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B id-prices are becoming an increasingly popular method for controlling the sale of inventory 
L in revenue management applications. In this form of control, threshold-or "bid"-prices 

are set for the resources or units of inventory (seats on flight legs, hotel rooms on specific dates, 
etc.) and a product (a seat in a fare class on an itinerary or room for a sequence of dates) is sold 
only if the offered fare exceeds the sum of the threshold prices of all the resources needed to 
supply the product. This approach is appealing on intuitive and practical grounds, but the theory 
underlying it is not well developed. Moreover, the extent to which bid-price controls represent 
optimal or near optimal policies is not well understood. Using a general model of the demand 
process, we show that bid-price control is not optimal in general and analyze why bid-price 
schemes can fail to produce correct accept/ deny decisions. However, we prove that when leg 
capacities and sales volumes are large, bid-price controls are asymptotically optimal, provided 
the right bid prices are used. We also provide analytical upper bounds on the optimal revenue. 
In addition, we analyze properties of the asymptotically optimal bid prices. For example, we 
show they are constant over time, even when demand is nonstationary, and that they may not 
be unique. 
(Bid Prices; Optimality; Yield Management; Revenue Management; Airlines; Dynamic Programming; 
Heuristics; Asymptotic Analysis) 

Introduction and Overview 
Bid-price control is a revenue management method in 
which threshold values (called bid prices) are set for 
each leg of a network and an itinerary (path on the 
network) is sold only if its fare exceeds the sum of the 
bid prices along the path. (Throughout the paper, the 
term bid-price control refers to such an additive, leg- 
based bid-price scheme. See Definition 1.) The tech- 
nique, which originated with the work of Simpson 
(1989) at MIT and was later studied by Williamson 
(1992) in her Ph.D. thesis, is being adopted by a num- 
ber of airlines and hotels. Indeed, it is fast becoming 
the method of choice for origin-destination (OD) rev- 
enue management. 

Yet the theory underlying bid-price controls is scant. 
The early development by Simpson (1989) and William- 
son (1992), while quite innovative and intuitively ap- 

pealing, is based on different mathematical program- 
ming formulations of the OD control problem. How- 
ever, the deterministic mathematical programming 
models used in these analyses are clearly oversimplified 
models of the true OD revenue management problem. 
Even the more sophisticated probabilistic mathematical 
programming formulations, such as those proposed by 
Glover et al. (1982), Williamson (1992) and Wollmer 
(1986) assume one-time, static allocations of capacity. 

In this paper, we propose a general model of the OD 
control problem and analyze it via dynamic program- 
ming. The model incorporates demand uncertainty and 
makes no assumptions about the network structure or 
the sequence of arrivals (timing of high and low fare 
class arrivals). It allows for random fares within a fare 
class, which is of significant practical importance in 
some applications (see ?1). Using this general model, 
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we formulate a dynamic program to analyze both the 
structure of the optimal control and the performance of 
bid price controls. 

Related Literature 
The study of revenue management problems (or yield 
management) in the airlines dates back to the work of 
Rothstein (1971) on an overbooking model and to Lit- 
tlewood (1972) on a model of space allocation for a sto- 
chastic two-fare, single-leg (a network with one leg) 
problem. Belobaba (1987a, 1987b) proposed and tested 
a multiple-fare-class extension of Littlewood's rule 
which he termed the expected marginal seat revenue 
(EMSR) heuristic. Extensions and refinements of the 
multiple-fare-class problem include recent papers by 
Brumelle and McGill (1993), Curry (1989), Robinson 
(1991) and Wollmer (1992) (all of which with minor dif- 
ferences in models give the optimal nested seat alloca- 
tions when fare classes book sequentially). A recent re- 
view of research on revenue management as well as a 
taxonomy of perishable asset revenue management 
(PARM) problems is given by Weatherford and Bodily 
(1992). See also Barnhart and Talluri (1996) for a recent 
survey on airline operations that covers the practice of 
revenue management. 

Dynamic programming has been applied to analyze 
single-leg problems in prior work. For example, Lee and 
Hersh (1993) use discrete time dynamic programming 
to develop optimal rules for the single-leg problem 
when demand in each fare class is modeled as a sto- 
chastic process. In terms of modeling approaches, their 
work is closest to ours. Diamond and Stone (1991) and 
Feng and Gallego (1995) develop optimal threshold 
rules when demands are modeled as continuous time 
stochastic process. Other dynamic programming mod- 
els for the single-leg problem are analyzed by Chatwin 
(1992) and Janakiram et al. (1994). 

In a network setting, various mathematical program- 
ming approaches have been proposed. Glover et al. 
(1982) address a deterministic network flow model for 
the allocation of seats between passenger itineraries and 
fare classes. Wang (1983) provides an algorithm for the 
sequential allocations of seats on a plane to different 
origin-destination city pairs and fare classes within a 
flight segment when demands are random. Dror et al. 
(1988) present a rolling horizon network flow formu- 

lation for the seat inventory control problem assuming 
deterministic demands. In two internal McDonell 
Douglas reports, Wollmer (1986a) and (1986b) proposes 
a mathematical programming formulation incorporat- 
ing random demands, where the objective is to maxi- 
mize the total expected network revenue. 

Yet to date, few dynamic programming models of 
network revenue management have been analyzed. An 
exception is the work of Gallego and van Ryzin (1994), 
who address a network revenue management problem 
using a continuous time, dynamic pricing model. Their 
bounding techniques and asymptotic analysis are quite 
similar to ours. The fundamental difference between 
this work and ours is that Gallego and van Ryzin as- 
sume prices are set for each itinerary (so the number of 
control variables equals the number of itineraries), and 
customers either accept or reject the offered prices. In 
contrast, we focus on bid-price controls, in which values 
are set for the legs (so the number of controls equals the 
number of legs) and a booking has a random revenue 
that can only be accepted or rejected. Our situation, 
therefore, models the case where fares are set exoge- 
nously, and the main goal of our work is to analyze the 
effectiveness of bid prices as a mechanism for making 
these accept/ deny decisions. 

As mentioned, Simpson (1989) and Williamson 
(1992) introduced the idea of bid-price controls and they 
proposed many of the main approximation approaches 
in the area. Williamson (1992) in particular used exten- 
sive simulation studies to analyze a variety of ap- 
proaches to network revenue management. Simpson 
and Williamson's work had a significant impact on the 
practice of revenue management. However, they do not 
provide a rigorous analysis of the structure of the op- 
timal network policy nor do they provide a theoretical 
foundation for the bid-price approach. Our work puts 
this important practical development on a sound theo- 
retical footing. 

Organization of the Paper 
In ?1 we formally define our network model and define 
bid-price control. In ?2, we analyze the structure of the 
optimal policy and show that, in general, it is not a bid- 
price control. Two counter-examples are given in ?3 to 
illustrate why a bid-price structure can be suboptimal. 
In ?4, we develop an upper bound on the optimal rev- 
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enue. This bound is used to show that a bid-price policy 
is asymptotically optimal as the sales volumes and ca- 
pacities in the network grow. The analysis also provides 
a constructive method for computing a set of asymp- 
totically optimal bid prices. In ?5, we briefly analyze 
some of the more common methods for computing bid 
prices and discuss their strengths and weaknesses. Con- 
clusions and a discussion of future research is presented 
in ?6. 

1. Formulation 
We use superscripts to denote components of a vector 
and subscripts to denote time. We generally try to fol- 
low the convention that k denotes current time (time- 
to-go) while t denotes an arbitrary time. Time is counted 
backwards, so time t represents a point t periods from 
the end of the horizon. We do not distinguish between 
row and column vectors, since the proper interpretation 
is usually clear from the context. Finally, if A is a matrix, 
then the j-th column of A is denoted Ai and the ith row 
is denoted Ai. Finally, we let x+ = max{x, 01, 1{E} de- 
note the indicator function of the event E and (a.s.) de- 
notes almost surely. 

Our model is formulated as follows: An airline net- 
work has m arcs or legs which can be used to provide n 
origin-destination itineraries. We let aij be the number of 
seats on leg i used by itinerary j (aij = 0 if leg i is not 
part of itinerary j). Define the matrix A = [aij]. Thus, the 

j-th column of A, Ai, is a multiple of the incidence vector 
for itinerary j (or the incidence vector itself if itinerary 
j requires only one seat). We use the notation i E Ai to 
indicate that leg i is used by itinerary j and j E Ai to 
mean that itinerary j uses leg i. 

While it is simplest to imagine that each origin- 
destination itinerary requires only one unit of capacity 
from each of the legs it traverses, we do not impose this 
restriction. Indeed, the model can accommodate group 
requests (e.g. a family booking four seats together). To 
model this situation, we simply introduce one column 
in the matrix A for each possible group size, with the 
nonzero elements of the column equal to the group size 
and the itinerary revenue set equal to the total revenue 
of the group (e.g. for a group of size four, add a column 
j with aij = 4 for i on the path and with revenue R't that 
is four times as large). The interpretation of the proba- 

bility model in this case is that it reflects the likelihood 
of having requests for particular group sizes. (See 
Young and van Slyke (1994) for an exact analysis of 
monotonicity properties for a single-leg problem with 
group requests.) 

The state of the network is described by a vector x 
= (xi, ..., xm) of leg capacities. If itinerary j is sold, the 
state of the network changes to x - Ai. To keep our 
analysis simple, we will assume there are no cancella- 
tions or no-shows and, consequently, overbooking is 
not needed. Alternately, capacity may include so-called 
overbooking pads. (An overbooking pad is the number 
of seats an airline makes available for sale beyond the 
actual cabin capacity. These pads are sometimes set 
prior to performing fare class allocations.) If overbook- 
ing pads are computed independently, one can consider 
leg capacities in our model to be the sum of actual phys- 
ical capacity and the overbooking pad. 

In our formulation time is discrete, and k represents 
the number of periods left before departure. Within 
each time period, t, we assume that at most one request 
for an itinerary can arrive; that is, the discretization of 
time is sufficiently fine so that the probability of more 
than one request is negligible. 

The way we model a request at time t is somewhat 
nonstandard but useful for analytical purposes. All 
booking events in time t are modeled as the realization 
of a single random vector Rt = (R ..., R n). If R't > 0, 
this indicates a request for itinerary j occurred and that 
its associated revenue is R't; if R't = 0, this indicates no 
request for j occurred. A realization Rt = 0 (all compo- 
nents equal to zero) indicates that no request from any 
itinerary occurred at time t. For example, if we have n 
= 3 itineraries, then a value Rt = (0, 0, 0) indicates no 
requests arrived, a value Rt = (120, 0, 0) indicates a re- 
quest for itinerary 1 with revenue of $120, a value of Rt 
= (140, 0, 0) indicates a request for itinerary 1 with rev- 
enue of $140, a value Rt = (0, 70, 0) indicates a request 
for itinerary 2 with revenue of $70, etc. 

Note by our assumption that at most one arrival oc- 
curs in each time period, at most one component of R, 
can be positive (as indicated in the example above). 
More formally, if we let En = {eo, el, . . ., en} where ej is 
the j-th unit n-vector and eo is the zero n-vector and 
define the set S = {R: R = ae, e E En, a :- 0}, then Rt 
EE S. The sequence {Rt; t 2 1} is assumed to be 
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independent with known joint distributions Ft(r) whose 
support is on S. We further require that the marginal 
distributions, F't(r) = P(R't < r) be continuous on (0, 
+oo) and that all R4 have finite means. For the asymp- 
totic results, we require that the revenues have bounded 
support (i.e. P(Ri < C) = 1 for some constant C). Note 
that F't(r) is not the revenue distribution directly. Rather, 
P(R{t > 0) = 1 - Fit(O) is the probability of getting a 
request from itinerary j in period t, and P(R't < r I R't 
> 0) = Fit(r) / (1 - Ft(O)) is the distribution of the actual 
revenue from itinerary j at time t. 

The time dependence of the revenue distribution 
models a variety of nonstationarities in the arrival pro- 
cess. For example, due to purchase timing restrictions, 
the mix of available fare products changes with time. 
Purchase patterns in various customer segments (e.g. 
the ratio of leisure/ business purchases) change as the 
flight departure date approaches as well. No assump- 
tion is made on the particular order of arrival in our 
model. 

Allowing uncertainty in revenues is important for 
several reasons. First, airlines often offer a variety of 
fares in each fare class for each itinerary and also pay 
varying commissions on these fares. Under such con- 
ditions, there is a potential to generate more revenue by 
discriminating among the various net revenues within a 
particular fare class, and the value function should re- 
flect this potential. Second, the practice of negotiating 
fares in some industries (advertising, broadcasting, ho- 
tels) contributes to uncertainty in fares. Including fare 
variance provides more modeling flexibility in these 
emerging revenue management applications. Finally, 
modeling fare variance provides flexibility in construct- 
ing forecasts. Specifically, one can decrease the relative 
forecast error by aggregating fare classes, at the expense 
of increasing the variance in the fares within a fare class. 
This ability to vary the level of aggregation in the fore- 
cast data in this way has the potential of leading to a 
better overall forecasting-optimization scheme. 

Given the time-to-go, k, the current seat inventory x 
and the current request Rk, we are faced with a decision: 
Do we or do we not accept the current request? 

Let an n-vector Uk denote this decision, where uk = 1 
if we accept a request for itinerary j at time k, and uik 

= 0 otherwise. In general, the decision to accept, uk, is 
a function of the capacity vector x and the fare ri offered 

for itinerary j, i.e. uj = Uj (x, ri) and hence Uk = Uk(x, r), 
where r = (rW, ..., r') E S. Since we can accept at most 
one request in any period, Uk E En, where En is the col- 
lection of unit n-vectors as defined above. Since we as- 
sume cancellations and no-shows do not occur and that 
legs cannot be oversold, if the current seat inventory is 
x, then Uk is restricted to the set ?U(x) = {e E En: Ae 
cx}. 

We can now define precisely what a bid-price control 
scheme is in the context of this model. 

DEFINITION 1. A control Uk(x, r) is said to be a bid-price 
control if there exist real-valued functions Uk(X) = (04(x), 

*, (x)), k = 1, 2, (called bid prices) such that 

aij-1 

1 rj 2 p (x - h), Ai < x, 
Uk(x, ri) = ieAi h=O (1) 

O otherwise. 

That is, a bid-price control specifies a set of bid prices 
for each leg at each point in time and for each capacity, 
such that we accept a request for a particular itinerary 
if and only if there is available capacity and the fare 
exceeds the sum of the bid prices for all the units of 
capacity used by the itinerary. We next examine 
whether this bid-price structure is optimal. 

2. Structure of the Optimal Control 
In order to formulate a dynamic program to determine 
optimal decisions u* (x, r), let Jk(x) denote the maximum 
expected revenue (cost-to-go) for a given seat inventory 
x at time k. Then Jk(x) must satisfy the Bellman equa- 
tions (see Bertsekas (1995), p. 18) 

Jk(x) = max E[Rkuk(x, Rk) 
Uk()e'U(x) (2) 

+ Jk-l(X - AUk(x, Rk))] 

with the boundary condition 

Jo(x) = 0, Vx. (3) 

This leads to our first proposition, which establishes 
the existence of an optimal policy and characterizes the 
form of the optimal control. 

PROPOSITION 1. If Rj has finite first moments for all k 
and j, then Jk(x) isfinitefor allfinite x, and an optimal control 

Uk exists of theform 
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(* r) r Jk_1(x) - Jk-1(x - Ai) and Ai < x, 
Uk x, rJ = 

I otherwise. 

(4) 

PROOF. Note that u*(x, r) defined by (4) maximizes 

ru + jk-1(X - Au) 

subject to the constraint u E? W(x). Therefore, 

E[RkUk(x, Rk) + Jk-1(x - Au*(x, Rk))] 

2 max E[Rkuk(x, Rk) + Jk-1(x - AUk(x, Rk))] 
Uk(')e'(X) 

Thus, uk satisfies the Bellman equation provided we can 
show that the expectation on the left-hand side exists. 
To do so, we use induction. First, assume that Jk_1(x) is 
finite for all finite x. Then applying uk we have that 

E[Rkuk(x, Rk) + jk-1(x - Au*(x, Rk))] 

- Jk-1(x) + , E(Rj + jk-1(x - Ai) - Jk-1(x)) - 
j:Aj sx 

By the induction assumption, Jk1,(x - Ai) + Jk_1(x) is 
finite. Therefore, since E(R - c)+ < ER + I c I, the right- 
hand-side above is finite if the revenues Rj have finite 
first moments. The finiteness of Jk-l then follows using 
induction on k and the fact that Jo(x) = 0 for all x, and 
that under u*, 

jk(x) = jk-1(x) + , E(Rj + jk-1(X - Ai) 
j:Ai-x 

- Jk-1(X)). *D (5) 

3. Nonoptimality of Bid-Price 
Controls 

Proposition 1 says that an optimal policy for accepting 
requests is of the form: accept fare r1 for itinerary j if 
and only if we have sufficient remaining capacity and 

r 2 Jk-l(X) - Jk-1(x - Ai). 

This reflects the rather intuitive notion that we accept a 
fare of r for a given itinerary only when it exceeds the 
opportunity cost of the reduction in leg capacities. It is 
precisely this intuition and its analogy to the role of dual 
prices in deterministic optimization that motivated the 
early development of bid-price control schemes (Simp- 

son 1989, Williamson 1992). However, in general this 
form of control is not a bid price control, a fact which 
we illustrate next via two counter examples. 

3.1. A Counter Example to Bid-Price Optimality 
In this first example, we have a simple network with 
two legs. There is one unit of capacity on each leg and 
two time periods remaining in the horizon. The itiner- 
ary data are shown in Table 1. In period 2, there are two 
local itineraries. (A local itinerary on a leg is a nonstop 
itinerary consisting of that leg, while a through itinerary 
on a leg is a multi-leg itinerary involving that leg.) each 
with a fare of $250 and probability of arrival 0.3, and 
one through itinerary with a fare of $500 and probability 
of arrival 0.4; in the last period, there is only a through 
fare with the same $500 revenue and a probability of 
arrival of 0.8. Recall, that arrivals in each period are mu- 
tually exclusive (i.e., only one itinerary per period 
arrives). 

In this example, we report the data in the form of an 
arrival probability and a fare for each itinerary. This can 
easily be translated into a single distribution of arriving 
revenues Rt = (Rl, ..., R') where Rj is the revenue 
associated with a request for itinerary j at time k and 
R't = 0 indicates no request for itinerary j occurred. Note 
also that the assumption of a deterministic fare violates 
the continuity assumption on the distribution of Rt. It is 
not hard to show, however, that we can get essentially 
the same counter example by replacing the determin- 
istic fare with a random fare that has a continuous dis- 
tribution arbitrarily close to the (degenerate) determin- 
istic distribution. 

It is not hard to see by inspection what an optimal 
policy is for this example. Accepting either of the local 
itineraries in period 2 yields $250 in revenue and pre- 
vents us from accepting a through itinerary in period 1. 

Table 1 Problem Data for Bid-Price Counter Example 

Time (t) Itin. (A') Fare Prob. 

2 (1 1) $500 0.4 
(1 0) $250 0.3 
(O 1) $250 0.3 

1 (1 1) $500 0.8 
No arrival 0.2 

MANAGEMENT SCIENCE/Vol. 44, No. 11, Part 1 of 2, November 1998 1581 



TALLURI AND VAN RYZIN 
Bid-Price Controls for Network Revenue Management 

However, if we do not accept a local itinerary in period 
2 and leave both legs available for the through demand 
in period 1, the expected revenue is $400. So it is optimal 
to reject both local itineraries in period 2. 

On the other hand, we clearly want to accept the 
through itinerary in period 2. Together, this implies that 
the bid prices, p,u and u2, in period 2 must satisfy bt1 

> 250, u2> 250 and bt1 + A2 < 500, which is, of course, 
impossible. Therefore, no bid-price policy can produce 
an optimal decision in period 2. Indeed, it is not hard 
to show that the best a bid-price policy can do in this 
example is to reject all demand in period 2 and accept 
only the through fare (if it arrives) in period 1, yielding 
a $400 expected revenue. The optimal policy, in con- 
trast, generates an expected revenue of $440-fully 10% 
more expected revenue than the best possible bid-price 
policy. 

Finally, it is possible to construct other counter ex- 
amples in which bid-price sub-optimality occurs with 
arbitrarily large remaining leg capacities. Thus, the 
problem of bid price sub-optimality is not confined to 
the end of the horizon, but can in fact occur at any point 
in the booking process. 

3.2. Bid-Price Optimality and the Structure of the 
Value Function 

A structural insight into why bid prices are not optimal 
in general is obtained by considering the implication of 
bid-price optimality for the value function Jk(x). In some 
cases, it implies a certain linearity of the value function, 
as the next proposition demonstrates. 

PROPOSITION 2. Suppose the elements of A are only zero 
or one (i.e. no multiple requests) and that A has the identity 
matrix as a sub matrix. Further, suppose the marginal dis- 
tributions Fit(x) are strictly increasing on (0, +oo) for all t 
and j. Then a bid-price control scheme is optimal only if Jk 

satisfies 

jk(x) - jk(x - Ai) = X (jk(x) - jk(x - ei)) 
ieAJ 

for all k, i and x 2 Ai. 

PROOF. Without loss of generality, let the first m col- 
umns of A be the identity matrix. If a bid-price control 
scheme is optimal, then by considering the first m itin- 
eraries we must have that 

IL'(x) = Jk(x) - jk(x - ei), i = 1, Ml., 

by Proposition 1 and the definition of bid-price control. 
Now suppose for some k, j and x 2 Ai, that Jk(x - Ai) 
> Jk(X) - ieAi (Jk(x) - jk(x - el)). Then by Proposition 
1 the threshold for accepting fares for itinerary j in state 
x in period k + 1 is 

jk(x) - Jk(x - Ai) 

< X (Jk(x) - Jk(x - el)) = k b4(x). 
ieAi ieAi 

Using this inequality together with the fact that the dis- 
tributions Fj(x) are strictly increasing, one can show 
that the threshold as determined by the bid prices, 

zieAj bk(X), violates the optimality conditions (2); hence, 
bid prices cannot be optimal. A similar contradiction is 
obtained when Jk(x - Ai) < Jk(x) - 7ieAi (Jk(X) - Jk(X 

-ei)). 1 
Proposition 2 shows that bid prices are only optimal 

in this case when the opportunity cost of the itinerary, 
jk(x) - Jk(x - Ai), is equal to the sum of the opportunity 
costs of selling each leg i separately, EieAi (Jk(X) - Jk(X 

- el)). This sort of linearity in the value function cannot 
be expected to hold in general. 

Indeed, the counter example above illustrates the two 
main reasons why it does not hold. Bid prices in this 
example fail in part because selling a seat is a "large" 
change in the capacity of a leg. Large relative changes 
in capacity on several legs simultaneously cannot, in 
general, be expected to have the same revenue effect as 
the sum of the individual changes. This is one reason 
why gradient-based reasoning falls short in explaining 
bid-price optimality. Indeed, this issue was first raised 
by Curry (1992), who used an analogy to the Taylor 
series expansion of the value function to argue that 
second-order "interaction" terms may be significant in 
determining optimal revenue thresholds. 

The second reason bid prices may fail to capture the 
opportunity cost is that future revenues may depended 
in a highly nonlinear way on the remaining capacity. 
Specifically, in the counter example note that it is the 
minimum capacity on the two legs that determines fu- 
ture expected revenues. Hence, the opportunity cost of 
using a single leg exactly equals the opportunity cost of 
using both legs simultaneously, so the linearity required 
in Proposition 2 is destroyed. This phenomenon is very 
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similar to degeneracy in mathematical programming, 
and it can occur in the optimal value function or in var- 
ious approximation to the optimal value function, as 
shown in ?5.5. 

4. An Asymptotic Analysis of Bid- 
Price Controls 

We next analyze the degree of suboptimality of a bid- 
price control scheme. Our first step is to consider an 
upper bound based on a relaxation of the original prob- 
lem. The upper bound provides dual prices that are then 
used in our second step to construct a bid-price policy. 
In contrast to the negative results of the previous sec- 
tion, we show that the control generated by this partic- 
ular set of bid prices has good asymptotic properties if 
the number of seats sold on each leg is large. 

4.1. An Upper Bound Problem 
Let ut represent a given control policy. We consider ut 
somewhat more abstractly as simply a process which is 
adapted to history of requests from k to t. That is, if it 
= u({Rk; T 2 k 2 t}), then ut is a process that is gt- 
measurable. The problem can then be stated as finding 
such a process ut that solves the problem 

Jk(X) = mnax E[X Rtutl 
[ t= 1 ] 

k 

Y Aut ? x (a.s.), 
t=1 

Ut E En. (6) 

Note that the process ut is defined for a given starting 
state x and k, and therefore optimizing over ut only pro- 
vides a control policy for those states reachable from (x, 
k). Nevertheless, this formulation is sufficient for deter- 
mining Jk(x). 

For any m-vector yu 2 0, consider a relaxed version of 
this problem 

-k - 

Jk(x, u) = max E [ Rtut 
futeEn} t= 1 

? EL,u(x - X Aut) 

k - A 

=max E Y (Rt -,IzA)ut +,Lyx. (7) 
futeEn} t= 1 

Here, ut is a process which is adapted to it and satisfies 
ut E En, but need not satisfy 'tk=, Aut ? x (a.s.). That is, 
the policy might oversell a leg i, but at a cost of ,uj for 
each oversold seat. 

The values of these two problems are related as fol- 
lows: 

LEMMA 1. For any yu 2 0, Jk(x) ? J-k(X, u). 

PROOF. For any control process {Ut: 1 ? t ? k} which 
is an optimal policy for (6), we have that u(x -t=1 
Aut) 2 0 (a.s.), and hence because ut is bounded, E[Iu(x 
- t= Aut)] 2 0 as well. In addition, by definition 
E[ t2=1 Rtut] = Jk(x). Since such a policy is also feasible 
for (7), the above inequality follows. D 

To create the best upper bound possible from this re- 
lation, we will minimize Jk(x, ,u) over ,u 2 0. Fortunately, 
evaluating Jk(x, jut) is not difficult, since it is easy to see 
that in (7) the problem decomposes by periods. Hence 
an optimal policy for (7) is simply 

1 ri > yAk, 
u it = 

O otherwise 

Note this is in fact a bid-price control with bid prices 
given by the vector yu for all times t ? k and all states x. 
Evaluating the cost under this optimal control yields 

k n 

Jk (x, ) = ,E (Rt j-,yA j)' + + yx . (8 ) 
t=1 j=1 

The partial expectation E(Z - z)+ is a convex function 
in z for any random variable Z for which the expectation 
exists. Therefore, Jk(x, jut) is convex in Mu. As a result the 
problem, 

Vk(X) = min Jk(x, Yu) (9) 

is a convex program. This minimization problem gen- 
erates the least upper bound from our relaxation. Let ,M* 
denote an optimal solution to (9). Note that M* clearly 
depends on x and k; that is, M* = ii*(x, k). However, to 
economize on notation we do not include the arguments 
x and k. 

Note that dE(Z -z) = -P(Z > z). Therefore, if the 
distributions of Rt are continuous on (0, +oo), then an 
optimal solution /.z* to (9) satisfies the Kuhn-Tucker nec- 
essary conditions 
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k n 

, E P(Rt > ,*Aj)Aj - A = x, 
t=1 ]=1 

AY = 0, 
X 2:O. (10) 

Since (9) is a convex program, these conditions are also 
sufficient. 

The Kuhn-Tucker conditions (10) are quite intuitive. 
Note that since P(R]t > ,u*Aj) = Eu t, the term t= 
P(Rt > ,u*Ai)Aj is the vector of expected number of re- 
quests for each leg over the remaining horizon k from 
itineraries whose revenue exceeds the bid prices defined 
by [t'*. Since A 2 0, the first and second condition in (10) 
imply that if ,"*i > 0, then A' = 0 and the expected num- 
ber of such request for leg i, across all itineraries, is pre- 
cisely the capacity xi; if ,u'*' = 0, N.' 2 0 and the expected 
number of such requests for leg i is no more than the 
capacity x'. Indeed, (9) is equivalent to the problem of 
maximizing the expected revenue subject to the con- 
straint that the expected number of requests is no more 
than x (i.e. the constraint E[ t=1 Aut] ? x). 

The optimal value obtained by solving (9) also pro- 
vides an analytical alternative to the "perfect hindsight" 
upper bound, which is used frequently in many prac- 
tical simulation studies. The perfect hindsight bound is 
obtained by solving the linear program 

k 

Vk(x, w) = max S Rt(w)ut(w), 
t=1 

k 

E Aut(w) ? x, 
t=1 

ut (w) E [O, 1] ' (11 ) 

where we use w to indicate that the optimization is per- 
formed using perfect information about the actual re- 
alization of demand. From strong duality, we then have 

k 

Vk(x, w) = min max , Rt(w)ut(w) 
tL(w)-0 ut(W)G10,11n t=1 

+ p(w)(x - Aut(w)) 

k n 

= min E E (RIt(w) - ,(w)A) + ?,u(wj)x 
,4(w)2? t=l j=l 

k n 

' I (RIt(w) - i*Aj)+ ? ,ux 
t=1 j=1 

where again [tz* denotes an optimal solution to (9). Tak- 
ing expectations on both sides above and using (8) and 

(9) yields 

EVk(x, w) ' Vk(X)- 

Hence, as a bound on optimal expected revenues, (9) is 
weaker than what one obtains by simulating and aver- 
aging (11); however, because it is analytical, requiring 
only one optimization and no simulation, it is much 
more computationally efficient. 

In summary, (9) provides an upper bound on optimal 
revenues, and its optimal solutions, ,u^*, satisfy the con- 
straints of the original problem in expectation. We next 
show that if one fixes the set of bid prices at M* for all 
times t ? k, the resulting revenue is asymptotically op- 
timal in a certain scaling of the problem. That is, a fixed 
bid price policy with bid prices equal to ,M* is in fact 
asymptotically optimal. 

4.2. Asymptotic Analysis of Bid Prices Derived 
from the Upper Bound Problem 

Below, M* denotes an optimal solution to (9). Again, we 
note that M* depends on the initial capacity x and the 
initial time-to-go k. Consider the following fixed-bid- 
price heuristic: 

Fixed-Bid-Price Heuristic (H) 
At time k with remaining capacity x, compute ,uz once by 
solving (9). Then, for all times t ? k, accept a request for 
itinerary j with revenue r if and only if there is sufficient 
capacity to satisfy it and r > ,u*AJ. 

Let Jft(x) denote the expected revenue of this heuristic 
given initial capacity x and time-to-go k. Let 0 be a pos- 
itive integer, and consider a sequence of problems, in- 
dexed by 0, with initial capacity vectors Ox, time-to-go 
Ok and revenues, denoted Rt(O), where 

Rt(O) =D Rt1,9 (12) 

and =D denotes equality in distribution. This construc- 
tion corresponds to splitting each period t in the original 
problem into 0 statistically independent and identical 
periods in the scaled problem and at the same time in- 
creasing the initial capacity by a factor of 0. As a result, 
the relative values of demand, capacity and time are 
preserved. 

For the scaled problem, let Jok(OX) denote the opti- 
mal expected revenue and J' (Ox) denote the expected 
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revenue of the fixed-bid-price heuristic. (We show 
below that the vector /.z* solves (9) for all 0, so the 
same vector of bid prices is used for each problem 
in the sequence.) The following result shows that 
the fixed-bid-price heuristic is asymptotically optimal 
as the scale of the problem, as measured by 0, 
increases: 

THEOREM 1. IfRt R? C (a.s.), then 

Jk(0x) 1 - 

o 0(0 1/2). 

Jok(OX) 

In particular, 

lim =1.0X 
-o J9k(OX) 

PROOF. By considering (8) and (12), we have 

Ok n 

E E E(Rt(0) - ,uAj)+ + 0,ux 
t=1 j=1 

- k n 

=0 X E(Rt - ,uAAj)+ + ux = OJk(x, u). 
t=l j=l 

Therefore, the vector ,u'* that solves (9) is the same for 
all value of 0. We therefore have by Lemma 1 

J9k(OX) 
- 

OVk(X). (13) 

Now consider the fixed-bid-price heuristic with ,u* as 
the fixed vector of bid prices. We will construct a sample 
path bound on the revenue with these bid prices using 
a coupling argument. To do so, we consider an alternate 
system which follows the bid-price policy for accepting 
sales, but has no capacity constraint; rather, in the al- 
ternate system we subtract a revenue of C for each set 
sold in excess of Oxi on each leg i, where C is the uniform 
upper bound on the itinerary revenues. Consider the net 
revenues collected in each system for a given sample 
path of arrivals. Note in the two systems, the same rev- 
enues are collected up until the time one or more of the 
leg capacities is exhausted. 

Now, suppose a request arrives for an itinerary j 
that needs a leg i whose capacity is exhausted. If 

Rt(0) ? ,L'*A1, it will be rejected in both systems and 
no revenues will be collected in either system. If 

Rt(0) > ,I*AI, the request will be rejected in the orig- 
inal system because of the capacity constraint. In the 

alternate system, it will be accepted but at least one 
penalty of C will be charged because one or more leg 
capacities are exhausted. No revenues will be col- 
lected in the original system, and the alternate system 
will realize a loss since Rt(O) - C ? 0. Moreover, the 
alternate system will have even less capacity remain- 
ing because it accepted the request. Hence, it follows 
that the net revenues in the alternate system are, path- 
wise, a lower bound on the revenues obtained under 
the bid-price heuristic. Therefore, 

Ok n 

JOk(x) 2 I E(Rt(O) - Aj) 
t=1 j=1 

Ok n 

+ I I P(RIt(O) > ,i*Aj),i*Aj 
t=1 j=1 

m 

-C E E(N' - Ox')+, (14) 
i=l 

where Ni is the number of leg i seats sold under the bid- 
price heuristic, which is given by 

Ok n 

N' = I I 1{Rlt(O) > y*Aj*aIj. 
t=1 j=1 

The first two terms in (14) are the actual revenues col- 
lected; the last term is the total penalties charged. 

Let Yijt = 1{Rt > ,u*Ailaij and note that by (12) and 
the independence of the vectors Rt(O), that EN' = 0 

t=1 Ej 1 EYijt and that Var(N') = 0 t= E Var(Yijt). 
We now use a bound due to Gallego (1992), which 
states that for any random variable Z with mean yu and 
finite variance 072 

IJ2 + (Z _ 2)2 _(Z-8, E(Z - z)+ 
2?( ~) z-jt 

2 

Applying this bound to the terms in the last sum in (14) 
and using the fact that 

Ok n 

EN' = E E P(Rt > z*Aj)aij c Ox' 
t=1 j=1 

by the Kuhn Tucker conditions (10) for ,u'*, implies 
that 

MANAGEMENT SCIENCE/Vol. 44, No. 11, Part 1 of 2, November 1998 1585 



TALLURI AND VAN RYZIN 
Bid-Price Controls for Network Revenue Management 

E(Ni - Oxi)+ _l VVar(N') + (Ox' - EN')2 - (Ox' - EN') 
2 

_ Var(NI) + I Ox' - EN'l - (Ox' - EN') 

2 

FVar(N') 
2 ~~~~~~~(15) 2 

Also note that by the Kuhn Tucker conditions (10), 

Y t= 1j=1 P(Rt(O) > i*Aj)Aj - Ox) = 0, so that 
Ok n 

, , P(Rt(O) > ,it*Aj),l*Aj O,u*x. (16) 
t=1 j=1 

Using (15) and (16) in the second and third sums in 
(14) and using (13), we obtain 

Ok n 

Jk(Ox) 2 Y E(Rt(O) - t*Aj)+ 
t=1 j=1 

C I k n 

+ OpL*x - 2 4 2, 
E 
Y Var(Yijt) 2 i=1 =1 j=l 

= OVk(x) - ?(X)/ 

which completes the proof. D 

4.3. Uniqueness of the Asymptotic Bid Prices 
We next address the uniqueness of the asymptotically 
optimal bid prices. Although the upper bound problem 
(9) is convex in /.u, in general it is not strictly convex and 
hence it may not have a unique solution. 

To see this, we can write the function Jk(x, ,u.) as 

Jk(x, ,) = g(,uA) + ,Lux. (17) 

where g: Rn -+ R is defined as 

k n 

g(r) = Y, E(Rt - rj)+, (18) 
t=1 j=1 

and r = (rl, ..., rn). Now if there exists a t such that 
P(R]t > rj) > 0, Vr 2 0, then g is strictly convex on Rn. 

However, even if g is strictly convex, in general g(,uA) 
is only (weakly) convex in /.u. It is not hard to see that 
the function g(,uA) will be strictly convex in /.u if and 

only if xA = yA implies x = y, which is equivalent to 
the condition: xA = 0 implies x = 0. But this is true if 
and only if A has rank m. Therefore, we have the fol- 
lowing sufficient condition for uniqueness: 

PROPOSITION 3. Suppose for all j there exists a t such 
that P(Rt > r) > 0 on [0, +oo). Further, suppose rank(A) 
= m. Then the solution to (9) (and hence the vector of 
asymptotically optimal bid prices) is unique. 

In most practical settings, we would expect n > m and 
hence it is highly likely that A will have rank m. In this 
case, sufficiently large tails on the fare distributions will 
result in unique asymptotically optimal bid prices. 

However, multiple asymptotically optimal bid-price 
can occur if fare distributions are highly concentrated. 
For example, one can easily construct situations in 
which there is a range of bid prices that are high enough 
to block a low fare class while still being low enough to 
allow higher fare classes to book; each value produces 
the same acceptance decision (with probability one) and 
hence all are asymptotically optimal bid prices. Alter- 
natively, it is possible that because rank(A) < m mul- 
tiple solutions to (9) exist. As a simple example, con- 
sider the case of two legs in series (m = 2) with one 
itinerary (n = 1) that traverses both legs. In this case 
rank(A) = 1 < m, and multiple solutions exist. Specifi- 
cally, it is easy to see in this case Jk(x, yu) depends on yu 
only through the sum ,1? + ,U2. 

4.4. Bid Prices and Opportunity Cost 
The above observations illustrate an important point; 
namely, there is not a one-to-one correspondence be- 
tween optimal bid prices and the opportunity cost of 
leg capacity. That is, one can generate examples of bid 
prices that give near optimal accept / deny decisions but 
at the same time are very poor approximations to the 
marginal value of leg capacity. 

As a simple example of this difference, consider a 
single-leg problem in which high revenue fare classes 
arrive strictly before low revenue fare classes. In this 
case, it is clear that it is optimal to accept arrivals in first- 
come-first-serve (FCFS) order. Therefore, a constant bid 
price of zero is optimal. On the other hand, the oppor- 
tunity cost Jk(x) - Jk(x - 1) at each point in time k is 
certainly not zero. In other words, while it is sufficient 
to compare the revenue to the true opportunity cost 
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Jk(x) - Jk(x - 1) at each point in time to make optimal 
accept / deny decisions, it is not necessary to do so; other 
threshold values may produce the same accept/ deny 
decision and same optimal revenues, as the value of 
zero does in this case. 

One might argue that the real goal is to make the right 
accept / deny decision and therefore it is not worth wor- 
rying about the difference between optimal bid-price 
values and opportunity costs; however, in practice a 
good estimate of opportunity cost is often essential. In 
particular, for special event requests-especially ad-hoc 
group bookings-which are typically not part of the 
forecast, one needs an accurate assessment of opportu- 
nity cost to make a good decision. 

The point, simply, is that one has to be careful about 
the interpretation of the bid prices produced by any op- 
timization algorithm. Ideally, we would like the sum of 
leg bid prices along an itinerary to represent the itiner- 
ary's opportunity cost. On the other hand, due to "de- 
generacy" of the value function, this may not always be 
achievable. Yet despite this difficulty, Theorem 1 shows 
that a properly constructed bid-price control rule is still 
asymptotically optimal against forecasted demand. The 
algorithmic challenge, therefore, is to construct bid 
prices which produce near-optimal acceptance deci- 
sions against forecasted demand, while simultaneously 
providing good estimates of the opportunity cost 
(whenever possible), so that special event (group) re- 
quests can be properly evaluated. 

5. A Unified View of Bid Price 
Approximation Schemes 

It is quite helpful, to view bid price methods as corre- 
sponding to various approximations of the optimal 
value function. That is, a given approximation method 
A yields a function J'(x) that approximates Jk(x). The 
bid prices are then the gradients of J'(x), i.e. 

Jk(Z) - Jk(X - Ai) ,zViJ j(x)Ai, 

If the gradient does not exist, then VxJA(x) above is typ- 
ically replaced (at least implicitly) by a subgradient of 
Jk(x). This interpretation of approximations schemes 
raises two important questions: Is JkA(x) a good approx- 
imation of the value function? And more importantly, 
is VxJk(x)Aj a good approximation of the opportunity 

cost? In this section, we examine these questions for two 
popular approximation schemes and also the asymp- 
totic bid prices developed in Theorem 1. 

Before proceeding, we note that in actual applica- 
tions, the approximation Jk (x) is usually resolved fre- 
quently to allow the vector of bid prices to adjust to 
changes in remaining capacity x and remaining time k. 
In this section, we assume the approximations are 
solved for each x and k and compare the resulting bid 
prices to optimal bid prices. 

5.1. Deterministic Linear Program (DLP) 
The deterministic linear programming method corre- 
sponds to the approximation 

n 

JP(X) = min Y ERjyj, 
j=1 

Ay ' x, 

O ' y ' ED, 

where D = (D1, . .., DO) and Dj denotes the demand to 
come for itinerary j (ED is the expected value of D) and 

Rj is the (possibly random) revenue associated with itin- 
erary j. In our earlier notation, Dj = 1 1{R't > 0). The 
decision variables yj represent a discrete (nonnested), 
static allocation of capacity to each itinerary j. 

If the constraints Ay ' x are not degenerate (linearly 
dependent) at the optimal solution, then VJkf(x) exists 
and is given by the unique vector of optimal dual prices 
associated with these constraints; if these constraints are 
degenerate, then there are multiple optimal dual price 
vectors, each of which is only a subgradient of the func- 
tion Jk X(X) 

The most serious weakness of the DLP formulation is 
that it considers only the mean demand and ignores all 
other distributional information. As a consequence, the 
dual values are zero on any leg that has a mean demand 
less than capacity. Despite this deficiency, Williamson's 
(1992, Chapter 6) extensive simulation studies showed 
that with frequent reoptimization, the performance of 
DLP bid prices is quite good, producing higher revenue 
than both probabilistic math programming models (see 
below) and a variety of leg-based EMSR heuristics. 

5.2. Probabilistic Nonlinear Program (PNLP) 
The probabilistic nonlinear programming method cor- 
responds to the approximation 

MANAGEMENT SCIENCE/Vol. 44, No. 11, Part 1 of 2, November 1998 1587 



TALLURI AND VAN RYZIN 
Bid-Price Controls for Network Revenue Management 

n 

J"NLP(x) = min Y ERjE min{Dj, yjI, 
j=1 

Ay x, 

y 0, 

where again Dj and Rj are defined as in the DLP case. 
As in the DLP, the decision variables yj represent a dis- 
crete, static allocation of capacity to each itinerary j. If 
the constraints Ay ? x are not degenerate at the optimal 
solution, then V LP (x) exists and is given by the unique 
vector of optimal dual prices associated with these con- 
straints; if these constraints are degenerate, the multiple 
optimal dual vectors are subgradients of the function 

JLk (X ) 

This formulation appears somewhat better than the 
DLP, in that the term E min{Dj, yj} in the objective func- 
tion captures the randomness in demand. However, the 
assumption of a discrete, static allocations of capacity 
to each fare class can lead to poor behavior. This behav- 
ior was demonstrated empirically in Williamson's 
(1992, Chapter 6) simulation studies, in which she ob- 
served that the PNLP bid prices consistently produced 
lower revenues than the DLP bid prices. In a further 
computational comparison between the DLP and PNLP, 
Talluri (1996) found similar behavior. 

To understand the weakness of the PNLP approxi- 
mation, consider a problem with m = 1 leg and n itin- 
eraries on the leg, each of which is identical. Assume 
each itinerary j has demand, Dj D, where D is nor- 
mally distributed with mean /.u and standard deviation 
a and that each itinerary has the same deterministic rev- 
enue r. The PNLP formulation is then 

n 

Jk (X) = min , rE min{D, yj}, 
j=l 

n 

'Y yj 
C-- 

X, 

j=1 

y 2 0, 

where D N(,u, a). By symmetry, the optimal solution 
is yi = x / n, ] = 1, . . ., n and hence the Kuhn-Tucker 
conditions imply the optimal dual price A satisfies 

A = rP(nD > x) = r(l - (x 
- 
nf)) (19) 

where 4>(x) is the CDF of the standard normal distri- 
bution. The value A above then forms our estimate of 
the marginal value of the xth seat. 

But since all itineraries are identical, the marginal 
value in this problem should be the unchanged if we 
aggregate all n fare classes into one fare class with mean 
n,u and variance na2. Aggregating and applying the 
PNLP we find the optimal dual multiplier in this case 
satisfies 

n n 
A = rP(X Dj > x) = r(l - 4. 

x 
(20) 

j=1 (T 

If x * n,u and n is large, (19) and (20) give very different 
estimates of the marginal value. Of course, from first 
principles we know the true opportunity cost is com- 
pletely independent of how we aggregate (or disaggre- 
gate) these identical itineraries. 

While on the surface this seems like a contrived ex- 
ample, it is not unreasonable to expect a similar type of 
behavior in large hub-and-spoke networks. For exam- 
ple, if many uncongested in-bound legs have connect- 
ing passengers traveling on a single congested out- 
bound leg and passengers pay comparable revenues, 
then the situation is quite similar to the example above. 
That is, one would like to treat all passengers as a single 
fare class (i.e. "nest" the fare classes) but the PNLP al- 
locates space to each separately, resulting in a distorted 
estimate of the marginal value of the leg. In contrast, the 
DLP method does indeed posses this "nesting" prop- 
erty, since, in the above example, aggregating all n fare 
classes does not change the resulting DLP bid price. 

5.3. Prorated EMSR 
Another method for computing estimates of bid prices 
is to use a prorated expected marginal seat revenue 
(PEMSR) scheme. Originally proposed in Williamson 
(1992), PEMSR schemes involve allocating a portion of 
the revenue of each itinerary to the legs of the itinerary. 
One then solves m leg-level problems using the ex- 
pected marginal revenue (EMSR) heuristic proposed by 
Belobaba (1989). The resulting EMSR values from each 
leg are then used as bid prices. 

Specifically, let a = (a1, ..., am) be a non-negative 
real vector. For each itinerary j, define new revenues, 
one for each leg in the itinerary, by 
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Table 2 Problem Data for Iterative Allocation Example 

Time (k) Itin. (A1) Fare Prob. 

2 AB $100 0.5 
CD $100 0.5 

1 ABC $1000 0.5 
BCD $1000 0.5 

Rij = .[Rj, i E Aj. 
Ii eAj ai 

Next, treat each leg i independently as if it received de- 
mand Dj, but with reduced revenue Rij and solve the 
corresponding leg-level EMSR.' The approximation to 
the value function is then 

m 

JPEMSR(x) = E Ji(xi, a), 
i=l 

where ji(xi, a) denotes the expected revenue of leg i 
under the allocation a. 

Williamson (1992) investigated several methods for 
determining the allocation a, including prorating based 
on mileage, number of legs and the relative revenue 
value of local demand on each leg. Her conclusion is 
that none of these fixed allocations is very robust in gen- 
eral. Indeed, it is not hard to see that if one leg of an 
itinerary is highly congested and all others have abun- 
dant capacity, then the revenue of the itinerary should 
be entirely allocated to the congested leg. Depending on 
the realization of demand, however, the congested leg 
could be any of the legs on the itinerary; hence, no fixed 
allocation scheme can be expected to work well in all 
cases. 

An intriguing idea along these lines, again appearing 
in Williamson (1992, p. 107) but not pursued fully there, 
is to prorate revenues using an iterative loop. That is, 
first obtain the marginal values based on some initial 
proration scheme and EMSR calculations. Then, use 

these marginal values to do the next round of proration 
and EMSR calculations. Repeat these iterations until the 
marginal values (hopefully) converge. The hope here is 
that the bid-prices will converge to a near-optimal set 
of bid-prices. Unfortunately there is little theoretical jus- 
tification behind this idea. 

Even if the bid prices converge to some value (it is 
not entirely clear if convergence is guaranteed), they do 
not necessarily converge to a good set of bid-prices. For 
example, consider a three-leg line network, with nodes 
A, B, C and D. Each of the three legs, AB, BC and CD, 
has one remaining seat. Suppose t = 2 and we have data 
for itinerary arrivals as shown in Table 2. If we start 
with an allocation of fares for t = 1 using equal weights, 
prorate the fares in period t = 1 by these weights, and 
then compute the expected marginal value of each leg 
we get bLAB = 250, ABC = 500 and k-CD = 250. 

The results of repeated applications of this procedure 
are shown in Table 3. Note that the bid prices converge 
to [AB = 0, UBC = 1000 and /CD = 0. However, by in- 
spection of the data in Table 2, it is clear that we want 
to reject both of the itineraries arriving in period t = 2, 
so we need [AB > 100 and ACD > 100. Such a policy 
yields an expected revenue of $1,000. Because the iter- 
ative proration scheme produces zero bid prices for legs 
AB and CD, it accepts both of the itineraries in period t 
= 2, generating an expected revenue of only $600. 

One problem with the iterative proration scheme is 
that once the problem is broken up into leg-level prob- 
lems, all network information is lost. Additional prob- 
lems can arise due to the fact that many EMSR methods 
assume fare classes have ordered arrivals, usually with 
lower fare classes arriving before high fare classes, see 
Belobaba (1987, 1989), Brumelle et al. (1990), and Curry 

Table 3 Example of Convergence of Iterative 
Proration Scheme (t = 1) 

Iter. I1AB IJBC I-tCD 

0 250.0 500.0 250.0 
1 166.7 666.7 166.7 
2 100 800 100 

00 0 1000 0 

'As formulated in our model, there is no particular order of arrival. 
Typically, some assumption on the arrival order, like lower fare fare 
classes book before higher, is made as an approximation and then one 
applies an EMSR scheme that does not require monotonically increas- 
ing fares, e.g., Robinson (1991). 
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(1989). In a proration scheme, the regular ordering of 
arrivals is often destroyed, and certainly any assump- 
tion of low prorated revenues arriving strictly before 
high prorated revenues becomes untenable. 

5.4. Asymptotic Bid Prices 
The asymptotic analysis provides an alternative ap- 
proximation approach. Indeed, note from (9) that 
Vxvk(x) = W. so we can view the upper bound Vk(X) as 
an approximation of Jk(X) with ,p* its (sub)gradient. The 
approximation (9) is somewhat unique in that it is 
solved directly in the space of the bid prices [t, whereas 
in the DLP and NLP methods, ,u is a dual value of a 
problem whose primal variables are inventory alloca- 
tions. 

The approximation (9) has the "nesting" property be- 
cause the objective function in (9) sums all arriving itin- 
eraries j whose revenue exceeds the fixed thresholds 
[LA'. As a result, it does not suffer from the discrete al- 
location problem of the PNLP method. For example, 
suppose two itineraries ji and j2 are entered as separate 
columns of A, but in reality Ail = A'2 and each has the 
same fare distribution. If these two itineraries were 
combined into a new itinerary (by adding the probabil- 
ities of arrival in each period together) the asymptotic 
bid prices would not change, which is the correct be- 
havior. 

At the same time, the approximation (9) suffers from 
the same weakness as the DLP in that its value only 
depends on the first moment of demand. Indeed, if, as 
above, we let Dj denote the demand to come for itiner- 
ary j and Rj denote the random revenue associated with 
itinerary j, then (9) becomes 

n 

Vk(X) = min I EDjE(Rj - [Aj)+ + [Tx, 
/JiO j= 

which only depends on EDj. 
The problem here is that the asymptotic analysis is 

too "coarse" to capture some of the second-order sto- 
chastic effects which the PNLP captures. As a result, as 
in the DLP case, the asymptotic bid-prices will turn out 
to be zero if the mean demand on a leg is strictly less 
than its capacity. This is indeed correct behavior 
asymptotically, but for demands with high variance 
near capacity, the actual bid price could be significantly 
larger than zero, possibly even more than some of the 

fares of the lower fare classes. Indeed, under appropri- 
ate scaling, one can show that, as fare variances tend to 
zero, the asymptotic bid prices from (9) approach the 
DLP bid prices. One can then combine this result with 
Theorem 1 to show that as fare variances tend to zero, 
the DLP bid prices are also asymptotically optimal. 

However, the asymptotic approximation, unlike the 
DLP and PNLP methods, accounts for variability in itin- 
erary revenues, which provides a significant advantage 
in approximating optimal bid prices when fares vary 
significantly within itinerary / fare-classes. 

As a simple example of this effect, consider a single- 
leg problem with only one fare class. Suppose the actual 
fares R vary and have distribution F(r) with mean ER. 
If the mean demand, ED, is significantly higher than 
capacity, x, the bid price produced by DLP and PNLP 
methods both approach ER. That is, reducing the leg 
capacity by one almost certainly results in a lost sale, 
which each of these models values at ER. Under an op- 
timal bid-price policy, however, the bid price rises 
above ER as the demand / capacity ratio increases. This 
occurs because, with many requests to choose from, it 
is optimal to be selective and accept only the higher 
fares within the fare class (i.e. fares in the "right tail" of 
the distribution) rather than accepting all fares. From 
(9), one can show that the optimal bid price in the above 
example tends to a value r* satisfying 

ED(1 - F(r*)) = x. 

Depending on the distribution of F, the value of r* can 
be significantly higher than ER; hence the DLP and 
PNLP methods will under-estimates the optimal bid 
price. A complimentary effect can occur when the de- 
mand / capacity ratio is small; in this case, the DLP and 
NLP models may tend to over-estimate the optimal bid 
price. 

5.5. Numerical Examples 
In this section, we illustrate the above qualitative be- 
havior by computing bid prices for the DLP, PNLP and 
asymptotic approximations for a simple, 3-fare-class, 
single-leg problem. (The PEMSR method is not in- 
cluded because it reduces to ordinary EMSR in this 
case.) These bid prices are compared to the optimal bid 
prices obtained by dynamic programming. The exam- 
ples are constructed primarily to illustrate the behavior 

1590 MANAGEMENT SCIENCE/Vol. 44, No. 11, Part 1 of 2, November 1998 



TALLURI AND VAN RYZIN 
Bid-Price Controls for Network Revenue Management 

Table 4 Data for Numerical Examples (in order 
of arrival) 

Ex. 1 Ex. 2 Ex. 3 

Class 3 
Fare Mean 80 120 120 
Fare Std. Dev. 4 6 36 

Class 2 
Fare Mean 120 120 120 
Fare Std. Dev. 6 6 36 

Class 1 
Fare Mean 400 120 120 
Fare Std. Dev. 15 6 36 

of the bid prices produced by each method rather than 
to mimic real data. 

The problem has 30 time periods. The three fare 
classes arrive sequentially, with fare class 3 arriving in 
periods 1-10; fare class 2 arriving in periods 11-20; and 
fare class 1 arriving in periods 21-30. (Strict low-before- 
high fare order.) The probability of arrival in each 
period is 0.2 for all three fare class, resulting in a 
mean demand of 2 with a standard deviation of 1.26 
for all three classes. Fares in each class are normally 
distributed. The three examples were generated by 
varying the fare means and standard deviations as 
shown in Table 4. 

Figure 1 show the bid prices produced by each ap- 
proximation method for Example 1. The values are 
those for the beginning of the horizon (k = 30 time units 
remaining) and are graphed as a function of the re- 

Figure 1 Bid Prices for Example 1 
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Figure 2 Bid Prices for Example 2 
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maining seat capacity. The dashed line shows the opti- 
mal bid price. Note that the all three approximation 
methods underestimate the optimal bid price when the 
remaining capacity is less than the mean total demand 
of 6. When remaining capacity is greater than the mean 
total demand of 6, the PNLP overestimates the optimal 
bid price, while the DLP and asymptotic approximation 
produce a bid price of zero as noted above. 

Figure 2 shows the bid prices for Example 2, again 
with 30 time units remaining. Since all fares are equal 
in this example, it highlights the nesting properties of 
the approximation methods. Note in this case the DLP 
and the asymptotic methods produce very similar val- 
ues, with both methods overestimating the bid price at 
low remaining capacities and underestimating bid 
prices when capacity exceeds the mean total demand of 
6. The PNLP method has the opposite behavior, under- 
estimating the bid price at low capacity and overesti- 
mating it at high capacity. We note that if the three fare 
classes were aggregated (e.g. they were treated as one 
fare class arriving uniformly over period 1 to 30 with 
probability 0.2 in each period), then the bid price pro- 
duced by PNLP would in fact be optimal, while the bid 
prices produced by the DLP and asymptotic method 
would be unchanged. 

Figure 3 shows the effect of fare variance. The data 
for this example are the same as in Example 2, except 
that the fare variance has been increased in each fare 
class. Note this change has no effect on the DLP and 
PNLP bid prices as expected. However, the optimal and 
asymptotic bid prices change significantly at low re- 
maining capacities, both approaching approximately 
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Figure 3 Bid Prices for Example 3 
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$150 as capacity tends to zero, rather than $120 as in 
Example 2. This reflects the optimality of accepting 
higher-than-average fares as capacity becomes highly 
constrained. Note that the asymptotic approximation 
provides a significantly better estimate of marginal 
value at low capacities in this case. 

6. Conclusions 
Bid prices are an appealing practical method for net- 
work revenue management. Our analysis confirms that, 
though not optimal, bid-price controls are provably 
near optimal in certain cases, provided the right bid 
prices are used. This result should be reassuring to the 
many users in the airline, hotel and broadcasting in- 
dustries who are making the transition to bid-price tech- 
nology. Our analysis also identifies cases where bid- 
price controls can be suboptimal and it sheds new light 
on the reasons why they can be suboptimal, in partic- 
ular when there is a type of degeneracy in the value 
function. There are interesting questions concerning 
precisely how to detect such degeneracies and correct 
for them. 

While asymptotic analysis is arguably a crude form 
of analysis, we believe that a good test of any algorithm 
for calculating bid-prices is that it have good asymptotic 
properties. That is, having good performance asymp- 
totically ensures that the bid prices are capturing the 
correct "first-order" revenues. In this sense, among the 
two (DLP and PNLP), the DLP method seems to have 
best asymptotic properties. Asymptotic performance 
may explain why, for all its apparent simplicity, the LP 

bid-prices seem to generate more revenue than PNLP 
bid-prices in simulation experiments (see Talluri 1996 
and Williamson 1992). Of course, by incorporating de- 
mand variance properly, it may be possible to obtain 
significantly more revenue than the LP approach. 

Finally, we suggest that, in future research, bid price 
schemes be viewed as approximations of the value func- 
tion. From this unified point of view, one can better un- 
derstand the various strengths and weaknesses of each 
scheme and begin to make useful comparisons among 
various approaches. At the same time, more work is 
needed to understand the performance of approxima- 
tion schemes on realistic data sets.' 

1 We thank Renwick Curry, Guillermo Gallego, and Rick Stone for 
helpful feedback on an earlier draft of this paper. We also thank the 
associate editor and two anonymous referees for their helpful feedback 
and suggestions. 
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