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The application of booking limits on the number of seats available at different prices on the same flight allows airlines 
to increase revenues. Effective seat inventory control by an airline depends on forecasts of future bookings, the revenue 
values associated with each fare type, and an ability to make systematic tradeoffs between booking requests so as to 
maximize total flight revenues. This article describes the implementation of a computerized system for making these 
tradeoffs and setting booking limits on future flights at Western Airlines in early 1987. The Expected Marginal Seat 
Revenue (EMSR) decision model developed for this application takes account of the uncertainty associated with estimates 
of future demand as well as the nested structure of booking limits in airline reservations systems. The Automated 
Booking Limit System implemented at Western made use of the EMSR model to set and revise booking limits periodically 
prior to flight departure. Although the system did not take into account several important components of the seat 
inventory control problem, a revenue impact test on a sample of actual flights showed a significant revenue improvement 
over the judgmental methods used previously. 

A rlines charge different prices for identical seats 
on the same aircraft flight by defining different 

fare products through the application of restrictions 
on ticket purchase and travel. In airline reservations 
systems, limits are placed on the number of seats 
available in each fare class or booking class, which 
can contain several fare products. Effective applica- 
tion of fare class booking limits allows airlines to 
generate incremental revenues without incurring cor- 
responding increases in operating costs. Controlling 
the mix of fare products sold can translate into reve- 
nue increases of $200 to $500 million for carriers with 
total revenues of $1 to $5 billion (Fuchs 1987), and 
many airlines are in the midst of developing methods 
to tap this potential. 

This article examines the application of a probabi- 
listic decision model to the problem of seat inventory 
control, implemented as part of an automated system 
for setting booking limits at Western Airlines. First, 
the problem from the airline's perspective is described, 
followed by a brief review of past applications of 
mathematical approaches to the problem. The Ex- 
pected Marginal Seat Revenue (EMSR) model devel- 
oped for this application is then presented, including 
an overview of extensions developed by the author 

but not implemented. The characteristics of the Au- 
tomated Booking Limit System (ABLS) and a revenue 
impact test conducted in early 1987 are described. 
Finally, the test results and their impacts on the air- 
lines seat inventory management process are dis- 
cussed. The lessons for further system development 
conclude this article. 

1. Seat Inventory Control 

Whether an airline calls it yield management or, more 
appropriately, revenue management, efforts to manage 
the revenue mix of passengers carried involve both 
pricing and seat inventory control. Although pricing 
has a direct impact on revenues, an airline can seldom 
impose price changes without taking the reactions of 
its competitors into account. Seat inventory control, 
on the other hand, is a tactical component of revenue 
management that is entirely under the control of 
each individual airline. Seat inventory control 
has the potential of increasing total revenues on a 
departure-by-departure basis, something that would 
be far more difficult through pricing actions. 

Given a commitment to operate a scheduled flight 
with a fixed operating cost, and acknowledging the 
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very low marginal costs of carrying additional passen- 
gers on that flight, an airline that maximizes total 
flight revenues will, in fact, maximize operating prof- 
its. The seat inventory control problem, then, is to 
determine the number of seats to make available to 
each fare class from a common or shared inventory 
(i.e., the coach cabin of the aircraft) so as to maximize 
total expected revenues for a scheduled future flight 
leg departure. The flight leg approach to seat inventory 
control, currently used by most airlines, represents an 
effort to maximize flight leg revenues, not necessarily 
total system revenues. 

At the level of the individual flight leg, seat inven- 
tory decisions must be made within the constraints 
imposed by the airline's network, schedule and reser- 
vations system capabilities. The aircraft type to be 
used for a particular flight departure is known and, in 
turn, the total number of seats available in the coach 
cabin can be regarded as fixed. Furthermore, in most 
instances, the fare products (and thus the fare classes) 
as well as their respective prices can be assumed to be 
given and constant throughout the booking period for 
the flight. 

Finding the optimal limits on the number of book- 
ings that may be accepted in a particular fare class on 
a future flight leg requires estimates to be made of 
both the expected demand for each fare class and the 
average revenue associated with each class. The de- 
mand for a fare class is considered to be the total 
number of passengers that will request a seat on a 
particular flight leg and fare class as part of their origin- 
destination itinerary. Whether these estimates are 
based entirely on historical patterns or derived from 
a forecasting model, data from past flights are re- 
quired. For a forecast of leg demand, information on 
booking levels prior to departure and actual board- 
ings by fare class, flight leg, and day of the week 
must be extracted from the reservations system and 
stored for seat inventory control decision support 
purposes. 

The seat inventory control process for a future flight 
departure involves setting initial booking limits on 
each fare class that must share a common inventory 
of seats, monitoring actual bookings relative to these 
initial limits, and then adjusting fare class limits as 
bookings are accepted. While monitoring is currently 
the most automated step, the tasks of setting and 
adjusting booking limits by fare class remain de- 
pendent on ad hoc human judgment rather than 
systematic analysis and decision making. As described 
in this article, it is possible to make this process 
more systematic with the application of quantitative 
decision tools. 

2. Mathematical Approaches 

Although some theoretical work dealing with airline 
seat inventory control has been published, the devel- 
opment and implementation of practical models for 
determining the number of seats to make available in 
each fare class on a future flight simply did not keep 
pace with the rapid changes in airline marketing and 
pricing practices that have transpired since deregu- 
lation. This section summarizes briefly the mathe- 
matical approaches that have been proposed in the 
literature. A more detailed review of past work was 
presented by Belobaba (1 987a). 

The relationship between fare class inventories or 
reservations buckets in an airline's reservations system 
affects the way in which the seat inventory control 
problem is represented mathematically and, in turn, 
the solution methods that are most appropriate. The 
simplest reservations system structure involves dis- 
tinct and separate inventories for each fare class. The 
booking limits on each bucket must sum to the total 
capacity of the shared cabin in such systems. When 
overbooking is involved, the booking limits on each 
bucket must sum to the overall limit on reservations 
for the shared cabin. In contrast, a nested reservations 
system is one in which the fare class inventories are 
structured such that a high fare request will not be 
refused as long as any seats remain available in lower 
fare classes. A nested reservations system is thus bind- 
ing in its limits on lower fare classes, but its limits are 
"transparent" from above (for higher fare classes). 

The distinction between separate and nested fare 
class inventories is important both to the way in which 
the seat inventory control problem is represented and 
to the mathematical methods that are used to deter- 
mine optimal seat allocations or fare class booking 
limits. Equally important is the distinction between 
the static problem, in which fare class booking limits 
are applied at the start of the booking process for a 
future flight, and the dynamic problem, in which 
booking limits may be revised as actual bookings are 
accepted. In the latter case, the length of the interval 
between revisions determines the degree to which the 
differences between distinct and nested fare class in- 
ventories will affect optimal booking limits. Request- 
by-request revision of limits on distinct inventories 
eliminates the expected revenue advantages associated 
with nested inventories. The longer the interval be- 
tween revisions, however, the greater the importance 
of finding the optimal booking limits that apply to 
nested fare classes. 

The tools of differential calculus, Lagrangian mul- 
tipliers, mathematical programming and network 
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optimization have been applied to the allocation of a 
given number of seats among two or more distinct 
fare class inventories, depending on the complexity 
of the particular problem representation involved. 
When the multiple fare class problem is formulated 
as a constrained revenue maximization problem, the 
optimality conditions are 

= =-= R=X for all fare classesij (1 ) 

where X, the Lagrangian multiplier, equals the ex- 
pected marginal revenue for the last seat, S, allocated 
to each fare class. Seats are allocated among fare 
classes such that the total expected marginal revenue 
with respect to seats allocated is equal across all rele- 
vant fare classes. 

Further expansion of the problem to multiple fare 
classes and multiple-leg flights or even connecting 
flight operations requires the application of mathe- 
matical programming and related techniques to find 
the optimal fare class seat allotments numerically. 
These methods use the principle of equating marginal 
revenues of the last seats allocated to each inven- 
tory in determining the revenue-maximizing seat 
allotments. 

The potential application of mathematical program- 
ming techniques to the seat allocation problem was 
considered by Mathaisel and de Lamotte (1983) at 
MIT. The network flow approach was pursued by 
Glover et al. (1982), who developed a network based 
seat allocation model for Frontier Airlines. Other 
analysts have addressed the problem of incorporating 
probabilistic demand into mathematical program- 
ming formulations of the seat allocation problem. 
McDonnell-Douglas analysts proposed a formulation 
of the single-leg seat allocation problem that makes 
use of binary decision variables in a linear integer 
programming framework (Wollmer 1985). D'Sylva 
(1982) of Boeing Aircraft used a piecewise linear ap- 
proximation of the expected revenue curve in a linear 
programming formulation to extend Glover's algo- 
rithm to include stochastic demand. 

Making seat inventory decisions dynamically with 
the help of mathematical programming techniques 
requires an assessment of the value of accepting a 
current reservation request relative to the decrease in 
expected total revenue associated with removing one 
seat from the available inventory on the flight leg(s) 
requested. This comparison of the expected revenue 
differential for each incremental unbooked seat with 
a "certain" revenue from the current reservations 
request is extendable in conceptual terms to the most 

complex network formulations. Given that in practice 
most airlines only make revisions to fare class booking 
limits periodically, the solution to the static seat allo- 
cation problem must apply over the entire interval 
between revisions. For applications in which this 
interval is substantial, mathematical programming 
approaches will not necessarily give the true revenue- 
maximizing seat allotments for a nested reservations 
system. 

Finding the optimal booking limits for a nested 
reservations system involves applying the optimizing 
principle of equating marginal seat revenues to the 
problem of dynamic booking limit revision and in- 
corporating it into iterative solution approaches. 
Littlewood (1972) applied the marginal seat model to 
a dynamic reservations context for the two-class, single 
flight leg seat inventory control problem. He suggested 
that revenues could be maximized by "closing down" 
the low fare class to additional bookings when the 
certain revenue from selling another low fare seat is 
exceeded by the expected revenue from saving that 
seat for a potential high fare passenger. 

Applications of this marginal seat principle suc- 
ceeded in incorporating probabilistic demand explic- 
itly into the seat inventory revenue maximization 
problem for a flight leg. The simple decision rule 
presented by Littlewood, as well as by Bhatia and 
Parekh (1973) and Richter (1982), determined opti- 
mal fare class limits for two fare classes on a single 
flight leg. The same marginal seat principle can be 
applied to the static problem when nested fare class 
inventories are involved. 

3. Expected Marginal Seat Revenue Model 

Determining the booking limit on each fare class that 
will maximize total revenues for a future scheduled 
flight departure is a dynamic process. The static prob- 
lem is to establish these fare class limits at the start of 
the booking process, taking into account the uncer- 
tainty associated with expected bookings by fare class, 
to the extent possible. The dynamic problem is to 
revise these initial limits on the basis of the additional 
information provided by actual bookings as departure 
day approaches. The Expected Marginal Seat Revenue 
(EMSR) model recommends fare class booking limits, 
taking into account the probabilistic nature of future 
demand for a flight. The EMSR formulations devel- 
oped for application at Western Airlines are presented 
briefly in this section. A more detailed description 
can be found in the author's doctoral dissertation 
(Belobaba 1987b). 

The nature of price sensitive travel and the 
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application of advance purchase restrictions on the 
lowest priced fare products mean that the lowest fare 
classes tend to book up first, well before the majority 
of requests for the highest fare class are received. The 
seat inventory control problem therefore is to deter- 
mine how many seats not to sell in the lowest fare 
classes and to retain for possible sale in higher fare 
classes closer to departure day. A decision model 
therefore must find the protection levels for higher fare 
classes which can be converted into booking limits on 
lower fare classes. In a nested fare class reservations 
system, each booking limit is the maximum number 
of seats that may be sold to a fare class (including all 
lower fare classes with their own, smaller booking 
limits). The booking limit on the highest fare class is, 
thus, the total capacity of the shared cabin. The pro- 
tection level for the highest fare class is the difference 
between its booking limit and the booking limit of the 
next lowest class. 

The seat allocation approaches in past works as- 
sumed independent fare class demand densities to 
correspond with the distinct fare class inventory as- 
sumption. This assumption of no relationship between 
demand levels for different fare classes is retained. 
Furthermore, we assume initially that a consumer 
denied a flight/fare class request represents a booking 
loss to the airline. On the other hand, an accepted 
booking represents certain revenue for the airline, as 
we assume that no booking cancellations or passenger 
no-shows occur. 

There exists uncertainty about the ultimate number 
of requests that an airline will receive for seats on a 
future flight and, more specifically, for the different 
fare classes offered on that flight. The total demand 
for a particular flight, on average, fluctuates system- 
atically in cycles described by day of the week and 
season of the year. There also will be stochastic vari- 
ation in demand around the expected values, among 
similar flights sampled consistently over a homoge- 
neous period of time. This stochastic demand for a 
future flight departure can be represented by a prob- 
ability density function. Past analyses generally have 
assumed a Gaussian (normal) distribution of total 
demand for a flight, with means and variances that 
depend on the market being studied and on the nature 
of its traffic (Belobaba 1985). We define pi(ri) to be 
the probability density function for the total number 
of requests for reservations, ri, received by the airline 
for seats in fare class i by the close of the booking 
process for a scheduled flight leg departure. 

The number of seats allocated to a particular fare 
class, Si, might not exceed the number of actual 
requests for that fare class, resulting in rejected 

demand, or spill. Thus, we can define a cumulative 
probability that all requests for a fare class will be 
accepted as a continuous function of Si: 

rSi 
P1(Si) = P[ri S S] = f pi(ri) dri. (2) 

Conversely 

P[ri > SI] = f pi(ri) dri 

= 1 - Pi(S) = -P5(i). (3) 

The probability of receiving more than Si requests for 
fare class i, or the probability of spill occurring, is 
therefore Pi(Si). 

We define EMSRi to be the expected marginal seat 
revenue for class i when the number of seats available 
to that class is increased by one. The expected mar- 
ginal seat revenue of the Sith seat in fare class i, 
EMSRi(Si), is simply the average fare level in that 
class multiplied by the probability of selling Si or more 
seats: 

EMSRi (Si) =f - Pi (Si). (4) 

Note that EMSRi(Si) depends directly on PA(Si), the 
probability that the Sith seat made available to class i 
will be sold. 

Consider a single-leg flight for which bookings will 
be accepted in two nested fare classes, 1 and 2, having 
average fare levels fI and f2, respectively. In order to 
maximize total expected flight revenues, the reserva- 
tions process should give priority to class I passengers. 
Class 1 will have the total available capacity of the 
shared cabin, C, as its booking limit, BL1. The seats 
protected from class 2 and available exclusively to 
class 1 will be denoted S'. The optimal protection 
level S! for class 1 is the value of SI that satisfies the 
condition 

EMSRI (S!) = f2. (5) 

Graphically, the optimal value of S! is the point at 
which the EMSRI (SI) curve intersectsf2, as shown in 
Figure 1. The optimal booking limit on class 2 is BL2, 
the difference between the capacity of the shared 
cabin, C, and the optimal protection level, S2b 

This solution will maximize expected revenues in 
cases where the booking limit is set at the start of the 
reservations process (static seat inventory control). 
A class 2 request will be rejected only when BL2 is 
reached, at which point, the expected revenue for all 
remaining seats will be greater than the class 2 average 
fare. If class 2 requests never reach BL2, the unsold 
seats will be available for unexpectedly high class 1 
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Figure 1 Maximizing expected revenues for the 
2-class example. 

demand. In any event, the expected revenue per seat 
from class 1 requests in excess of S! is belowf2, in the 
absence of additional information on actual bookings 
for the future flight being managed. 

Extending this approach to multiple fare classes on 
a single flight leg simply requires that more compari- 
sons of expected marginal revenues be made among 
the relevant classes. In the general case of k fare classes 
offered on a flight leg, the optimal values of Sj must 
satisfy 

EMSRI(S.') = 1, i < j, j = 1, ..., k. (6) 

The total number of comparisons required for k nested 
fare classes is given by 

k(k- 1) (7) 
2 

These protection levels, in turn, determine the book- 
ing limits on each fare class]: 

BLj= C-E S. (8) 
i<j 

That is, all seats with an expected marginal revenue 
greater than f should be held back from sale to class 
j. Otherwise, any request for a class j seat may be 
accepted. It is possible that one or more values of BLj 
derived from these equations might be negative, in 
which case, class j should not be offered at all if 
expected revenues are to be maximized. In such a case 

BLj = max[0, C j . (9) 
i<j 

The incremental number of seats protected for class 
j is the nested protection level for class ], denoted NPj. 
The nested protection level for class j thus is given by 

NPj = BLj - BLj+1. (10) 

In the EMSR framework, the lowest fare class does 
not have a protection level per se, but rather a booking 
limit equal to the number of seats that remain after 
all upper classes have been protected. With a capacity 
of C seats and k fare classes, then, the values of NPj 
must satisfy 

C= E NPj + BLk. (11) 
j<k 

The EMSR protection levels SS, nested protection 
levels NPj, and booking limits BLj are shown graphi- 
cally for a three-class example in Figure 2. 

EMSR booking limits can be generated for any 
number of nested fare classes with no change to the 
model's basic structure. It is important to recognize 
that not all reservations systems are nested in this way, 
or they might not be nested at all. Nesting is preferable 
in seat inventory management because there is no 
difference in the physical seats or the on-board service 
being sold to different fare classes. Airlines without 
nested fare class systems are denying themselves the 
flexibility of accommodating unexpectedly high de- 
mand levels in high-fare classes and, in turn, are losing 
potential revenues. 

4. Dynamic Application of the EMSR Model 

The EMSR decision framework can be applied to a 
seat inventory control context in which booking limits 
may be revised on a regular basis as the flight departure 
day nears. In such a situation, additional information 
is available in the form of actual bookings already 
accepted for the future flight. Because an actual book- 
ing in any fare class will translate (barring cancella- 
tions and no-shows) into a revenue passenger occu- 
pying a seat, incorporating actual bookings into the 

EMSR($/SEAT) BL1 

fl 
MR1 

BL2 

-BL 3 
f - - - ~~EMSR2 

f2 _ _ 

- - - - ~~EMSR3 

I _ 

o S1 >1 C ~~~~~~~~(CAPACITY) 
2 4 S, SEATS AVAILABLE 

Figure 2. EMSR solution for the nested 3-class 
example. 
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EMSR decision framework can reduce the uncertainty 
associated with the estimates of expected demand used 
as input. 

In the static problem, the EMSR model requires an 
estimate of the total expected requests by class. In the 
dynamic case, estimates of future requests at various 
times before departure are required to calculate opti- 
mal protection levels for the unbooked seats still avail- 
able for flight. Dynamic application of the EMSR 
framework involves repetitive use of the static model 
described in the previous section, but with revised 
input data. The objective is to determine the optimal 
fare class limits for the time period remaining to 
departure, irrespective of the (non) optimality of the 
booking decisions already made. Thus, each EMSR 
calculation in the dynamic case is based on a static 
assessment of expected fare class revenues from that 
point in time, based on the most recent available 
demand information for the flight leg. 

For the dynamic problem, the estimates of bookings 
to come must be generated from densities of demand 
by fare class from an historical sample of requests 
made between day t before departure and the day of 
departure. We define r' to be the number of requests 
made for class i between days t and 0 before departure, 
meaning: 

rt sri (12) 

by definition. The probability density of requests from 
day t onward is pi(r'), and the probability of receiving 
S or more requests for class i in the time remaining 
to departure is Pt(S). 

On any day t prior to flight departure, the inputs 
required by the EMSR model are the average fare or 
revenue levels for each fare class, f, which may or 
may not remain constant over the booking period, 
and the estimates of P5(S) for all relevant values of S, 
derived from the pi(r') densities. The optimal seat 
protection level for class 1 relative to class 2 for the 
period remaining before departure is S'(t), such that 

EMSRt [S (t)] =f * Pt(S) =f2. (13) 

This protection level for day t can be used to find the 
revised optimal booking limit on class 2, as 

BL2(t) =C - bt- S(t) (14) 

where b'l is the number of bookings already accepted 
in class 1 up to day t before departure. The maximum 
number of seats still available is C - bl, and S'(t) of 
these seats are protected for class 1. In essence, actual 
bookings are protected along with the additional seats 
required to accommodate expected bookings to come 
in a revenue-maximizing manner. 

For more than two fare classes, comparisons be- 
tween the EMSR(S) values of all upper classes relative 
to the average fare levels of lower classes are required, 
as before. These comparisons involve the demand 
densities of future requests from the current day t. 
Each comparison of a higher fare class i with a lower 
fare class j generates an optimal value of S'(t) that 
satisfies 

EMSRi[SJ(t)] =f Pt(S) =] (15) 

The revised booking limits for day t take actual book- 
ings into account: 

BLj(t) = C- E Sj9(t) - Z bt. (16) 
i< i<] 

The nested protection levels, NPj(t), for successively 
lower fare classes are derived as in the initial case, but 
with actual bookings included: 

NPj (t) = BLj (t) - BLj, (t) 

=E Sji+ I(t) - E Sj'(t) + bj'. (17) 
i-j i<1 

As before, BLj(t) is constrained to be greater than 
or equal to zero. It also is constrained in this case to 
be no lower than the actual number of bookings 
already accepted in class j and all lower classes up to 
day t. Because requests for lower fare classes are 
generally received earlier in the booking process than 
full-fare requests, it is possible that the revised BLj(t) 
derived from the EMSR calculations will be lower 
than the number of bookings already on hand in 
classes and lower. With no possibility of cancellations 
or no-shows assumed, the revised booking limit on 
class j then becomes 

BLj(t) = max[C- Z S(t) - b, b b,,OJ. (18) 
i<j i<j k-j 

The EMSR framework thus can be used to deter- 
mine optimal protection levels and recommended 
booking limits in a nested multiple fare class reserva- 
tions system for a single, future flight leg. Initial book- 
ing limits may be derived on the basis of estimates of 
total expected requests for a future flight, before the 
reservations process begins. These limits may then be 
revised dynamically during the booking process, tak- 
ing into account both actual bookings and estimates 
of future requests by fare class. 

This dynamic application of the EMSR decision 
model retains the simplistic assumptions with respect 
to demand densities, refused requests, cancellations 
and no-shows made in previous works. Furthermore, 
we added the assumption that there is no relationship 
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between the booking rates of different fare classes or 
among time periods before departure. Forecasting 
models that include such a relationship can be used 
to generate estimates of future demand as a function 
of actual bookings, should that be necessary. 

5. Passenger No-Shows and Choice Behavior 

The development of the EMSR decision framework 
has overlooked, to this point, the possibility that a 
reservation might not translate into a passenger being 
carried on the flight in question. Furthermore, the 
assumption that the demand for each fare class is 
distinct does not account for passengers deciding to 
accept a reservation in a higher fare class when the 
desired lower fare class is sold out. This section deals 
briefly with each of these complications to the simple 
demand patterns assumed above. Neither of the en- 
hancements to the EMSR model outlined below were 
implemented at Western Airlines before the revenue 
impact test was performed. 

With each accepted booking assumed to represent 
certain revenue, the basic model focuses on the prob- 
lem of managing the physical seat inventory on the 
aircraft. There is some probability, however, that a 
booked passenger might not be carried on the flight 
for which the reservation was made. Whether the 
original booking is cancelled prior to departure or 
the passenger simply fails to appear at departure time, 
the outcome from the airline's perspective is the loss 
of a revenue passenger for that particular flight. This 
loss is the opportunity cost of having removed a seat 
from the available inventory and then not receiving 
any revenue for it. 

The airline industry practice of controlled over- 
booking of flights above the physical capacity of the 
aircraft has evolved with the objective of minimizing 
such costs. Overbooking analysis is performed to de- 
termine the extent to which a future flight should be 
overbooked so as to minimize the sum of the lost 
revenues associated with empty seats and the costs of 
denying boarding to passengers with confirmed reser- 
vations (Rothstein 1968, 1985). For the purposes of 
seat inventory control, it is important to recognize the 
potential interaction between the fare class mix of 
passengers booked for a flight and overbooking, which 
could have significant revenue implications for the 
airline. 

The EMSR decision framework can be extended to 
account for flight overbooking. The details of this 
extension are included in the author's doctoral disser- 
tation. The objective here is to illustrate how over- 
booking proportions by flight and even by fare class 

could be incorporated into the EMSR framework 
for deriving revenue-maximizing fare class booking 
limits. 

With the introduction of the possibility that a book- 
ing made in fare class i will not generate revenue fJ 
with certainty, the EMSR decision framework must 
be adjusted. The demand inputs required are still 
estimates of the densities of requests for each fare 
class. The difference here is that each accepted request 
(booking) in a fare class cannot be treated as if the 
revenue associated with that class will always be real- 
ized. The expected revenue associated with accepting 
a request will be lower than the actual fare level in 
that class because of the possibility of cancellation or 
no-show. The overbooking percentage for each fare 
class determines the extent to which the expected 
revenue from a booking is reduced due to this 
uncertainty. 

We define this overbooking percentage to be the 
overbookingfactor, OV, where OV 3 1.0, and where 
OV applies at the time of the EMSR calculations. 
Given overbooking factors OVI and OV2, the optimal 
protection level for class 1 from class 2, S", must 
satisfy 

PI(S2) f ov= f2 0v(19) 

The revenue levels of the two classes, in essence, are 
deflated by the assumed overbooking factors. Thus, 
we are reducing the expected marginal revenue of each 
incremental seat for class 1 for which the possibility 
of protection is being evaluated. 

The value of SI that satisfies the above condition is 
the protection level for class 1 from class 2, expressed 
in terms of the number of reservations spaces (as 
opposed to physical seats) that should be protected for 
exclusive use of class 1 passengers. Because the de- 
mand inputs to the EMSR framework for all fare 
classes will be in terms of expected requests, the cal- 
culated protection levels for all upper fare classes will 
be in terms of reservations spaces, with the relevant 
overbooking factors already incorporated. The gener- 
alized decision rule for the EMSR framework with 
overbooking factors is to protect S' seats for class i 
from class j such that 

EMSRj(Sj)* = S f. Ovi P() Ovi 

(20) 

The derivation of overbooking limits, BL*, from 
this revised EMSR decision rule is complicated by the 
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fact that the optimal protection levels are expressed in 
terms of reservations spaces (overbooking factors in- 
cluded), while the capacity of the aircraft is in terms 
of physical seats. The simplest case occurs when all 
the OVj values are equal across fare classes, so that 
the OV factors drop out of the above formulation, 
reducing it to the original EMSR formulation. In the 
application of the EMSR approach at Western, a single 
overbooking factor was applied, such that the over- 
booking limit on the total capacity of the shared 
aircraft cabin, C*, is simply 

C*=BL* = OV * C. (21) 

Booking limits for each subordinate fare class in the 
coach cabin may be derived after an overbooking 
target is established for the total capacity of the cabin. 
The protection levels generated by the EMSR model 
are for reservations spaces rather than physical seats, 
and the overbooking limits on each fare class BL7 are 
given by 

BL* = C*-E Sj. (22) 
i<j 

The net result is that each fare class may be over- 
booked by the same percentage, and C* will be the 
same regardless of the fare class mix actually booked 
for any particular flight. 

The fact that fare classes are designed to appeal to 
different air travel demand segments suggests that 
passengers booked in each fare class might exhibit 
different no-show behavior. It is plausible that passen- 
gers in lower fare classes will be more likely to show 
up for booked flights than those in higher fare classes 
for several reasons, the most important being the 
cancellation penalties associated with the lowest ex- 
cursion fares. Few airlines currently have the detailed 
no-show data required to confirm this hypothesis em- 
pirically. Nonetheless, if it can be determined that 
different no-show behavior exists across fare classes, 
the incorporation of different overbooking factors can 
make the EMSR model responsive to changes in the 
fare class mix of bookings accepted. 

A second characteristic of fare class demand not 
addressed by the basic model tested at Western is the 
disposition of refused reservations requests, which 
might not always result in a booking loss to the airline. 
Depending on the individual consumer's choice pro- 
cess, the unavailability of a desired flight and fare class 
can lead to: 

1. a vertical shift to a higher fare class, same flight; 
2. a horizontal shift to a different flight, same fare 

class and airline; 
3. a booking loss to the refusing airline. 

For the purposes of managing the seat inventory for 
a single flight leg, the probability of interest is that of 
a vertical shift in fare classes on the same flight. The 
probability that a passenger refused a request for fare 
class i will accept a booking in the next highest fare 
class (i - 1) is Pi(v). The EMSR formulation can be 
extended to include the possibility of vertical shift on 
the part of the refused passenger. Although the prob- 
ability of horizontal shift, Pi(h), is also important to 
the airline wishing to maximize system revenues, the 
focus of the EMSR model on individual flight legs 
allows us to assume that a horizontal choice shift is 
equivalent to a booking loss. 

When a class 2 request is received by the airline and 
a booking is accepted, a revenue off2 is realized, in 
the absence of overbooking and no-shows. If the re- 
quest is refused, the expected revenue associated with 
the denied passenger accepting a vertical shift in fare 
classes is 

P2(v) * fl (23) 

We want to find the incremental protection level 
required for class 1 to take into account this potential 
class 1 revenue when class 2 is closed. 

From the basic EMSR formulation, a protection 
level for class 1 from class 2 of S' still will be required. 
Additional seats protected for class 1, VL, can be taken 
either by a refused class 2 or a class 1 passenger. The 
expected marginal revenue from a class 1 passenger 
in the V2th additional protected seat is 

EMSR1(S' + V2) =f * PI(S' + V2). (24) 

If the upgrade probability, P2(v), is greater than zero, 
the incremental expected revenue associated with po- 
tential vertical shifts from class 2 may be realized if 
the seat is not purchased by a class 1 passenger. 

The combined expected marginal seat revenue for 
the V th seat protected for class 1 thus is equal to f 
multiplied by the probability that a class 1 request will 
be received for that seat or a vertical choice shift is 
accepted, given that BL2 is reached. The optimal value 
of V2 must therefore satisfy 

EMSR1(S2 + V2) [I - P2(v)] 

+ P2(v) - f = fA (25) 

where S' is the protection level for class 1 in the 
absence of vertical choice shifts, as before. The com- 
bined expected revenue from each additional seat 
protected for class 1 will be greater than or equal to 
f2, given that BL2 is reached. If BL2 is not reached, 
this additional protection will have no impact in a 
nested reservations system. 
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The total protection level for class 1 from class 2 is 
then (S' + Va), and the booking limit on class 2 
(without overbooking) is 

BL2 = C-S2- V2. (26) 

Overbooking factors may be incorporated as before, 
in which case, the total EMSR protection level (S' + 
V') is treated the same as S' in the calculation of 
overbooking limits. 

The impact of including one or more Pi(v) values 
in the EMSR formulation will be an increase in the 
protection levels for each of the higher fare classes. 
Each lower fare class will see its booking limit decrease 
by the incremental protection level required to ac- 
count for the possibility of vertical choice shifts to the 
next highest fare class. The magnitude of this decrease 
will depend on the relative magnitudes of the Pi(v) 
values estimated or assumed, highlighting the impor- 
tance of this probabilistic element to the EMSR frame- 
work. As mentioned, neither fare class specific over- 
booking factors nor upgrade probabilities were incor- 
porated into the ABLS tested at Western. 

6. Automated Booking Limit System 

Under a research agreement between the Flight Trans- 
portation Laboratory at MIT and Western Airlines, 
an Automated Booking Limit System (ABLS) was 
developed and implemented during 1986. The deci- 
sion model programmed into the system to recom- 
mend fare class booking limits for future flight leg 
departures was based on the EMSR approach de- 
scribed above. By the end of 1986, the EMSR revenue 
maximization model and a dynamic booking limit 
adjustment routine had been programmed into ABLS. 
For a number of reasons, including the fact that 
Western Airlines would no longer be operating on its 
own after March 31, 1987, further system develop- 
ment was not possible at Western. Nonetheless, the 
revenue impact of a completely automated approach 
to setting fare class booking limits relative to the 
manual and ad hoc methods used previously was 
tested for a sample of actual flights during the first 
3 months of 1987. 

6.1. Data Requirements 

The EMSR decision framework requires two types of 
input data to determine fare class limits for a partic- 
ular, future flight leg departure-estimates of expected 
demand and of the average revenue associated with a 
passenger booking, by fare class. The demand inputs 
required for initial applications of the EMSR model 
are estimates of the total number of requests expected 

for a future flight leg departure, by fare class. Because 
the model takes into account stochastic variation in 
demand, an estimate of the variance in total requests 
around the expected value is also required. For dy- 
namic applications of the EMSR framework, esti- 
mates of partial demand by fare class in the form of 
requests still to come from day t to departure are 
required, as well as estimates of the variation of this 
partial demand. Furthermore, the number of actual 
bookings already accepted for the particular, future 
flight leg being considered are also necessary demand 
inputs. 

Currently, most airline reservations systems log total 
bookings by fare class for a future flight leg. Data base 
management systems have been developed by many 
airlines to generate extracts of the current booking 
levels and limits by fare class on a daily basis. These 
extracts become part of an evolving historical data 
base of total bookings by day before departure for all 
flight legs for which reservations are being accepted. 
Once the flight has departed, a complete booking 
history for that flight leg can be retrieved from the 
data base. 

The EMSR model requires estimates of the mean 
and standard deviation of requests by fare class. These 
estimates may be derived from a sample of past op- 
erations of the same flight, or similar flights on the 
same leg. If this historical sample includes only de- 
parted flights for which no fare class booking limits 
were reached during the reservations process (imply- 
ing that no requests were refused), net booking levels 
may be used directly in the estimation of requests by 
fare class. 

It is not likely that all the flights in the historical 
sample will have booked up without reaching one or 
more of the fare class booking limits. In such cases, 
one or more requests for a particular fare class and 
flight are likely to have been refused by the airline, 
and the disposition of these refused requests cannot 
be determined from the available data. The net book- 
ing levels in the reservations system data base thus 
represent a constrained estimate of total requests for 
a particular flight leg and fare class. It is possible to 
use statistical methods to derive unconstrained esti- 
mates of requests by fare class, given the booking 
levels for each observation in the sample and knowl- 
edge of whether these booking levels were, in fact, 
constrained by a fare class booking limit (Boeing 
1982). 

For both the initial and dynamic applications of the 
EMSR decision model then, the necessary demand 
estimates can be derived from the existing data avail- 
able to most airlines from their reservations systems. 
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In contrast to the volume of historical booking data 
that airlines can extract from their reservations sys- 
tems, the availability of detailed revenue data is lim- 
ited at many airlines. As an input to the EMSR 
decision model, the revenue associated with bookings 
in different fare classes is just as important as the 
estimates of fare class demand. Whether the data are 
provided by a comprehensive revenue data base or a 
sporadic sample of ticket coupons, some estimate of 
the relative revenue value of passengers booked in 
each fare class for the future flight under consideration 
is required. 

The demand and revenue estimates used as input 
by the EMSR decision model, thus, are affected by 
characteristics of the data being collected and stored 
by the airline. The greater the extent to which the 
available data do not correspond to the input needs 
of the EMSR model, the greater the need for estima- 
tion procedures and assumptions to generate the re- 
quired inputs. For the airline wishing to realize rapid 
improvements to its seat inventory control process by 
implementing a decision approach like that of the 
EMSR model, however, working within the con- 
straints of the available data and using estimation 
methods might be the only alternative. 

6.2. ABLS Development and Implementation 

These data availability issues had to be addressed by 
Western Airlines as it prepared to implement an ABLS 
for seat inventory management. Although several of 
the problems identified over the course of the year- 
long development effort were rectified, there remained 
numerous policy issues and data availability limita- 
tions that could not be resolved. The system developed 
was, to a large extent, built around existing procedures 
and capabilities. 

The objective of developing ABLS was to make the 
process of setting and adjusting fare class booking 
limits for future flight departures more systematic and 
to automate it as much as possible. It was hoped that 
the implementation of an automated system would 
reduce the manual effort required on the part of a 
relatively small staff of seat inventory control analysts, 
allowing them to focus their analysis efforts on the 
small proportion of flights requiring closer attention. 
Inclusion of the EMSR decision model in the system 
was intended to provide the analysts with specific 
recommendations of what the fare class booking limits 
should be, based on a systematic evaluation of the 
input data. 

The system was developed to consist of two parallel 
components or routines: batch and on-line. The batch 

routine was designed to set and periodically revise fare 
class booking limits for all future flight leg departures, 
based on booking data from a sample of recent depar- 
tures of the same flight leg on the same day of the 
week. Revenue averages extracted from a prorated 
revenue data base for the most recent available sample 
period also were used as inputs. 

The batch routine operated on a day-of-week rota- 
tion, calculating bookings limits for all flight legs 
scheduled to depart on, for example, all future Tues- 
days up to 90 days out in a single run. Fare class limits 
were revised weekly thereafter, up to and including 
6 days before departure. These revision runs not only 
incorporated the most recent input data available, they 
recalculated the optimal seat protection levels required 
for expected requests still to come by fare class, as 
estimated from historical build-up patterns for the 
same flight leg. Actual bookings were added to these 
protection levels, from which revised booking limits 
on each fare class were derived. 

The on-line routine allowed the analysts to inter- 
vene and to run the EMSR decision model for an 
individual flight leg and day of the week. It also 
enabled the analysts to compare the model's recom- 
mended booking limits with current limits and actual 
bookings on hand for each future departure of the 
flight leg on the same day of the week. The EMSR 
recommended protection levels and booking limits 
simply could be overridden manually before being 
loaded into the reservations system. 

ABLS was designed to allow user (analyst) interven- 
tion in the application of the EMSR decision model 
to future flights. This capability was especially impor- 
tant in light of the many imperfections in the system. 
As of the end of 1986, ABLS did not include a demand 
forecasting model or an ability to make seasonal ad- 
justments to demand and revenue estimates. Further- 
more, no upgrade probabilities were included in the 
derivation of fare class booking limits. These limita- 
tions required that analysts have the capability to 
override the recommended limits on flight legs where 
upgrade potential was thought to be significant, and 
in markets or during periods for which the recent 
historical data did not provide a valid estimate of the 
revenue or demand conditions expected for future 
departures of the same flight leg. 

7. EMSR Revenue Impact Test 

A performance evaluation of the ABLS at Western 
Airlines was conducted during the first three months 
of 1987. In this section, the testing methodology is 
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described and its limitations are discussed. The reve- 
nue impacts of EMSR seat inventory control relative 
to strictly manual methods are then presented, and 
their implications for further system development are 
assessed. 

7.1. Test Methodology 

At the start of the ABLS performance evaluation, the 
system users (i.e., the seat control analysts) were in- 
formed that specific flight legs operating on specific 
days of the week would have their fare class booking 
limits set and revised automatically by ABLS. The 
group of 21 flight leg/day of week combinations for 
which ABLS was allowed to set and revise fare class 
booking limits without analyst intervention comprised 
the BATCH test group. 

The analysts were allowed to use the on-line routine 
for each of the 21 flight legs in the test on another day 
of the week for each leg, different from the BATCH 
day of week. Ultimately, interactive use of ABLS was 
to be the norm, with the combination of automation 
and human intervention resulting in what should have 
been higher flight leg revenues than the automated 
system alone could generate. For the purposes of this 
test, however, this on-line subset of the test sample 
was not intended to provide a measure of the joint 
performance of the system and the analysts. 

For each of the 21 flight legs in the test sample, five 
days of the week remained for which booking limits 
were set manually by the analysts, based entirely on 
their own judgment, as it had been for years. One of 
the remaining days of the week was selected to repre- 
sent a CONTROL flight for each of the BATCH flights 
in the test, and was unknown to the analysts. For each 
flight leg, all departures on one day of the week had 
fare class booking limits set automatically by the 
ABLS batch routine, while all departures on another 
day of the week were managed manually by seat 
inventory control analysts, thereby providing the con- 
trol group for comparison purposes. The primary 
focus of this evaluation of ABLS performance was on 
the traffic and revenue levels of the BATCH group 
relative to the CONTROL group. 

Several problems with interpreting the results of this 
test were identified even before the test began. From 
the outset, the day of the week rotation programmed 
into ABLS dictated that a day of the week approach 
to comparative testing be used. Although the days of 
the week for each flight leg were selected originally on 
the basis of similar historical loads and booking pat- 
terns, unexpected consistent differences in demand 
for one day in the test could give a systematic ad- 

vantage for one test group over the other on that 
flight leg. 

A second interpretation problem involved the fact 
that the effects of different fare class booking limits 
only can be evaluated for flights that actually reached 
one or more of these limits in at least one of the test 
groups. If no fare class limits were reached for a set of 
flight legs, any difference in loads or revenues could 
only be attributed to variations in demand between 
the departed flights. Even though the flight legs in the 
test sample were selected on the basis of high load 
factors for historical periods similar to the test period, 
there was no guarantee that unexpectedly low demand 
would not be observed on some of the test flights due 
to changing market conditions. 

Finally, the inability to subject the same flight de- 
parture to different seat inventory control methods 
under exactly the same demand conditions meant that 
much of the analysis of the test results would be 
speculative. Even with a complete history of the fare 
class limits and the booking levels by day before 
departure, we can only speculate about what might 
have occurred in the booking process for the same 
flight departure had different fare class limits been 
applied. This is the major problem faced by airline 
managers hoping to measure the effects of seat inven- 
tory control practices-there is no way to determine 
exactly what revenues or loads have been realized 
in the absence of seat inventory control or under 
different methods. 

In light of these interpretation constraints, the re- 
sults of this test had to be scrutinized on a departure- 
by-departure basis, to assess how different fare class 
booking limits likely affected actual bookings in each 
fare class, as well as total flight revenues. The objective 
in interpreting the test results was, therefore, to iden- 
tify BATCH and CONTROL flight departures that 
had similar booking patterns in the absence of differ- 
ent fare class limits. For the purpose of making direct 
comparisons between flights withas similar a demand 
pattern as possible, BATCH-CONTROL flight pairs 
were identified from the same week of the test period. 

7.2 Revenue Impact Results and Assessment 

The results of the revenue impact test were evaluated 
in terms of the differences in fare class mixes of 
passengers carried, load factors, and total flight reve- 
nues between the BATCH and CONTROL test 
groups. The assessment of revenue impacts was based 
on a comparison of flight pairs (i.e., BATCH versus 
CONTROL) that departed during the same week on 
the same flight leg. Post-departure results and booking 
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histories were collected for a total of 210 flight pairs 
(21 flight legs, 10 test weeks). The major task in 
analyzing the results, as introduced above, involved 
identifying the flight pairs that demonstrated differ- 
ences in loads and/or revenues due to the application 
of different fare class booking limits, with all else being 
equal. 

-This identification process involved making judg- 
ments as to the similarity of the booking patterns of 
the two flights in each flight pair, based on a number 
of criteria. Final reservations and boarding totals by 
fare class as well as complete booking histories for 
each flight pair were examined. The general rule used 
in selecting valid flight pairs was that any difference 
in load factors and fare class mix of passengers be- 
tween the flights had to be explained by differences in 
the fare class limits applied during the booking pro- 
cess. The objective of flight pair selection was to 
identify BATCH and CONTROL flights operating on 
the same flight leg during the same week that exhibited 
reasonably similar demand processes and demon- 
strated the impacts, both positive and negative, of the 
Automated Booking Limit System. 

The final set of valid flight pair comparisons proved 
to be relatively small. Out of the 210 possible flight 
pairs in the test, approximately two-thirds were elim- 
inated because of unexpectedly low demand. Winter 
flight cancellations and a change in aircraft type on 
one of the flight legs also contributed to the number 
of flight pairs eliminated from the outset. Systematic 
day of the week demand differences or simply different 
booking build-up processes eliminated about one-half 
of the remaining flight pairs, leaving 36 valid flight 
pair comparisons (72 flight departures) for an assess- 
ment of ABLS impacts. 

Examples of the flight pairs showing positive and 
negative revenue impacts of ABLS are provided in 
Tables I and II, respectively. For each flight pair listed, 
the fare class mix of passengers as well as the flight 
load factors and the percentage difference in flight 
revenues (BATCH over CONTROL) are shown. The 
four fare classes shown-Y, M, B, and Q-represent 
a descending hierarchy of fare values, although book- 
ing discrepancies caused the Y-class average revenues 
to be consistently lower than M- and B-class revenues. 
In general, however, the M/B/Q relationships held. 
The passenger mix is the number of passengers ac- 
tually boarded by fare class, and the load factor is the 
percentage of seats on the aircraft filled for that specific 
flight departure. The specific flights and markets have 
been omitted for reasons of data confidentiality. 

The asterisks in both tables indicate that the asso- 
ciated fare class limit was reached by bookings for that 

flight during its reservations process, and that the 
closing of the fare class had a significant impact on 
how the flight proceeded to book up relative to the 
other flight in the pair. Especially for flights that 
booked out very close to departure, a 100% load factor 
might be indicated without asterisks for one or more 
of the fare classes. The asterisks imply a significant 
constraint on the booking process for the relative fare 
classes. 

Table I provides five examples of the 25 flight pairs 
in which ABLS was judged to have a positive impact 
on total flight revenues under similar demand condi- 
tions. The flight pairs in this table illustrate cases in 
which the revenue benefit of selling more low priced 
seats outweighed that of closing down the lowest fare 
classes in the hope that denied requests result in fare 
class upgrades. Note, however, that in the fourth pair 
listed, lower Q-class limits on the CONTROL flight 
did increase the number of B passengers carried, re- 
flecting a propensity on the part of denied Q passen- 
gers to upgrade to a higher B fare. 

The higher total revenues for the BATCH flights in 
Table I can be explained in the majority of flight pairs 
listed by higher load factors stemming from more 
liberal booking limits on lower fare classes. Specific 
comments for some of the examples shown are as 
follows. 

* Week 2, AAA/BBB: Although the number of pas- 
sengers carried in B and Q classes were similar, the 
number in M-class differed substantially due to a 
lower M-class limit for the CONTROL flight. 

* Week 4, CCC/DDD: In the only flight pair for 
which the BATCH flight showed a lower load factor 
than the CONTROL flight, higher total revenues 
were realized on the former because of lower Q 
limits and substantial upgrades from Q to B. 

* Week 7, FFF/CCC: In this short-haul, highly com- 
petitive market, very little upgrade activity was ob- 
served when Q-class was constrained, especially for 
relatively low load factor flights, like this one. 

The average impact per flight pair for the 25 flight 
pairs in the positive impact group amounted to a 
14.3% higher revenue for the BATCH over the CON- 
TROL flight. When weighted by the revenue levels 
and loads associated with each flight pair, the aggregate 
positive impact on total revenues amounts to a 12% 
advantage for the BATCH flights. The average flight 
load factors for all flights in this positive impact group 
were also 12.3 percentage points higher for the 
BATCH than for the CONTROL flights, due to 
the application of ABLS-generated fare class booking 
limits. 
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Table I 
ABLS Positive Revenue Impact 

Revenue 
Test Flight Test L.F. Impact 

Week Leg Group Y M B Q (%) (%) 
2 AAA/BBB Batch 5 58 22 19 97 +17.1 

Control 9 41* 27 16 87 
4 CCC/DDD Batch 17 3 56* 28* 97 +10.2 

Control 4 13 38* 51* 99 
5 EEE/AAA Batch 9 7 9 97* 90 +15.1 

Control 11 14 11 61* 71 
7 BBB/AAA Batch 3 26 15 69 83 +5.5 

Control 2 30 14 56* 75 
7 FFF/CCC Batch 4 1 8 62 63 +22.6 

Control 5 4 9 41* 49 

To summarize the results of the positive impact 
flight pairs, the BATCH limits on lower fare classes 
were substantially higher than those for CONTROL 
flights, with a few exceptions. The CONTROL limits 
on the lowest fare classes were generally too low to 
maximize total flight revenues. On the other hand, 
there is some evidence that the BATCH limits on the 
lower fare classes might have been too high, giving 
passengers willing to purchase higher priced seats 
access to lower fare classes. 

The relatively high booking limits on the lower fare 
classes set by ABLS for the BATCH flights can be 
attributed to at least two factors. First, the prorated 
leg revenue averages used as inputs by ABLS did not 
differ radically among the fare classes for many of the 
flight legs in the test. This was especially true for flight 
legs in highly competitive, short-haul markets, in 
which the price levels of the fare products sold in 
adjacent fare classes differed by as little as $10. 

The second factor is related to the first, and involves 
the lack of any measure of upgrade potential in the 
EMSR formulation used in this test. Whereas the seat 

control analysts set fare class limits on CONTROL 
flights with some expectation of upgrade potential, the 
BATCH limits reflected an assumption of zero up- 
grade potential. As a result, there is evidence in many 
of the flight pairs falling into the positive impact group 
of upgrade behavior for the CONTROL flights with 
constrained lower fare class demands. For the flight 
legs operating in markets in which the price levels of 
fare products in adjacent fare classes were similar, or 
in which little effective competition was present, the 
actual upgrade potential appeared to be significant. 

Examples of the flight pairs for which the inability 
of ABLS to take into account fare class upgrade po- 
tential led to a negative revenue impact are shown in 
Table II. All the flight pair examples show a BATCH 
flight load factor greater than or equal to that of the 
CONTROL flight, but a total flight revenue that was 
lower for the BATCH flight in each use. The revenue 
advantage for the CONTROL flights stemmed from 
lower booking limits on Q-class and substantial up- 
grade movements to higher revenue fare classes. The 
asterisks in Table II demonstrate this phenomenon 

Table II 
ABLS Negative Revenue Impact 

Revenue 
Test Flight Test L.F. Impact 

Week Leg Group Y M B Q (%) (%) 

1 DDD/GGG Batch 5 3 12 85 98 -4.0 
Control 8 28 12 54* 95 

3 AAA/EEE Batch 2 6 13 114 99 -4.0 
Control 4 25 51 43* 90 

5 DDD/HHH Batch 4 5 9* 89* 100 -10.7 
Control 4 14 39* 43* 93 

7 JJJ/AAA Batch 7 3 53* 73* 100 -2.8 
Control 13 23 38* 61* 99 

8 AAA/BBB Batch 3 36 21* 46* 99 -15.3 
Control 22 52* 22* 10* 99 
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clearly. Flight pairs that merit further comment in- 
clude: 

* Week 1, DDD/GGG: The upgrade movement here 
involved a vertical shift from Q to M-class, likely 
because the B-class fare product offered in the local 
market served by this flight leg was not as attractive 
an upgrade alternative as the M-class product (i.e., 
same price, more heavily restricted). 

* Week 7, JJJ/AAA: The BATCH flight reached its 
limits in both B and Q classes, but these limits were 
higher than for the CONTROL flight in the same 
classes. 

* Week 8, AAA/BBB: An example of upgrade move- 
ment from M to Y-class is provided by the CON- 
TROL flight in this pair. 

For the 11 flight pairs that showed negative revenue 
impact, the average revenue difference per flight pair 
amounted to a 6% shortfall for the BATCH relative 
to the CONTROL flight. The weighted difference in 
aggregate revenues for this group amounted to a 5.9% 
shortfall for the BATCH flights. The difference in 
average flight load factors was 5.7 percentage points 
in favor of the BATCH flights, many of which de- 
parted with no empty coach seats. 

The overall conclusion that can be drawn from the 
negative impact flight pairs is that the BATCH flights 
had booking limits on the lower fare classes that were 
too high relative to the CONTROL flights. Upgrade 
activity contributed to higher total revenues for the 
CONTROL flights in this group, in spite of higher 
load factors for the BATCH flights. Most of the flight 
pairs in this group, however, belonged to one of three 
flight legs in the test, suggesting that these flight legs 
experience a significant upgrade potential that might 
not be realized on other flight legs in different markets. 

The aggregate revenue and load factor results for 
the 36 flight pairs considered to reflect a valid com- 
parison of ABLS versus the manual method of seat 
inventory control are summarized in Table III. An 
overall positive revenue impact of 6.2% was realized 
for the BATCH over the CONTROL flights in this 
comparison. The average flight load factor advantage 
for BATCH flights amounted to 10.3 percentage 
points. This discrepancy between the magnitude of 
the increase in load factor and total revenues is ex- 
plained by the lower overall yield realized on the 
BATCH flights. The shortfall in overall yield was 
outweighed, however, by the increase in total reve- 
nues, providing evidence that yield maximization does 
not necessarily mean revenue maximization. 

The potential positive impact on total flight reve- 
nues of an approach to seat inventory control more 

Table III 
Summary of ABLS Impact 

Positive Negative Total 
(25 flight (11 flight (36 flight 

ABLS Impact pairs) pairs) pairs) 

Traffic 
Total passengers +15.1% +5.9% +12.0% 

Load Factors 
Average per flight + 12.3 pts. +5.7 pts. +10.3 pts. 

Revenues 
Total flight revenues +12.0% -5.9% +6.2% 
Aggregate yield (cents) -0.22 -1.18 -0.52 

systematic than the application of booking limits 
based on analysts' judgments was clearly demon- 
strated by this initial test of a relatively basic version 
of the ABLS. The test helped to reinforce manage- 
ment's perception of the importance of focusing on 
total revenues rather than yields in seat inventory 
control. 

8. Lessons for Future System Development 

The implementation experience at Western demon- 
strated that any airline seat inventory control system 
must be customized to fit the requirements, capabili- 
ties, and policies of the airline for which it is designed. 
The ABLS approach will provide a foundation for 
further development at Delta Air Lines, which pur- 
chased Western and inherited the lessons of the ABLS 
experience. Any further development will require ma- 
jor revisions and adjustments to ensure consistency 
with Delta's current practices and data availability. 

The availability of valid and accurate data inputs to 
the EMSR model proved to be as important to ABLS 
implementation as the formulations of the model 
itself. Airline data is rarely available in the format or 
at the level of detail required for reliable estimates of 
future demand and revenues. Future development 
efforts, thus, will depend heavily on the airline's ability 
to collect and retrieve data from reservations histories 
and ticket revenue samples. 

The objective of ABLS development at Western was 
to automate the seat inventory control process as 
much as possible, given a very small number of human 
analysts. The presence of many more experienced 
analysts at other airlines can reduce the emphasis on 
complete automation. The Western experience high- 
lighted the fact that no seat inventory control system 
can be totally automated. Skilled analysts are required 
to examine input data and consider the recommended 
booking limits in light of exogenous variables and 
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information that cannot be programmed into an 
automated system. 

The shortcomings of the system tested and of the 
test itself will also guide future developmental efforts. 
The system tested included only the basic EMSR 
formulations for calculating initial fare class limits 
and revising them periodically in light of changes to 
the input data and actual bookings for a future flight. 
The EMSR model extensions to include upgrade prob- 
abilities and to take into account overbooking factors 
were not incorporated into ABLS. The revenue inputs 
reflected substantial data pollution in many cases, 
while the demand inputs were simple historical aver- 
ages from recent operations of the same flight leg. No 
seasonal adjustment or growth trend forecasting was 
performed. 

The relatively small proportion of flights for which 
an impact was observed demonstrated the importance 
of integrating the EMSR decision model with an 
efficient reservations monitoring system. The EMSR 
decision model is not applied to all flight legs and 
markets at all times. It is most effective in relatively 
high demand situations. High load factor flights gen- 
erate a disproportionately high percentage of total 
airline revenues, and it is the high load factor flights 
that require the greatest amount of seat inventory 
control attention. A monitoring system that identifies 
flights for which high demand is expected would pro- 
vide an important complement to the EMSR model. 

The implementation and testing of ABLS at West- 
ern demonstrated the potential benefits of a systematic 
application of a quantitative decision model to seat 
inventory control. These benefits could be even greater 
with further improvements to the estimation methods 
and decision models employed. The EMSR decision 
framework provided the quantitative approach used 
by the automated system to derive fare class booking 
limits. The specific formulations used in ABLS, how- 
ever, did not incorporate fare class upgrade probabil- 
ities. The test results provided numerous examples of 
the importance of passenger upgrade potential to rev- 
enue maximization. Furthermore, the demand and 
revenue inputs to the EMSR framework had short- 
comings that could be overcome through the devel- 
opment of better estimation techniques. 

The greatest challenge in the development and test- 
ing of the ABLS was to provide the managements of 
the airlines involved with proof of the revenue benefits 
of the system. This task was complicated by the in- 
herent difficulties of measuring the impact of any seat 
inventory control policies, given the numerous vari- 
ables that can contribute to the demand and revenue 

on a particular flight. Furthermore, the notion of 
maximizing expected revenues seemed difficult for 
management to comprehend, particularly when 
shown results for individual flights that clearly were 
not optimal. The probabilistic nature of demand and 
the mathematical formulations can be counterintui- 
tive to the results oriented airline manager. Still, the 
promise of positive results like those obtained during 
the ABLS test at Western prompted Delta to continue 
the developmental effort. 
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