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This paper addresses the problem of determining optimal booking policies for multiple fare classes that share the same 
seating pool on one leg of an airline flight when seats are booked in a nested hshion and when lower fare classes book 
before higher ones. U'e show that a fixed-limit booking policy that maximizes expected revenue can be characterized by 
a simple set of conditions on the subdiferential of the expected revenue function. These conditions are appropriate for 
either the discrete or continuous demand cases. These conditions are further simplified to a set of conditions that relate 
the probability distributions of demand for the various fare classes to their respective fares. The latter conditions are 
guaranteed to have a solution when the joint probabilit) distribution of demand is continuous. Characterization of the 
problem as a series of monotone optimal stopping problems proves optimalit) of the fixed-limit polic) over all admissible 
policies. '4 comparison is made of the optimal solutions with the approximatt solutions obtained by P. Belobaba using 
the expected marginal seat revenue (EMSR) method. 

0ne of the obvious impacts of the deregulation of of the booking process in the long lead-time before 
North American airlines has been increased flight departure. 

price competition and the resulting proliferation of Prior work on this problem has tended to fall into 
discount fare booking classes. While this has had the one of two categories. First, attempts have been made 
expected effect of greatly expanded demand for air to encompass some or all of the above-mentioned 
travel, it has presented the airlines with a significant complications with mathematical programming and/ 
tactical planning problen1- that of determining book- or network models (Mayer 1976, Glover et al. 1982, 
ing policies that result in optimal allocations of seats Alstrup et al. 1986, Wollmer 1986, 1987, Dror. 
among the various fare classes. What is sought is the Trudeau and Ladany 1988). Second, elements of the 
best tradeoff between the revenue gained through problem have been studied in isolation under restric- 
greater demand for discount seats against revenues tive assumptions (Littlewood 1972. Bhatia and Parekh 
lost when full-fare reservations requests must be 1973, Richter 1982, Belobaba 1987, Brumelle et al. 
turned away because of prior discount seat sales. 1990. Cursy 1990. Wollmer 1992). These studies have 

This problem is made more difficult by the tendency produced easy to apply rules that provide some insight 
of discount fare reservations to anive before full-fare into the nature of good solutions. Such rules are 
ones. This occurs because of the nature of the cus- suboptimal when viewed in the context of the overall 
tomers for the respective classes (leisure travelers in problem, but they can point the way to useful approx- 
the discount classes. business travelers in full fare) and imation methods. The present paper falls into the 
because of early booking restrictions placed on second categos1 . 
the discount classes. Thus, decisions about limits to This paper deals with the airline seat allocation 
place on the number of discount fare bookings proble~n when multiple fare classes are booked into a 
must often be made before any full-fare demand is common scating pool in the aircraft. The following 
observed. Further con~plications are introduced by assumptions are made: 
factors such as multiple-flight passenger itineraries, 
interactions with other flights, cancellation and over- 1 .  Single fligl~t leg: Bookings are made on the basis 
booking considerations, and the dynamic nature of a single departure and landing. No allowance is 

Sl( / l i ( ' (~ l  (./(I.S.S!/~(.NIIO)?S: Decision analysis. applications: stochastic. integer capacity allocation. Transportation, airline seat i n ~ e n t o r ,  control. bield 
management. 
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made for the possibility that bookings may be part 
of larger trip itineraries. 

2. Independent demands: The demands for the differ- 
ent fare classes are stochastically independent. 

3. Low before high demands: The lowest fare reser- 
vations requests anive first, followed by the next 
lowest, etc. 

4. 	No cancellations: Cancellations, no-shows and 
overbooking are not considered. 

5. 	Limited information: The decision to close a fare 
class is based only on the number of current 
bookings. 

6. Nested classes; .4ny fare class can be booked into 
seats not taken by bookings in lower fare classes. 

The independent demands and low before high 
assumptions imply that at any time during the book- 
ing process the observed demands in the fare class 
currently being booked and in lower fare classes con- 
vey no information about future demands for higher 
fare classes. The limited information assumption 
excludes the possibility of basing a decision to close a 
fare class on such factors as the time remaining before 
the flight. 

Assumptions 1-5 are restrictive when compared to 
the actual decision problem faced by airlines, but 
analysis of this simplified version can both provide 
insights into the nature of optimal solutions and serve 
as a basis for approximate solutions to more realistic 
versions. 

The nesting of fare classes (assumption 6), which is 
a common practice in modern airline reservation sys- 
tems, suggests the following general approach to con- 
trolling bookings: set a fixed upper limit for bookings 
in the lowest fare class; a second, higher limit for the 
total bookings in the two lowest classes, and so on up 
to the highest fare class. Viewed in another way, such 
booking limits establish protection levels for successive 
nests of higher fare classes. 

The first useful result on the seat allocation problem 
(for two fare classes) was presented by Littlewood. He 
proposed that an airline should continue to reduce 
the protection level for class- 1 (full-fare) seats as long 
as the fare for class-2 (discount) seats satisfied 

where,f; denotes the fare or average revenue from the 
ith fare class, Pr[.] denotes probability, X ,  is full-fare 
demand, and PI is the full-fare protection level. The 
intuition here is clear-accept the immediate return 
from selling an additional discount seat as long as the 

discount revenue equals or exceeds the expected full- 
fare revenue from the seat. 

A 	 continuous version of Littlewood's rule was 
derived in Bhatia and Parekh. Richter gave a marginal 
analysis which proved that (1) gives an optimal allo- 
cation (assuming certain continuity conditions). 

More recently, Belobaba ( 1987) proposed a gener- 
alization of ( 1 )  to more than two fare classes called 
the Expected Marginal Seat Revenue (EMSR) 
method. In this approach, the protection level for the 
highest fare class p ,  is obtained from 

.f? 	 = .f;Pr[X, > p,]. (2) 

This is just Littlewood's rule expressed as an equation, 
and it is appropriate as long as it is reasonable to 
approximate the protection level with a continuous 
variable and to attribute a probability density to the 
demand X I .  The total protection for the two highest 
fare classes p, is obtained from 

p, 	= pi + p;, (3) 

where pi and p: are two individual protection levels 
determined from 

.f; = .f;Pr[X, > pi] 	 (4) 

and 

The protection for the three highest fare classes is 
obtained by summing three individual protection 
levels, and so on. This process is continued until 
nested protection levels p,, are obtained for all classes 
except the lowest. The booking limit for any class k is 
then just ( C  - ph-,) ,  where C is the total number of 
seats available. 

The EMSR method obtains optimal booking limits 
between each pair of fare classes regarded in isolation, 
but it does not yield limits that are optimal when all 
classes are considered. While the idea of comparing 
the expected marginal revenues from future bookings 
with current marginal revenues is valid, the method 
outlined above does not in general lead to a correct 
assessment of expected future revenues (except for the 
highest fare class). To  avoid confusion, the EMSR 
approximation described above will henceforth be 
referred to as the EMSRa method. 

The nonoptimality of the EMSRa approach has 
been reported independently by McGi11(1988), Currl 
(1 988), Wollmer ( 1988), and Robinson (1990). 
Curry (1 990) derives the correct optimality conditions 
when demands are assumed to follow a continuous 
probability distribution and generalizes to the case 
that fare classes are nested on an origin-destination 



basis. Wollmer (1 992) deals with the discrete demand 
case and provides an algorithm for computing both 
the optimal protection levels and the optimal expected 
revenue. 

This paper makes the following contributions to the 
work on this problem: 

1 .  	The approach used (subdifferential optimization 
within a stochastic dynamic programming frame- 
work) admits either discrete or continuous demand 
distributions and obtains optimality results in a 
relatively straightforward manner. 

2. Thc connection of the seat allocation problem to 
the theory of optimal stopping is demonstrated, 
and a formal proof is given that fixed-limit booking 
policies are optimal within the class of all policies 
that depend only on the observed number of 
current bookings. 

3. 	We show that the optimality conditions reduce to 
a simple set of probability statements that clearly 
characterize the difference between the EMSRa 
solutions and the optimal ones. 

4. 	We show with a simple counterexample that the 
EMSRa method can both over- or underestimate 
the optimal protection levels. 

Specifically, we show that an optimal set of protec- 
tion levels pT, pf,  . . . must satisfy the conditions 

~+ER,[PR] .L+I ~ - E R L [ P ~ ]  

for each k = 1 ,  2,  . . . ,  (6) 

where ER,[p,] is the expected revenue from the k 
highest fare classes when pi. seats are protected for 
those classes, and 6, and 6- denote the right and left 
derivative with respect to p,, respectively. These con- 
ditions are just an expression of the usual first-order 
result-a change in p, away from p? in either direction 
will produce a smaller increase in expected revenues 
than the immediate increase of,f;+I. The same condi- 
tions apply whether demands are viewed as continu- 
ous random variables as in Curry ( 1990) or as discrete 
random variables as in Wollmer ( 1992). 

It is further shown that under certain continuity 
conditions these optimal protection levels can be 
obtained by finding p?, pf ,  . . . that satisfy 

.f? = .l;Pr[XI > pT1 

.I; = .f;Pr[X1> p? n XI + x2> pfl (7) 

n . . .nx, + x ~ + . . . + x , ~ > ~ x I .  
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These conditions have a simple and intuitive interpre- 
tation since, as noted in Robinson, the probability 
term on the right-hand side of the general equation in 
(7) is simply the probability that all remaining seats 
are solid. The first of these equations is identical to 
the first in the EMSRa method, so the EMSRa method 
does derive the optimal protection level for the highest 
fare class. 

The paper is organized as follows. The next section 
presents notation and assumptions. Section 2 gives 
the revenue function and its directional derivatives. 
In the following section, concavity properties of the 
expected revenue function are established and results 
(6) and (7) are obtained. We show that when demand 
is integer-valued there exist integer optimal solutions 
that satisfy (6), and these solutions are optimal over 
the class of all policies that depend only on the history 
of the demand process. The final section provides 
numerical comparisons of the EMSRa and optimal 
solutions. 

1. 	NOTATION AND ASSUMPTIONS 

The demand for fare class k is X,,(k  = 1, 2, . . .), 
where XI  corresponds to the highest fare class. We 
assume that these demands are stochastically inde- 
pendent. The vector of demands is X = (X,,  x , ,  . . .). 
Each booking of a fare class k seat generates average 
revenue of.h, where,f; >,f?> . . . . 

Demands for the lowest fare class arrive first, and 
seats are booked for this class until a fixed time limit 
is reached, bookings have reached some limit, or the 
demand is exhausted. Sales to this fare class are then 
closed, and sales to the class with the next lowest fare 
are begun, and so on for all fare classes. It is assumed 
that any time limits on bookings for fare classes are 
prespecified. That is, the setting of such time limits is 
not part of the problem considered here. It is possible, 
depending on the airplane capacity, fares, and demand 
distributions that some fare classes will not be opened 
at all. 

A booking policji is a set of rules which specifies at 
any point during the booking process whether a fare 
class that has not reached its time limit should be 
available for bookings. In general, such policies may 
depend on the pattern ofprior demands or be random- 
ized in some manner. Any stopping rule for fare class 
k which is measurable with respect to the u-algebra 
generated by [X, 2 ,Y] for ,Y = 0, 1 ,  . . . is admissible. 
However, we first restrict attention to a simpler class 
of booking policies, denoted by 9,that can be 
described by a vector of fixed protection levels p = 

( p i ,  p., . . .), where p, is the number of seats to be 



protected for fare classes I-k. If at some stage in the 
process described above there are s seats available to 
be booked and there is a fare class k demand, then the 
seat will be booked if s is greater than the protection 
level pL-, for the k - I higher fare classes. (Restriction 
to this class of policies is implicit in previous research 
in this area except for that of Brumelle et al.) The 
initial number of classes that are open for any book- 
ings is, of course, determined by setting s equal to the 
capacity of the aircraft or compartment. We will show 
formally that the class 9 contains a policy that is 
optimal over the class of all admissible policies. 

2. THE REVENUE FUNCTION 

The function RL[s; p;  x] is the revenue generated by 
the k highest fare classes when s seats are available to 
satisfy all demand from these classes, when x = 
( x i ,  x2, . . .) is the demand vector, and p = (p l ,  p?, . . .) 
is the vector of protection levels. We define the reve- 
nue function recursively by 

RI,+~[J;P; XI 
RA[s; p;  xl for 0 s s < PL 

(5 - pL).h+l + RA[~L; 
for ph G s < PA+ XA+I  (9) 

xi+lji+l+ RA[S- P; XI~ A + I ;  
for PA+ XA+Is S, 

f o r k =  l , 2 ,  . . . .  
For convenience of notation, a dummy protection 

level po will be introduced; its value will be identically 
zero throughout. There is no limit to the number of 
fare classes or to the corresponding lengths of the 
protection and demand vectors; however, the revenue 
from the k highest fares depends only on the pro- 
tection levels (po,  p ~ ,  . . . , p ~ - ) )  and the demands 
(x i , ,YZ, . . . , ,xi,). The symbols p and x will be used to 
denote vectors of lengths which vary depending on 
context, as in 

The objective is to find a vector p that maximizes the 
expected revenue ERA[s; p ;  x ]  for all k. If s is viewed 
as a real-valued variable, the function ERk[s; p;  X] is 
continuous and piecewise linear on s > 0 and not 
differentiable at the points s = p,. Maximization of 
this function can be accomplished either by treating 

available seats s and protection limits p as integer- 
valued and using arguments based on first differences, 
or by treating these variables as continuous and using 
standard tools of nonsmooth optimization. The sec- 
ond approach will be used in this paper because it 
permits greater economy of notation and terminology. 
Note that the demands Xcan be discrete or continuous 
in either case. In the case that demands are taken as 
integer-valued, both approaches are equivalent for this 
problem and yield the same set of integer optimal 
solutions. The second approach may admit additional 
noninteger optimal solutions, but these can easily 
be avoided in practice. If the demands are approxi- 
mated by continuous random variables, the second 
approach may lead to noninteger optimal solutions. 
This eventuality is discussed in subsection 3.3 under 
implementation. 

2.1. Marginal Value of an Extra Seat 

This section develops the first-order properties of the 
revenue function. The notation and terminology used 
here and in what follows are consistent with 
Rockafellar (1970) except that they have been modi- 
fied in obvious ways to handle concave rather than 
convex functions. Let 6- and 6, denote the left and 
right derivatives with respect to the first argument of 
the revenue or expected revenue functions. Thus, 
6-ERL[s: (pO, . . . , X] is the left derivative of 
ERA[.] with respect to s. (This slightly unconventional 
notation is required because s, the number of seats 
remaining, will sometimes be replaced by pi when the 
argument is being viewed as a discretionary quantity.) 
For fixed p and x, the derivatives for the revenue 
function are easy to compute from (8) and (9) to be 

6-R 1 [s; p;  ,Y] = 0 for s > XI 

and 

for 0 s s <pA 
f o r p ~ G s < p ~ + , x ~ + ,(12) 

~+RI, [S- ,Y,+~;~; ,Y]for pi, + xi+,s s. 

6-RA [s; p;  ,Y] for 0 < S S .oh 
for pA < s 6 pi, + XA+l 

6-Ri,[5 -x~+I;[.';,Y] ~ O S Q L+ X A + I  < S. ( 13) 



Any continuous, piecewise-linear function f [ s ]  is 
concave on s > 0 if and only if the right derivative is 
less than or equal to the left derivative for any s. This 
condition can be extended to the point s = 0 by 
defining 6- f [ O ]  = +cc. The subdifferential 6 f [ s ]  is then 
defined for any s 3 0 as the closed interval from 6 + f  [ s ]  
to 6- f [ A ] .  Given concavity,f [ . ] will be maximized at 
any point c for which 0 E 8 f [ s ] .  

3. OPTIMAL PROTECTION LEVELS 

This section establishes the optimality within the class 
.9of protection levels determined by the first-order 
conditions given in (6). We first consider a point in 
the booking process when s seats remain unbooked, 
fare class k + I is being booked, and the decision of 
whether or not to stop booking that class is to be 
made. That is, a decision on the value ofthe protection 
level p, for the remaining fare classes is to be made. 
The following lemma establishes a condition under 
which concavity of the expected revenue function with 
respect to s is ensured, conditional on the value of 
Xa+].This leads to an argument by induction that 
concavity of the conditional expected revenue func- 
tion will be satisfied if ( 6 )is satisfied for all the higher 
protection levels. Finally, we show that condition (6) 
also guarantees optimality of p,. 

Lemma 1. If'some polity p makes 

concave on s 3 0 and i f p f  satisfies 

then 

is concave on s 3 0 with probabilitj) 1 .  

Proof. It follows from the definition of the revenue 
function in (9) and the hypothesized concavity of ERA 
that 

is continuous on s > 0 and concave on the three 
intervals 0 =s s < pa, pa -( s < pa + XA+1,and 
pi. + Xh+l s 5. 

To complete the proof, it is enough to verify that 
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at the two points s = pf and s = pi! + XA+,.From 
(12)and (13) the left and right derivatives at s = pf 
are 

and 

By the hypothesis of the lemma. inequality ( 1  5 )  must 
be satisfied. 

Again applying (12) and (13),  the left and right 
derivatives at s = pf + are 

and 

By the hypothesis of the lemma, inequality (15)must 
be satisfied at s = pf + XL+,.  

Corollary 1 .  If;.for some k E 11, 2,  . . .) the conditions 
oj'the lemma hold, then 

is concave on s 3 0. 

Proof. We have 

It follows from the concavity of the conditional ex- 
pectation on the right-hand side that 

(The expectation operator E and the differential op- 
erators 6 ,  and 6- can be interchanged because Rh+lis 
bounded by J;s for all policies p and demand x.) 

Theorem 1. Let p be any policy that satisfies 

f h + ~E 6ERaIpa; (PO,  . . . , pa-1); XI (20) 

.for k = 1 ,  2, . . . . Then E(Ra+I[s; p; XI IXa+l)  is con- 
cave on s 3 0 for li = 1 ,  2, . . . .Moreover, it is optimal 
to continue the sales of.fare class k + 1 while rnore 
than pa seats rernain zlnsold, and to protect p, seatsfor 
the nest ofthe k highest,fare classes. 
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Proof. From ( 10) and ( 1 1). 

and 

where II = 1 if condition A holds, and I, = 0 
otherwise. Hence 

Thus, E( R ~ [ s ,p; X] IXI1 is concave in s for any policy 
y,  and, given condition (20), the concavity assertion 
in the theorem follows from Lemma 1 by induction. 

To  prove optimality of the protection level pA 
it is necessary to examine the behavior of 
ERA+l[s; (yo, . . . ,pa); X] as a function of ph for any 
s. Denote the left derivative, right derivative and sub- 
differential with respect to pi by -,-, ?+, and ?, 
respectively. 

From (9), 

for 0 c s c yh 
+ 6+Ra[yk; P; XI 

f ~ r p a < ~ < p ~ + x h + ~(23) 
for ph + < S. 

for 0 < s <pa 
+ ~-RL[PA;P; XI 

for pa s s < pa + XL+I (24) 
for pa + XL+I c s. 

Recall that R ~ [ p i ;  p;  x] is independent of X A + ~ .  

Taking the expectations of these derivatives and re- 
versing the order of differentiation and expectation 
yields for pa < s <PA+ xi+ 

Conditions (20), (23), (24), (25) and (26) imply 

that is, 0 E yERa+l[~;y;  XI. Also, from (25), (26) and 
the concavity of ERh[s; y;  XI with respect to s, it 
follows that ERA+I[s; (po, . . . , pi); X] is nondecreas- 
ing over yL < ph and nonincreasing over yL > pA. 
Thus pA maximizes ERh+,[s; y;  XI, as required. 

It has thus been established that condition (20) is 
sufficient for optimality of a policy p. The next 
theorem shows that there exist integer policies that are 
optimal, given that demand is integer-valued. 

In what follows, the abbreviation CLBI (for Concave 
and Linear Between Integers) will denote that a reve- 
nue or expected revenue function is concave and 
piecewise linear with changes in slope only at  integer 
values of the domain. A CLBI function has the prop- 
erty that the set of subdifferentials at integer points of 
the domain covers all real numbers between any par- 
ticular right derivative and any greater left derivative. 
That is, a CLBI function f (x)  satisfies the following 
covering property: 

If c is a constant that 6, f(s2) < c < 6-f(sl),for some sl 
< s2, then there is an  integer n E [sl ,  s2] such that c E 
4f(n). 

Theorem 2. I f  the demand random variables XI ,  
Xz, . . . are integer-valzied, there exists an optimal 
integer policy y*. 

Proof. (By induction): Taking expectations with re- 
spect to XI  in (2 1) and (22) yields the subdifferential 

GERI[J;P; XI = [.f;Pr[Xl>sl,,f;Pr[Xl3 sll. (27) 

By inspection of (8) and (27) and the fact that 
demand is integer-valued, ER~[s ;  p ;  XI is CLBI on 
s 0. Furthermore, since demand is finite with prob- 
ability 1, there is an s sufficiently large that 

(In practice a sufficiently large s might exceed the 
capacity of the aircraft. However, in this case, there 
would be no need to find the next protection level.) 
Also, by definition, 

Then the covering property of CLBI functions ensures 
the existence of an integer pf that satisfies 
f i  E 6ERl[pT; p; XI; that is, pT satisfies the optimality 
condition (20) for k = 1. 

Let d[x] denote the largest integer less than or equal 
to x ,  and u[x] the smallest integer greater than or 
equal to x. Thus, d[x] = u[x - 11 when x is a 
noninteger, and d[x] = u[x - 11 + 1 when x is an 
integer. Taking expectations with respect to Xh+l in 
( 12) and ( 13) yields 

d[.\-/lAl 

+ C G+ERh[s - i; y;  X]Pr[XA+, = i], (28) 
i =o 



and 

! I [  \-Ilk-I ] 

+ 	 2 G-ERI,[s - i; p; X]Pr[Xh,., = i ] .  ( 2 9 )
i=o 

Now suppose that ER,<[s;p; x] is CLBI on s 3 0 for 
some k,  and there are integer protection levels 
pT, y t ,  . . . pX satisfying (20) .  From ( 2 8 )  and (29) ,  
the integrality of p f  and Xh+! and the fact that 
ERA[s; p ;  x] is CLBI ensure that the left and right 
derivatives of ER,+,[s;  p*; XI are equal and constant 
at noninteger s and that equality can fail to hold only 
at integer s. That is, ERI,+~[s; y*; XI is CLBI. That 
E R h + , [ s ;  y*; XI is concave follows from Corollary 1 .  

By recursive application of ( 2 8 )and (29) ,using the 
fact that total demand is finite with probability 1 ,  
there exists an  s sufficiently large that 

for each k = 2 ,  3. . . . . 
Property ( 3 0 ) together with the covering property 

of the subdifferentials of CLBI functions ensure 
that there is an  integer s=pi f ;+!  satisfying 

f ; + r  E 6 E R h [ p f + , ;p*; X I ;  that is, optimality condition 
(20) .The existence of an optimal integer policy p* = 

( y T ,  p f ,  . . .) follows by induction. 

3.1. 	Monotone Optimal Stopping Problems and 
the Optimality of Fixed Protection Level 
Booking Policies 

In this section, we establish that the fixed protection 
levels p defined by condition ( 2 0 )are optimal over the 
set of all admissible policies, not just over the set of 
fixed policies 9.To this end, consider the problem 
of stopping bookings in fare class k + 1 when there 
are s seats remaining and Xa+l3 X,&+I has been ob- 
served, where 3 0 .  

The problem of finding an  optimal policy for choos- 
ing ph belongs to the class of stochastic optimization 
problems known as optimal stopping problems. It 
has been shown by Derman and Sacks (1960)  and 
Chow and Robbins (1961)  that optimal stopping 
problems defined as monotone have particularly sim- 
ple solutions. 

To  check the conditions for monotonicity, we need 
to consider the expected gain in revenue obtained by 
changing the protection level for the nest of the k 
highest fare classes from pi, + 1 to pr, given that the 
additional seat being released will be sold to fare class 
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k + I .  Call this expected gain Ga, where 

By (23) ,the gain can be rewritten as 

The booking problem for fare class k will be 
monotone if for fixed s and ( p , , . . . ,ph- , ) the follow- 
ing conditions are satisfied: 

1. 	There is a p,* such that the gain G, is nonnegative 
for ph < pX and nonpositive for p ,  3 pX. 

2. I R [ s ;( P O ,P I ,  . . . ,pa + 1 ) ;  XI - R [ s ; (PO,P I ,. . . , 
p,); XI I is bounded for all p,. 

Condition 2 is trivial because the total revenue is 
certainly bounded by sJ;. Suppose that p* is an integer 
policy satisfying the conditions in Theorem 1 .  Then 
p f  and G h [ s ;  (po*, pT, . . . , p i t l ,  ph)] satisfy condition 
1 by Theorem 1 .  

If the model is monotone the expected revenue will 
be maximized by protecting pif; seats for the nest of 
the k highest fare classes; that is, a fixed-limit policy 
will be optimal for the protection level ph. 

The significance of this result in the context of 
airline seat allocation is that fixed protection levels 
defined by condition ( 2 0 ) will be optimal as long as 
no change in the probability distributions of demand 
is foreseen. In other words, no ad hoc adjustment of 
protection levels is justified unless a shift in the de- 
mand distributions is detected. In practice, one or 
more of the independent demands, low before high or 
limited information assumptions may not be satisfied, 
and there is the possibility that revenues can be in- 
creased by protection level adjustments in a dynamic 
reservations environment. The point here is that such 
adjustments must be properly justified, for example, 
the observation of a sudden rush of demand in one 
fare class should not lead to a protection level adjust- 
ment unless it is believed that the rush signals a 
genuine shift in the underlying demand distribution. 
For a preliminary investigation of the effects of sto- 
chastically dependent demands on the optimal policy, 
see Brumelle et al. 



3.2. 	An Alternative Expression for the Optimal 
Protection Levels 

This section presents the derivation of the expression 
for the optimal protection levels in terms of demands 
given in (7). This expression is relevant when demand 
distributions can be approximated by continuous dis- 
tributions, and it provides the optimality conditions 
in a form analogous to the EMSRa approximation. 

Lemma 2. If p satisfies 

f;Pr[Xl > P I  n XI + X , > p 2  n . . . nx, 

$ ~ r  all k ,  then ).t'it/z probubilitj1 1 for k = 1, 2, . . . and 
J 2 pi 

Proof. Assume that p satisfies the hypothesis of the 
lemma. For s 3 p ~ ,we can obtain the following 
expression from (12) by taking the expectation and 
interchanging E and 6,: 

Using (3 1) to substitute f o r h + , ,  the right-hand side of 
this expression can be rewritten as 

For k = 1 ,  using (10) and the fact that 

(33) becomes 

Thus the lemma holds for k = 1. 

The proof is completed by induction. Using the 


induction hypothesis that the lemma holds for k, 


substitute for 6+Rkin the last term of (35). 

=f,Pr[X, > p i  n... n XI + . . . + X, > p ,  

which completes the proof. 

Corollary 2. I f p  satisfies (3 l) ,  then for s 3 pL 

n X I  + . . . + X,+, > s]. (37) 

Theorem 3. Ifp satisfies (3 l) ,  then p is optirnal. 

Proof. By Lemma 2 if p satisfies (3 l) ,  then 

By Theorem 1 ,  p is thus optimal. 

3.3. 	Application of the Optimality Conditions 

Condition 20 provides a concise characterization of 
optimal policies in terms of the subdifferential (or first 
differences) of the expected revenue function. Given 
any estimates of future demand distributions (discrete 
or continuous), it is easy to determine the subdiffer- 
ential of the expected revenue function for fare class 
1 as a function of seats remaining and then numeri- 
cally identify an integerp: that satisfied the optimality 
condition. The remaining subdifferentials and optimal 
protection levels can be determined in a like manner 
by successive applications of (20). 

An alternative approach is provided by solving for 
the optimal protection levels given by (3 1) for k = 1, 
2, . . . . A condition which guarantees the solvability 
of this system of equations is that the demands have 
a continuous joint distribution function. If an empir- 
ical distribution for integer demand is being used, then 
the above equations can likely be solved to within the 
statistical error of the demand distribution. This ap- 
proach is consistent with previous airline practice 
where estimated continuous demand distributions 
(e.g., fitted normal distributions) have been used in 
methods like EMSRa. 
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Empirical studies have shown that the normal prob- 
ability distribution gives a good continuous approxi- 
mation to airline demand distributions (Shlifer 1975). 
If normality is assumed, solutions to (31) can be 
obtained with straightforward numerical methods. 
Robinson has generalized the conditions to the case 
that fares are not necessarily monotonic and has pro- 
posed an efficient Monte Carlo integration scheme for 
finding optimal protection levels. 

There is a way in which the optimality conditions 
(31) can be used to monitor the past performance of 
seat allocation decisions given historical data on seat 
bookings for a series of flights. For simplicity, the 
discussion will assume three fare classes; the method 
generalizes easily to an arbitrary number of classes. 
With three fare classes, conditions (3 I) can be written 

Given a series of past flights, the probability 
Pr[Xl > p l ]  can be estimated by the proportion of 
flights on which class-1 demand exceeded its protec- 
tion level. Then (39) specifies that this proportion 
should be close to the ratio,filf;. Similarly, (40) spec- 
ifies that the proportion of flights on which both class- 
1 demand exceeded its protection level and the total 
of class-1 and 2 demands exceeded their protection 
level should be close to the ratio ,f;[f;. If allocation 
decisions are being made optimally, these conditions 
should be satisfied approximately in a sufficiently long 
series of past flights. Severe departures from these 
ratios would be symptomatic of suboptimal allocation 
decisions. The appealing aspect of this approach is its 
simplicity-no modeling of the demand distributions 
and no numerical integrations are required. 

4. 	COMPARISON OF EMSRa AND OPTIMAL 
SOLUTIONS 

The EMSRa method determines the optimal protec- 
tion level for the full-fare class but is not optimal for 
the remaining fare classes. However, the EMSRa equa- 
tions are particularly simple to implement because 
they do not involve joint probability distributions. It 
is thus of interest to examine the performance of the 
EMSRa method relative to the optimal solutions given 
above. Note that neither the EMSRa nor exact opti- 
mality conditions give explicit formulas for the 
optimal protection levels in terms of the problem 
parameters, so analytical comparison of the revenues 

Table I 

Comparison of EMSRa Versus Optimal for 


Three Fare Classes 


Example % Error 
No. S? SL Pi EMSRa Optimal Revenue 

1 0.6 0.7 32 
2 0.6 0.8 27 
3 0.6 0.9 19 
4 0.7 0.8 27 
5 0.7 0.9 19 
6 0.8 0.9 19 

produced by the two methods is difficult unless un- 
realistic demand distributions are assumed. Numeri- 
cal comparison of the two methods can, however, give 
some indication of relative performance. 

This section gives the results of numerical compar- 
isons of EMSRa versus optimal solutions in a three 
fare-class problem. Table I presents the results of six 
examples in which cabin capacity is fixed at 100 seats 
and fares 1; are varied. Fares are expressed as propor- 
tions of full fare; thus, f ;  = 1 throughout. The % error 
revenue column gives the loss in revenues incurred 
from using the EMSRa method as a percentage of 
optimal revenues. In Table 11, the fares are held con- 
stant at 1evels.b = 0.7 andf2 = 0.9, and cabin capacity 
is varied. 

Discrete approximations to the normal probability 
distribution were used for all demand distributions. 
The nominal mean demands for fare classes 1, 2 and 
3 were 40, 60 and 80, and the nominal standard 
deviations were 16, 24 and 32, respectively. These 
figures are nominal because the discretization proce- 
dure introduced small deviations from the exact pa- 
rameter values. These parameters correspond to a 
coefficient of variation of 0.4; i.e., the standard devia- 
tion is 40% of the mean. This is slightly higher than 
the 0.33 that Belobaba (1987) mentions as a common 
airline " k factor" for total demand. 

(Note that the normal distribution has significant 
mass below zero when the coefficient of variation is 

Table I1 
Capacity Effects 

%Error 
Capacity Revenue 

82 0.54 
100 0.45 
120 0.35 
140 0.24 
160 0.14 



much higher than 0.4. Use of a truncated normal or 
other positive distribution is indicated under these 
circumstances.) 

Remarks 

In this set of examples the EMSRa method produces 
seat allocations that are significantly different from 
optimal allocations, but the loss in revenue associated 
is not great. Specifically: 

a. 	In these examples, the EMSRa method consistently 
underestimates the number of seats that should be 
protected for the two upper fare classes. The dis- 
crepancy is 19% in the worst case (example 6). We 
will show with a counterexample that the EMSRa 
method is not guaranteed to underestimate in this 
way. 

b. In the worst case the discrepancy between EMSRa 
and optimal solutions with respect to revenues is 
approximately '/2%. 

c. 	The error appears to increase as the discount fares 
approach the full fare; however, the sample is much 
too small here to justify any general conclusion of 
this nature. 

d. The 	error decreases as the aircraft capacity in- 
creases. This effect is, of course, to be expected 
because allocation policies have less impact when 
the capacity is able to accommodate most of the 
demands. 

On the basis ofthese examples, a decision ofwhether 
or not to use the EMSRa approach rests on whether 
or not a potential revenue loss on the order of !/2% or 
less (with three fare classes) is justified by the simpler 
implementation of the method relative to the optimal 
method. Further work is needed to determine the 
relative performance of the EMSRa method with a 
larger number of fare classes or under circumstances 
in which dynamic adjustments of protection levels are 
justified. 

Additional numerical analyses related to the seat 
allocation problem are provided in Wollmer (1992) 
and have been conducted by P. Belobaba and col- 
leagues at the MIT Flight Transportation Laboratory. 

4.1. 	EMSRa Underestimation of Protection 
Levels-A Counterexample 

As mentioned, the EMSRa method consistently 
underestimated the protection level p2 for the two 
upper fare classes in all the numerical trials. It is thus 
reasonable to conjecture that the approximation will 
always behave in this way. This is not true for all 
demand distributions, as shown by the following 
counterexample using exponentially distributed de- 

mands. It remains an open question whether or not 
the conjecture holds true for normally distributed 
demands. 

For convenience, let the unit of demand be 100 
seats, and introduce the relative fares r2 = f ? / f ;  and 
r, =.LLf;.Now suppose that XI  and X, follow identical, 
independent exponential distributions with mean 1.0 
(100 seats). That is, Pr[X, > x,] = e-"1 for i = 1, 2. It 
is not suggested that the exponential distribution has 
any particular merit for modeling airline demands, 
although it could serve as a surrogate for a severely 
right-skewed distribution if the need arose. Its use here 
is purely as a device for establishing a counterexample 
to a general conjecture. 

Let p:' denote protection levels obtained with the 
EMSRa method. Then with the above distributional 
assumptions and (2)-(5), we have p'; = -ln(rz), and 
@$ = -ln(r3) - In(r,/rz). 

For the optimal solutions, (7) gives p,= -ln(r,) = 

PY, and 

Suppose that r. = l/2 and r, = !'I. Then p ,  = 0.69 and 
pl P 2.08 (69 and 208 seats, respectively). Given p,,a 
simple line search using (41) produces the optimal 
11. P 2.37 from the equation above. Thus, for this 
example, the EMSRa method underestimatesfi by 29 
seats. This behavior is consistent with the conjecture. 

Now suppose instead that r2 = 4/10 and r3 = I / I o .  

Then p;' = 0.92 and pq = 3.69. In this case. however. 
p, = 3.61, and the EMSRa method overestir?zate.s pz 
by 8 seats. It is not difficult to show that for these 
demand distributions, the EMSRa method will over- 
estimate p. whenever r2/y3 > 3.5 1 ,  approximately. 

5. 	SUMMARY 

This paper provides a rigorous formulation of the 
revenue function for the multiple fare class seat allo- 
cation problem for either discrete or continuous prob- 
ability distributions of demand and demonstrates con- 
ditions under which the expected revenue function is 
concave. We show that a booking policy that maxi- 
mizes expected revenue can be characterized by a 
simple set of conditions on the subdifferential of the 



expected revenue function. These conditions are fur- 
ther simplified to a set of conditions relating to the 
probability distributions of demand for the various 
fare classes to their respective fares. These conditions 
are guaranteed to have a solution if the joint distri- 
bution of the demands is approximated by a contin- 
uous probability distribution. It is shown that the fixed 
protection limit policies given by these optimality 
conditions are optimal over the class of all policies 
that depend only on the history of the  booking process. 
A numerical comparison is made of the optimal so- 
lutions with the approximate solutions yielded by the 
expected marginal seat revenue (EMSRa) method. A 
tentative conclusion on the basis of this restricted set 
of examples is that the EMSRa method produces seat 
allocations that are significantly different from opti- 
mal allocations, and the associated loss in revenue is 
of the order of ' / 2 % .  
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