.

Approaches determine the package structures. The package structures are usually dependent on the software

development process models. For example, using the 4+1 View Model Approach selects the five packages

"Logical View", "Physical View", "Process View", "Development View" and "Use Case View".

Approaches configure frameworks to reference. For projects that are dependent on specific programming

languages or platforms, the respective frameworks can be specified in the approaches to be loaded when

creating projects. For example, if the current project is developed in Java, the JFC (Java Foundation Classes)

framework can be specified in the approach, so that it is included in the project as a package for direct

reference.

Approaches import model fragments to include basically.

Follow the steps below to create a new approach.

Create an approach document file (.apr) to define the new approach.1.

Copy the approach document file (.apr) to subdirectory of module directory.2.

Creating New Approach

Basic Structure of Approach Document File

Approach document files are created according to XML document conventions, and the extension name is .apr

(approach file). The approach contents are contained within the APPROACH element, and there must not be any

errors in syntax or contents.

<?xml version=”1.0” encoding=”...” ?>

<APPROACH version="...">

 <HEADER>

 ...

 </HEADER>

 <BODY>

 ...

 </BODY>

</APPROACH>

encoding property: Specifies the encoding property value for the XML document (e.g. UTF-8, EUC-KR). For

details on this property value, see XML-related resources.

version property (APPROACH element): Version information for the approach document format (e.g. 1.0).

HEADER element: See the Header Contents section.

BODY element: See the Body Contents section.

Header Contents

The HEADER section of an approach document contains general information for the approach such as the approach

StarUML 5.0 Developer Guide (Writing Approaches)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch05.html

The HEADER section of an approach document contains general information for the approach such as the approach

name and description.

<HEADER>

 <NAME>...</NAME>

 <DISPLAYNAME>...</DISPLAYNAME>

 <DESCRIPTION>...</DESCRIPTION>

</HEADER>

NAME element: Contains the name of the approach. It is a unique name to identify the approach from the

others.

DISPLAYNAME element: Contains the name of the approach that is shown to users in New Project dialog.

DESCRIPTION element: Contains detailed description of the approach.

Body Contents

The BODY section of an approach document largely consists of the IMPORTPROFILES element and the

MODELSTRUCTURE

element. The IMPORTPROFILES element specifies the name of the profile to load when creating projects, and the

MODELSTRUCTURE element contains information for the initial project model structure and the framework to load.

<BODY>

 <IMPORTPROFILES>

 <PROFILE>...</PROFILE>

 ...

 </IMPORTPROFILES>

 <MODELSTRUCTURE>

 ...

 </MODELSTRUCTURE>

</BODY>

IMPORTPROFILES element: Lists the profiles to include in projects using multiple PROFILE elements.

PROFILE element: Contains the name of a profile to include in projects.

MODELSTRUCTURE element: See the Model Structure section.

Model Structure

The MODELSTRUCTURE element expresses the initial package structure for projects. Model, SubSystem, Package

and Frameworks are hierarchically organized. For instance, model, subsystem, package or framework elements can

further be defined under the SUBSYSTEM element. While a framework is a package element by itself, it cannot

contain other package elements.

The following shows the syntax structure for a MODELSTRUCTURE element.

<MODELSTRUCTURE>

 model_expression*

</MODELSTRUCTURE>

model_expression ::= model_element

 | package_element

 | subsystem_element

 | import_framework

 | import_model_fragment.

model_element ::= <MODEL name=”...” stereotypeProfile=”...” stereotypeName=”...”>model_expression<

package_element ::= <PACKAGE name=”...” stereotypeProfile=”...” stereotypeName=”...”>model_express

subsystem_element ::= <SUBSYSTEM name=”...” stereotypeProfile=”...” stereotypeName=”...”>model_exp

import_framework ::= <IMPORTFRAMEWORK name=”...”/>.

import_model_fragment ::= <IMPORTMODELFRAGMENT fileName=”...”/>.

name property (MODEL, PACKAGE, SUBSYSTEM elements): The name of each UML model element.

StarUML 5.0 Developer Guide (Writing Approaches)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch05.html

name property (MODEL, PACKAGE, SUBSYSTEM elements): The name of each UML model element.

stereotypeProfile property (MODEL, PACKAGE, SUBSYSTEM elements): The name of profile that defines the

stereotype applying to the model element.

stereotypeName property (MODEL, PACKAGE, SUBSYSTEM elements): The name of stereotype that apply to

the model element.

name property (IMPORTFRAMEWORK element): The name of the registered framework to include.

fileName property (IMPORTMODELFRAGMENT element): The file name of model fragment to import to parent

model element.

Approach Document Example

The following is an example of an approach for a 4+1 View Model.

<?xml version=”1.0” encoding=”UTF-8” ?>

<APPROACH version="1">

 <HEADER>

 <TITLE>4+1 View Model</TITLE>

 <DESCRIPTION>This is an approach to support 4+1 View Model in .NET platform.</DESCRIPTION>

 </HEADER>

 <BODY>

 <IMPORTPROFILES>

 <PROFILE>4+1Profile</PROFILE>

 <PROFILE>CSharpProfile</PROFILE>

 </IMPORTPROFILES>

 <MODELSTRUCTURE>

 <MODEL name=”UseCase View”/>

 <MODEL name=”Logical View”>

 <IMPORTFRAMEWORK name=”dot_net_framework”/>

 </MODEL>

 <MODEL name=”Development View”/>

 <MODEL name=”Process View”/>

 <MODEL name=”Deployment View”/>

 </MODELSTRUCTURE>

 </BODY>

</APPROACH>

Registering New Approach

To make an approach to be recognized automatically by StarUML, must place it in the subdirectory of StarUML

module directory(<install-dir>\modules). StarUML searches and reads all approaches in the module directory and

registers them at the program automatically when StarUML is initializing. If approach file is invalid or it's extension

file name is not .apr, StarUML will not read the approach and ignore it. It is recommended that make a subdirectory

in the StarUML module directory and place the approach in there to avoid modules being out of order .

Note:

To register approach icon, Make icon file for the approach and place it in the directory of the approach. Icon of the

approach is displayed with the name at approaches list in the New Project dialog. If there is no icon file which name

is same of the approach's, default icon is registered as icon of the approach.

Note: Delete files of the approach from the StarUML module directory(<install-dir>\modules) not to use the

approach any more.

Using Approach-Related Methods

Reading Information for Approaches Installed in the System

Since approaches are for initial project configurations, they usually do not need to be accessed by programs

directly. Therefore, StarUML™ does not support COM automation objects for managing approaches. Nevertheless,

the GetAvailableApproachCount() and GetAvailableApporachAt() of IProjectManager can be used to obtain

the count and names of the approaches installed in the system.

StarUML 5.0 Developer Guide (Writing Approaches)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch05.html

IProjectManager.GetAvailableApproachAt(Index: Integer): String

IProjectManager.GetAvailableApproachCount(): Integer

Creating Project with Approach

A new project can be created with a given approach by calling IProjectManager.NewProjectByApproach(). The

ApproachName entered as a parameter must be the name of one of the approaches installed in the system.

Otherwise, this will result in an empty project. The expression for NewProjectByApproach() in IProjectManager

is as follows.

IProjectManager.NewProjectByApproach(ApproachName: String)

The following is a Jscript example for creating a new project with the "UMLComponents" approach.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var prjMgr = app.ProjectManager;

prjMgr.NewProjectByApproach("UMLComponents");

StarUML 5.0 Developer Guide (Writing Frameworks)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch06.html

Chapter 6. Writing Frameworks

Basic Concepts of Model Framework

A model framework enables use of application frameworks or class libraries in StarUML™. For instance, JFC (Java

Foundation Classes), MFC (Microsoft Foundation Classes), and VCL (Visual Component Library) can be the objects

for a model framework. As will be described later in this chapter, the user can define his or her own model

framework as well. The biggest advantage of using model frameworks is that it facilitates shared use and reuse of

the common and basic modeling elements and structures.

The "Import Model Framework" dialog (illustration below), accessible through the

[File]-[Import]-[Framework…]

menu in the StarUML™ application, displays a list of the model frameworks installed in the system. Selecting an

item from the list and running it results in automatic inclusion of the modeling structure defined by the model

framework in the path specified. A model framework consists of many unit files, and the model frameworks included

in StarUML™ are treated in the same way as the units.

The list of the model frameworks installed in the system can be obtained, or specific model frameworks can be

included in projects, by using StarUML™'s external API as illustrated above. Details on this will be discussed later.

Creating New Model Framework

A model framework consists of many unit files (.unt) and one model framework definition document file (.frw), and

it may have an optional icon file (.ico). Follow the steps below to define a new model framework.

Create unit files that contain model information for the model framework (see"Chapter 4. Using Open

API").

1.

Create a model framework document file (.frw) that defines the model framework.2.

Copy unit files, model framework document file and icon file to subdirectory of module directory.3.

Basic Structure of Model Framework Document File

Model framework document files are created according to XML document conventions, and the extension name

is.frw (Framework File). Information for a model framework is contained within the FRAMEWORK tag, and there

must not be any errors in syntax or contents.

<?xml version="1.0" encoding="..." ?>

<FRAMEWORK version="...">

 <HEADER>

StarUML 5.0 Developer Guide (Writing Frameworks)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch06.html

 <HEADER>

 ...

 </HEADER>

 <BODY>

 ...

 </BODY>

</FRAMEWORK>

encoding property: Specifies the encoding property value for the XML document (e.g. UTF-8, EUC-KR). For

details on this property value, see XML-related resources.

version property (FRAMEWORK element): Version information for the framework document format (e.g. 1.0).

HEADER element: See the Header Contents section.

BODY element: See the Body Contents section.

Header Contents

The HEADER section contains general information for the model framework such as the model framework name and

description.

<HEADER>

 <NAME>...</NAME>

 <DISPLAYNAME>...</DISPLAYNAME>

 <DESCRIPTION>...</DESCRIPTION>

</HEADER>

Name element: Contains the name of the model framework. This acts as the unique ID for the model

framework and must be identical with the name of the registry registration key.

DISPLAYNAME element: Contains the display name used in the "Import Model Framework" dialog, etc.

DESCRIPTION element: Contains description for the model framework.

Body Contents

The BODY section contains actual information for the model framework and largely consists of the

IMPORTPROFILES section and the FRAMEWORKMODELS section.

<BODY>

 <IMPORTPROFILES>

 <PROFILE>...</PROFILE>

 ...

 </IMPORTPROFILES>

 <FRAMEWORKMODELS>

 <UNIT>...</UNIT>

 ...

 </FRAMEWORKMODELS>

</BODY>

IMPORTPROFILES element: Lists the UML profiles to load when the model framework is included.

PROFILE element: Specifies the name of each UML profile to load.

FRAMEWORKMODELS element: Lists the unit files that constitute the model framework.

UNIT element: Specifies the name of each unit file. Only file names are specified, without the path names.

The unit files that constitute a model framework must be located under the same path as the model

framework document file.

Note:

The "UNIT element" specifies only those unit files that belong to the top-level units. As discussed in "Chapter 4.

Using Open API", when a unit contains lower-level units, all the lower-level units are loaded together when the

upper-level unit is loaded.

StarUML 5.0 Developer Guide (Writing Frameworks)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch06.html

Model Framework Document Example

The following is an example of a model framework document that defines the Java 2 Standard Edition (J2SE) 1.3

model framework.

<?xml version="1.0" encoding="UTF-8" ?>

<FRAMEWORK version="1.0">

 <HEADER>

 <NAME>J2SE1.3</NAME>

 <DISPLAYNAME>Java 2 Standard 1.3</DISPLAYNAME>

 <DESCRIPTION>Java 2 Standard Edition (J2SE) 1.3 Framework.</DESCRIPTION>

 </HEADER>

 <BODY>

 <FRAMEWORKMODELS>

 <UNIT>J2SE13 (java).pux</UNIT>

 <UNIT>J2SE13 (javax).pux</UNIT>

 <UNIT>J2SE13 (org).pux</UNIT>

 </FRAMEWORKMODELS>

 </BODY>

</FRAMEWORK>

Registering New Model Framework

To make a framework to be recognized automatically by StarUML, must place it in the subdirectory of StarUML

module directory(<install-dir>\modules). StarUML searches and reads all frameworks in the module directory and

registers them at the program automatically when StarUML is initializing. If framework file is invalid or it's

extension file name is not .frw, StarUML will not read the framework and ignore it. It is recommended that make a

subdirectory in the StarUML module directory and place the framework in there to avoid modules being out of

order.

Note:

To register framewordk icon, Make icon file for the framework and place it in the directory of the framework. Icon of

the framework is displayed with the name at frameworks list in the [Import Framework] dialog. If there is no

icon file which name is same of the framework's, default icon is registered as icon of the framework.

Note: Delete files of the framework from the StarUML module directory(<install-dir>\modules) not to use the

framework any more.

Using Model Framework-Related Methods

Reading Information for Model Frameworks Installed in the System

The list of the model frameworks installed in the system can be viewed through external API. The external APIs for

this are the GetAvailableFrameworkCount method and the GetAvailableFrameworkAt method of the

IProjectManager interface. The following are the expressions of these two methods.

IProjectManager.GetAvailableFrameworkAt(Index: Integer): String

IProjectManager.GetAvailableFrameworkCount(): Integer

Importing Model Framework

The IProjectManager.ImportFramework

method can be used to include a registered model framework in the current project. The method expression is as

follows. The OwnerPackage

argument specifies the upper-level model element where the model framework will be included. This must be an

IUMLPackage type model element. And the FrameworkName argument is the name of the model framework to

load. This is a string value for the accurate name (ID) of the model framework.

IProjectManager.ImportFramework(OwnerPackage: IUMLPackage; FrameworkName: String)

StarUML 5.0 Developer Guide (Writing Frameworks)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch06.html

The following example shows importing the "J2SE1.3" model framework using the

IProjectManager.ImportFramework method.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var prjMgr = app.ProjectManager;

var owner = ... // Get reference to IUMLPackage type element.

prjMgr.ImportFramework(owner, "J2SE1.3");

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

Chapter 7. Writing UML Profiles

Basic Concept of UML Profile

UML Extension Mechanisms

UML is a universal software modeling language that provides an abundance of well-defined modeling concepts and

notations to meet all the requirements of general software modeling. Nevertheless, the software

modeling/development environment today can take many different forms, and there may be requirements for

elements or semantics that do not exist in the UML standard. By default, UML provides concepts for supporting such

requirements, and they are called the UML Extension Mechanisms.

UML Extension Mechanisms use Stereotypes, Constraints, Tag Definitions, and Tagged Values to extend the

semantics of UML modeling elements or define the UML modeling elements with new semantics.

Stereotype

A stereotype is a modeling element that has definitions for adding new properties and constraints to the standard

UML modeling elements. A stereotype can also have definitions to provide new notations for modeling elements. The

illustration below is the stereotype selection dialog that appears when clicking on the stereotype selection button in

the StarUML™ application. The stereotype selection dialog displays a list of the selectable stereotypes defined in the

UML profile that is included in the current project. Stereotypes can also be configured or modified through external

API. Details on this will be described later.

Note:

Although the UML standard allows each extensible modeling element to have multiple stereotypes, StarUML™ limits

each modeling element to only one stereotype.

Tag Definitions

Tag definition is an element that defines new properties that can be added to certain modeling elements. And

definitions of the values of the properties added to elements by tag definitions are called Tagged Values. A tagged

value can be a basic datatype value, a reference to other modeling elements, or a collection. The following

illustration is the extension property editor screen in the StarUML™ application. The extension property editor

displays a list of the tag definition items that belong to the selected modeling element as defined by the UML profile.

Tagged values of modeling elements can also be configured or modified through external API. Details on this will be

described later.

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

Constraints

A constraint adds a specific constraint to a certain modeling element to allow redefinition of the semantics for the

selected modeling element. For descriptions of constraints, please refer to the section "ExtCore Elements" in

"Chapter 4. Using Open API".

Note: StarUML™ UML profile excludes definitions of constraints.

UML Profile

UML profile is a package of UML extension mechanisms. In other words, it is a collection of stereotypes, constraints,

tag definitions, and data types that are required for a certain software domain or development platform.

A UML profile consists of Stereotype, Constraint, Tag Definition, and Data Type elements. Although the UML

standard requires a profile to be defined as a package element with the "<<profile>>" stereotype, StarUML™

allows it to be defined as an XML formatted file for easier use.

Additional Extension Mechanism in the StarUML

StarUML profile supports a few of additional extension mechanism with predefined in UML. They are the Diagram

Type, Element Prototype, Model Prototype, Palette Extension. These extension mechanism extend semantics

of the existing elements or provide regular methods for creating the element and apply it to user interface.

Diagram Type

Diagram Type is extension element to define new diagram that has additional semantics based on UML standard

diagram. It is useful to define specialized diagram in each phase of design that is data model diagram, robustness

analysis diagram, and so on or to apply many kind of diagrams used in various domains to StarUML. Diagram type

name is assigned as the "DiagramType" property of the diagram. "DiagramType" property can't be changed as

opposed to stereotype. When profile is included in project, it is added in the [Add Diagram] menu and let user be

able to create a diagram as the diagram type.

Element Prototype

Element prototype defines a sample for element creating which properties are preset. User can create an element

with copy of sample by registering element prototype in the palette or using external API.

Model Prototype

Model prototype only can be applied to model even if it is similar to element prototype. It is inserted in the [Add

Model]

as submenu on element prototype in palette. A model element that is copy of the sample can be created by the

menu.

Palette Extension

Palette extension allows to insert additional palette that appears in the left of main form. Added palette can

designate element prototypes or UML standard elements defined in the profile as palette items.

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

Profile Includes and Excludes

If a UML profile is required for the current project in the StarUML™ application, the profile must be added to the

project. This is because no profiles other than "UML Standard Profile" are added automatically. To add profiles in

the StarUML™ application, use the profile dialog (illustrated below) that can be executed by clicking the [Model] ->

[Profiles…] menu. The "Available Profiles" list on the left shows the list of the profiles currently registered in the

user system, and the "Included Profiles"

list on the right shows the list of the profiles included in the current project. Adding a profile can be done simply by

selecting a profile from the "Available Profiles" list, and clicking the "Include" button in the center. Once a profile is

added, the stereotypes and tag definitions defined in the new profile are added to the stereotype selection dialog

and extension property editor as shown above. If a profile is no longer required in the current project, simply click

the "Exclude" button to remove it from the project. Care should be taken, since excluding a profile results in the

removal of all information referenced by the profile in the project. Profiles can also be included or excluded through

external API. Details on this will be described later.

Creating UML Profile

Basic Structure of Profile Document File

A profile document file is defined in the XML format, and the extension name is .prf (PLASTIC Profile File). The

contents of the profile are enclosed by the PROFILE tag. There must not be any errors in syntax or contents.

The basic profile document structure is as follows.

<?xml version=”1.0” encoding=”...” ?>

<PROFILE version="...">

 <HEADER>

 ...

 </HEADER>

 <BODY>

 ...

 </BODY>

</PROFILE>

encoding property: Defines value for encoding the property of the XML document (e.g. UTF-8, EUC-KR). For

details on this value, see XML reference resources.

version property (PROFILE element): This is the version of the PRF document (e.g. 1.0).

HEADER element: See the Header Contents section.

BODY element: See the Body Contents section.

Header Contents

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

The HEADER section of a profile document contains general information for the profile, such as the profile name and

description.

<HEADER>

 <NAME>...</NAME>

 <DISPLAYNAME>...</DISPLAYNAME>

 <DESCRIPTION>...</DESCRIPTION>

 <AUTOINCLUDE>...</AUTOINCLUDE>

</HEADER>

NAME element: Contains the profile name. This acts as the profile ID.

DISPLAYNAME element: This is the caption name used in the profile dialog and other user interfaces.

DESCRIPTION element: Contains the description of the profile.

AUTOINCLUDE element: Specifies whether includes the profile automatically when creates new project.

Body Contents

The BODY section of a profile document contains the actual contents of the profile. This section can contain

information for Stereotypes, Datatypes, TagDefinitionSets, and addtional extension elements.

<BODY>

 <STEREOTYPELIST>

 ...

 </STEREOTYPELIST>

 <TAGDEFINITIONSETLIST>

 ...

 </TAGDEFINITIONSETLIST>

 <DATATYPELIST>

 ...

 </DATATYPELIST>

 <ELEMENTPROTOTYPELIST>

 ...

 </ELEMENTPROTOTYPELIST>

 <MODELPROTOTYPELIST>

 ...

 </MODELPROTOTYPELIST>

 <PALETTELIST>

 ...

 </PALETTELIST>

 <DIAGRAMTYPELIST>

 ...

 </DIAGRAMTYPELIST>

</BODY>

STEREOTYPELIST element: Defines multiple stereotypes (STEREOTYPE elements). For definition of stereotypes,

see the Stereotype section.

TAGDEFINITIONSETLIST element: Defines multiple tag definition sets (TAGDEFINITIONSET elements). For

definition of tag definition sets, see the TagDefinitionSet section.

DATATYPELIST element: Defines multiple data types (DATATYPE elements). For definition of data types, see

the DataType section.

ELEMENTPROTOTYPELIST element: Defines multiple element prototypes (ELEMENTPROTOTYPE elements). For

definition of element prototypes, see the ElementPrototype section.

MODELPROTOTYPELIST element: Defines multiple model prototypes (MODELPROTOTYPE elements). For

definition of model prototypes, see the ModelPrototype section.

PALETTELIST element: Defines multiple palette extensions (PALETTE elements). For definition of palette

extension, see Palette section.

DIAGRAMTYPELIST element: Defines multiple diagram types (DIAGRAMTYPE elements). For definition of

diagram type, see DiagramType section.

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

Stereotype

The STEREOTYPE element defines information for stereotype and the inheritance structure.

<STEREOTYPE>

 <NAME>...</NAME>

 <DESCRIPTION>...</DESCRIPTION>

 <BASECLASSES>

 <BASECLASS>...</BASECLASS>

 ...

 </BASECLASSES>

 <PARENT>...</PARENT>

 <RELATEDTAGDEFINITIONSET>...</RELATEDTAGDEFINITIONSET>

 <ICON minWidth=”...” minHeight=”...”>...</ICON>

 <NOTATION>...</NOTATION>

</STEREOTYPE>

NAME element: Contains the name of the stereotype. This has to be a unique value within the profile.

DESCRIPTION element: Contains the description for the stereotype.

BASECLASSES element: May contain names of multiple UML modeling elements that can be applied with the

stereotype. The names of the elements used here are the names of the UML elements (e.g., UMLClass,

UMLClassifier, UMLAttribute, UMLPackage, ...).

 Note: If the name of an abstract class like UMLClassifier is used, all the elements inherited from it are

applied. If the upper-level stereotype (PARENT element) is defined, this section is not defined; any definition in

this section is ignored and the BASECLASSES value of the upper-level stereotype is applied.

PARENT element: Stereotypes can have inheritance relationships. The PARENT element contains the name of

the upper-level stereotype. Stereotypes in an inheritance relationship must be defined within the same profile.

This can be left undefined or omitted if there is no upper-level stereotype.

RELATEDTAGDEFINITIONSET element: Contains the name of the TagDefinitionSet related to the stereotype.

This can be interpreted as a set of additional properties provided by the stereotype to the elements, may be

omitted if there is none. The tag definition set defined here must also be defined within the same profile.

ICON element: A stereotype can also be indicated by an icon, depending on user selection. This element

contains the name of the icon file for the stereotype. Stereotype icon files can be .WMF, .EMF or .BMP files.

Icon files must be located in the same directory as the profile document. The profile document contains the

icon file names without the path names.

minWidth property (ICON element): Defines the minimum width of the stereotype icon.

minHeight property (ICON element): Defines the minimum height of the stereotype icon.

NOTATION element: Stereotype can not be displayed by iconic style but also redefine drawing method by using

notation description language. This element contains the name of the notation extension file(.nxt) to define the

notation. The element with notation extension will draw as described by notation extension file not to draw as

UML standard. Notation extension file must be placed in the directory of profile document. It must be specified

only the file name except directory path in this element.

TagDefinitionSet

TAGDEFINITIONSET ���� ������	
� �
�
���, TADDEFINITIONLIST �� �� �� �	
TAGDEFINITION ��� �� ���	��� ��� ���	�� ��� .

The TAGDEFINITIONSET element contains basic information on tag definition set, and includes multiple

TAGDEFINITION elements under the TADDEFINITIONLIST element to list tag definitions included in the tag

definition set.

<TAGDEFINITIONSET>

 <NAME>...</NAME>

 <BASECLASSES>

 <BASECLASS>...</BASECLASS>

 ...

 </BASECLASSES>

 <TAGDEFINITIONLIST>

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

 <TAGDEFINITIONLIST>

 ...

 </TAGDEFINITIONLIST>

</TAGDEFINITIONSET>

NAME element: Contains the name of the tag definition set. If the tag definitions concern a specific stereotype,

using the name of the stereotype is recommended (in this case, if a tag definition set of the same name as a

stereotype exists, it will be displayed first in the user interface).

BASECLASSES element: Contains the names of the UML elements to apply the tag definition set (applied in the

same way as the BASECLASSES element of the STEREOTYPE). If the tag definition set is defined as related to a

specific stereotype, this element is not defined; any definition in this element is ignored and is recognized as

BASECLASSES of the respective stereotype.

TAGDEFINITIONLIST element: Contains multiple TagDefinitions included in the set. See the TagDefinition

section.

TagDefinition

TAGDEFINITIONLIST element: Contains multiple TagDefinitions included in the set. See the TagDefinition section.

<TAGDEFINITION lock=”...”>

 <NAME>...</NAME>

 <TAGTYPE referenceType=”...”>...</TAGTYPE>

 <DEFAULTDATAVALUE>...</DEFAULTDATAVALUE>

 <LITERALS>

 <LITERAL>...</LITERAL>

 </LITERALS>

</TAGDEFINITION>

lock property (TAGDEFINITION element): Configures whether to allow editing of tagged values from the UI. If

set as "True", tagged values can be edited only through an external COM interface and the extension property

editor cannot be used. This property may be omitted, in which case the default value is "False".

NAME element: This is the name of the tag. This must be unique within the TagDefinitionSet.

TAGTYPE element: This is the type of the tag. This can be any of the 5 types: Integer, Boolean, Real, String,

Enumeration, Reference, or Collection.

referenceType property (TAGTYPE element): Defines what types of object references are allowed when the tag

type is Reference or Collection. For example, defining this as "UMLClass" permits connection of Class types

only. If omitted, the default value is "UMLModelElement". This property is ignored if the tag type is Integer,

Boolean, Real, String, or Enumeration.

DEFAULTVALUE element: Contains the default value of the tag. This element is ignored and the default value is

set as null for Reference Type or Collection Type.

LITERALS element: Defines the literals to enumerate if the tag type is Enumeration. This is ignored for other

types.

DataType

DATATYPE element defines one data type. This element has a sub-element called NAME.

<DATATYPE>

 <NAME>...</NAME>

</DATATYPE>

NAME element: Contains the name of the data type.

ElementPrototype

ELEMENTPROTOTYPE element describes information of element prototype that defines the pattern of element

creating.

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

<ELEMENTPROTOTYPE>

 <NAME>....</NAME>

 <DISPLAYNAME>....</DISPLAYNAME>

 <ICON>....</ICON>

 <DRAGTYPE>....</DRAGTYPE>

 <BASEELEMENT argument=”...”>....</BASEELEMENT>

 <STEREOTYPENAME>....</STEREOTYPENAME>

 <STEREOTYPEDISPLAY>....</STEREOTYPEDISPLAY>

 <SHOWEXTENDEDNOTATION>....</SHOWEXTENDEDNOTATION>

 <MODELPROPERTYLIST>

 <MODELPROPERTY name=”...”>....</MODELPROPERTY>

 </MODELPROPERTYLIST>

 <VIEWPROPERTYLIST>

 <VIEWPROPERTY name=”...”>....</VIEWPROPERTY>

 </VIEWPROPERTYLIST>

 <TAGGEDVALUELIST>

 <TAGGEDVALUE profile=”...” tagDefinitionSet=”...” tagDefinition=”...”> </TAGGEDVALUE>

 </TAGGEDVALUELIST>

</ELEMENTPROTOTYPE>

NAME element: This is the name of the element prototype. This must be unique within the profile.

DISPLAYNAME element: Contains the display name used in the user interface like a palette.

ICON element: This element contains the name of the icon file for the element prototype using in the user

interface like a palette. The icon file of the element prototype must be .BMP formatted image file 16 X 16

sized. The icon file must be placed in the directory of profile document. It must be specified only the file name

except directory path in this element.

DRAGTYPE element: In order to create the relative element for the element prototype, the user specifies how

to show when specifying location and size as the user dragging mouse on diagram. It's value must be one of:

Rect or Line.

BASEELEMENT element: Specifies the name of UML standard element based to create copy of element

prototype. This element can not be omitted. If this element is not specified, the element prototype can't be

recognized.

The names of available UML standard elements are as follows.

!
Element names

Text

Note

NoteLink

Model

Subsystem

Package

Class

Interface

Enumeration

Signal

Exception

Component

ComponentInstance

Node

NodeInstance

Actor

UseCase

StateMachine

ActivityGraph

Collaboration

CollaborationInstanceSet

Interaction

InteractionInstanceSet

CompositeState

State

ActionState

Activity

SubactivityState

Pseudostate

FinalState

Partition

Swimlane

SubmachineState

Attribute

Operation

Parameter

TemplateParameter

EnumerationLiteral

UninterpretedAction

SignalEvent

CallEvent

TimeEvent

ChangeEvent

ClassifierRole

Object

Transition

Dependency

Association

AssociationClass

Generalization

Link

AssociationRole

Stimulus

Message

Include

Extend

Realization

ObjectFlowState

FlowFinalState

SystemBoundary

SignalAcceptState

SignalSendState

Artifact

AttributeLink

Port

Part

Connector

CombinedFragment

InteractionOperand

Frame

ExtensionPoint

Rectangle

Ellipse

RoundRect

Line

Image

argument property: For some kind of elements which base element is one of Association, Pseudostate, and so

on, it needs an argument to create. Specific property values of these elements are preset as argument of

them. Default value of this property is 0. In most of case, it doesn't need to specify.

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

them. Default value of this property is 0. In most of case, it doesn't need to specify.

Argument values used in StarUML are as follows.

!
Element name Meaning and Value

Pseudostate

Decision = 0,

InitialState = 1,

Synchronization = 2,

Junction Point = 3,

Choice Point = 4,

Deep History = 5,

Shallow History = 6

UninterpretedAction

Entry Action = 0,

Do Activity = 1,

Exit Action = 2

Stimulus

Stimulus with Call Action = 0,

Stimulus with Send Action = 1,

Stimulus with Return Action = 2,

Stimulus with Create Action = 3,

Stimulus with Destroy Action = 4,

Reverse Stimulus with Call Action = 5,

Reverse Stimulus with Send Action = 6,

Reverse Stimulus with Return Action = 7,

Reverse Stimulus with Create Action = 8,

Reverse Stimulus with Destroy Action = 9

Message

Message with Call Action = 0,

Message with Send Action = 1,

Message with Return Action = 2,

Message with Create Action = 3,

Message with Destroy Action = 4,

Reverse Message with Call Action = 5,

Reverse Message with Send Action = 6,

Reverse Message with Return Action = 7,

Reverse Message with Create Action = 8,

Reverse Message with Destroy Action = 9

Association

Assocation = 0,

Directed Association = 1,

Aggregation = 2,

Composition = 3;

Swimlane
Vertical Swimlane = 0,

Horizontal Swimlane = 1;

STEREOTYPENAME element: Specifies the Stereotype name of the element prototype. If specifies the value of

this element, it is inputted as value of "Stereotype" property when create the model element. This element

may be omitted.

STEREOTYPEDISPLAY element: Specifies how to display the stereotype when create element the model

element. Value of this element must be one of: sdkText(display as text), sdkIcon(display as icon),

sdkNone(does not display), sdkDecoration(display as decoration). This element may be omitted. Default value

is sdkText.

SHOWEXTENDEDNOTATION element: Specifies whether to draw the element as notation extension in case of

existing notation extension file(.nxt) specified in the STEREOTYPENAME element. If value is True, StarUML

draws view of the element that created by element prototype as described in notation extension file. This

element may be omitted. Default value is False.

MODELPROPERTYLIST element: Contains list of MODELPROPERTY elements.

MODELPROPERTY element: Specifies the value of model property in creating element. The name property that

defines name of model property must be specified certainly. If value of name is not property name of base

element or is invalid, the element would not be created properly.

See "Chapter 4. Using Open API" for available property names and range of the each property value.

VIEWPROPERTYLIST element: Contains list of VIEWPROPERTY elements.

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

VIEWPROPERTYLIST element: Contains list of VIEWPROPERTY elements.

VIEWPROPERTY element: Specifies the value of view property in creating element. The name property that

defines name of view property must be specified certainly. If value of name is not property name of base

element or is invalid, the element would not be created properly.

See "Chapter 4. Using Open API" for available property names and range of the each property value.

TAGGEDVALUELIST element: Contains list of TAGGEDVALUE elements.

TAGGEDVALUE element: Specifies the tagged value of model element in creating element. To assign tagged

value, you must specify the tagDefinition defining it.

profile property (TAGGEDVALUE element)

: Specifies the profile name that contains the tag definition. This element may be omitted. If omitted, the

profile that ELEMENENTPROTOTYPE element belongs to is applied.

tagDefinitionSet property (TAGGEDVALUE element): Specifies the tagDefinitionSet name containing the

tagDefinition.

tagDefinition property (TAGGEDVALUE element): Specifies the name of the tagDefinition.

ModelPrototype

MODELPROTOTYPE element describes information of model prototype that defines the pattern of model creating.

<MODELPROTOTYPE>

 <NAME>....</NAME>

 <DISPLAYNAME>....</DISPLAYNAME>

 <ICON>....</ICON>

 <BASEMODEL argument=”...”>....</BASEMODEL>

 <STEREOTYPENAME>....</STEREOTYPENAME>

 <PROPERTYLIST>

 <PROPERTY name=”...”>....</PROPERTY>

 </PROPERTYLIST>

 <TAGGEDVALUELIST>

 <TAGGEDVALUE profile=”...” tagDefinitionSet=”...” tagDefinition=”...”> </TAGGEDVALUE>

 </TAGGEDVALUELIST>

 <CONTAINERMODELLIST>

 <CONTAINERMODEL type="...." stereotype="...."/>

 </CONTAINERMODELLIST>

</MODELPROTOTYPE>

NAME element: This is the name of the model prototype. This must be unique within the profile.

DISPLAYNAME element: Contains the display name used in the user interface like the [Add Model] menu.

ICON element: This element contains the name of the icon file for the model prototype using in the user

interface like the [Add Model]

menu. The icon file of the model prototype must be .BMP formatted image file 16 X 16 sized. The icon file

must be placed in the directory of profile document. It must be specified only the file name except directory

path in this element.

BASEMODEL element: Specifies the name of UML standard element based to create copy of model prototype.

This element can not be omitted. If this element is not specified, the element prototype can't be recognized.

Available names of UML standard elements are the same of what is enumerated in the BASEELEMENT part of

the ElementPrototype section. Elements that own only view can't be used.

argument property:

For some kind of elements which base model element is one of Association, Pseudostate, and so on, it needs

an argument to create. Specific property values of these model elements are preset as argument of them.

Default value of this property is 0. In most of case, it doesn't need to specify.

Available argument values are the same of what is enumerated in the argument part of the ElementPrototype

section.

STEREOTYPENAME element: Specifies the Stereotype name of the model prototype. If specifies the value of

this element, it is inputted as value of "Stereotype" property when create the model element. This element

may be omitted.

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

may be omitted.

PROPERTYLIST element: Contains list of PROPERTY elements.

PROPERTY element: Specifies the value of model property in creating model element. The name property that

defines name of model property must be specified certainly. If value of name is not property name of base

model or is invalid, the model element would not be created properly.

See "Chapter 4. Using Open API" for available property names and range of the each property value.

TAGGEDVALUELIST element: Contains list of TAGGEDVALUE elements.

TAGGEDVALUE element: Specifies the tagged value of model element in creating element. To assign tagged

value, you must specify the tagDefinition defining it.

profile property (TAGGEDVALUE element)

: Specifies the profile name that contains the tag definition. This element may be omitted. If omitted, the

profile that MODELPROTOTYPE element belongs to is applied.

tagDefinitionSet property (TAGGEDVALUE element): Specifies the tagDefinitionSet name containing the

tagDefinition.

tagDefinition property (TAGGEDVALUE element): Specifies the name of the tagDefinition.

CONTAINERMODELLIST element: Contains list of CONTAINERMODEL elements.

CONTAINERMODEL element: Constrains the parent model element that can own model element defined by the

model prototype. If the value specified, creation submenu of [Add Model] menu will be activated just only

when model element specified in this element is selected.

Palette

PALETTE element describes additional palette and it's items.

<PALETTE>

 <NAME>....</NAME>

 <DISPLAYNAME>....</DISPLAYNAME>

 <PALETTEITEMLIST>

 <PALETTEITEM>....</PALETTEITEM>

 </PALETTEITEMLIST>

</PALETTE>

NAME element: This is the name of the palette. This must be unique within the profile.

DISPLAYNAME element: This is the name being displayed.

PALETTEITEMLIST element: Lists palette items contained in the palette.

PALETTEITEM element: Specifies an element name for palette item. The value of this element must be the

name of element prototype defined in the profile or the name of UML standard element. Available names of

UML standard elements are the same of what is enumerated in the BASEELEMENT part of the

ElementPrototype section.

DiagramType

DIAGRAMTYPE element describes overall information of diagram type.

<DIAGRAMTYPELIST>

 <DIAGRAMTYPE>

 <NAME>....</NAME>

 <DISPLAYNAME>....</DISPLAYNAME>

 <BASEDIAGRAM>....</BASEDIAGRAM>

 <ICON>....</ICON>

 <AVAILABLEPALETTELIST>

 <AVAILABLEPALETTE>....</AVAILABLEPALETTE>

 </AVAILABLEPALETTELIST>

 </DIAGRAMTYPE>

</DIAGRAMTYPELIST>

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

NAME element: This is the name of the palette. This must be unique within the profile.

DISPLAYNAME element: This is the display name used in the user interface like the [Add Diagram] menu.

ICON element: This element contains the name of the icon file for the diagram type using in the user interface

like the [Add Diagram]

menu. The icon file of the diagram type must be .BMP formatted image file 16 X 16 sized. The icon file must

be placed in the directory of profile document. It must be specified only the file name except directory path in

this element.

BASEDIAGRAM element: Specifies the name of UML standard diagram based to create a diagram of the

diagram type. The names of available UML standard diagrams are as following.

!
Diagram names

ClassDiagram

UseCaseDiagram

SequenceDiagram

SequenceRoleDiagram

CollaborationDiagram

CollaborationRoleDiagram

StatechartDiagram

ActivityDiagram

ComponentDiagram

DeploymentDiagram

CompositeStructureDiagram

AVAILABLEPALETTELIST

element: Specifies the list of activating palettes when a diagram of the diagram type is created.

AVAILABLEPATTE

element: Specifies activating palette when a diagram of the diagram type is created. The value of this element

must be the name of palette defined in the profile or built-in palette name included in StarUML basically.

Built-in palettes of StarUMLare as following.

!
Built-in palette names

UseCase

Class

SequenceRole

Sequence

CollaborationRole

Collaboration

Statechart

Activity

Component

Deployment

CompositeStructure

Annotation

Registering UML Profile

To make a profile to be recognized automatically by StarUML, must place it in the subdirectory of StarUML module

directory(<install-dir>\modules). StarUML searches and reads all profiles in the module directory and registers

them at the program automatically when StarUML is initializing. If profile file is invalid or it's extension file name is

not .prf, StarUML will not read the profile and ignore it. It is recommended that make a subdirectory in the StarUML

module directory and place the profile in there to avoid modules being out of order.

Note:

To register profile icon, Make icon file for the profile and place it in the directory of the profile. Icon of the profile is

displayed with the name at profiles list in the [Profiles]

dialog. If there is no icon file which name is same of the profile's, default icon is registered as icon of the profile.

Note: Delete files of the profile from the StarUML module directory(<install-dir>\modules) not to use the profile

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

Note: Delete files of the profile from the StarUML module directory(<install-dir>\modules) not to use the profile

any more.

Extension Element Object Management

Description of Extension Elements

The extension elements defined in the profile can be accessed through StarUML™'s external API. The COM interface

related to extension in StarUML™ is organized in the same way as the actual UML extension structure, and is

managed through IExtensionManager. It is rare for the developer to directly manage extension element objects.

On the contrary, it is much more usual for the developer to obtain stereotypes or tagged values from the actual

model elements extended. In this case, the methods provided by the IExtensionModel can be used. For details on

the IExtensibleModel interface and modeling elements, see "Chapter 4. Using Open API".

As mentioned earlier, extension elements are not created during the actual modeling process but are definitions of

extension structures. Since they should not be modified during the initial loading of a program or a project, most of

the properties defined in these interfaces are read-only.

The following interfaces are available for managing extension element objects.

IExtensionManager: Manages profiles registered in a program, and provides a method for searching

extension elements. IExtensionManager is the first interface that accesses the profile or the extension

elements defined in the profile.

IProfile: Manages the extension elements defined in the profile, and provides methods for accessing and

searching them. It also contains information for the profile. IProfile maintains the extension elements defined

in the profile as collections of IStereotype, ITagDefinition, and IDataType.

IStereotype: Provides information for stereotypes.

ITagDefinitionSet: Provides information for TagDefinitionSets, and manages tag definitions defined in

TagDefinitionSets as a collection of ITagDefintion.

ITagDefintion: Provides information for TagDefinition.

IDataType: Provides information for DataType.

The diagram below illustrates the organization of the COM interface for StarUML's extension elements.

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

Accessing IExtensionManager

In order to manage profiles and extension elements, reference to the IExtensionManager interface must be

acquired first. IStarUMLApplication provides properties for accessing the ExtensionManager object. The following

code is a Jscript example of obtaining reference to IExtensionManager.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var ext = app.ExtensionManager;

Including/Excluding Profile

IExtensionManager provides methods for including or excluding profiles in/from projects. IncludeProfile()

includes the profile entered in the current project, and ExcludeProfile() excludes the profile entered from the

current project. The profile entered as the parameter for the methods must be registered in the system. An error

occurs if the profile entered is not present or registered in the system. The method usage is as follows.

IExtensionManager.IncludeProfile(Profile: String)

IEXtensionManager.ExcludeProfile(Profile: String)

The following is a JScript example of excluding a profile named "StandardProfile" from the current project.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var ext = app.ExtensionManager;

ext.ExcludeProfile("UMLStandard");

Acquiring Extension Elements Defined in Profile

The extension objects that constitute a profile can be accessed through the IProfile interface. IProfile provides the

following collection access methods for accessing the interfaces of extension objects (IStereotype,

ITagDefinitionSet, and IDataType). The Index argument used in GetStereotypeAt(),

GetTagDefinitionSetAt(), GetDataType(), etc. must be equal to or less than Count - 1 of the collection.

IProfile.GetStereotypeCount(): Integer

IProfile.GetStereotypeAt(Index: Integer): IStereotype

IProfile.GetTagDefinitionSetCount(): Integer

IProfile.GetTagDefinitionSetAt(Index: Integer): ITagDefinitionSet

IProfile.GetDataTypeCount(): Integer

IProfile.GetDataTypeAt(Index: Integer): IDataType

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

The following is a Jscript example of looping the sterotypes defined in the profile.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var ext = app.ExtensionManager;

var prf = ext.FindIncludedProfile("UMLStandard");

if (prf != null) {

 var st;

 for (i = 0; i <= prf.GetStereotypeCount() - 1; i++) {

 st = prf.GetStereotypeAt(i);

 // do something...

 }

}

Finding Extension Elements

The IProfile interface provides methods for searching interfaces of extension elements defined in the profile.

FindTagDefinition(TagDefinitionSet: String, Name: String): ITagDefinition

FindTagDefinitionSet(Name: String): ITagDefinitionSet

FindStereotype(Name: String, BaseClass: String): IStereotype

FindDataType(Name: String): IDataType

Managing Stereotype

The IStereotype

interface provides information for stereotypes defined in the profile. Basic stereotype information such as the name,

description, and icon file can be obtained through the read-only property of the IStereotype interface. IStereotype

includes definitions of methods for recognizing the UML elements that can be applied with stereotypes:

GetBaseClassCount(), GetBaseClassAt(), CanApplyTo(), etc. The GetBaseClassCount() and

GetBaseClassAt()

methods allow names of the UML elements that can be applied with stereotypes to be obtained. The CanApplyTo()

method indicates whether the UML element received as an argument can be applied with the current stereotype by

returning a Boolean value The BaseClass of a stereotype can specify not only the UML elements expressible in

diagrams, but also more of the upper-level elements like UMLClassifier. In this case, the selected stereotype can be

applied to all the lower-level elements under the upper-level elements. For example, suppose UMLClassifier is

defined as the BaseClass, then it works the same as if all lower-level elements like UMLClass, UMLInterface,

UMLUseCase, and UMLActor are defined as the BaseClass. For the inheritance structure between elements, see

Plastic Application Model.

GetStereotype() of IExtensibleModel returns IStereotype objects from stereotyped models. If the stereotype of

a model is not defined in the profile, a null value is returned. In this case, the StereotypeName property of

IExtensibleModel can be used to obtain the name of the stereotype.

The following is a JScript example of displaying in the message box the descriptions of the stereotypes for the

currently selected model.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var selMgr = app.SelectionManager;

if (selMgr.GetSelectedModelCount() > 0) {

 var selModel = selMgr.GetSelectedModelAt(0);

 var st = selModel.GetStereotype();

 if (st != null) {

 WScript.Echo(st.Description)

 }

}

Managing TagDefinition

The ITagDefinition interface provides information for tag definitions defined in the profile. ITagDefinition provides

the following properties.

StarUML 5.0 Developer Guide (Writing UML Profiles)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch07.html

the following properties.

Property Description

Name: String Name of the tag definition. Tag definition name must be unique within the

TagDefinitionSet.

TagType:

tagTagTypeKind

Type of tag.

The following tag types are available.

tkInteger = 0 (integer)

tkBoolean = 1 (boolean)

tkString = 2 (string)

tkReal = 3 (real number)

tkEnumeration = 4 (enumeration)

tkReference = 5 (reference)

tkCollection = 6 (collection)

Different methods are used for obtaining tagged values from models depending on the

tag type. IExtensibleModel includes definitions of methods for obtaining tagged values

according to each tag type.

ReferenceType: String Indicates the types of object reference available for definition by tagged values when the

TagType is tkReference or tkCollection. For example, setting this to "UMLClass" allows

connection of Class type only. If the definition for ReferenceType is omitted in the profile

document, "UMLModelElement" is taken as the default value. If TagType is not tkReferece

or tkCollection, this property has no effect.

DefaultValue: String Defines the default value of a tag. If the TagType is tkEnumeration, it is a string value for

the enumeration order. If the TagType is tkReference or tkCollection, the default value is

set as null and this property has no effect.

The following is a JScript example of displaying the default value of a tag in the message box.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var ext = app.ExtensionManager;

var tag = ext.FindTagDefinition("UMLStandard", "Default", "Derived");

WScript.Echo(tag.DefaultValue);

StarUML 5.0 Developer Guide (Extending Menu)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch08.html

Chapter 8. Extending Menu

Basic Concepts of Menu Extension

In order to provide ways for the user to call the Add-In functions, the StarUML™ menu system can be extended. For

this, Add-In developers must provide menu extension files. This involves the following steps.

Creating a menu extension file.1.

Registering a menu extension file.2.

An Add-In menu extension file (*.mnu) is an XML-formatted text file. Each Add-In must provide one menu

extension file. StarUML™ uses the definition contents of this menu file to extend the application's main and popup

menus to add new menu items, to execute defined actions, or to send messages to related Add-In objects.

StarUML™'s Add-In menu extension file can contain the following definitions.

New menu items to add

Division of main menu items and popup menu items

StarUML's basic menu items where the new menu items would be added

Display names and hot-keys for menu items

Points for activation and deactivation of menu items

Script files to execute when menu items are selected

IDs of the menu items that are sent to Add-In objects when selected

Locations of the menu items in their upper-level group menus

Icon files for menu items

A menu extension file is written in the XML format. It has to be a well-formed document and its contents must be

valid. This chapter discusses the XML DTD (Document Type Definition), which has to be observed to ensure the

validity of menu extension files, and the structure of menu extension files, and also provides related examples.

Note:

Add-In menu extension file must have *.mnu extension file name and placed in the subdirectory of StarUML™

module directory(<insall-dir>\modules).

Creating Menu Extension File

DTD of Menu Extension File

StarUML™'s Add-In menu extension file must be a valid XML that conforms to the defined DTD. The following is the

entire contents of the DTD defined for a menu extension file.

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT VERSION (#PCDATA)>

<!ELEMENT DESCRIPTION (#PCDATA)>

<!ELEMENT COMPANY (#PCDATA)>

<!ELEMENT COPYRIGHT (#PCDATA)>

<!ELEMENT MAINITEM (MAINITEM)*>

<!ATTLIST MAINITEM

 base (FILE|EDIT|FORMAT|MODEL|VIEW|TOOLS|HELP|UNITS|IMPORT|EXPORT|NEW_TOP) #IMPLIED

 caption CDATA #REQUIRED

 index CDATA #IMPLIED

 beginGroup CDATA #IMPLIED

 script CDATA #IMPLIED

 actionId CDATA #IMPLIED

 availableWhen (ALWAYS|PROJECT_OPENED|MODEL_SELECTED|VIEW_SELECTED|UNIT_SELECTED|DIAGRAM_

 iconFile CDATA #IMPLIED>

StarUML 5.0 Developer Guide (Extending Menu)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch08.html

<!ELEMENT POPUPITEM (POPUPITEM)*>

<!ATTLIST POPUPITEM

 location (EXPLORER|DIAGRAM|BOTH) “BOTH”

 caption CDATA #REQUIRED

 index CDATA #IMPLIED

 beginGroup CDATA #IMPLIED

 script CDATA #IMPLIED

 actionId CDATA #IMPLIED

 availableWhen (ALWAYS|PROJECT_OPENED|MODEL_SELECTED|VIEW_SELECTED|UNIT_SELECTED|DIAGRAM_

 iconFile CDATA #IMPLIED>

<!ELEMENT MAIMENU (MAINITEM)*>

<!ELEMENT POPUPMENU (POPUPITEM)*>

<!ELEMENT HEADER (NAME?, VERSION?, DESCRIPTION?, COMPANY?, COPYRIGHT?)>

<!ELEMENT BODY (MAINMENU?, POPUPMENU?)>

<!ELEMENT ADDINMENU (HEADER?, BODY)>

<!ATTLIST ADDINMENU addInID CDATA #REQUIRED>

Note:

Names of all XML elements must be written in upper case letters, and names of all attributes start with lower case

ones. Pre-defined symbol values are represented in upper case with '_' (underscores). Such conventions must be

observed throughout the whole menu file, and the pre-defined symbol values must be used properly.

Overall Structure of Menu Extension File

Menu extension files follow the XML document conventions, and user-defined menu items are contained within the

'ADDINMENU' element.

<?xml version="1.0" encoding="..."?>

<ADDINMENU addInID="...">

 <HEADER>...</HEADER>

 <BODY>...</BODY>

</ADDINMENU>

encoding property: Defines the encoding property value of the XML document (e.g. UTF-8, EUC-KR). For details

on this property value, see XML-related resources.

addInID property: Unique ID of each Add-In. This must be a unique value that identifies the current Add-In

from others. It is recommended that the company name or product name be used as a part of the value (e.g.

StarUML.StandardAddIn).

HEADER element: Contains general information for the Add-In. See the Header Contents section.

BODY element: Contains information for actual menu items. See the Body Contents section.

Header Contents

The Header element of a menu extension file contains information for the Add-In and menu file. The contents in the

Header section do not have any effect on the actual structure of the menu items. Although this section may be

omitted, it is recommended to include it to provide menu extension files that are self-explanatory.

<HEADER>

 <NAME>...</NAME>

 <VERSION>...</VERSION>

 <DESCRIPTION>...</DESCRIPTION>

 <COMPANY>...</COMPANY>

 <COPYRIGHT>...</COPYRIGHT>

</HEADER>

NAME element: Contains the explanatory name of the Add-In (string value).

VERSION element: Contains the version information (string value).

StarUML 5.0 Developer Guide (Extending Menu)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch08.html

VERSION element: Contains the version information (string value).

DESCRIPTION element: Contains brief description of the Add-In (string value).

COMPANY element: Contains information of the Add-In developer company / individual (string value).

COPYRIGHT element: Contains the copyright notice (string value).

BODY CONTENTS

The Body element of a menu extension file contains the actual menu items to add. Information in this section must

be accurate.

<BODY>

 <MAINMENU>

 <MAINITEM>...</MAINITEM>

 <MAINITEM>...</MAINITEM>

 </MAINMENU>

 <POPUPMENU>

 <POPUPITEM>...</POPUPITEM>

 <POPUPITEM>...</POPUPITEM>

 </POPUPMENU>

</BODY>

The Body element can largely be divided into definitions of the main menu and definitions of the popup menu.

MAINMENU element: Contains the main menu items to add.

POPUPMENU element: Contains the popup menu items to add.

MAINITEM element: Contains information of an actual menu item (main menu).

POPUPITEM element: Contains information of an actual menu item (popup menu).

Main menu items and popup menu items are written separately. According to the functions provided by each

Add-In, a menu item can be added to the main menu or to the popup menu. Either the MAINMENU element or the

POPUPMENU element may be omitted, but not both. If a menu item of the same functionality needs to be added

both to the main menu and to the popup menu, information should be entered appropriately in MAINMENU and

POPUPMENU. In this case, the two items should have identical script or actionID properties. However, when adding

a lower-level menu item to an StarUML™ basic menu item such as [Format] and [Unit], that is shared by both the

main menu and the popup menu, the information should be contained in MAINMENU only.

MAINMENU

The MAINMENU element can contain multiple MAINITEM elements. Each MAINITEM element constitutes one main

menu item. For defining a group menu item with sub menu items, the MAINITEM element can in turn contain

multiple MAINITEM elements.

<MAINITEM base=”...” caption=”...” index=”...” beginGroup=”...” script=”...” actionId=”...” availa

 <MAINITEM>...</MAINITEM>

 <MAINITEM>...</MAINITEM>

</MAINITEM>

Property Description Range of Value Omission

base This is one of the StarUML™ basic

menu items to which the new menu

item will be added. This property has

no effect if the MAINITEM element

belongs to another upper-level

MAINITEM element.

Must be FILE, EDIT, FORMAT,

MODEL, VIEW, TOOLS, HELP,

UNITS, IMPORT, EXPORT, or

NEW_TOP. *

If omitted, the new

menu item is added as a

sub menu item under

the [Tools] menu.

caption Specifies the display name for the

menu item. This value may contain

the hot-key. To define the hot-key,

add '&' and the hot-key

character at the end of this value.

String value Cannot be omitted.

StarUML 5.0 Developer Guide (Extending Menu)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch08.html

character at the end of this value.

Note that the StarUML™ program

does not check for duplication of the

hot-key with other menu items.

index Specifies the order of this menu item

under the upper-level menu. For

instance, if this value is '0', the menu

item becomes the first sub menu for

the base menu item. If the value of

this property conflicts with the values

of other menu items, the menu may

not be displayed accurately.

An integer greater than 0. Generally omitted. If

omitted, Add-Ins are

added in the order they

are registered.

beginGroup Determines whether to add the

separator in front of the menu item.

Must be TRUE or FALSE. FALSE if omitted.

script Specifies the pathname and filename

of the script to run, if any. The

pathname is relative to the location of

the Add-In program. This value can

also be a website URL.

String value Can be omitted.

actionId Set this to an integer greater than 0

in order to process the menu

command through a COM object. If

the Add-In adds more than one menu

item, each menu item can be

distinguished by its unique actionId

value.

An integer greater than 0. Can be omitted.

availableWhen Specifies when the menu item

becomes enabled.

Must be ALWAYS,

PROJECT_OPENED,

MODEL_SELECTED,

VIEW_SELECTED,

UNIT_SELECTED, or

DIAGRAM_ACTIVATED. **

PROJECT_OPENED is

selected if omitted.

iconFile Specifies the pathname and filename

for the menu item icon file, if any. The

pathname is relative to the location of

the Add-In program.

String value Can be omitted.

Note:

Unless the menu item groups its sub menu items, the property value for either script or actionId must be defined.

* base property value range

FILE: The menu item is added as a sub menu item of the [File] menu.

EDIT: The menu item is added as a sub menu item of the [Edit] menu.

FORMAT: The menu item is added as a sub menu item of the [Format] menu.

MODEL: The menu item is added as a sub menu item of the [Model] menu.

VIEW: The menu item is added as a sub menu item of the [View] menu.

TOOLS: The menu item is added as a sub menu item of the [Tools] menu. (default)

HELP: The menu item is added as a sub menu item of the [Help] menu.

UNITS: The menu item is added as a sub menu item of the [File] -> [Unit] menu.

IMPORT: The menu item is added as a sub menu item of the [File] -> [Import] menu.

EXPORT: The menu item is added as a sub menu item of the [File] -> [Export] menu.

NEW_TOP: The menu item is created as a new top-level main menu item.

** availableWhen property value range

StarUML 5.0 Developer Guide (Extending Menu)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch08.html

 availableWhen property value range

ALWAYS: Enabled as long as the StarUML™ application is running.

PROJECT_OPENED: Enabled when a project element is present. (default)

MODEL_SELECTED: Enabled when a model element is selected.

VIEW_SELECTED: Enabled when a view element is selected.

UNIT_SELECTED: Enabled when a unit element is selected.

DIAGRAM_ACTIVATED: Enabled when a diagram is opened.

POPUPMENU

The POPUPMENU element can contain multiple POPUPITEM elements. Each POPUPITEM element constitutes one

popup menu item. For defining a menu item with sub menu items, the POPUPITEM element can in turn contain

multiple POPUPITEM items.

<POPUPITEM location=”...” caption=”...” index=”...” beginGroup=”...” script=”...” actionId=”...” a

 <POPUPITEM>...</POPUPITEM>

 <POPUPITEM>...</POPUPITEM>

</POPUPITEM>

Property Description Range of Value Omission

location Specifies the popup menu system

where the new popup menu item will

be added. This property has no effect

if the POPUPITEM belongs to another

upper-level POPUPITEM element.

Must be EXPLORER, DIAGRAM,

or BOTH. *
BOTH if omitted.

caption Specifies the display name for the

menu item. This value may contain

the hot-key. To define the hot-key,

add '&' and the hot-key character

at the end of this value. Note that the

StarUML™ program does not check for

duplication of the hot-key with other

menu items.

String value Cannot be omitted.

index Specifies the order of this menu item

under the upper-level menu. For

instance, if this value is '0', the menu

item becomes the first sub menu for

the base menu item. If the value of

this property conflicts with the values

of other menu items, the menu may

not be displayed accurately.

An integer greater than 0. Generally omitted. If

omitted, menu items are

added in the order the

Add-In is registered.

beginGroup Determines whether to add the

separator in front of the menu item.

Must be TRUE or FALSE. FALSE if omitted.

script Specifies the pathname and filename

of the script to run, if any. The

pathname is relative to the location of

the Add-In program. This value can

also be a website URL.

String value Can be omitted.

actionId Set this to an integer greater than 0 in

order to process the menu command

through a COM object. If the Add-In

adds more than one menu item, each

menu item can be distinguished by its

unique actionId value.

An integer greater than 0. Can be omitted.

availableWhen Specifies when the menu item

becomes enabled.

Must be ALWAYS,

PROJECT_OPENED,

MODEL_SELECTED,

Set to PROJECT_OPENED

if omitted.

StarUML 5.0 Developer Guide (Extending Menu)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch08.html

MODEL_SELECTED,

VIEW_SELECTED,

UNIT_SELECTED, or

DIAGRAM_ACTIVATED **

iconFile Specifies the pathname and filename

for the menu item icon file, if any. The

pathname is relative to the location of

the Add-In program.

String value Can be omitted.

Note:

Unless the menu item is grouping its sub menu items, the property value for either script or actionId must be

defined.

* location property value range

EXPLORER: The menu item is added to the Model Explorer popup menu.

DIAGRAM: The menu item is added to the Diagram popup menu.

BOTH: The menu item is added to both the Model Explorer and Diagram popup menus. (default)

** availableWhen property value range - Same as the MAINMENU element.

Example of Menu Extension File

The following example is the complete menu file for the StarUML™ default extension pack that is installed together

with the StarUML™ program.

<?xml version="1.0" encoding="UTF-8"?>

<ADDINMENU addInID="StarUML.StandardAddIn">

 <HEADER>

 <NAME>Default module of StarUML</NAME>

 <VERSION>1.0.0</VERSION>

 <DESCRIPTION>Default extension pack of Agora Plastic to convert diagram</DESCRIPTION>

 <COMPANY>Plastic Software, Inc.</COMPANY>

 <COPYRIGHT>Copyright (C) 2005 Plastic Software, Inc. All rights reserved.</COPYRIGHT>

 </HEADER>

 <BODY>

 <MAINMENU>

 <MAINITEM base="MODEL" caption="Convert Diagram" beginGroup="TRUE" availableWhen="MODE

 <MAINITEM caption="Convert Sequence(Role) to Collaboration(Role)" script="ConvSeq2Col.

 <MAINITEM caption="Convert Collaboration(Role) to Sequence(Role)" script="ConvCol2Seq.

 </MAINMENU>

 </BODY>

</ADDINMENU>

Registering Menu Extension File

To make a menu extension to be recognized automatically by StarUML, must place it in the subdirectory of StarUML

module directory(<install-dir>\modules). StarUML searches and reads all menu extension files in the module

directory and registers them at the program automatically when StarUML is initializing. If menu extension file is

invalid or it's extension file name is not .mnu, StarUML will not read the menu extension file and ignore it. It is

recommended that make a subdirectory in the StarUML module directory and place the profile in there to avoid

modules being out of order.

Note: Delete the menu extension file from the StarUML module directory(<install-dir>\modules) not to use the

menu extension any more.

StarUML 5.0 Developer Guide (Writing Add-In COM Object)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch09.html

Chapter 9. Writing Add-In COM Object

Basic Concepts of Add-In COM Object

As discussed in 'Chapter 3. Hello world Example'

simple Script codes can be defined to add new functionalities to StarUML™. However, to facilitate more complex and

useful functionalities, it is better to use a program development environment that supports COM objects. For

implementing StarUML™ Add-In COM Objects, it does not matter whether Delphi, Visual Basic or any other

programming environment is used, as long as it supports COM technology.

The most important point about implementing StarUML™ Add-In COM Objects is that the IStarUMLAddIn interface

defined by StarUML™ must be used.

As illustrated above, the IStarUMLAddIn

interface inherits IUnknown and defines the three additional interface methods: InitializeAddIn(),

FinalizeAddIn(), and DoMenuAction().

IStarUMLAddIn Interface Methods

The methods to be defined for implementing the IStarUMLAddIn interface are as follows.

Method Description

InitializeAddIn() The InitializeAddIn() method is used by the

StarUMLApplication object to initialize each Add-In COM

Object when it is created. As will be discussed in below

section this is used to define the actions required for

initialization of an Add-In COM Object such as event

subscription registration.

FinalizeAddIn() The FinalizeAddIn() method is called by the

StarUMLApplication object just before disconnecting

reference from an Add-In COM Object. As will be

discussed in below section this is used to define the

actions required before terminating an Add-In COM

Object such as event subscription removal.

DoMenuAction(ActionID: Integer) As seen in 'Chapter 8. Extending Menu' the

DoMenuAction() method is called when the user selects

an extension menu item defined by each Add-In. The

'actionId' value of each menu item defined by the menu

extension file is passed on as an argument.

Add-In COM Object Example

The following is a simple example of an StarUML™ Add-In COM Object implementing the IStarUMLAddIn interface.

This is written in the Delphi Pascal syntax.

type

 AddInExample = class(TComObject, IStarUMLAddIn)

 private

 StarUMLApp: IStarUMLApplication;

 protected

 function InitializeAddIn: HResult; stdcall;

 function FinalizeAddIn: HResult; stdcall;

 function DoMenuAction(ActionID: Integer): HResult; stdcall;

 ...

StarUML 5.0 Developer Guide (Writing Add-In COM Object)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch09.html

 ...

 public

 procedure Initialize; override;

 destructor Destroy; override;

 ...

 end;

...

implementation

procedure AddInExample.Initialize;

begin

 inherited;

 StarUMLApp := CreateOleObject('StarUML.StarUMLApplication') as IStarUMLApplication;

 ...

end;

destructor AddInExample.Destroy;

begin

 ...

 StarUMLApp := nil;

 inherited;

end;

function AddInExample.InitializeAddIn: HResult;

begin

 ...

 Result := S_OK;

end;

function AddInExample.FinalizeAddIn: HResult;

begin

 ...

 Result := S_OK;

end;

function AddInExample.DoMenuAction(ActionID: Integer): HResult; stdcall;

begin

 Result := S_OK;

 ...

end;

Writing Add-In Description File

Basic Concept of Add-In Description File

Add-In Description file(*.aid) is XML based text file. All add-Ins plug-ined in StarUML must offer one add-in

description file. StarUML registers Add-In object at system registry and initializes the Add-In object and menu

extension file associated with it on the reference of add-in description file context.

Note:

Add-In description file must have *.aid extension file name and placed in the subdirectory of StarUML module

directory(<install-dir>\modules).

Structure of Approach Document File

Add-In description files follow the XML document conventions, and user-defined menu items are contained within the

'ADDIN' element.

<?xml version="1.0" encoding="..."?>

<ADDIN>

 <NAME>...</NAME>

 <DISPLAYNAME>...</DISPLAYNAME>

 <COMOBJ>...</COMOBJ>

 <FILENAME>...</FILENAME>

 <COMPANY>...</COMPANY>

StarUML 5.0 Developer Guide (Writing Add-In COM Object)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch09.html

 <COMPANY>...</COMPANY>

 <COPYRIGHT>...</COPYRIGHT>

 <HELPFILE>...</HELPFILE>

 <ICONFILE>...</ICONFILE>

 <ISACTIVE>...</ISACTIVE>

 <MENUFILE>...</MENUFILE>

 <VERSION>...</VERSION>

 <MODULES>

 <MODULEFILENAME>...</MODULEFILENAME>

 </MODULES>

</ADDIN>

encoding property: Defines the encoding property value of the XML document (e.g. UTF-8, EUC-KR). For details

on this property value, see XML-related resources.

NAME element: Defines the name of Add-In. (string value)

DISPALYNAME element: Defines the name of Add-In that is shown to users in user interface. (string value)

COMOBJ element: Specifies a ProgID of COM object. This element is used only in case of COM object based

add-in. (string value)

FILENAME element: Specifies Add-In file name. (string value)

COMPANY element: Describes information of the Add-In developer company / individual. (string value)

COPYRIGHT element: Describes the copyright notice. (string value)

HELPFILE element: Specifies URL that contains help of the Add-In. (string value)

ICONFILE element: Specifies icon file name of Add-In. (string value)

ISACTIVE element: Specifies whether activates Add-in automatically in the starting of the program. (boolean

value)

MENUFILE element: Specifies menu extension file name associated to the Add-In. (string value)

MODULES/MODULEFILENAME element: Specifies file names for additional COM objects in case that an Add-In

object uses another COM objects. StarUML registers all additional COM objects specified in this element on

execution. (string value)

Registering Add-In Description File

To make an add-in description file to be recognized automatically by StarUML, must place the file in the subdirectory

of StarUML module directory(<install-dir>\modules). StarUML searches and reads all add-in description files in the

module directory and registers them at the program automatically when StarUML is initializing. If add-in description

file is invalid or it's extension file name is not .aid, StarUML will not read the add-in description file and ignore it. It is

recommended that make a subdirectory in the StarUML module directory and place the add-in description file in

there to avoid modules being out of order.

Note: Delete the add-in description file from the StarUML module directory(<install-dir>\modules) not to use the

add-in any more.

Option Extension

Basic Concept of Option Extension

StarUML supports setup options to adjust environment and detail functions of StarUML. Options are necessary not to

StarUML application self but also add-ins supplies by third-party vendors. StarUML option extension enables Add-Ins

to equip option configuring function without additional implementation. For using option extension, Add-In developer

just defines option items with text file and places it in the Add-In directory. These option definitions are loaded on

the program in initializing and displayed on option dialog. Add-In developer can save their time and efforts for

implementing Add-In, and provide consistent user interface to users.

Follow the steps below to support setup options in Add-In.

Create an option schema document file (.opt) to define option items for the Add-In.1.

Copy the option schema document file (.opt) to subdirectory of module directory.2.

Hierarchy of Option Schema

StarUML 5.0 Developer Guide (Writing Add-In COM Object)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch09.html

StarUML constructs the option schema hierarchically as follows to manage many option items that defined in the

application and add-ins in integrative.

Option Schema: Option schema is the highest classification of option structure and is unit of option schema file.

It appears as folder icon on the top level in the treeview that is placed in the left of option dialog.

Option Category:

Option category is the division of option schema by function, and displayed as lower level of treeview in the left of

option dialog.

Option Classification:

Option classification classifies option items in detail, and corresponds to category row of inspector in option dialog.

It has several option items that can be edited.

Option Item:

Option item is a unit of editing option value and corresponds to one row of inspector in option dialog.

Writing Option Schema

Option schema file to define option items is XML based text file which extension file name is *.opt. The option

schema contents are contained within the OPTIONSCHEMA element, and there must not be any errors in syntax or

contents.

<?xml version=”1.0” encoding=”...” ?>

<OPTIONSCHEMA id="...">

 <HEADER>

 ...

 </HEADER>

 <BODY>

 ...

 </BODY>

</OPTIONSCHEMA>

encoding property: Specifies the encoding property value for the XML document (e.g. UTF-8, EUC-KR). For details

on this property value, see XML-related resources.

id property (OPTIONSCHEMA element): Specifies the name of the option schema. It is a unique name to identify

the option schema from the others.

HEADER element: See the Header Contents section.

BODY element: See the Body Contents section.

Header Contents

The HEADER section of an option schema document contains general information for the option schema such as the

option schema title and description. Structure of the header section is as follows.

<HEADER>

 <CAPTION>...</CAPTION>

 <DESCRIPTION>...</DESCRIPTION>

</HEADER>

CAPTION element: This is a title of the option schema and displayed as caption of node in treeview of option

dialog.

DESCRIPTION element: Contains the description of the option schema.

Body Contents

The BODY section of an option schema document contains definition of all option items hierarchically.

<BODY>

 <OPTIONCATEGORY>

 <CAPTION>...</CAPTION>

 <DESCRIPTION>...</DESCRIPTION>

 <OPTIONCLASSIFICATION>

 <CAPTION>...</CAPTION>

StarUML 5.0 Developer Guide (Writing Add-In COM Object)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch09.html

 <DESCRIPTION>...</DESCRIPTION>

 <OPTIONITEM>

 ...

 </OPTIONITEM>

 ...

 </OPTIONCLASSIFICATION>

 ...

 </OPTIONCATEGORY>

 ...

</BODY>

OPTIONCATEGORY element: Defines structure of option category.

CAPTION element: Specifies caption of the option category displayed as node in treeview of the option dialog.

DESCRIPTION element: Contains brief description of the option category that displayed at option description

memo box appears in the option dialog.

OPTIONITEM element: Defines a number of option items. See the Option Item Definition section.

Option Item Definition

OPTIONCLASSIFICATION element can contain a number of option item definitions. Option item type are defined as

several types such as integer, real, boolean, enumeration and so on. Option dialog supports information for inputting

value or restricts value according to option item type.

Available types of option item are as follows.

Option item type XML element name Input in the option dialog

Integer OPTIONITEM-INTEGER Input only integer value.

Real OPTIONITEM-REAL Input only real number.

String OPTIONITEM-STRING Input only string.

Boolean OPTIONITEM-BOOLEAN Input true or false with check box.

Text OPTIONITEM-TEXT Input multiple line of text in pop-up text box.

Enumeration OPTIONITEM-ENUMERATION Select one of items that defined with

OPTION-ENUMERATIONITEM in combo box.

Font name OPTIONITEM-FONTNAME Select one of font names installed in the system.

File name OPTIONITEM-FILENAME Input file name or select the file in the open file dialog.

Path name OPTIONITEM-PATHNAME Input directory name or select the directory in the open

directory dialog.

Color OPTIONITEM-COLOR Select a color in the color combo box or select the color in the

color dialog.

Range OPTIONITEM-RANGE Input an integer value within specified range. Can change the

value as amount of specified step with spin button.

The following represents format of option item definitions that belongs to OPTIONCLASSIFICATION in the option

schema file.

<OPTIONCLASSIFICATION>

 <OPTIONITEM-INTEGER key="...">

 <CAPTION>...</CAPTION>

 <DESCRIPTION>...</DESCRIPTION>

 <DEFAULTVALUE>...</DEFAULTVALUE>

 </OPTIONITEM-INTEGER>

 <OPTIONITEM-REAL key="...">

 <CAPTION>...</CAPTION>

 <DESCRIPTION>...</DESCRIPTION>

 <DEFAULTVALUE>...</DEFAULTVALUE>

 </OPTIONITEM-REAL>

 <OPTIONITEM-STRING key="...">

 <CAPTION>...</CAPTION>

 <DESCRIPTION>...</DESCRIPTION>

 <DEFAULTVALUE>...</DEFAULTVALUE>

 </OPTIONITEM-STRING>

 <OPTIONITEM-BOOLEAN key="...">

StarUML 5.0 Developer Guide (Writing Add-In COM Object)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch09.html

 <OPTIONITEM-BOOLEAN key="...">

 <CAPTION>...</CAPTION>

 <DESCRIPTION>...</DESCRIPTION>

 <DEFAULTVALUE>...</DEFAULTVALUE>

 </OPTIONITEM-BOOLEAN>

 <OPTIONITEM-TEXT key="...">

 <CAPTION>...</CAPTION>

 <DESCRIPTION>...</DESCRIPTION>

 <DEFAULTVALUE>...</DEFAULTVALUE>

 </OPTIONITEM-TEXT>

 <OPTIONITEM-ENUMERATION key="...">

 <CAPTION>...</CAPTION>

 <DESCRIPTION>...</DESCRIPTION>

 <DEFAULTVALUE>...</DEFAULTVALUE>

 <ENUMERATIONITEM>...</ENUMERATIONITEM>

 ...

 </OPTIONITEM-ENUMERATION>

 <OPTIONITEM-FONTNAME key="...">

 <CAPTION>...</CAPTION>

 <DESCRIPTION>...</DESCRIPTION>

 <DEFAULTVALUE>...</DEFAULTVALUE>

 </OPTIONITEM-FONTNAME>

 <OPTIONITEM-FILENAME key="...">

 <CAPTION>...</CAPTION>

 <DESCRIPTION>...</DESCRIPTION>

 <DEFAULTVALUE>...</DEFAULTVALUE>

 </OPTIONITEM-FILENAME>

 <OPTIONITEM-PATHNAME key="...">

 <CAPTION>...</CAPTION>

 <DESCRIPTION>...</DESCRIPTION>

 <DEFAULTVALUE>...</DEFAULTVALUE>

 </OPTIONITEM-PATHNAME>

 <OPTIONITEM-COLOR key="...">

 <CAPTION>...</CAPTION>

 <DESCRIPTION>...</DESCRIPTION>

 <DEFAULTVALUE>...</DEFAULTVALUE>

 </OPTIONITEM-COLOR>

 <OPTIONITEM-RANGE key="...">

 <CAPTION>...</CAPTION>

 <DESCRIPTION>...</DESCRIPTION>

 <DEFAULTVALUE>...</DEFAULTVALUE>

 <MINVALUE>...</MINVALUE>

 <MAXVALUE>...</MAXVALUE>

 <STEP>...</STEP>

 </OPTIONITEM-RANGE>

 ...

</OPTIONITEMCLASSIFICATION>

key property (all OPTIONITEM elements): Specifies it's own key value of the option item which is unique in the

option schema. It is used in reading option values with COM interface.

CAPTION element: Specifies caption of option item used in option dialog.

DESCRIPTION element: Contains brief description of the option item that displayed at option description memo

box appears in the option dialog.

DEFAULTVALUE �� : Specifies default value of the option item. It must be in the range of valid values as follows.

If default value is not valid as the type specified, can't edit value in the option dialog.�

Option item type Range of valid values

OPTIONITEM-INTEGER Integer in -2147483648 ~ 2147483647

OPTIONITEM-REAL Integer or floating-point value

OPTIONITEM-STRING String value

OPTIONITEM-BOOLEAN True or False

OPTIONITEM-TEXT String value

OPTIONITEM-ENUMERATION String defined in ENUMERATIONITEM element

OPTIONITEM-FONTNAME Font name. e.g. Tahoma

OPTIONITEM-FILENAME File name with full path or empty string

StarUML 5.0 Developer Guide (Writing Add-In COM Object)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch09.html

OPTIONITEM-FILENAME File name with full path or empty string

e.g. C:\My Document\Default.xml

OPTIONITEM-PATHNAME Valid path name or empty string

e.g. C:\My Document

OPTIONITEM-COLOR Formatted string as follows

${W}{B}{G}{R}

�
{W} Reserved . Must be 00

{B} Blue of the color. Hexadecimal value in 0 ~ 255 (00 ~ FF)

{G} Green of the color. Hexadecimal value in 0 ~ 255 (00 ~ FF)

{R} Red of the color. Hexadecimal value in 0 ~ 255 (00 ~ FF)

i.e. $00FF0000 , $00A0A0A0, $00FF00FF

OPTIONITEM-RANGE Integer value between minimum value specified in MINVALUE and maximum

value specified in MAXVALUE

ENUMERATIONITEM element: Enumerate items that selectable in the enumeration typed option

item(OPTION-ENUMERATION). OPTION-ENUMERATION element must have at least one ENUMERATIONITEM

element.

MINVALUE element: Specifies minimum integer value in range typed option item(OPTION-RANGE).

MAXVALUE element: Specifies maximum integer value in range typed option item(OPTION-RANGE).

STEP element: Specifies an increment of range typed option value when click the spin button for editing.

The following example is the part of option schema file for StarUML.

<?xml version="1.0" encoding="UTF-8" ?>

<OPTIONSCHEMA id="ENVIRONMENT">

 <HEADER>

 <CAPTION>Environment</CAPTION>

 <DESCRIPTION> </DESCRIPTION>

 </HEADER>

 <BODY>

 <OPTIONCATEGORY>

 <CAPTION>General</CAPTION>

 <DESCRIPTION>General Configuration is a group of the basic and general option items for

 <OPTIONCLASSIFICATION>

 <CAPTION>General</CAPTION>

 <DESCRIPTION></DESCRIPTION>

 <OPTIONITEM-RANGE key="UNDO_LEVEL">

 <CAPTION>Max. number of undo actions</CAPTION>

 <DESCRIPTION>Specifies the maximum number of actions for undo and redo.</DESCRI

 <DEFAULTVALUE>30</DEFAULTVALUE>

 <MINVALUE>1</MINVALUE>

 <MAXVALUE>100</MAXVALUE>

 <STEP>1</STEP>

 </OPTIONITEM-RANGE>

 <OPTIONITEM-BOOLEAN key="CREATE_BACKUP">

 <CAPTION>Create backup files</CAPTION>

 <DESCRIPTION>Specifies whether to create backup files when saving changes.</DES

 <DEFAULTVALUE>True</DEFAULTVALUE>

 </OPTIONITEM-BOOLEAN>

 </OPTIONCLASSIFICATION>

 </OPTIONCATEGORY>

 </BODY>

</OPTIONSCHEMA>

Registering Option Schema

To make a option schema to be recognized automatically by StarUML, must place the file in the subdirectory of

StarUML module directory(<install-dir>\modules). StarUML searches and reads all option schema files in the module

directory and registers them at the program automatically when StarUML is initializing. If option schema file is invalid

or it's extension file name is not .opt, StarUML will not read the option schema file and ignore it. It is recommended

that make a subdirectory in the StarUML module directory and place the add-in description file in there to avoid

modules being out of order.

StarUML 5.0 Developer Guide (Writing Add-In COM Object)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch09.html

modules being out of order.

Note: Delete option schema file from the StarUML module directory(<install-dir>\modules) not to use the option

extension any more.

Accessing Option Values

Accessing Option Values with COM Interface

You can access the option values that user changed in option dialog by using COM interface of StarUML.

GetOptionValue() of IStarUMLApplication returns option value depends on SchemaID and Key inputted as

variant.

The method usage is as follows.

IStarUMLApplication.GetOptionValue(SchemaID: String, Key: String): Variant

SchemaID: Schema id that defined in the option schema file.

Key: Key of option item that defined in the option schema file.

Use the Variant

typed return value of GetOptionValue() by casting it according to the type of each option item. You can read the

value directly without additional type casting in script languages such as JScript and VBScript.

The following is JScript example that reads "UNDO_LEVEL" option value defined in the StarUML environment option

schema and output it to message box.

var app = new ActiveXObject("StarUML.StarUMLApplication");

var undoLevel = app.GetOptionValue("ENVIRONMENT", "UNDO_LEVEL");

WScript.Echo("Max. number of undo actions : " + undoLevel);

Processing change event of option value

StarUML propagates events that occurs in using the program to Add-ins that implement IEventSubscriber

interface. If user changes option values in option dialog, Application invokes event handler- NotifyEvent()- of

Add-ins that implement IEventSubscriber. If you want to apply option values promptly to the Add-in when user

changes the option values, implement IEventSubscriber interface and NotifiyEvent() to read the option values by

using IStarUMLApplication.GetOptionValue() method in case of EVK_OPTIONS_APPLIED event. Add-Ins that

use script such as VBScript and JSCript cannot apply option values to the Add-in becase they can't implement

IEventSubscriber interface.

For the details of event handling, it will be featured in the next section.

Basic Concepts of Event Subscription

An Add-In Object that implements the IEventSubscriber interface can subscribe to various internal events of the

StarUML™ application. Whenever an internal event occurs, the StarUML™ application calls the NotifyEvent method

of the registered IEventSubscriber type objects.

The class diagram below illustrates the organization of the external API interfaces related to event subscription.

Kinds of Events

StarUML 5.0 Developer Guide (Writing Add-In COM Object)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch09.html

Kinds of Events

As illustrated above, the EventKind

enumeration defines the kinds of internal events of the StarUML™ application that can be subscribed by Add-In

objects that implement the IEventSubscriber interface. The table below describes each literal of the EventKind

enumeration.

Event Kind (literal)

Integer

Value Event Description

EVK_APPLICATION_ACTIVATE 0 Occurs when the StarUML™ application window is activated.

EVK_APPLICATION_DEACTIVATE 1 Occurs when the StarUML™ application window is deactivated.

EVK_APPLICATION_MINIMIZE 2 Occurs when the StarUML™ application window is minimized.

EVK_APPLICATION_RESTORE 3 Occurs when the minimized StarUML™ application window is

restored to the previous size.

EVK_OPTIONS_APPLIED 4 Occurs when an option value is modified.

EVK_PROJECT_OPENED 5 Occurs when a project element is created or a project file is opened.

EVK_PROJECT_SAVED 6 Occurs whenever a project is saved.

EVK_PROJECT_CLOSING 7 Occurs when "Close Project" is selected.

EVK_PROJECT_CLOSED 8 Occurs when a project is closed.

EVK_DOCUMENT_MODIFIED 9 Occurs when a document (project or unit) is modified.

EVK_DOCUMENT_SAVED 10 Occurs when a document (project or unit) is saved.

EVK_UNIT_SEPARATED 11 Occurs when a unit element is separated.

EVK_UNIT_MERGED 12 Occurs when a separated unit element is merged.

EVK_UNIT_OPENED 13 Occurs when a unit is opened.

EVK_SELECTION_CHANGED 14 Occurs when the modeling element selection is changed.

EVK_DIAGRAM_ACTIVATED 15 Occurs when a diagram is opened.

EVK_ELEMENTS_ADDED 16 Occurs whenever a new modeling element is created.

EVK_ELEMENTS_DELETING 17 Occurs when deleting a modeling element.

EVK_ELEMENTS_DELETED 18 Occurs when a modeling element is deleted.

EVK_MODELS_CHANGED 19 Occurs when a model element property value is modified.

EVK_VIEWS_CHANGED 20 Occurs when a view element property value is modified.

Subscribing to Events

In order for an Add-In to subscribe to the StarUML™ application events, it needs to implement the

IEventSubscriber interface in addition to the IStarUMLAddIn interface, which is the common interface for all

StarUML™ Add-Ins.

The following example shows the class definition of an StarUML™ Add-In object that implements the

IStarUMLAddIn interface and the IEventSubscriber interface. This example is written in Delphi Pascal.

type

 AddInExample = class(TComObject, IStarUMLAddIn, IEventSubscriber)

 private

 StarUMLApp: IStarUMLApplication;

 EventPub: IEventPublisher;

 protected

 function InitializeAddIn: HResult; stdcall;

 function FinalizeAddIn: HResult; stdcall;

 function DoMenuAction(ActionID: Integer): HResult; stdcall;

 function NotifyEvent(AEvent: EventKind): HResult; stdcall;

StarUML 5.0 Developer Guide (Writing Add-In COM Object)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch09.html

 function NotifyEvent(AEvent: EventKind): HResult; stdcall;

 ...

 public

 procedure Initialize; override;

 destructor Destroy; override;

 ...

 end;

Event Subscription Registration and Removal

In order for an Add-In object, which implements the IEventSubscriber interface, to subscribe to events, the event

subscription must be registered. Event subscription registration and removal can be done through the

IEventPublisher type object. Reference to the IEventPublisher type object can be obtained through the

IStarUMLApplication element. The following Delphi Pascal example shows obtaining reference to

IStarUMLApplication and the IEventPublisher type object.

implementation

procedure AddInExample.Initialize;

begin

 inherited;

 StarUMLApp := CreateOleObject('StarUML.StarUMLApplication') as IStarUMLApplication;

 EventPub := StarUMLApp.EventPublisher;

end;

destructor AddInExample.Destroy;

begin

 EventPub := nil;

 StarUMLApp := nil;

 inherited;

end;

The IEventPublisher

interface provides the following methods for registration and removal of event subscription. The "ASubscriber"

argument for each method represents the actual Add-In object that implements the IEventSubscriber interface.

Method Description

Subscribe(ASubscriber: IEventSubscriber; AEvent:

EventKind)

Registers subscription to an event specified by the

AEvent argument.

SubscribeAll(ASubscriber: IEventSubscriber) Registers subscription to all events.

Unsubscribe(ASubscriber: IEventSubscriber; AEvent:

EventKind)

Removes subscription to an event specified by the AEvent

argument.

UnsubscribeAll(ASubscriber: IEventSubscriber) Removes subscription to all events.

Use the Subscribe

method if an Add-In object needs to subscribe to certain events only. For instance, for subscribing to two specific

events, call the Subscribe method for each event. Use the SubscribeAll method to subscribe to all events. In

general, the Subscribe and SubscribeAll methods are called by the IPlasticAddIn.InitializeAddIn method.

If an Add-In object no longer needs to subscribe to the registered events (e.g. when the object is terminated), all the

events registered must be unregistered. Use the Unsubscribe method if the subscription was registered by the

Subscribe method, and use the UnsubscribeAll method if the subscription was registered by the SubscribeAll

method. In general, the Unsubscribe and SubscribeAll methods are called by the

IStarUMLAddIn.FinalizeAddIn method.

The following example shows registration and removal of subscription to the EVK_ELEMENTS_ADDED and

EVK_ELEMENTS_DELETED events.

implementation

function AddInExample.InitializeAddIn: HResult;

begin

 EventPub.Subscribe(Self, EVK_ELEMENTS_ADDED);

 EventPub.Subscribe(Self, EVK_ELEMENTS_DELETED);

StarUML 5.0 Developer Guide (Writing Add-In COM Object)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch09.html

 EventPub.Subscribe(Self, EVK_ELEMENTS_DELETED);

 ...

 Result := S_OK;

end;

function AddInExample.FinalizeAddIn: HResult;

begin

 EventPub.Unsubscribe(Self, EVK_ELEMENTS_ADDED);

 EventPub.Unsubscribe(Self, EVK_ELEMENTS_DELETED);

 ...

 Result := S_OK;

end;

Acquiring Event Argument

When an event occurs, it is necessary to acquire the related arguments. For instance, when an event related to the

creation of a modeling element occurs (EVK_ELEMENTS_ADDED), it is necessary to identify which modeling

element is created. The IEventPublisher interface provides the following methods in respect of event arguments.

Method Description

GetEventArgModelCount (): Integer Returns the model element count related to the event.

GetEventArgModelAt(Index: Integer):

IModel

Returns reference to the (index)th model element related to the

event.

GetEventArgViewCount: Integer Returns the view element count related to the event.

GetEventArgViewAt(Index: Integer): IView Returns reference to the (index)th view element related to the event.

GetEventArgDocument: IDocument Returns reference to the document element related to the event.

GetEventArgUnit: IUMLUnitDocument Returns reference to the unit element related to the event.

Processing Events

When a subscribed event occurs, the Add-In needs to execute appropriate processes. Whenever a subscribed event

occurs, the StarUML™ application calls the NotifyEvent

method of the respective Add-In and passes the event kind as an argument. The event kind is passed as an

argument for the NotifyEvent

method because it is possible for an Add-In to subscribe to more than one event. Each Add-In needs to implements

the NotifyEvent method to arrive at a logic to execute various processes according to the event kinds.

The following example shows implementation of the NotifyEvent method. This example verifies the semantic

validity of the element connections when the association element (UMLAssociation) or the generalization element

(UMLGeneralization) is created in the StarUML™ application. (This example is a continuation of the examples

above. For definition of the Add-In object, see the examples above.)

implementation

function AddInExample.NotifyEvent(AEvent: EventKind): HResult;

var

 M: IModel;

 Assoc: IUMLAssociation;

 Gen: IUMLGeneralization;

 End1, End2: IUMLClassifier;

begin

 if AEvent = EVK_ELEMENTS_ADDED then

 begin

 if EventPub.GetEventArgModelCount = 1 then

 begin

 M := EventPub.GetEventArgModelAt(0);

 // Association

 if M.QueryInterface(IUMLAssociation, Assoc) = S_OK then

 begin

 End1 := Assoc.GetConnectionAt(0).Participant;

 End2 := Assoc.GetConnectionAt(1).Participant

 if End1.IsKindOf('UMLPackage') or End2.IsKindOf('UMLPackage') then

 ShowMessage('Packages cannot have associations.')

 ...

StarUML 5.0 Developer Guide (Writing Add-In COM Object)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch09.html

 end;

 // Generalization

 if M.QueryInterface(IUMLGeneralization, Gen) = S_OK then

 begin

 if Gen.Child.IsRoot then

 ShowMessage('Root elements cannot have parent elements.');

 if Gen.Parent.IsLeaf then

 ShowMessage('Leaf elements cannot have child elements.');

 end;

 end;

 end;

 Result := S_OK;

end;

�

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

Chapter 10. Extending Notation

This chapter gives an introduction of Notation Extension. It gives basic concepts of Notation Extension and simple

specification of language syntax for Notation Extension. For example, it shows how to add new sort diagram to take

advantage of Notation Extension.

Why Notation Extension?

Notation Extension is a extension concept for user to define and use user's own notation for UML model. StarUML

supports platform to operate the featrue of Notation Extension. Well, why Notation Extension is needed?

Profile supports iconic and decoration view but it can't express exactly in required form for notation.

For mapping ER-Diagram to UML, mapping ER model to UML model looks proper but mapping notation to UML

notation looks unnatural.

UML meta model is an enough data container to contain all kinds of modeling semantics. If UML tool can

extend its notation freely, it can play a meta-modeling tool role in all modeling area.

By expressing notation(form) in the same way as before but describing model with UML model, it gives to users

mutual supplement, efficiency, and compatibility between old area and UML area.

Notation Extension Language

Basic Syntax

Syntax of Notation Extension Language is similar to Scheme language(dialect of LISP). Basic unit is expression and

whole statement consists of one expression. Expression is composed of value or operation expression. Value means

real, integer, string, boolean, identifier. Operation expression starts with "(" and ends with ")". Operator and

operands(they describe another expressions) appear in parentheses. Operator and identifier are not case-sensitive.

Comment style follows the comment rule of C++ and Java. Comment uses "//" on one line and "/* */" on multiple

lines.

expr ::= flt | int | str | bool | nil | ident | "(" oper (expr)* ")" ;

First statement of Notation Extension Language is "notation" expression. Operator is "notation", and arguments are

"onarrange" and "ondraw" expressions. A "notation" expression corresponds to a "stereotype" in profile. The

"notation" expression describes how stereotype shape is shown. When stereotyped element is shown in diagram,

the expression is executed. First, "onarrange" expression executes argumented expressions to recalculate element

position . "ondraw" expression is executed to draw element after "onarrange" expression execution.

(notation

 (onarrange ...)

 (ondraw ...)

)

The followings are available argument expression for "onarrange" and "ondraw" expression.

sequence

if

for

set

logical, comparison operator

built-in function

sequence expression

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

"sequence" expression groups and executes arguments in order. The arguments of "sequence" expression are also

expression and the number of them is not limited.

(sequence expr1 expr2 ...)

The following example shows that one "sequence" expression groups 3 expressions.

(sequence

 (+ 10 20) // 10 + 20

 (- 20 30 40) // 20 - 30 - 40

 (/ 10 20) // 10 / 20

)

if expression

"if" expression represents conditional syntax. First argument is condition, second argument is executed if condition

is true, and third argument is executed if condition is not. Third argument appears optionally. If third argument is

omitted and condition is false, "if" expression doesn't execute anything.

(if condition-expr on-true-expr on-false-expr?)

The following example shows that expression increases "count" variable if "i" value is between 0 and 30, but

decreases "count" variable if not.

(if (or (<= i 0) (>= i 30)) // if (i <= 0 || i >= 30)

 (set count (+ count 1)) // count++;

 (set count (- count 1)) // else

) // count--;

for expression

"for" expression repeats expression while specified variable is from initial value to end value. First argument is a

variable name to be used for repetition. Second is initial value and third is end value. The last is expression to be

executed on each step of repetition.

(for identifier init-expr end-expr expr)

The following is example which prints 1 to 10 on the screen.

(for i 1 10 // for (int i = 1; i <= 10; i++)

 (textout 100 (+ 100 (* i 20)) // textout(100, 100+(i*20), i);

 i

)

)

set expression

"set" expression assigns variable to value. Variable declaration is not required. It is declared automatically and

bounded as global variable when it is used.

(set identifier value-expr)

The following example shows that it assigns a, b variables, concatenates a and b, and assigns result to c variable.

(set a 'My name is ') // a = "My name is ";

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

(set a 'My name is ') // a = "My name is ";

(set b 'foo') // b = "foo";

(set c (concat a b)) // c = a + b;

arthmetic, logical, comparison operator

Supported mathematical operators are "+", "-", "*", "/", and logical operators are "and", "or", "not". And it supports

"=", "!=", "<", "<=", ">", ">=" operators for comparison.

(+ 1 (/ 10 5) (- (* 2 3) 6)) // 1 + (10/5) + (2*3-6)

(and (< i 10) (not (= j 20))) // (i < 10) && (!(j == 20))

built-in function

Built-in functions supported on Notation Extension Language are grouped by the followings:

Mathematical functions

String functions

List functions

Model access functions

Graphic functions

Mathematical functions

The following is list of built-in functions related to mathematic.

Signature Description

(sin angle) returns the sine of the angle.

(cos angle) returns the cosine of the angle.

(tan angle) returns the tangent of the angle.

(trunc val) truncates a real-type value to an integer-type value. val is a

real-type expression.

(round val) returns an integer value that is the value of val rounded to the

nearest whole number. If val is exactly halfway between two

whole numbers, the result is always the even number.

String functions

The following is list of built-in functions related to string processing.

Signature Description

(concat str1 str2...) concatenates all argument strings to one string.

(trim str) removes leading and trailing spaces and control characters from

the given string.

(length str) returns the number of characters in argument string.

(tokenize str deli) returns the list of strings that results when a string is separated

by deli delimiter.

List functions

The following is list of built-in functions related to list processing.

Signature Description

(list val1 val2 ...) returns list which is composed of arguments.

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

(append lst lst) appends item to the end of list list.

(append lst item)

(itemat lst index) returns an item at index in list.

(itemcount lst) returns the number of items in argument list.

Mode access functions

The following is list of built-in functions related to model acess.

Signature Description

(mofattr elem attr) returns in strings the default type attribute values of modeling

elements as defined by arguments.

(mofsetattr elem attr val) assigns "val" value to "attr" attribute of modeling elements.

(mofref elem ref) returns the reference type attribute (object reference) values of

modeling elements as defined by arguments.

(mofcolat elem col at) returns the attribute value (object reference) of the "at" order

item in the reference collection of modeling elements as defined

by arguments.

(mofcolcount elem col) returns the count number of items in reference collection as

defined by arguments.

(constraintval elem name) returns constraint contained in the element.

(tagval elem tagset name) returns taggedvalue, whose type is primitive type, of element in

tagd efinition set.

(tagref elem tagset name) returns taggedvalue, whose type is reference, of element in tag

definition set.

(tagcolat elem tagset name

at)

returns item in taggedvalue(collectio type) of element in tag

definition set.

(tagcolcount elem tagset

name)

returns length of items in taggedvalue(collectio type) of element

in tag definition set.

Graphic functions

The following is list of built-in functions related to style.

Signature Description

(setpencolor color) set Color to change the color used to draw lines or outline

shapes. The way the color is used by the pen depends on the

Mode and Style properties.

Color can have one of the following values:

�

Value Meaning

clNone White

clAqua Aqua

clBlack Black

clBlue Blue

clCream Cream

clDkGray Dark Gray

clFuchsia Fuchsia

clGray Gray

clGreen Green

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

clGreen Green

clLime Lime green

clLtGray Light Gray

clMaroon Maroon

clMedGray Medium Gray

clMoneyGreen Mint green

clNavy Navy blue

clOlive Olive green

clPurple Purple

clRed Red clGrayText

clSilver Silver

clSkyBlue Sky blue

clTeal Teal

clWhite White

clYellow Yellow

(setpenstyle style) Use Style to draw a dotted or dashed line, or to omit the line

that appears as a frame around shapes.

Style can have one of the following values:

Value Meaning

psSolid A solid line.

psDash A line made up of a series of dashes.

psDot A line made up of a series of dots.

psDashDot A line made up of alternating dashes and

dots.

psDashDotDot A line made up of a series of dash-dot-dot

combinations.

psClear No line is drawn (used to omit the line around

shapes that draw an outline using the current

pen).

psInsideFrame A solid line, but one that may use a dithered

color if Width is greater than 1.

(setbrushcolor color) set the color of the brush. Color can have one of the color list

above.

(setbrushstyle style) bsSolid, bsClear, bsHorizontal, bsVertical, bsFDiagonal,

bsBDiagonal, bsCross, bsDiagCross

(setfontface font) set the typeface of the font.

(setfontcolor color) set the color of the font. Color can have one of the color list

above.

(setfontsize size) set size of the font.

(setfontstyle style) set the style of the font. Style is composed of the followings and

seperator is "|" character.

Value Meaning

fsBold The font is boldfaced.

fsItalic he font is italicized.

fsUnderline The font is underlined.

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

fsUnderline The font is underlined.

fsStrikeOut The font is displayed with a horizontal line

through it.

(setdefaultstyle) Restore the Pen, Brush, Font informations to the default value.

The following is list of built-in functions related to graphic.

Signature Description

(textheight str) Returns the height of a string in pixels, rendered in the current

font.

(textwidth str) Returns the width of a string rendered in the current font (in

pixels).

(textout x y str) Writes a string on the screen, starting at the point (X,Y).

(textbound x1 y1 x2 y2

yspace text clipping)

writes a string on area (x1, y1) to (x2, y2) of screen. yspace is

line space. if clipping is true, string bounded to area is written.

(textrect x1 y1 x2 y2 x y str) writes a string on area (x1, y1) to (x2, y2) of screen, starting at

the point (X,Y).

The following is list of built-in functions related to shape.

Signature Description

(rect x1 y1 x2 y2) Draws a rectangle defined by the points (X1,Y1) and (X2,Y2).

(filerect x1 y1 x2 y2) Fills the specified rectangle on the canvas using the current

brush.

(ellipse x1 y1 x2 y2) Draws the ellipse defined by a bounding rectangle on the screen.

(roundrect x1 y1 x2 y2 x3 y3) Draws a rectangle with rounded corners on the screen.

(arc x1 y1 x2 y2 x3 y3 x4 y4) draws an arc inside an ellipse bounded by the rectangle defined

by (X1,Y1) and (X2,Y2). The arc starts at the intersection of the

line drawn between the ellipse center ((X1+X2) / 2.0,(Y1+Y2) /

2.0) and the point (X3,Y3) and is drawn counterclockwise until it

reaches the intersection of the line drawn between the ellipse

center and the point (X4,Y4)

(pie x1 y1 x2 y2 x3 y3 x4 y4) draws a pie-shaped wedge on the image. The wedge is defined

by the ellipse bounded by the rectangle determined by the

points (X1, Y1) and X2, Y2). The section drawn is determined by

two lines radiating from the center of the ellipse through the

points (X3, Y3) and (X4, Y4)

(drawbitmap x y img

transparent)

renders the image specified by the parameter on the screen at

the location given by the coordinates (X, Y). Use transparent

argument to specify that the image be drawn transparently. Use

x2, y2 argument to stretch image.
(drawbitmap x1 y1 x2 y2 img

transparent)

(moveto x y) changes the current drawing position to the point (X,Y).

(lineto x y) draws a line on the canvas from pen position to the position

specified by X and Y, and sets the pen position to (X, Y).

(line x1 y1 x2 y2) draws a line on the canvas from (x1, y1) position to the position

specified by (x2, y2).

(pt x y) returns a Point structure from a pair of coordinates.

(polygon (pt x1 y1) (pt x2 y2)

...)

draws a series of lines on the canvas connecting the points

passed in and closing the shape by drawing a line from the last

point to the first point.

(polyline (pt x1 y1) (pt x2 y2)

...)

draws a series of lines on the canvas with the current pen,

connecting each of the points passed to it in Points.

(polybezier (pt x1 y1) (pt x2 draws a set of Bezier curves.

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

(polybezier (pt x1 y1) (pt x2

y2) ...)

draws a set of Bezier curves.

(ptatx index) It is available when current view element is edge element. it

returns x value of point structure at index of edge.

(ptaty index) It is available when current view element is edge element. it

returns y value of point structure at index of edge.

(ptcount) It is available when current view element is edge element. it

returns the number of points of edge.

(drawedge headOrTail

endStyle)

It is available when current view element is edge element. it

draws end of edge in argument style. Style is composed of the

followings and seperator is "|" character.

Value Shape

esStickArrow

esSolidArrow

esTriangle

esDiamond

esMiniDiamond

esArrowDiamond

esCrowFoot

esHalfStickArrow

esBar

esDoubleBar

esBelowCircle

esCircle

esRect

esFilledTriangle

esFilledDiamond

esMiniFilledDiamond

esArrowFilledDiamond

esFilledHalfStickArrow

esFilledCircle

esFilledRect

esMiniHalfDiamond

(drawobject elem) draws element in original style.

(arrangeobject elem) arranges element in original style.

Creating a New Type of Diagram

There are some preparations to utilize Notation Extension. First, profile is needed. It describes which stereotype it

applies Notation Extension to. Second, Notation Extension file(*.NXT) is needed. It describes how notation is drawn.

You should connect Notation Extension to stereotype in profile. Properties to be used in Notation Extension should

also be inserted as tagged value in profile. Let me introduce to you how to create ER-Diagram notations for

example of Notation Extension.

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

Profile Definition

Looking around elements in ER-Diagram, it consists of several elements (Table, Column, Relationship, etc.).

You should make stereotypes for table, column, relationship, etc. and apply stereotypes to UML models (Class,

Association, Attribute) to map ER models to UML models. These are described like the followings in profile. You add

<STEREOTYPE> sub element named "table" to <STEREOTYPELIST> element and assign <BASECLASS> element's

value as "UMLClass" to apply stereotype to "UMLClass" typed model. In order for the class stereotyped "table" to be

shown as ER notation, Notation Extension filename("table.nxt") should be specified to <NOTATOIN> element.

For "column" stereotype, Additional tagged values are required to indicate whether column is PK, FK, AK, or IK. So

tag definition set name("table" in this case) that define these tagged values are defined is described in

<RELATEDTAGDEFINITIONSET> element.

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

<RELATEDTAGDEFINITIONSET> element.

<PROFILE version="1.0">

 <HEADER>

 ...

 </HEADER>

 <BODY>

 <STEREOTYPELIST>

 <STEREOTYPE>

 <NAME>table</NAME>

 <BASECLASSES>

 <BASECLASS>UMLClass</BASECLASS>

 </BASECLASSES>

 <NOTATION>table.nxt</NOTATION>

 </STEREOTYPE>

 <STEREOTYPE>

 <NAME>column</NAME>

 <BASECLASSES>

 <BASECLASS>UMLAttribute</BASECLASS>

 <RELATEDTAGDEFINITIONSET>table</RELATEDTAGDEFINITIONSET>

 </BASECLASSES>

 </STEREOTYPE>

 ...

 </STEREOTYPELIST>

Tag definition set is described in <TAGDEFINITIONSET> element of <TAGDEFINITIONSETLIST> and

<TAGDEFINITIONSET> element is composed of <TAGDEFINITION> elements that describe tagged value's

properties(name, type, and default value) added for column stereotype. In the following example, tagged values to

Identify PK and FK are added, each tagged value's type is boolean, and each default value is false. (it means that

every column is neither primary key nor foreign key at the first time after construction)

 ...

 </STEREOTYPELIST>

 <TAGDEFINITIONSETLIST>

 <TAGDEFINITIONSET>

 <NAME>column</NAME>

 <BASECLASSES>

 <BASECLASS>UMLAttribute</BASECLASS>

 </BASECLASSES>

 <TAGDEFINITIONLIST>

 ...

 <TAGDEFINITION lock="False">

 <NAME>PK</NAME>

 <TAGTYPE>Boolean</TAGTYPE>

 <DEFAULTDATAVALUE>false</DEFAULTDATAVALUE>

 </TAGDEFINITION>

 <TAGDEFINITION lock="False">

 <NAME>FK</NAME>

 <TAGTYPE>Boolean</TAGTYPE>

 <DEFAULTDATAVALUE>false</DEFAULTDATAVALUE>

 </TAGDEFINITION>

 ...

 </TAGDEFINITIONLIST>

 </TAGDEFINITIONSET>

 </TAGDEFINITIONSETLIST>

To select diagram that shows stereotypes after definition of stereotypes, define new diagram named "ER Diagram"

to <DIAGRAMTYPE> element in <DIAGRAMTYPELIST> element, describe <BASEDIAGRAM> element's value as

"ClassDiagram" for diagram to be based on class diagram, and describe pallette reference name("ERD(IE)") to

<AVALIABLEPALLETTE> element.

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

 <DIAGRAMTYPELIST>

 <DIAGRAMTYPE>

 <NAME>ER(IE) Diagram</NAME>

 <DISPLAYNAME>ER(IE) Diagram</DISPLAYNAME>

 <BASEDIAGRAM>ClassDiagram</BASEDIAGRAM>

 <ICON>DataModelDiagram.bmp</ICON>

 <AVAILABLEPALETTELIST>

 <AVAILABLEPALETTE>ERD(IE)</AVAILABLEPALETTE>

 </AVAILABLEPALETTELIST>

 </DIAGRAMTYPE>

 </DIAGRAMTYPELIST>

The pallette informations are described in <PALLETTE> element. <PALLETTE> element is list that has reference of

pallete button item.The detail informations for pallette button item are described to <ELEMENTPROTOTYPE>

element. <NAME> element describes the element's name to be created, <DISPLAYNAME> and <ICON> elements

describes the button item's name and image file name on pallette, <DRAGTYPE> element means whether mouse

action style is like rectangle or edge style, <BASEELEMENT> and <STEREOTYPENAME> elements mean that created

element is "Class" element and the element's stereotype is assigned to "table". To draw element by notation

extension at once after element creation, <SHOWEXTENSION> element's value should be set to true.

 <PALETTELIST>

 <PALETTE>

 <NAME>ERD(IE)</NAME>

 <DISPLAYNAME>ERD(IE) Diagram</DISPLAYNAME>

 <PALETTEITEMLIST>

 <PALETTEITEM>Table</PALETTEITEM>

 <PALETTEITEM>identifying</PALETTEITEM>

 <PALETTEITEM>non-identifying</PALETTEITEM>

 </PALETTEITEMLIST>

 </PALETTE>

 </PALETTELIST>

 <ELEMENTPROTOTYPELIST>

 <ELEMENTPROTOTYPE>

 <NAME>Table</NAME>

 <DISPLAYNAME>Table</DISPLAYNAME>

 <ICON>Table.bmp</ICON>

 <DRAGTYPE>Rect</DRAGTYPE>

 <BASEELEMENT>Class</BASEELEMENT>

 <STEREOTYPENAME>table</STEREOTYPENAME>

 <SHOWEXTENDEDNOTATION>True</SHOWEXTENDEDNOTATION>

 </ELEMENTPROTOTYPE>

 ...

 <ELEMENTPROTOTYPELIST>

 ...

Writing Notation Extension

Though data modeling is available by defining profile only, Notation Extension file(*.nxt) that is described to

profile's <NOTATION> element should be written in order that models are shown in ER notation.

The following is summary of "table.nxt" file that draw notation for "table" stereotype. "onarrange" expression

configures status required to draw "table". "ondraw" expression draws parts of table name, PK column, and other

columns.

(notation

 (onarrange ...)

 (ondraw

 // draw name part ...

 // draw PK column part ...

 // draw other column part ...

)

)

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

)

The first part (name compartment) is that variables for drawing are configured and name string got from model is

written starting at the point (x, y).

(set x left)

(set y top)

...

(set name (mofattr model 'Name'))

(textout x y name)

...

Here, "left" and "top" variables are reserved variables. They take values from StarUML platform on each time of

executing Notation Extension, and may return values to StarUML platform again on end time of execution Notation

Extension. The followings behaving like this are reserved variables.

Variable

View

element

Returns to StarUML

platform Description

view Node,Edge not return target view to be drawn

model Node,Edge not return model of target view to be drawn

left Node return target view's left-most position

top Node return target view's top-most position

right Node return target view's right-most position

bottom Node return target view's bottom-most position

width Node return target view's width

height Node return target view's height

minwidth Node not return minimum width of target view

minheight Node not return minimum height of target view

points Edge not return point collection of target edge view

head Edge not return head element of target edge view

tail Edge not return tail element of target edge view

The following checks whether current table is dependent on others and draws property table shape. Repeating

current table(class)'s association, if association's head end connects to current table, it means table is dependent,

table is drawn as rounded rectangle. Unless, table is drawn as rectangle and it means that table is independent on

others.

(set isSuperType true)

(set c (mofcolcount model 'Associations'))

(for i 0 (- c 1)

 (sequence

 (set assocEnd (mofcolat model 'Associations' i))

 (if (= assocEnd (mofcolat (mofref assocEnd 'Association') 'Connections' 1))

 (set isSuperType false)

 nil)))

...

// outline

(setdefaultstyle)

(if isSuperType

 (rect x y right bottom)

 (roundrect x y right bottom 10 10))

When displaying columns, repeating all the columns that table contains, elements whose PK tagged value is true are

drawn over the other columns, PK icon is drawn on the left side and column name is drawn on the right side.

...

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

...

(for i 0 (- (mofColCount model 'Attributes') 1)

 (sequence

 // select i-th column

 (set attr (mofColAt model 'Attributes' i))

 ...

 // column is PK?

 (if (tagVal attr 'ERD' 'column' 'PK')

 (sequence

 ...

 (set attrName (mofAttr attr 'Name'))

 ...

 (drawbitmap x y 'primarykey.bmp' true)

 (textout (+ x 16) y attrName)

 (setdefaultstyle)

 ...))))

...

(line left y right y)

And so repeating all the columns again, elements whose PK tagged value is not true are drawn with column icon

and name under the PK columns.

...

(for i 0 (- (mofColCount model 'Attributes') 1)

 (sequence

 // select i-th column

 (set attr (mofColAt model 'Attributes' i))

 (set keys '')

 ...

 // column is not PK?

 (if (= (tagVal attr 'ERD' 'column' 'PK') false)

 (sequence

 ...

 (set attrName (mofAttr attr 'Name'))

 ...

 // draw column

 (drawbitmap x y 'column.bmp' true))

 (textout (+ x 16) y attrName)

 (setdefaultstyle)

 ...))))

Installing and Using Notation Extension

The Notation Extension file must exist in path that is described in profile. In this case of "table" stereotype, because

path is not described and file name is only described, put profile and notation extension file in same folder.

If you have done all, do the following steps for installation.

Create new module folder in staruml/modules folder.1.

Put profile, notation extension file, and related image files into the module folder.2.

Restart StarUML and installation is done.3.

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

�

Reference

Download complete notation extension file, profile, etc. for ER-Diagram from module downloads of StarUML

official homepage of StarUML and install according to above steps.

The following is how to take advantage of notation extension.

Start StarUML.

�

1.

Click [Model] -> [Profiles...] menu.

�

2.

[Profile Manager] dialog box appears and select Data Modeling profile in [Available profiles] listbox and

click [Include] button.

�

3.

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

�

Select package that is going to contain ER-Diagram on [Model Explorer], and click [Add Diagram] ->

[ER(IE) Diagram] popup menu.

�

4.

ER-Diagram appears on [Main] window and pallette for ER modeling is shown on [toolbox].5.

Use notation on pallette and do modeling. Click button and set tagged values on [Tagged Value Editor]'s

[ERD] tab to configure column property.

6.

StarUML 5.0 Developer Guide (Extending Notation)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch10.html

Write ER Modeling.7.

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

Chapter 11. Writing Templates

This chapter gives an introduction of composition element used for generating artifacts like Microsoft Word,

Microsoft Excel, Microsoft PowerPoint, Code. It shows how user defines, registers, and distributes his own template

by example.

Component elements of Template

StatUML Generator Template consists of two area. one is style area that defines document form style and the other

is command area defining which model element the generator get from UML model. To represent command in

command area, MS Office templates(Word, Excel, PowerPoint) use MS Office's comment and code template uses

text surrounded with special characters. Command area contains commands like iteration, comparison, evaluation,

drawing for UML model. Commands of each template command are different slightly but common commands like

the followings are used.

REPEAT ~ ENDREPEAT

IF ~ ENDIF

DISPLAY

SCRIPT

REPEAT command

REPEAT is command that iterates model satisfying arguments. Repeating style existing between REPEAT and

ENDREPEAT command, generator writes the style to generated document at each time. REPEAT command has the

following four arguments.

Argument Description Remarks

Pathname Repeats the elements existing below Pathname. Optional

FilterType Repeats the element whose type is FilterType. Optional

CollectionName Repeats elements in collections named by

CollectionName of elements that are selected by

Pathname and FilterType.

Optional

Condition Repeats elements that satisfy Condition. Optional

The first argument "Pathname" specifies the starting point of UML model repetition. It is in the form of path name

separated by "::" string. The element's pathname is shown in status bar. There are two sort of Pathname (absolute

and relative). Absolute pathname starts with "::". For example, "::A" means element named "B" under top of

project, "A" means element named "A" under current element. Also "{R}" string can be appear in front of

pathname string. "{R}" string means that it iterates recursively all the elements existing in all the sub path under

pathname. If pathname is omitted, it repeats element under last path selected by command.

The second argument "FilterType" means repeat element type. If argument value is "UMLClass", it iterates only

elements whose type is "UMLClass". If argument is omitted, it iterates all element regardless of type.

The third argument "CollectionName" means that it iterates elements in selected element's collection named by

CollectionName. For example, first argument is "::A", second argument is "UMLClass", and third argument is

"OwnedElements", it means that it iterates elements in "OwnedElements" collection of typed "UMLClass" elements

existing under "::A" path.

The fourth argument "Condition" means condition for repeat element to satisfy. If argument value is

"current().StereotypeName == 'boundary'", it iterates elements that selected element's stereotype is "boundary".

The argument default value is true. If the argument is omitted, it do repetition for all element regardless of

condition.

Reference

current() is Built-in function to be used in Generator. Refer to "Element composing template > Built-in

Functions" for details.

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

Functions" for details.

Variation of command in WORD template.

Not only ENDREPEAT but also ENDREPEATTR corresonds to REPEAT command. REPEAT and ENDREPTR are

used for repetition of table row. For example, to make list of classes, put REPEAT command in the first cell of

row, put ENDREPTR command in the last cell of row. And so it makes table's rows iterating elements.

IF command

In case of satisfying argument condition, IF command displays styles existing between IF and ENDIF commands. IF

command has the following arguments. The argument value is expressed in JScript.

Argument Description Remarks

Condition condition to be satisfying Mandatory

Reference

IF command is not available in Excel and Powerpoint Templates. (to be implemented in the future)

Variation of command in WORD template.

There exists command variation "IF..ENDIFTR" for IF command. It shows table's row in the only case that

condition is true. Argument settings are equal to "REPEAT..ENDREPTR"case. Put IF command in the first cell of

row and put ENDIFTR command in the last cell of row.

DISPLAY command

DISPLAY command print value of model element. DISPLAY command has the following arguments.

Argument Description Remarks

Pathname Path of element to select Optional

Expression Expression for value to be written Optional

The first argument is the pathname that the second argument refers. The pathname is expressed in the form of

absolute and relative path. If pathname is omitted, current path is the last path selected by previous command.

The second argument is expression for value to be written. If first argument is "::A" and second argument is

"current().Documentation", it selects element named "A" under top project and writes the element's property value

named "Documentation".

Variation of command in WORD template.

In WORD template, DISPLAY command usage is slightly different. If the type of element selected by the first

argument is UMLDiagram and second argument is omitted, Selected diagram image is inserted to generated

document.

In WORD template, DISPLAY command has third argument unlike in the other templates. The third argument

means whether written value is marked as index. It is required to generate the list of indices automatically. If

the argument is set to "I", it marks word written by DISPLAY as index.

Variation of command in POWERPOINT template.

In POWERPOINT template, two kinds of DISPLAY command exist (DISPLAY-TEXT and DISPLAY-IMAGE).

DISPLAY-TEXT command is explicitly used to write text and DISPLAY-IMAGE command is explicitly used to

draw diagram image. The argument settings are equal to DISPLAY command's. For DISPLAY-IMAGE

command, the first argument should be pathname to select diagram and the second argument sholud be

omitted.

SCRIPT command

Use SCRIPT command to express something except common commands. The argument is composed of JScript

statements. SCRIPT command's argument unlike the other argument expression has several

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

statements. SCRIPT command's argument unlike the other argument expression has several

expression(statements).

Built-In Functions

The followings are available Built-In functions in command.

Signature Description Target template

StarUMLApp():

IStarUMLApplication

Returns StarUML Application COM object. WORD,EXCEL,

POWERPOINT

StarUMLProject():

IUMLProject

Returns COM object on top of project of

StarUML Application.

TEXT

MSWord():

WordApplication

Returns Word Application COM object. WORD

MSExcel():

ExcelApplication

Returns Excel Application COM object. EXCEL

MSPPT():

PowerpointApplication

Returns Powerpoint Application COM object. POWERPOINT

findByFullpath(Path):

IElement

Returns element existing at argument path. WORD,EXCEL,

POWERPOINT,TEXT

findByLocalpath(RootElem,

Path): IElement

Returns element existing at relative path on

RootElem.

WORD,EXCEL,

POWERPOINT,TEXT

itemCount(RootElem,

CollectionName): int

Returns count of elements in collection named

as CollectionName.

WORD,EXCEL,

POWERPOINT,TEXT

item(RootElem,

CollectionName, Index):

IElement

Returns element existing at index in collection

named as ColletionName.

WORD,EXCEL,

POWERPOINT,TEXT

attr(Elem, AttrName):

Value

Returns attribute or reference value named as

AttrName of Elem element.

WORD,EXCEL,

POWERPOINT,TEXT

current(): IElement Returns the last selected element. WORD,EXCEL,

POWERPOINT,TEXT

pos(): int Returns the index of current element in

container element.

WORD,EXCEL,

POWERPOINT

createFile(path):

TextStream

Creates file at argument path and returns file

object.

TEXT

deleteFile(path) Deletes file existing at argument path. TEXT

createFolder(path): Folder Creates folder at argument path and returns

folder object.

TEXT

deleteFolder (path) Deletes folder existing at argument path. TEXT

fileExists(path): Boolean Return whether file exists at argument path. TEXT

folderExists(path):

Boolean

Return whether folder exists at argument path. TEXT

fileBegin(path) Creates file at argument path and all the

outputs by commands will be printed to the file

while fileEnd is not called.

TEXT

fileEnd(path) Corresponds to fileBegin function and stops

printing to file assigned by fileBegin.

TEXT

getTarget(path): String Returns configured output path on StarUML

Generator UI by user.

TEXT

Writing a Text-Based Template

Before writing text template, the following steps should be executed.

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

Download sample document(template-text.zip) for generating text template from downloads/templates of

StarUML official hompage.

1.

Create new folder named "template-text" and unzip downloaded file under the folder.2.

Run StarUML.3.

Click [Tools] -> [StarUML Generator...] menu.4.

Select "Default Code Template" template on [Select templates for generator] page.5.

Click [Clone Template] button, specify template name and path to be stored, and click [OK] button.6.

Select new created template in [List of templates], click [Open Template] button, and new text template

will be opened on the editor screen.

7.

Make commands as following on the editor screen.8.

The commands described in "Element composing template" paragraphs are represented differently in each

template. The command in text template is surrounded by "<@" and "@>". Command name appears next to "<@",

first argument appears after one space character, the other arguments separated by ";" appear. Texts existing out

of "<@" and "@>" are treated as style, and they are printed to generated document the way they are.

To iterate "UMLClass" typed element existing in all sub path under "::Design Model" path, do as following.

<@REPEAT {R}::Design Model;UMLClass;;@>

...

<@ENDREPEAT@>

You want to print java class definition from model information. Between REPEAT and ENDREPEAT command, place

text like "class", "{", "}" for java style and DISPLAY command for class name, documentation as following.

<@REPEAT {R}::Design Model;UMLClass;;@>

class <@DISPLAY ;current().Name@> {

 // <@DISPLAY ;current().Documentation@>

}

<@ENDREPEAT@>

In text template, there is shortcut-command similar to DISPLAY command but it hasn't path argument. It is in the

form of "<@=expression@>" and uses only second argument of DISPLAY command. If above template is expressed

in term of "<@= .. @>", it is like following.

<@REPEAT {R}::Design Model;UMLClass;;@>

class <@=current().Name@> {

 // <@=current().Documentation@>

}

<@ENDREPEAT@>

Take advantage of IF and ENDIF commands and you can print something selectively. In the following case, class

documentation is shown if any.

<@REPEAT {R}::Design Model;UMLClass;;@>

class <@DISPLAY ;current().Name@> {

<@IF current().Documentation != ""@>

 // <@DISPLAY ;current().Documentation@>

<@ENDIF@>

}

<@ENDREPEAT@>

Expression used as command argument is expressed in JScript. At this time, Built-In function can be used. If you

want to use other function except built-in functions, define new function on SCRIPT command and call new function

at other command argument. The following example defines myfunc function and displays the returned value after

calling myfunc function.

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

calling myfunc function.

<@SCRIPT

function myfunc(a, b) {

 ...

}

@>

<@DISPLAY ;myfunc(1, 2)@>

SCRIPT command can be used in other cases. The following shows other example of SCRIPT command, it stores

each class to file named by self-name.

<@REPEAT {R}::Design Model;UMLClass;;@>

<@SCRIPT fileBegin(getTarget()+"\\"+current().Name+".java"); @>

class <@DISPLAY ;current().Name@> {

 // <@DISPLAY ;current().Documentation@>

}

<@SCRIPT fileEnd(); @>

<@ENDREPEAT@>

If editing template is done for all the commands and document is stored, you can generate codes utilizing your own

text template. Refer to "Generating by template" chapter for the detailed steps.

Writing a Word Template

Before writing WORD template, the following steps should be executed.

Download sample document(template-word.zip) generating WORD document from downloads/templates of

StarUML official hompage.

1.

Create new folder named "template-word" and unzip downloaded file under the folder.2.

Run StarUML.3.

Click [Tools] -> [StarUML Generator...] menu.4.

Select "Default Word Template" template on [Select templates for generator] page.5.

Click [Clone Template] button, specify template name and path to be stored, and click [OK] button.6.

Select new created template in [List of templates], click [Open Template] button, and new WORD

template will be opened on the editor screen.

7.

Make commands as following on the MS Word application.8.

In WORD template, command area is expressed in WORD's comment. Command name is specified at comment

author property and arguments are specified at comment text. Argument separator is ";" character. all areas but

comment areas are regarded as style area and they are printed to generated document the way they are.

To iterate "UMLClass" typed element existing in all sub path under "::Design Model" path, copy [REPEAT] and

[ENDREPEAT] comment, paste them. Select [REPEAT] comment and click WORD's comment inspect button to

set REPEAT command argument. Inspector Window appears, input [REPEAT] comment's property as following.

Remarks

Comment author property is not set by user. Therefore copy existing comment in current template and paste

it position where you want.

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

Copy [DISPLAY] comment and paste it between [REPEAT] and [ENDREPEAT] comment, fill argument value in

comment text like the following. Repeating all usecases under "::Use case Model", it prints its name and

documentation.

To do something in the only case of satisfying special condition, make [IF] and [ENDIF] comment as following.

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

The combination of [REPEAT] and [IF] comment is replaceable by one [REPEAT] comment. Move [IF]

command's condition argument to [REPEAT] command's one and delete [IF] and [ENDIF] commands. It does

equal the action.

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

Like other templates, WORD template can execute JScript statements with SCRIPT command. If you want to print

result value evaluated by JScript, fill JScript statements that has variable assignment statement into [SCRIPT]

comment's text and place variable in [DISPLAY] command's argument.

In WORD template, You can iterate special row of table. To do this, use [REPEAT] and [ENDREPTR] command.

The arguments are same in the case of [REPEAT] and [ENDREPEAT]. But [REPEAT] comment should be placed in

the first cell of row and [ENDREPTR]

comment should be placed in the last cell of row. The following is example that generates table with Usecase's

name and documentation.

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

If WORD template editing is done, store the template document. Then you can generate word document from your

own WORD template. Refer to "Generating by template" chapter for the detailed steps.

Writing an Excel Template

Before writing EXCEL template, the following steps should be executed.

Download sample document(template-excel.zip) generating EXCEL document from downloads/templates of

StarUML official hompage.

1.

Create new folder named "template-excel" and unzip downloaded file under the folder.2.

Run StarUML.3.

Click [Tools] -> [StarUML Generator...] menu.4.

Select "Default Excel Template" template on [Select templates for generator] page.5.

Click [Clone Template] button, specify template name and path to be stored, and click [OK] button.6.

Select new created template in [List of templates], click [Open Template] button, and new EXCEL

template will be opened on the editor screen.

7.

Make commands as following on the MS Excel application.8.

In EXCEL template, command area is expressed in EXCEL's comment. Command name and arguments are specified

at comment text property. Comment text is composed of command name and arguments sequentially. Name and

arguments in comment text is separated by ";" character. all areas but comment areas are regarded as style area

and they are printed to generated document the way they are.

EXCEL template can analyze and assess model information by utilizing EXCEL's feature (statistics, chart). This

paragraph shows how to extract numerical value related to class from model and make a graph of it.

To make data for statistics, you need to iterate all the classes in the model by using REPEAT command. Place

REPEAT and ENDREPEAT command at the start and end cells of target row.

Notice

In EXCEL template, REPEAT command repeats for only row and not for column.

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

And insert DISPLAY commands that print class name, the number of attributes, the number of operations, the

number of associations, between REPEAT and ENDREPEAT commands as following.

To make a graph of information for classes, insert EXCEL chart here and select attribute, operation, and association

count as source data.

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

If EXCEL template editing is done, store the template document. Then you can generate EXCEL document from

your own EXCEL template. Refer to "Generating by template" chapter for the detailed steps. The following is result

generated automatically from model information.

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

Writing a PowerPoint Template

Before writing POWERPOINT template, the following steps should be executed.

Download sample document(template-powerpoint.zip) generating POWERPOINT document from

downloads/templates of StarUML official hompage.

1.

Create new folder named "template-powerpoint" and unzip downloaded file under the folder.2.

Run StarUML.3.

Click [Tools] -> [StarUML Generator...] menu.4.

Select "Default Powerpoint Template" template on [Select templates for generator] page.5.

Click [Clone Template] button, specify template name and path to be stored, and click [OK] button.6.

Select new created template in [List of templates], click [Open Template] button, and new text template

will be opened on the editor screen.

7.

Make commands as following on the MS Powerpoint application.8.

In POWERPOINT template, command area is expressed in POWERPOINT's comment. Command name is surrounded

by "<<" and ">>" at the first line of comment text and arguments are specified at the second line of comment text.

The separator among the arguments is ";" character. all areas but comment areas are regarded as style area and

they are printed to generated document the way they are.

For example, let me introduce how to write POWERPOINT template that generates slides consisting of diagrams and

documentations of diagrams. First of all to place a diagram in a slide, insert comment at left-top corner of slide and

set comment text as following. At this time you must not insert ENDREPEAT comment. The reason will be explained

later.

Notice

Before writing POWERPOINT template, REPEAT command repeats slide but not anything except slide.

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

Next, To print diagram name as slide title, insert textbox and DISPLAY-TEXT comment, and input text as following.

And insert "$$" string into textbox for DISPLAY-TEXT command to know where to print text. DISPLAY-... command

prints for the only time when text or image box contain boundary of the command exactly. Therefore you must

place DISPLAY command in boundary of text or image box.

To draw diagram in the middle of slide, insert textbox and resize it. Also insert DISPLAY-IMAGE command, place it

in the textbox, and input text as following.

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

To print diagram documentation at the bottom of slide, insert DISPLAY-TEXT command and textbox, set comment

text as following.

Last of all to mark boundary of repetition, insert ENDREPEAT command at the bottom of slide. The reason inserting

ENDREPAT last of all is that in POWERPOINT template generator's interpretation order is not depend on position of

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

ENDREPAT last of all is that in POWERPOINT template generator's interpretation order is not depend on position of

comment but creation order of comment. Command is not executed because it is higher position than other but

executed because it creation is prior to other. If you insert REPEAT, ENDREPEAT, DISPLAY-TEXT in order, generator

interprets there exists no command between REPEAT and ENDREPEAT. To repeat other commands by REPEAT

command, you must create REPEAT command, target ones of repetition, and ENDREPEAT one in order.

If POWERPOINT template editing is done, store the template document. Then you can generate powerpoint

document from your own POWERPOINT template. Refer to "Generating by template" chapter for the detailed steps.

Registering Templates

User can register his own template document to generator.

Click [Register Template] button on the [Select templates for generation] page.1.

If [Register Template] dialog appear, click button and select template description file's path.2.

Input template information on [Properties:] window, click [OK] button and registration is done.3.

Basic Information

Set information for template name, group, category, and description.

Item Description

Template Name Specifies target template name.

Group Specifies group containing target template.

Category Specifies template category under group.

Description Specifies description for template.

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

Detail Information

Set detail information for template.

Item Description

Document Type Specifies type of document. Select one of DOCUMENT, REPORT,

CODE.

Format Specifies result document format.

Version Specifies version information of template.

Related Profile Specifies profile related to template.

Related Approach Specifies approach related to template.

Translator Type Specifies type of generator. One of the followings is available.

Value Meaning

WORD word document generator

EXCEL excel document generator

POWERPOINT Powerpoint document generator

TEXT code generator

COM COM-based generator defined by user

SCRIPT Script-based generator defined by user

EXE Executable file-typed generator made by user

Translator Specifies generator file name. It is available for user-defined

generator.

Example Specifies sample model file name that template applies to.

Parameters Specifies required parameters.

Related files Specifies related files for generation.

Parameters

Click button on parameters property.1.

If [Parameters] dialog appears, click button to insert new parameter, click button to delete

parameter.

2.

If [New Parameter] dialog appears, fill parameter name, type, and default value, and click [OK] button.3.

Set parameters for each translator type as following.

Item Type Translator type Description

TemplateFile FILENAME or STRING WORD,EXCEL,

POWERPOINT

Specifies

template

document

file name.

OutputFile FILENAME or STRING WORD,EXCEL,

POWERPOINT,

TEXT

Specifies

result

document

file name.

Keep Comment BOOLEAN WORD,EXCEL,

POWERPOINT

Specifies

whether

result

document

contains

command

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

command

information.

ShowGenerationProcess BOOLEAN WORD,EXCEL,

POWERPOINT

Specifies

whether it

shows

progress on

MS Office. If

the value is

set to true,

generation

performance

may be

slowed.

Normal Generation BOOLEAN WORD Specifies

starting

target path

for

generation.

If it is set to

false, the

starting

element for

generation

is selected

element on

the

StarUML.

Generate Index BOOLEAN WORD Specifies

whether

indices is

generated.

intermediate STRING TEXT Specifies

whether

intermediate

files for

generation

are

generated.

target STRING TEXT Specifies

folder path

that

contains

generated

code files.

Reference

Setting parameters, you can use environment constants supported by StarUML Generator as following.

Name Description

$PATH$ means folder path which template and template description

file exist in.

$GROUP$ means value of group property of template.

$CATEGORY$ means value of category property of template.

$NAME$ means template name

$TARGET$ means folder path that user select on [Generator] dialog.

About managing registered template, refer to "Generating by Template" paragraph in User Guide "Chapter7.

Generating Codes and Templates".

StarUML 5.0 Developer Guide (Writing Templates)

http://staruml.sourceforge.net/docs/developer-guide(en)/ch11.html

Generating Codes and Templates".

Making a Template Distribution Package

Template is installed under "staruml-generator" folder. All the templates and batch tasks exist in "templates" folder

under "staruml-generator" folder. Generally All the resource files related to one template exist in one folder. The

folder must be right under "templates" folder. A template is composed of template description file (*.tdf) and

template document (*.doc, *.ppt, *.xls, *.cot, etc.). The template description file contains the configurations at

user guide "chatpter7.Generating Codes and Documents > Registering template". Batch task is described to batch

task file. Batch task file is with ".btf" in "batches" folder under "staruml-generator" folder. The following is the

summary of file extensions.

File extension name description

BTF contains batch task list, parameters for each task.

TDF contains template information (name, type, template file name,

parameters, etc.)

DOC, DOT contains commands and style information for word template

XLS, XLT contains commands and style information for excel template

PPT, POT contains commands and style information for powerpoint

template

COT contains commands and style information for code template

Folder structure for generator

The folder structure for generator is composed as following.

staruml-generator\

 templates\

 template1\

 template1.tdf

 template1.doc

 template2\

 ...

 batches\

 batch1.btf

 ...

Installing and removing template

To install template is very simple. Copy folder (under "staruml-generator\templates" folder) that contains template

to be distributed, and paste it under "staruml-generator\templates" folder in target computer. Then the installation

is complete.

To remove template is also very simple. Remove the folder that has the template you want to remove.

Packaging template

Folder structure is available under "staruml-generator\templates" folder. Therefore you can arrange templates

without changing batch list and template information. It makes you easy to manage and distribute templates. For

example, you can collect several template folders under one folder, compress them into a archive file like zip, and

distribute it to some computer. What the receiver should do to install is only to extract the file under

"staruml-generator\templates" folder. Installing and removing batch task)

To install batch task is very simple. Before installing batch, install templates used in batch task. Next, copy batch

task file(*.btf) under "staruml-generator\batches" folder and paste it under "staruml-generator\batches" folder in

target computer. Then the installation is complete.

To remove batch task is also very simple. Remove the batch task file(*.btf) you want to remove.

