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In this paper, we examine the research and results of dynamic pricing policies and their
relation to revenue management. The survey is based on a generic revenue management

problem in which a perishable and nonrenewable set of resources satisfy stochastic price-
sensitive demand processes over a finite period of time. In this class of problems, the owner
(or the seller) of these resources uses them to produce and offer a menu of final products
to the end customers. Within this context, we formulate the stochastic control problem of
capacity that the seller faces: How to dynamically set the menu and the quantity of products
and their corresponding prices to maximize the total revenue over the selling horizon.
(Revenue Management; Dynamic Pricing )

1. Introduction
The aim of this paper is to review the growing litera-
ture on dynamic pricing policies and their connection
to revenue management. In general terms, the rev-
enue management model that we investigate consid-
ers the problem faced by a seller who owns a fixed
and perishable set of resources that are sold to a price-
sensitive population of buyers. In this framework,
where capacity is fixed, the seller is mainly interested
in finding an optimal pricing strategy that maximizes
the revenue collected over the selling horizon.
The motivation for this work is our strong belief

that pricing policies are today, more than ever before,
a fundamental component of the daily operations of
manufacturing and service companies. The reason is
probably because price is one of the most effective
variables that managers can manipulate to encourage
or discourage demand in the short run. Price is not
only important from a financial point of view, but
also from an operational standpoint. It is a tool that
helps to regulate inventory and production pressures.
Airline companies and retail chains are good exam-

ples of industries where dynamic pricing policies
are becoming key drivers of the companies’ perfor-
mance. Not surprisingly, pricing models have become
increasingly popular within the management science
community. Researchers have realized that classical
operational problems, such as optimal capacity and
inventory management or controlling congestion in
a queueing network among many others, cannot be
decoupled from marketing activities and especially
pricing decisions. This broad range of applications has
generated an important volume of work. We believe
it is time to survey the field and to present the main
results and their practical implications. We do not
attempt, however, an exhaustive review of the vast lit-
erature on pricing. Instead, we focus on the work that
has been done in the context of revenue management.
The rapid evolution of information technologies

and the corresponding growth of the Internet and
e-commerce are sources of inspiration for a survey on
dynamic pricing models for two main reasons. First,
in this electronic world, it is possible to collect valu-
able information (about demand, inventory levels,
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competitors strategies, etc.) and process it in real time.
This new reality allows—and forces—managers to act
and react dynamically to changes in the marketplace
by adjusting any variable under control, especially
prices. Furthermore, Internet-based selling systems
make the logistics of dynamic pricing much easier.
The costs associated with relabelling the prices of
the products and informing customers about these
changes have dropped significantly in the electronic
environment when compared to traditional brick-and-
mortar businesses (e.g., Brynjolfsson and Smith 1999).
On the customer side, Internet price search intermedi-
aries or web aggregators offer customers easy access
to better information about product variety and price
lists (e.g., priceline.com). As a result, new potential
applications for revenue management techniques are
emerging in connection to the Internet. We consider
it important to present the fundamental aspects of
dynamic pricing models to an audience that is cur-
rently working and developing e-commerce.
From a historical perspective, the interest in rev-

enue management practices started with the pioneer-
ing research of Rothstein (1971, 1974) and Littlewood
(1972) on airline and hotel overbooking. However, it
was probably after the work of Belobaba (1987a, b;
1989) and the American Airlines success (Smith et al.
1992) that the field really took off. The airline industry
provided researchers with a concrete example of the
tremendous impact that revenue management tools
can have on the operations of a company (e.g., Smith
et al. 1992). The publication of a survey paper by
Weatherford and Bodily (1992), where a taxonomy
of the field and an agenda for future work were
proposed, was another symptom of this revival. At
this stage, however, much of the work was done
on capacity management and overbooking with lit-
tle discussion of dynamic pricing policies. In essence,
prices (fares) in these original models were assumed
to be fixed and managers were in charge of opening
and closing different fare classes as demand evolved.
During the 1990s, the increasing interest in revenue
management became evident in the different appli-
cations that were considered. Models became indus-
try specific (e.g., airlines, hotels, or retail stores) with
a higher degree of complexity (e.g., multiclass and
multiperiod stochastic formulations). Furthermore, it

was in the last decade that pricing policies really
became an active component of the revenue man-
agement literature (e.g., Gallego and van Ryzin 1994;
Bitran and Mondschein 1997; Feng and Gallego 1995,
2000). Today, dynamic pricing policies in a revenue
management context is an active field of research that
has reached a certain level of maturity.
In terms of applications, dynamic pricing practices

are particularly useful for those industries having
high start-up costs, perishable capacity, short sell-
ing horizons, and a demand that is both stochastic
and price sensitive. Succinctly, the revenue manage-
ment problem has been phrased as “selling the right
product to the right customer at the right time.” On
one hand, the sellers would like to sell their prod-
ucts to those customers who have a high valuation
so that high margins can be achieved. On the other
hand, if they wait too long for those high valua-
tion customers to appear, they might end the selling
period with unsold units that could have been sold to
low valuation customers. Clearly, for this trade-off to
be nontrivial, both perishable capacity and stochastic
demand are needed. As we will discuss in this paper,
it is precisely in this environment that dynamic pric-
ing strategies are especially useful to balance utiliza-
tion and profitability of the available capacity.
As we already mentioned, the airline industry pio-

neered the use of revenue management techniques
in terms of capacity/seat control and dynamic pric-
ing. Today, revenue management has spread out
naturally to other industries such as retailers (e.g.,
Bitran and Mondschein 1997, Subrahmanyan and
Shoemaker 1996), car rental agencies (e.g., Carol and
Grimes 1995, Geraghty and Johnson 1997), hotels
(e.g., Bitran and Mondschein 1995, Bitran and Gilbert
1996), bandwidth and Internet providers (e.g., Nair
and Bapna 2001), passenger railways (e.g., Ciancimino
et al. 1999), cruise lines (e.g., Ladany and Arbel 1991),
and electric power supply (e.g., Schweppe et al. 1987,
Smith 1993, Oren and Smith 1993). Although different
in many respects, these industries all share the basic
properties of the revenue management problems that
we consider in this work, namely, perishable prod-
ucts, finite selling horizons, and price-sensitive and
stochastic demand.
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We conclude this introduction by positioning this
paper with respect to other similar works that have
been published. In terms of goals, our objective is
to present the main results that have been reported
in the literature during the last decades on dynamic
pricing models. We concentrate our efforts on under-
standing the main drivers and properties of optimal
pricing strategies. In this respect, we do not discuss
in detail the somewhat related research that has been
done in the area of inventory and capacity control,
although some related results for network revenue
management problems are presented in §3.2.2. Our
work differs from other survey papers, such as Weath-
erford and Bodily 1992 or McGill and van Ryzin 1999,
because we do not attempt to provide a taxonomy or
an exhaustive enumeration of all the publications in
the field. Similar in many aspects to our work is the
survey on dynamic pricing models by Elmaghraby
and Keskinocak (2002), where a broad view of the
field is presented from a set of different angles, such
as pricing policies for long and short life-cycle prod-
ucts, combined inventory and pricing decisions, or
pricing in markets with rational customers. However,
we preferred to narrow the scope of our work to
dynamic pricing models in a revenue management
context, so that we can explicitly present and dis-
cuss the main results that have been obtained. In this
regard, we believe that our work provides a helpful
summary of this field to those readers (researchers or
practitioners) interested in getting a general overview
of the research that has been done thus far. Neverthe-
less, we believe that a good survey should not only
introduce the field and main results to the nonspe-
cialists, but also provide new insights and guidance
for future research to the experts. For this purpose,
we have complemented our review with some new
results, and we have included a list of potential new
directions of research in §4.
The remainder of this paper is organized as fol-

lows. In §2 we develop a generic formulation of the
revenue management problem that provides a global
view of the different elements and their interrelation-
ship. In particular, we present a general pricing prob-
lem and describe how the different components, such
as demand attributes, product characteristics, infor-
mation, and constraints, affect the formulation and

its applicability. Next, in §3 we review the literature
and the main results. We approach this review from
different angles such as deterministic versus stochas-
tic models and single versus multiproducts models.
Finally, in §4, we summarize our results and iden-
tify open problems and new potential directions of
research.

2. A Generic Model
In this section, we describe the revenue manage-
ment model under consideration. The model that we
present is sufficiently general to cover the research
that we review in §3 as a special case. Furthermore,
some of the elements of our generic formulation in
§2.6 have not yet been fully addressed in the liter-
ature. In this respect, our motivation for this appar-
ent excess of generality is twofold. First of all, we
believe that our generic framework is more appeal-
ing to those nonspecialist readers interested in getting
the “big picture” behind the revenue management
problem. Secondly, the contrast between this general
model and the specific research presented in §3 can
be used to identify potential research opportunity. In
§4, we suggest some new directions.

2.1. Supply
Consider a seller or market player (e.g., an airline,
hotel, car rental company, retail store, or Internet ser-
vice provider) that has a fixed amount of initial capac-
ity that is used to satisfy a price-sensitive demand1

during a certain selling period H = �0�T �. We model
this initial capacity as an m-dimensional vector C0 =
�c1�0
� � � � � cm�0

 of resources, where ck�0
 is the ini-
tial amount of resource k available. Capacity, in our
context, is a rather broad concept that might include
the number of rooms in a hotel, available seats for
a specific origin-destination flight on a given day, or
simply the number of white shirts in stock at a gar-
ment store.
Under the “standard” revenue management prob-

lem that we consider, capacity is fixed and any strate-
gic considerations regarding how to acquire the initial

1 Demand can also depend on other variables controlled by the
seller, like capacity itself.
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level C0 have been excluded. Capacity is essentially
given and the seller is committed exclusively to find-
ing the best way to sell it. This assumption is by
no means critical if we consider that in many indus-
tries capacity is flexible only in the long run. More-
over, capacity decisions and price decisions take place
on different time scales. Issues regarding the size
of a hotel or an airplane or the number of shirts
to purchase from an overseas supplier are decided
long before demand is realized and price policies are
implemented.
Critical to the revenue management problem are

the characteristics of this available capacity and how
it is used to create a set (or menu) of final products. As
we will see shortly, in some cases much of the com-
plexity of the revenue management problem comes
from selecting the correct menu of products. From a
pricing perspective, two important attributes of the
available capacity are its degree of flexibility and its
perishability.
Flexibility measures the ability to produce and offer

different products using the initial capacity C0. We say
that capacity is dedicated if there is a one-to-one cor-
respondence between capacity and final product. For
example, a retailer that purchases 500 white t-shirts
to sell during the next summer season has dedicated
capacity. On the other hand, we say that capacity is
flexible if it can be used to produce different prod-
ucts or satisfy different customers’ needs. For exam-
ple, an Internet provider owning bandwidth capacity
uses this specific resource to offer a wide range of
products from e-mail services to video conferences.
In general, flexibility is a continuous attribute rang-
ing from highly dedicated (retailing) to highly flexible
(the bandwidth provider).
It should be intuitively obvious that flexibility is

a desired feature. In essence, flexible capacity allows
the seller to allocate scarce resources efficiently based
on observed demand rather than forecasted demand
(production postponement). In practice, however,
flexibility is not always possible. A retailer buying
from an overseas supplier needs to order months
before the beginning of the selling season. In the hotel
industry, the allocation of the available space into lux-
ury, suite, and standard rooms is essentially decided
when the hotel is built.

From a pricing standpoint, flexibility increases the
complexity of the problem. As we will discuss later,
the action of selling a product has associated two
quantities: (i) an immediate revenue equal to the
price and (ii) an opportunity cost that is the mon-
etary penalty of using capacity today that could be
used to satisfy future demand. When capacity is ded-
icated, selling product i does not affect the ability to
supply product j . Thus, the opportunity cost of sell-
ing i involves essentially product i and its demand.
However, when capacity is flexible, selling product i
decreases the resources available to produce prod-
uct j . This interaction among products makes the
computation of the opportunity cost and the optimal
pricing strategy much harder.
Perishability relates to the (lack of) ability to pre-

serve capacity over time. For example, an empty seat
on a departing flight is a unit of capacity that cannot
be stocked for a future flight. In general, a distinc-
tive feature of the revenue management problem is
the perishability of the available capacity. A simple
way to treat this perishability is making capacity a
time-dependent quantity. For instance, a hotel’s unit
of resource might be “Room 106 on Friday night, May
10, 2002,” while an airline’s unit of capacity could be
“Seat 22B on flight #1243 departing from Boston to
Chicago at 4:00pm on Tuesday, May 14, 2002.” How
much detail is used to define the units of capacity
depends on customers’ preferences and the seller’s
ability to profit from their choice. For example, two
economy-class seats 22A (window) and 22B (aisle)
on a given flight could be considered two different
resources and priced differently if customers have sig-
nificant differences on their preferences for window
and aisle seats. In practice, airlines do not discrim-
inate based on this feature and both seats 22A and
22B are considered two units of the same resource:
economy-class seats. Retailers, on the other hand,
are much more active in this way, charging different
prices for a blue shirt and for a red shirt (same model,
brand, and size).
From a modeling perspective, perishability in-

creases the dimension of the problem, making capac-
ity, and therefore final products, time-dependent
quantities. In our dynamic setting, perishability is an
inherent property of the model, although it might be
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irrelevant in some cases, e.g., when capacity is fully
inventoriable and the selling horizon goes to infinity.
As time progresses and resources are consumed

(they are sold or they perish), capacity decreases
and we denote by Ct = �c1�t
� � � � � cm�t

 the available
capacity at time t.

2.2. The Product
Following our previous description of capacity, a
product in this context is a subcollection of the avail-
able resources. Based on Gallego and van Ryzin’s
(1997) production model, we consider a m×n matrix
A = �aij � such that aij represents the amount of
resource i used to produce one unit of product j .
That is, every column j of A represents a different
product—say product A·j—and the collection � =
�A·1� � � � �A·n� is the menu of products offered by the
seller. We will consider for the moment that there are
no explicit costs associated to the production of the
final products. This is, by the way, a common assump-
tion in the literature. In many situations, this assump-
tion is not very restrictive because production costs
are negligible, or they are linear and can be incorpo-
rated directly into the final price.
Given the available initial capacity C0, the first

important decision of the seller is to define the menu
� of products that will be offered to the end cus-
tomers. A naïve approach would be to consider any
possible subset of C0 as a product, i.e., � = �a ∈ �m�

0 ≤ a ≤ C0�. However, even if a demand exists for
every conceivable subset of C0, the task of setting a
different price strategy for every combination is com-
putationally demanding and hard to implement. On
one hand, managing a short list of products simplifies
the pricing problem. On the other hand, a larger list
is more suitable for demand-skimming purposes. The
right mix of products should balance this trade-off.
For instance, the simplest approach would be to set
A = Ik, the �k× k
 identity matrix. In this case, every
resource is dedicated and offered as a single prod-
uct. Customers are left with the task of purchasing
the appropriate combination of each resource depend-
ing on their specific needs. In this case a minimum
set of prices is needed, one for each resource. The
seller, however, can try to do better by creating bun-
dles, which are specific subsets of resources that match

specific customers’ needs. By doing so, the seller is
able to target the market and increase demand. In this
case, a larger set of prices has to be specified with the
corresponding increment in management costs.

2.3. Information
Crucial to any dynamic pricing policy is the knowl-
edge of the system and its evolution over time. Real-
time pricing necessarily requires real-time demand
data, the available capacity, and any other relevant
factors (e.g., competitors’ strategies, weather). Thus,
an information system capable of collecting the right
information and making it available at decision points
is critical. There is little doubt that one of the major
factors that influenced the rapid growth of yield man-
agement in the airline industry was the development
of electronic information systems capable of gather-
ing information about demand and ticket reservation
over the large network of travel agencies (e.g., SABRE
system for American Airlines, Smith et al. 1992). Sim-
ilarly, as reported by Raman et al. (2001), retailers are
investing large amounts of money (close to $30 billion
a year) to improve IT systems and reduce the system-
atic problem of inaccurate inventory records.
In our revenue management setting, short product

life cycles and perishability impose extra pressure to
improve the quality and management of information
such as demand forecast and inventory position. For
instance, standard forecast methods rely heavily on
demand history that is not necessarily available in
this short life cycle environment, for example, retailers
selling fashionable products (e.g., Fisher and Raman
1996, Kurawarwala and Matsuo 1996).
Given an initial capacity C0, a product menu �, and

demand and price processes, we define the observed
history �t of the selling process as the set of all
relevant information available up to t. This history
should include at least the observed demand pro-
cess and available capacity, and it can also include
some additional information such as demand fore-
casts. Most of the research has focused on the sim-
ple but tractable Markovian case where �t = Ct , in
which only remaining capacity is relevant for pricing
decisions. However, path-dependent models are espe-
cially useful when demand distribution is unknown
and a learning process is incorporated to improve
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demand estimates. In general, we expect some degree
of information asymmetry between the seller and the
buyers. Issues regarding the quality of the product or
the level of inventory, for instance, are usually pri-
vate information held by the seller. On the other hand,
customers have private information about their prod-
uct valuations and budget. This asymmetry of infor-
mation can be modeled using two subhistories � s

t ,
� b
t ⊆ �t representing the information available to the

seller and customers, respectively, at time t.

2.4. Demand
On the demand side, we divide the set of poten-
tial customers into different segments, each one hav-
ing its own set of attributes including needs, budget,
and quality expectations. We define a d-dimensional
stochastic process N�t��t
= �N1�t��t
� � � � �Nd�t��t

,
where Nj�t��t
 is the cumulative potential demand
up to time t from family j given the available infor-
mation �t .
Depending on the price (and probably other

attributes such as quality) potential customers will
decide whether or not to purchase the products.
Using Lazear’s (1986) terminology, potential cus-
tomers are divided into (i) shoppers which are those
customers who search for products but do not buy
because of price or quality considerations and (ii)
buyers which are those customers that are effectively
willing to buy a product. In general, pricing policies
should be computed on the bases of both potential
customers and buyers. However, in most applications
the seller is only capable of collecting information
about the set of buyers according to sales data.2

To model this purchasing process, we define a n×d

matrix B�P
 = �bij �, where bij represents the units of
product i ∈ � requested by a customer in family
j = 1� � � � � d; the price process Pt = �ps � s ∈ �0� t�� is
described in detail in §2.5. It is important to note
that bundling considerations are directly linked to

2 One exception is the catalog industry, here the seller controls the
population of potential consumers according to the mailing policy
(e.g., Bitran and Mondschein 1996). E-commerce is another example
because information on shoppers (as opposed to buyers) can be
obtained via the Internet, by storing the path customers follows on
the website.

the structure of this matrix B�P
 through its depen-
dence on the product menu �. Combining the vec-
tor of potential demand N�t��t
 and the matrix
B�P
, we define a n-dimensional vector D�t�P��
 ≡
B�P
N�t��t
 that represents the effective cumulative
demand process in �0� t� at the product level.
Finally, we provide the seller with the ability to par-

tially serve demand if it is profitable to do so. For
instance, retailers do not display their entire inven-
tory during promotion days. In the same way, air-
lines are able to reject low-fare reservations (closing a
fare) even if they have available capacity. In light of
this, we define an n-dimensional vector S�t
 that rep-
resents the cumulative sales up to time t. Given the
demand, sales, and price processes, the dynamics of
the available capacity are governed by the following
conditions:

Ct = C0−AS�t
 and S�t
≤D�t�P��t


for all t ∈ �0�T �� (1)

In some contexts, the distinction between sales S and
demand D is unnecessary. For instance, if the price
can be adjusted continuously and unrestrictedly, the
seller will prefer to increase the price rather than reject
customers. In this case, the price is the only variable
that the seller needs to control. For example, in the
yield management literature of seat control, the notion
of a null price (a high price that makes demand equal
to zero almost surely) has been introduced to model
the accept/reject decision in the context of dynamic
pricing policies (see §3.2.2). We note that if the seller
is constrained in the way that she/he can adjust the
price (see §2.5 for some examples of constraints), then
the distinction between sales and demand becomes
relevant and the accept/reject decision is not neces-
sarily replicable using a dynamic pricing strategy.
In terms of our assumptions, the use of a price-

sensitive demand D�t�P��t
 implies that the seller
has monopolistic market power over the set of buyers.
Competition might be present in this formulation, but
it is hidden and only the residual demand N�t��t


faced by the seller is considered. We do not incorpo-
rate any strategic behavior from the customers’ side,
demand might depend on the whole observed his-
tory of the selling process, but we do not model the
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utility maximization process solved by the customers.
Demand in this respect is assumed to be given exoge-
nously. Similarly, customers are assumed to be price
takers, meaning they observe the price list offered by
the seller and react by buying or not buying some
of the products. We will postpone the discussion of
other allocation mechanisms, such as auction models,
to §4.
Certainly, good modeling and forecasting of

demand are key for pricing purposes. The alternative
formulations available in the literature are unlimited
especially in the deterministic demand case. The sim-
plest approach is probably to decompose this deter-
ministic demand into a set of different factors, each
one addressing a specific aspect of the problem (e.g.,
Eliashberg and Jeuland 1986, Kalish 1983, Jain and
Rao 1990):

Ddet�t� p��t
=��t
��p
� ��t
� (2)

where ��t
 is an estimate of the market size as a func-
tion of time, ��p
 captures price elasticity effects, and
� ��t
 models the influence of the available informa-
tion on customers’ purchasing behavior.
From microeconomics theory (e.g. Mas-Colell et al.

1995), the notions of consumers’ utility, elasticity, and
product substitution form the bases of our under-
standing and modeling of ��p
. For example, expo-
nential demand models are commonly used to model
demand in the retail sector (e.g., Smith and Achabal
1998). That is, ��p
= exp�− p
, where  is a measure
of demand elasticity per unit of price. Other models
using constant elasticity, ��p
 = p− , have also been
proposed (e.g., Bitran et al. 1998). A functional form
for � ��t
, for the case �t = Ct , was developed and
empirically tested in Smith and Achabal (1998).
On the other hand, the modeling of ��t
 depends

on the seasonality of demand and the life cycle of
the product. Diffusion models (e.g., Bass 1969) are
widely used to model this evolution of demand. In
this framework, a population of consumers of size N
gradually purchases the product. The rate at which
consumers buy the product depends linearly on the
number of previous purchases (by word of mouth or
diffusion effects) and the fraction of innovators exist-
ing in the population. Innovators are those consumers

who buy the product independently of the other con-
sumers’ actions. In Bass’s (1969) diffusion model, the
rate of purchase at time t is given by

d��t

dt

= pN + �q−p
��t
− q

N
�2�t
� (3)

where p is the fraction of innovators and q is a
measure of the diffusion effect (imitation). The com-
bination of this diffusion model with price has been
proposed in Bass (1980) and Jeuland and Doland
(1982).
The stochastic behavior of the demand has been

added to these deterministic models for discrete and
continuous time formulations. For the discrete time
case, the standard approach is to represent demand
as the sum of a deterministic part and a zero-mean
stochastic component. Using the notation dD�t�p��

for the marginal demand in period t, the stochastic
additive noise model is given by

dDstoc�t� p��t
= dDdet�p� t��t
+ "�t� p��t
︸ ︷︷ ︸
Random Noise

� (4)

The random noise, which usually follows a zero-mean
normal random variable, depends on price and time
to reflect the changes on demand uncertainty over the
life cycle. Another alternative model is the multiplica-
tive noise model

dDstoc�t� p��t
= dDdet�t� p��t
 "�t� p��t
� (5)

In this case, the expected value of the random noise
is normally set to one. Combinations of the additive
and multiplicative models can also be used.
For the continuous time case, the most common

formulation assumes that demand follows a Poisson
process with a deterministic intensity that depends
on price and time (e.g., Gallego and van Ryzin 1994,
1997; Bitran and Mondschein 1997; Feng and Gallego
2000), although it is possible to extend the discrete
time formulation above replacing the normally dis-
tributed random noise by a continuous time Wiener
process (e.g., Raman and Chatterjee 1995).

2.5. Pricing Strategies
In our dynamic setting, a pricing policy P �=
PT = �pt� t ∈ �0�T �� is a collection of mappings
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pt�· 
 �t
� �→ �+ where pt�i 
�t
 is the price of prod-
uct i ∈� at time t given a current history �t . Depend-
ing on the application, some conditions have to be
imposed to ensure that the resulting pricing policy P
is consistent with standard practices in the industry.
The following is a list of the most common constraints
that we have come across during our literature review
and industrial experience.
• Finite Set of Prices. In many applications the seller

can only select prices from a finite list of admissi-
ble prices, i.e., �t = �p1� � � � � pKt � (e.g., Chatwin 2000;
Feng and Xiao 2000a, b; Feng and Gallego 2000). The
reasons range from marketing considerations such as
customers’ perception of prices ($19.99 versus $20.00)
to managerial aspects because a discrete list of prices
is easy to implement and control.
• Maximum Number of Price Changes. Most com-

panies restrict the number of price changes during
the selling horizon (e.g., Feng and Gallego 1995).
In some cases, this restriction is not critical because
two-price policies have been shown to be asymp-
totically optimal (e.g., Gallego and van Ryzin 1994).
In practice, companies restrict the number of price
changes because changing prices too often is difficult
and costly from an operational standpoint. We should
mention, however, that for the growing Internet-
based sales systems, the costs of relabelling the prices
of products and those associated with informing cus-
tomers about these changes are dropping consider-
ably (e.g., Brynjolfsson and Smith 1999).
• Markdowns, Markups, and Promotions. It is com-

mon practice in some industries to enforce a pre-
defined path of the price over time. For instance,
retailers usually adopt a markdown policy, or clear-
ance policy that makes the prices of the products
decrease monotonically over time (e.g., Bitran and
Mondschein 1997). In general, these markdown poli-
cies are appropriate for those industries that face
customers whose willingness to pay for the prod-
uct diminishes over the selling season such as the
retailing. On the contrary, airline companies prefer to
mark up their prices to discriminate among travel-
ers and business passengers. In this case, customers’
willingness to pay increases over time because the
more profitable business segment tends to make last
minute travel arrangements. Markdowns or markups

are rarely advertised, and customers become aware
of these variations only through past experiences and
word of mouth. Promotions, on the other hand, are
discounts that companies offer at specific moments
in time (such as Mother’s Day). These discounts are
advertised and reversible.
• Joint Price Constraints. In some situations, differ-

ent products cannot be priced independently. This
happens naturally with bundles because the price of
the bundle should depend on the price of the dif-
ferent components. For instance, there are practical
issues, such as marketing considerations or competi-
tors’ strategies, that can force the price of the bundle
to be at least x% (say 10%) cheaper than the sum of
the price of the components. In this case, if product i ∈
� is a bundle resulting from packing together all the
products j ∈�i ⊆�, then the bundling constraint on
the price is as follows:

pt�i
≤ x
∑
j∈�i

pt�j
 for all t ∈ �0�T �� (6)

Another case where joint price constraints arise natu-
rally is when the same product is offered at different
locations that have independent demand. In this case,
it can be argued that the product in location k is dif-
ferent than the product in location l because they face
different demand processes, and therefore a different
price can be set at each location. In practice, however,
companies try to avoid this type of geographical dis-
crimination because of image and reputation issues
(Bitran et al. 1998). In this case, the functional con-
straint that is added to the model is

pt�k
= pt�l
 for all t ∈ �0�T �� (7)

Joint price constraints can also occur over time. For
example, in some industries price is forced to follow
a monotonic path. The path might be decreasing,
such as permanent markdowns in the retail sector
(Mantrala and Rao 2001), or increasing as it hap-
pens in the airline industry. In general, most compa-
nies try to avoid pricing policies that may be viewed
as “unfair” by the end customers. Situations where
two first-class passengers who are seated together
after having paid significantly different prices for
their seats can have a negative impact on customers’
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perception (especially for the passenger having the
expensive ticket). To minimize this problem, the
airline company could consider pricing policies that
satisfy the following condition:

pt−ps ≤ " for all t� s ∈ �0�T �� (8)

where " is an upper bound on the variability of the
pricing policy.
• Cost-Based Pricing. Although capacity is a sunk

cost in our setting and in most of the applications that
we consider, there is still some tendency in practice
to set prices based on costs. The reason is probably
a mixture of managers’ incentives based on margins
and the classical advice from economic theory where
marginal cost plays a central role in pricing deci-
sions. It should be intuitively obvious, however, that
once capacity is determined pricing policies should
only try to maximize the revenue without any cost
consideration (except for production costs that we
have assumed are negligible). In some cases, however,
there are legal restrictions to price below cost, and
so cost-based pricing is exogenously imposed. A sim-
ple, cost-based pricing constraint (that we have come
across working in the apparel industry) is given by
pt ≥ �1+ x
 r , where r is the unit cost of the prod-
uct and x is a minimum margin contribution imposed
on the product. Note that if x and r are fixed, then
we can redefine the price as pt ← pt− �1+x
 r . Under
this net margin price formulation, the cost-based con-
straint reduces to the nonnegativity of the pricing
policy that is always satisfied in our revenue maxi-
mization context.
In general, we will denote by � the set of all admis-

sible pricing policies, those that satisfy all the relevant
constraints.

2.6. Revenue Management Formulation
Given the available capacity C0, the cumulative
demand process N�t
, the menu of available prod-
ucts �, and a set of admissible policies �, the seller’s
objective is to find a pricing strategy Pt that max-
imizes the total revenue collected from selling the
products to the customers. In addition, the seller has
the ability to partially serve demand, and so the sell-
ing process St is also part of the decision variables.

The problem faced by the seller is to find the solution
to the following optimal control problem

sup
P�S

EN

[∫ T

0
pt dS�t


]
� (9)

subject to: Ct = C0−AS�t
≥ 0

for all t ∈ �0�T �� (10)

0≤ S�t
≤D�t�P��t
 for all t ∈ �0�T �� (11)

P ∈�� and S�t
 ∈ �t � (12)

We first note that the model corresponds to a rev-
enue maximization problem. The objective (9) is simply
the expected revenue collected from selling the prod-
ucts over the available selling period �0�T �. As we
mentioned in §2.1 all considerations associated with
acquiring the initial level of capacity C0 have been
excluded.
Another key element of this formulation is the

implicit risk-neutral behavior of the seller. The seller’s
objective in (9) is to maximize expected revenue with-
out any consideration on the variability of the result-
ing output. We made this assumption to stay in line
with the literature where risk neutrality is by far the
most commonly used formulation. In those situations,
where the seller is constantly solving this revenue
management problem (e.g., airlines managing thou-
sands of flights a year or retailers selling thousands
of SKUs every season) the risk-neutral formulation
is certainly appropriate. Mathematical tractability is
another reason for this simple modeling of the seller’s
preferences. We will return to this assumption later in
§4, where we discuss the extension of this standard
revenue management formulation to the more general
case of utility management.
Finally, we point out that the single source of uncer-

tainty in this formulation is on the demand side. We
conclude this section, with a pictorial representation
(Figure 1) of the general revenue management net-
work that we consider.

3. Main Results and
Related Literature

We now proceed to a systematic review of the
research, publications, and main results on the pric-
ing problem in (9)–(12). The goal of this section is to
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Figure 1 The Revenue Management Network

understand the structure and properties of an opti-
mal solution to this generic problem by examining
the different models that have been studied. Certainly,
there is no single way to approach the task of review-
ing the literature and main results. From an exposi-
tion perspective, we find it convenient to start with
a basic partition between deterministic and stochastic
models.

3.1. Deterministic Models
The deterministic models that we consider in this
section assume that the seller has perfect informa-
tion about the demand process. This is, of course, a
major simplification especially for those applications
where demand is hardly predictable at the beginning
of the season, e.g., new products or fashion goods.
Furthermore, we have argued in the Introduction that
revenue management techniques are particularly use-
ful for industries facing stochastic demand. There are
two important reasons that explain why we have
decided to review deterministic models. First of all,
deterministic models are easy to analyze and they
provide a good approximation for the more realis-
tic yet complicated stochastic models. Moreover, as
we will show shortly, deterministic solutions are in
some cases asymptotically optimal for the stochastic

demand problem (e.g., Gallego and van Ryzin 1994,
1997; Cooper 2002). The second reason is that deter-
ministic models are commonly used in practice.
In terms of the literature, deterministic mod-

els form the basis of the classic economic model
on monopolistic pricing, which is essentially the
departing point of the research that is currently done
in marketing and operations. It is not in our inter-
est, however, to review the vast economic literature
on pricing that mainly focuses on static equilibrium
(or steady-state) pricing, where marginal cost equals
marginal revenues. The reader is referred to Nagle
(1984) for a comprehensive discussion of the economic
literature on pricing theory. As we argued above,
deterministic models are good “first-order” approx-
imations (asymptotically optimal in some cases) for
more sophisticated stochastic models. In particular,
they provide valuable insight on how optimal pric-
ing policies depend on the different parameters of the
model.

3.1.1. Single-Product Case. The simplest model
in this deterministic setting considers the case of
a monopolist selling a single product to a price-
sensitive demand during a fixed period �0�T �
(i.e., 
�
 = 1). The initial inventory is C, demand
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is deterministic with time-dependent and price-
sensitive intensity '�p� t
. In addition, the instanta-
neous revenue function r�p� t
 = p'�p� t
 is assumed
to be concave as in most real situations. The revenue
management problem (9)–(12) can be written in this
case as follows:

max
P∈�

∫ T

0
pt '�pt� t
 dt (13)

subject to
∫ T

0
'�pt� t
 dt ≤ C� (14)

This is a standard problem in calculus of variations.
Let H�pt� t
 = �pt −  
'�pt� t
 be the corresponding
Hamiltonian function where  ≥ 0 is the Lagrangian
multiplier for (14). The optimality condition (e.g.,
Gelfand and Fomin 1963) is given by

p∗t =  − '�p∗t � t

'p�p

∗
t � t


� (15)

where 'p is the partial derivative of ' with respect
to the price. Let (�p� t
 = p��'p�p� t

/�'�p� t


 be the
elasticity of demand with respect to price at time t.
Then, Condition (15) (together with the fact that
 ≥ 0) asserts that at optimality (�p∗t � t
≤−1. That is,
demand is elastic3 at the monopolist’s optimal price.
We note that the myopic solution pmt to (13)–(14) that
maximizes the instantaneous rate of return solves

pmt =− '�pmt � t


'p�p
m
t � t


� (16)

Therefore, if  = 0, i.e., the capacity constraint (14) is
not active, then the optimal strategy p∗ is equal to
the myopic strategy pm. On the other hand, if (14) is
active, then  ≥ 0 and the myopic solution is a lower
bound on the optimal strategy. From standard duality
theory,  is the shadow price associated with a unit of
capacity. Thus, we can think of  as the opportunity
cost of selling a unit of product and so necessarily the
optimal strategy must satisfy p∗t ≥  .
For the case of a time-homogeneous demand

intensity ('�p� t
 = '�p
), a fixed price solution can
be shown to be optimal over the entire sell-
ing period �0�T �. To characterize this solution, let

3 We say that '�p
 is elastic at price p̄ if (�p̄� t
 = p̄��'p�p̄� t

/

�'�p̄� t


≤−1.

pm = arg max�p '�p
 � p ≥ 0� be the “myopic” price
policy that maximizes the revenue rate and 'm='�pm


be the corresponding demand intensity. Similarly, let
p̃ be the solution to '�p̃
 T = C and '̃ = '�p̃
 be the
corresponding demand intensity.4 Then, the following
is a straightforward application of the Karush-Kuhn-
Tucker (KKT) optimality conditions (e.g., Bazaraa
et al. 1993).

Proposition 1. Consider the single-product revenue
management problem (13)–(14) with homogenous demand
intensity '�p
 and concave revenue rate r�p
= p'�p
.

Case 1. Abundant Capacity. If 'm T ≤C, then the opti-
mal price is pm and the optimal revenue is equal to
pm 'm T .
Case 2. Scarce Capacity. If 'm T >C, then the optimal

price is p̃ and the optimal revenue is equal to p̃ C.
This result is also shown in Gallego and van Ryzin

(1994, Proposition 2) and it is used as a building block
for constructing heuristics and bounds for the stochas-
tic counterpart. As a direct corollary of Proposition 1,
we have two important properties of the optimal price
strategy: Namely, the optimal price is (i) nonincreas-
ing in the initial capacity C and (ii) nondecreasing in
the selling period T (see Figure 2). From Figure 2, we
can see that the optimal revenue is evidently a nonde-
creasing function of both the initial inventory (C) and
the length of the selling season (T ). In terms of the
initial inventory, there is an optimal level Cm = 'mT

that maximizes the revenue. Above this threshold,
additional units of capacity will not increase revenue.
Managers should then try to target this optimal value
Cm when determining the initial level of capacity. On
the other hand, the optimal revenue is monotonically
increasing in T reflecting the fact that as the sell-
ing horizon increases the seller faces a larger popu-
lation of potential buyers and therefore he can tar-
get the available capacity to those customers having
higher valuation for the product. In the limit, if p̄ =
sup�p� '�p
> 0�, then the seller can obtain a maximum
revenue of p̄ C as T goes to infinity.
Most extensions of this single-product determinis-

tic demand problem generalize some aspect of the

4 Notice that the existence of p̃ is not guaranteed for large C.
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Figure 2 Optimal Price Strategy for the Single-Product Deterministic Case

Initial Capacity ( C ) Selling Horizon ( T )
λ   Τm

Optimal Price Strategy 

Optimal Revenue 

λ   / m

Optimal Revenue 

Optimal Price Strategy 

C

Note. Both parts of the figure are drawn using a multinomial demand rate ��p�= �exp�p�+1�−1.

functional form of the demand process. For exam-
ple, Smith and Achabal (1998) studied the case where
demand intensity depends on price as well as on the
level of inventory, i.e., '�pt�Ct� t
. The idea (which
naturally arises in the retail sector, for instance) is
that demand decreases as the inventory is depleted.
Customers are less likely to find the product they
want (e.g., in terms of size, color, quality, etc.) when
available inventory is low. In this setting, the authors
derive optimality conditions for the price similar to
(15), and closed-form solutions are reported for the
special case of a multiplicative separable demand rate
with exponential price sensitivity, (i.e., '�p�C� t
 =
k�t
 y�C
 exp�−,p
).
Another extensive stream of research coming espe-

cially from marketing (e.g., Dolan and Jeuland 1981,
Jeuland and Dolan 1982, Kalish 1983, Mesak and Berg
1995, Mesak and Clark 1998, Parker 1992, among
many others) considers the case of a price-sensitive
diffusion model (cf. Bass 1969) to describe the dynam-
ics of the demand. In the revenue management con-
text, Feng and Gallego (2000) use a diffusion model
to characterize the intensity of the demand process.
The Bass (1969) diffusion model is generally used for
durable goods, for which demand at time t depends
on the number of units sold prior to t and the size of
the population of potential customers. More specifi-
cally, the demand rate '�t
 at time t is a function of
the current price p�t
, the amount sold by that time
D�t
, and the population size N , that is,

'�t
 �= -D�t


-t
= '�p�t
�D�t
�N 
� (17)

In general the diffusion effect, i.e., the dependence
of the demand rate ' on the cumulative sale D�t
, is
not uniform over time. Upon introduction, we expect
a positive effect (meaning -'/-D ≥ 0) because of fac-
tors such as word of mouth, improved reputation, or
exclusivity. On the other hand, as time passes and
the number of sold units increases, we expect market
saturation and obsolescence effects to generate a neg-
ative impact on demand (i.e., -'/-D ≤ 0). According
to Kalish’s (1983) results, the evolution of price over
time can follow three generic paths: (i) monotonically
increasing if word-of-mouth effects have a positive
impact on demand, (ii) unimodal: increasing at the
beginning, reaching a maximum at some intermediate
time, and then decreasing for the rest of the selling
period. This situation occurs when there is a positive
effect of word of mouth at the beginning followed
by demand saturation. Finally, (iii) the price is mono-
tonically decreasing over the entire horizon if there
is a negative effect of penetration on demand. For a
complete review of these single-product Bass (1969)
diffusion models, we refer the reader to Elmaghraby
and Keskinocak (2002, §2).
In a different context, Rajan et al. (1992) and Abad

(1996) derive optimal pricing policies for the case
where inventory deteriorates continuously and deter-
ministically over time at a rate proportional to the
inventory position. The special cases of linear demand
and exponential decay are studied in more detail.

3.1.2. Multiple-Product Case. The case of mul-
tiple products (
�
 ≥ 2) has received considerably
less attention. The reason is probably because of
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the higher degree of complexity attached to these
multiproduct formulations especially to characterize
demand correlation and product substitution effects.
In the economics literature, Wilson (1993) studies
deterministic, multiproduct models in which the
seller objective it to design an optimal menu of prices
and products.
The selection of an appropriate consumers’ choice

model such as the multinomial logit or multinomial
probit (e.g., Ben-Akiva and Lerman 1985) to charac-
terize customers’ preferences becomes a critical com-
ponent of the problem’s formulation (e.g., Talluri and
van Ryzin 2001). We notice that in the case when
capacity is dedicated and the price of product i does
not affect the demand for product j �= i (indepen-
dent demands), the multiproduct case reduces triv-
ially to a set of disconnected single-product problems.
The interesting cases arise when capacity is flexible
and/or demand process depends on the whole vector
of prices (substitute or complementary products).
In general, a similar result to Proposition (1) can

be derived in this multidimensional case. For expo-
sition purposes, we consider here the simple case of
time-homogenous demand processes. In this setting,
it is not hard to show that a fixed-price solution can
be used without any sacrifice on performance. Let
Di�P
 = 'i�P
T be the cumulative demand for prod-
uct i ∈ � given a vector of prices P = �p1� � � � � pn

('i is the time-homogenous demand rate). Let .�P
=
�'1�P
� � � � �'n�P

 be the vector of demand intensi-
ties and T.�P
′P be the revenue function (primes (′)
denote vector transpose). In this case, it is conve-
nient to introduce for each product i ∈� the inverse
demand function Pi�.
 that represents the price of
product i ∈� given a vector of cumulative intensities
.. We assume then that P�.
 is a real-valued func-
tion that is continuous and differentiable, such that
the revenue function P�.
′. is strictly concave. The
revenue management problem (9)–(12) can be written
in this case as:

max
.≥0

TP�.
′. (18)

subject to TA.≤ C� (19)

This is a multidimensional, nonlinear programming
problem that has a unique solution given the con-
cavity assumption on the revenue function. Similar

to Proposition (1), two cases characterize the optimal
solution. Let .m be the vector of cumulative demands
that maximize P�.
′.. Then .m is optimal if and only
if T A.m≤C. If this condition is not satisfied, then the
optimal solution is a boundary point .̃ that satisfies
the corresponding KKT optimality conditions. The
following proposition characterizes the multiproduct
case.

Proposition 2. Consider the multiproduct revenue
management problem (18)–(19) with homogenous inverse
demand function P�.
, and concave revenue function
TP�.
′..

Case 1. Abundant Capacity. If T A.m ≤ C, then the
optimal price is Pm = P�.m
.
Case 2. Scarce Capacity. If T A.m �≤ C, then let .̃ be

the unique solution to the following KKT optimality
conditions:

/.�P�.

′.
�−A′ 0= 0

0′�T A.−C
= 0 (20)

.≥ 0 0≥ 0�

where /. is the gradient operator with respect to .

and 0 is a m-dimensional vector of Lagrangian mul-
tipliers. The optimal price in this case is P̃ = P�.̃).
Let -.P�.
 be the Jacobian matrix associated to the

price vector P�.
. That is, the ij element of this matrix
is given by �-.P�.
�ij = �-Pj�.
/-'i
. Thus, the first
KKT condition above implies that the optimal price
vector satisfies:

P�.
=A′0− -.P�.
.� (21)

Similar to the single-product case, 0 is the vector of
shadow prices associated with the available capacity
C, and A′0 represents the vector of opportunity cost.
Therefore, additional capacity is valuable only if it is
scarce, i.e., 0≥ 0. It is also important to notice that for
the multiproduct case, it is possible that the optimal
price increases with the level of capacity. For instance,
consider a simple example with two products where
(19) is given by two constraints: '1 + '2 ≤ C1 and
'1 ≤ C2. Suppose that the current level of capacity
is (C1 = 1�C2 = 0) and that the optimal solution is
'∗
1 = 0, '∗

2 = 1. If we increase C2 to a new value C̃2 = 1,
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then under regular conditions on the revenue func-
tion, the new solution will satisfy '̃1 > 0 and '̃2 < 1.
That is, an increase in C2 might induce a decrease in
'2. Thus, the optimal price of Product 2 will increase
after the increase of C2. This example raises the ques-
tion of what the conditions are that will ensure that
the optimal price is in fact nonincreasing in capac-
ity. We partially answer this question in the following
proposition based on the work by Topkis (1978) and
Milgrom and Roberts (1990) on supermodularity and
complementarity.

Proposition 3. Suppose that the inverse demand func-
tion is monotone, that is, if .1 ≥.2, then P�.1
≤ P�.2
.
Suppose, moreover, that the objective P�.
′. is super-
modular and the sets 	�C
 = �. ≥ 0� TA. ≤ C� are
sublattices.5 Then, the optimal solution .∗ to (18)–(19) is
nondecreasing in C and the optimal price is nonincreasing
in C.

The proof follows directly from Theorem 5 in
Milgrom and Roberts (1990). The monotonicity of
P�.
 is the extension of the classical “downward
sloping demand function” condition to this multi-
dimensional case. We expect the supermodularity
assumption to hold when there are product substitu-
tion effects (such as for airline seats or hotel rooms)
because in these cases the marginal return on prod-
uct i should be increasing on the price of product j .
The requirement of 	�C
 being a sublattice is more
restrictive. This result holds trivially when capacity
is dedicated, i.e., A = I the identity matrix. Similarly,
in the time-homogenous case, an increase in the sell-
ing period (i.e., T ↑) can be interpreted as a decrease
in the level of capacity.6 Thus, under the same set of
assumptions of Proposition 3, we expect the optimal
price to be an increasing function of T .

3.2. Stochastic Models
Pricing policies with stochastic demand are
more complex and harder to compute than their

5 A function f � �n → � is supermodular if for all x� x′ ∈ �n, f �x
+
f �x′
 ≤ f �min�x�x′�
+ f �max�x�x′�
. A set 	 ⊆ �n is a sublattice if
for all x� x′ ∈	, min�x�x′� ∈	 and max�x�x′� ∈	.
6 Notice that in the time-homogenous case the feasible region
TA.≤ C is equivalent to A.≤ C/T .

deterministic counterparts. For instance, in this set-
ting a single-price solution is rarely optimal unless
we restrict ourselves to this type of static policy.
On the other hand, stochastic models are clearly
used more appropriately to describe real-life situa-
tions where the paths of demand and inventory are
unpredictable over time and managers are forced to
react dynamically by adjusting prices as uncertainty
reveals itself.
The natural way to tackle a problem of this type

is by using stochastic dynamic programming (SDP)
techniques. At every decision point during the sell-
ing season, the manager collects all relevant infor-
mation about the current inventory positions and
sales and establishes the prices at which the prod-
ucts should be sold. With a few exceptions, most of
the research has been done for the single-product case
under Markovian assumptions on the demand pro-
cess. In this setting, the inventory levels are the only
relevant information that managers need to make
pricing decisions.

3.2.1. Single-Product Case. In the single-product
case (
�
 = 1), we can assume without any loss of
generality that the initial capacity C = C0 is a scalar
representing the number of units of the product that
are available at time t = 0. Using an SDP formula-
tion, we define Vt�Ct
 to be the value function at time
t if the inventory is Ct , that is, Vt�Ct
 is the optimal
expected revenue from time t to the end of the sea-
son given that the current inventory position at time
t is Ct . Time t has been modeled in the literature as
either a continuous or discrete variable. From a prac-
tical perspective, we expect that managers will revise
their price decisions only at discrete points in times.
However, the explosive growth of the Internet and
e-commerce make the continuous time model much
more suitable for practical uses.
Single-Price Models. The simplest approach to the

problem is the single-price solution. In this case, we
restrict the pricing policy to be a fixed price dur-
ing the entire season, i.e., pt = p for all t ∈ �0�T �.
This type of static policy is appropriate for products
having one or more of the following characteristics:
(i) short selling period, (ii) high costs of changing
prices, and/or (iii) legal regulations that force the
price to be fixed. The fixed-price model is simple and
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easy to implement and control. Hence, even if price
changes are possible, managers often choose to use
the static, fixed-price approach. We will shortly see
that the fixed-price model is asymptotically optimal
in some situations. In this single-product, fixed-price
model, formulation (9)–(12) is given by

V �C�T 
=max
p≥0

V �C�p�T 
=max
p≥0

E�pmin�D�p�T 
5C���

(22)

where D�p�T 
 is the random variable representing the
cumulative demand in �0�T � at a price p. Closed-form
solutions for this problem are not available for the
general case of an arbitrary distribution of D�p�T 
,
but we can characterize the optimal price in terms
of the demand elasticity as follows. Let f �D5p�T 

be the probability mass function of D�p�T 
 (or the
density function if demand is modeled as a contin-
uous variable). Also let F �D5p�T 
 be the probabil-
ity distribution function of D�p�T 
. We define the
demand elasticity with respect to price as (�D�p�T 
=
��pfp�D�p�T 

/f �D�p�T 

, where fp�D�p�T 
 is the
partial derivative of f �D�p�T 
 with respect to p.

Proposition 4. The first-order optimality condition for
the solution of (22) is

E�min�D5C�(�D�p�T 
�
E�min�D5C��

=−1� (23)

Proof. See the Appendix.
We note that Proposition 4 extends the well-known

condition in economics that says that the demand
elasticity has to be equal to −1 at the optimal monop-
olistic price. In the stochastic case, we have that the
weighted expected value of the elasticity has to be
equal to −1, where the weight is given by the level
of sales min�D�C�. Similar to the deterministic case,
we can show that the optimal price for this single-
price model is nonincreasing on the initial level of
capacity C. We summarize this observation for the
case of a continuous demand distribution7 in the next
proposition. We introduce the following definition: A
function g�x�y
 satisfies increasing differences in �x�y

if g�xH�y
− g�xL�y
 is nondecreasing in y for all
xH ≥ xL.

7 The result and proof for the discrete case follows exactly the same
line of arguments.

Proposition 5. Suppose that F �D5p�T 
 satisfies
increasing differences in �D�p
 and −F �D5p�T 
 satisfies
increasing differences in �p�T 
. If there is a unique optimal
solution p∗�C
 for (22), then the solution is nonincreasing
in C and nondecreasing in T .

Proof. See the Appendix.
As a direct consequence of the proposition, we

get an upper and a lower bound for the optimal
price p∗�C
, namely, pmin �= p∗��
 ≤ p∗�C
 ≤ p∗�1
 �=
pmax. Figure 3 shows a numerical example of the
behavior of the upper and lower bound for the
case where the demand process is Poisson with rate
100 exp�−0�0044p2
. We can see from the figure on the
left the asymptotical optimality of pmin and pmax. The
figure on the right plots the behavior of the value
function when the optimal price and the two bounds
pmin and pmax are used. For the numerical example in
the figure, the lower bound pmin performs better when
it is used heuristically. This observation is consistent
with a set of numerical experiments that we have per-
formed using different demand distributions.
It is also possible to approximate the single-price

solution using the deterministic version of the model
(or certainty equivalent policy). Specifically, we can
replace the value function in (22) by

V det�C�T 
 = max
p≥0

V det�C�p�T 


= max
p≥0

p min�E�D�p�T 
��C�

≥ max
p≥0

E �p min�D�p�T 
�C�� � (24)

The inequality follows from the concavity of the func-
tion f �x
=min�x�C� and Jensen’s inequality. We con-
clude that V �C�T 
≤ V det�C�T 
. Following closely the
work by Gallego and van Ryzin (1994, §3.3), let pdet

be the optimal deterministic price that can easily be
computed using Proposition 1. Let 9det�C�T 
 be the
coefficient of variation of D�pdet�T 
; then it follows
that

V �C�pdet�T 
 = pdet E
[
D�pdet�T 
− �D�pdet�T 
−C
+

]
≥ pdetE�D�pdet�T 
�

(
1− 9det�C�T 


2

)
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Figure 3 Bounds for the Single-Price Model
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≥ V det�C�T 


(
1− 9det�C�T 


2

)

≥ V �C�T 


(
1− 9det�C�T 


2

)
� (25)

The critical step in this derivation is to show
that E��D�pdet�T 
 − C
+� ≤ 9det�C�T 
E�D�pdet�T 
�/2,
which follows after some straightforward manipula-
tions from Proposition 1 and Equation (18) in Gallego
and van Ryzin (1994). Thus, the relative error of using
the deterministic price instead of the optimal solution
is never greater than 1

2 9
det�C�T 
, i.e.,

Proposition 6.

V �C�pdet�T 


V �C�T 

≥ 1− 9det�C�T 


2
� (26)

It is interesting to notice that the quality of the
deterministic approximation depends on the coeffi-
cient of variation rather than the variance itself. For
instance, if the selling horizon increases, we should
expect that the variance of the cumulative demand
will also increase but the coefficient of variation will
probably decrease. Similarly, products having high-
volume demand are more likely to have a small coef-
ficient of variation. Gallego and van Ryzin (1997)
derive a similar inequality for the case where the
demand intensity is time varying. We will return
to this point later when we discuss the multiperiod
problem.
The first extension of the single-period model is

to allow the manager to revise the price only once

during the selling horizon. Lazear (1986) considers a
model of a retailer selling a single unit (C = 1) to a
population (N ) of potential customers whose valua-
tion (reservation price R) for the product is unknown
to the seller. The selling horizon is divided into two
periods. The retailer’s problem is to set the price for
the good during the first and second periods, p1 and
p2, respectively. Lazear’s (1986) model is of incom-
plete information. If the product does not sell in the
first period at price p1, then the retailer can update
his/her initial estimate of R to compute p2. In this
stylized setting, Lazear (1986) shows that the price is
monotonically decreasing with time, p1 > p2, and that
the magnitude of the markdown p1−p2 increases with
N . This suggests that prices of high-demand goods
(i.e., N is large) adjust more rapidly to time on the
market during which the good remains unsold. In
a different setting, Feng and Gallego (1995) study a
single-product, two-price model where the prices in
both periods are fixed and the only decision is when
to switch from one to the other. Three cases are stud-
ied: (i) the markdown case when p1 > p2 (e.g., the
retail model), (ii) the markup case p1 < p2 (e.g., the
airline model), and (iii) the general case p1 ≤ or ≥
p2. Under the assumption that demand at price pi is
a Poisson process of intensity 'i, the authors derive
structural properties of the optimal stopping time
problem. In particular, they show that the optimal
policy is of a threshold type. For example, for case
(i), they show that there is an increasing sequence �xn:
n= 1�2� � � � � of time thresholds such that if the inven-
tory process is Ct , then it is optimal to mark down the
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items to p2 as soon as the time-to-go (T − t) is less than
the time threshold xCt . Similar threshold policies are
derived for cases (ii) and (iii). Feng and Xiao (1999)
extend the two-price formulation in Feng and Gallego
(1995) to the case of a risk-sensitive seller who penal-
izes the variance of revenue linearly. Other related
work on the timing of sales and promotions can be
found in Courty and Li (1999), Krider and Weinberg
(1998), Warner and Barsky (1995), and Kinberg and
Rao (1975).
Dynamic-Price Models. One of the first papers that

addresses the general issue of how to dynamically
price a perishable product is the work by Kincaid
and Darling (1963). Their setting is a continuous time
model where demand follows a Poisson process with
fixed intensity '. An arriving customer at time t has
a reservation price rt for the product, i.e., the max-
imum price the customer is willing to pay. From
the seller’s perspective, the reservation price rt is
a random variable with distribution F �r� t
. Kincaid
and Darling (1963) consider two cases. In the first
case, the seller does not post prices, but receives
offers from potential incoming buyers, which he/she
either accepts or rejects. It is assumed that arriving
customers offer their reservation price rt , i.e, it is
assumed that customers do not act as strategic play-
ers. In the second case, the seller posts the price pt
and arriving customers purchase the product only if
rt ≥ pt . The demand process in this situation is Poisson
with intensity '�1− F �pt� t

. Optimality conditions
for the value function Vt�Ct
 and the optimal price
pt�Ct
 are derived for both cases, and closed-form
solutions are reported for the special case F �r� t
 =
1− exp�−r
. When prices are posted, the optimal-
ity condition (Hamilton-Jacobi-Bellman equation) is
given by

−-Vt�Ct


-t
= max

p≥0

{
'�1− F �p� t



× [p− (Vt�Ct
−Vt�Ct−1

)]}

� (27)

According to this condition, it is not hard to see that
the optimal price satisfies pt�Ct
 ≥ Vt�Ct
−Vt�Ct − 1
.
The difference Vt�Ct
−Vt�Ct−1
 represents the oppor-
tunity cost of selling a unit of capacity at time t when
the available inventory is Ct . In the yield management

literature Vt�Ct
−Vt�Ct − 1
 is referred to as the bid
price for the inventory level Ct at time t. Note that
the maximization in (27) guarantees that the optimal
price pt�Ct
 is larger than or equal to this bid price and
therefore the value function Vt�Ct
 is nondecreasing in
the time-to-go T − t. Under some mild restrictions on
F �p� t
 and its density f �p� t
,8 the first-order condi-
tion characterizes the optimal price pt�Ct
 as follows:

pt�Ct
=
1− F �pt�Ct
� t


f �pt�Ct
� t

+Vt�Ct
−Vt�Ct−1
� (28)

Thus, the problem of computing an optimal price
strategy reduces to the computation of the opportu-
nity cost Vt�Ct
−Vt�Ct − 1
. In general, there are no
exact closed-form solutions for the optimal price strat-
egy in (27). One exception reported in Kincaid and
Darling (1963) is the case of exponential reservation
price distribution, that is, '�p
 = ' exp�−;p
. Condi-
tion (27) is also useful to compute a lower bound
on pt�Ct
.

Proposition 7. Suppose that demand is a Poisson pro-
cess with price-sensitive intensity '�1−F �p� t

. Then, the
optimal price pt�Ct
 is bounded below by pmin, the solu-
tion to

pmin = 1− F �pmin� t


f �pmin� t

� (29)

Proof. See the Appendix.
Similar to Kincaid and Darling’s (1963) paper are

the formulations by Gallego and van Ryzin (1994),
Bitran and Mondschein (1997), Bitran et al. (1998),
Feng and Xiao (2000a, b), and Zhao and Zheng
(2000), where a Poisson process is also used to model
demand in a single-product dynamic price setting.
In a continuous time formulation, Gallego and

van Ryzin (1994) rederive the optimality condition
(27) and prove that the value function Vt�Ct
 is
increasing and concave in both the time-to-go T − t
and Ct and that the optimal price pt�Ct
 is increasing
in T − t and decreasing in Ct . Schematically, Figure 4
shows the path of an optimal price strategy and its
corresponding inventory level for the continuous time
model. We can see from Figure 4 that the optimal

8 Bitran and Mondschein (1997) show that if ��1− F �p� t

2/f �p� t



is decreasing function of t, then the first-order optimality condition
is also sufficient.
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Figure 4 Path of an Optimal Price Policy and Its Inventory Level
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Note. Demand is a time-homogeneous Poisson process with intensity
��p� = exp�−0�1p�, the initial inventory is C0 = 20, and the selling horizon
is H = 100. The dashed line corresponds to the minimum price pmin = 10.

price path is decreasing almost everywhere, having
discrete positive jumps at every sale epoch. In addi-
tion, the slope at which the price decreases over time
tends to increase as the selling horizon gets shorter.
From a practical perspective, this erratic behavior of
the continuous time solution is difficult to implement
and control. Gallego and van Ryzin (1994) address
this issue and show that the fixed-price heuristic that
uses the deterministic version of the problem to com-
pute the price is asymptotically optimal as T or C0 go
to infinity. More specifically, suppose that the demand
process is replaced by its deterministic counterpart,
i.e., the demand rate is simply the expected value of
the Poisson process. Let pdet�Ct
 be the optimal deter-
ministic price from time t on if the current inven-
tory is Ct , and let V det

t �Ct
 be the corresponding value
function if pdet is used instead of the optimal price.
Clearly, by the optimality of Vt�Ct
 we must have that
V det
t �Ct
 ≤ Vt�Ct
. However, Gallego and van Ryzin

(1994) show that

V det
t �Ct


Vt�Ct

≥ 1− 1

2
√
'�pdet
 �T − t


� (30)

where '�pdet
 is the demand intensity at price pdet.
According to this result, the deterministic price heuris-
tic is asymptotically optimal as T goes to infinity. Note,

moreover, that a fixed-price policy minimizes manage-
ment cost because it does not need to keep track of the
evolution of the inventory or the demand over time.
Bitran and Monschein (1997) consider a periodic

pricing review policy where prices are revised only
at a finite set of decision times. A distinctive element
in their formulation is the inclusion of a markdown
constraint that forces prices to be nonincreasing over
time, which is a commonly encountered constraint in
the retail sector. Similar to Kincaid and Darling (1963),
the demand model is the combination of a Poisson
arrival process of customers and a purchasing pro-
cess based on a reservation price, which is unknown
to the seller. Using a set of numerical experiments,
the authors argue that (i) the value function with
and without the markdown constraint does not dif-
fer significantly (less than 0.7%), (ii) the initial price is
increasing on the variability of the reservation price,
and (iii) the expected revenue varies significantly with
the number of periods at which the prices are allowed
to change.
Bitran et al. (1998) extend the single-product peri-

odic review formulation in Bitran and Mondschein
(1997) to the cases of a retail chain. In this situation, the
same product is sold at different locations with each
one having its own Poisson demand process. Under
the constraint that at every moment in time the price
must be the same at all the locations (coordinated price
policy), the authors derive optimality conditions and
a set of heuristics for the cases when inventory trans-
fers among stores are and are not allowed. The heuris-
tics are constructed using a rolling horizon approach,
whereby at every decision point the price is computed
assuming that this is the last time that the price will
be revised. Computational experiments show that this
type of heuristic performs quite well with an aver-
age error of 2%–3%. The paper also includes a set of
numerical experiments that were conducted using real
data collected from a retail chain store.
Zhao and Zheng (2000) study the single-product

pricing problem for the case where the arrival pro-
cess of customers is a time-dependent Poisson pro-
cess. They also use a reservation price formulation
similar to Kincaid and Darling (1963) or Bitran and
Mondschein (1997) to model the purchasing decisions
of the customers. For this problem, Zhao and Zheng
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(2000) derive optimality condition equivalent to (27)
and show that the value function is concave on both
the level of inventory and the duration of the sell-
ing season. They also prove that the optimal price is
nonincreasing in the level of inventory and find a suf-
ficient condition on the reservation price distribution
that guarantees that the optimal price is nondecreas-
ing on the duration of the selling horizon.
Another variation to the basic single-product Pois-

son demand problem that has received some attention
is the case where there is a finite set of predetermined
prices �p1� � � � � pk� from which the seller can choose.
Gallego and van Ryzin (1994) discuss this issue and
show that the deterministic solution, which involved
using at most two different prices from the list, is
again asymptotically optimal as the initial capacity
and selling horizon increase. Independently, Chatwin
(2000) and Feng and Xiao (2000a) provide a systematic
analysis of the pricing policy and value function for
the problem with a finite set of prices. In these papers,
it is shown that the value function is concave on both
the initial inventory and duration of the selling hori-
zon and that the optimal price is nonincreasing in
the inventory and decreasing in the time remaining.
An upper bound on the maximum numbers of price
changes is also reported. In addition, Feng and Xiao
(2000a) show that there is a maximal subset �0 ⊆
�p1� � � � � pk�, such that the revenue rate is increasing
and concave within �0 and the optimal price at any
time belongs necessarily to �0. This observation is
particularly useful because it narrows down the set
of potential optimal prices making the computation
of the optimal pricing strategy much easier. Feng and
Xiao (2000b) impose the additional constraint that
prices have to change monotonically and both the
markdown and markup cases are considered.
The stochastic version of Kalish (1983) is studied by

Raman and Chatterjee (1995). Specifically, the authors
consider a discounted infinite horizon problem where
cumulative demand D�t
 follows a stochastic differ-
ential equation,

dD�t
= f �D�t
� p�t

 dt+<�D�t

 dw�t
� (31)

f �D�p
 is a deterministic function of cumulative
sales and price and w�t
 is a Wiener process. For
this formulation, Raman and Chatterjee (1995) derive
the Hamilton-Jacobi-Bellman optimality equation and

show that for the linear demand case, f �D�p
 =
a− bp, the optimal price strategy is linearly decreas-
ing in D and monotonically increasing in the demand
uncertainty (<). Similar results are derived for two
alternative demand formulations: the multiplicatively
separable demand function and the simple price-
timing model.
Inspired by the results in Gallego and van Ryzin

(1994) related to the deterministic fixed-price heuris-
tic, we conclude this single-product section extending
their results to the discrete time formulation. Specifi-
cally, we consider the case of a periodic review model
with N periods. In each period n = 1� � � � �N a fixed
price pn is charged and Dn�pn
 is the corresponding
(random) demand. Let �pdetn � n= 1� � � � �N � be the opti-
mal deterministic solution, i.e., the solution to the
following problem:

V det
1 �C0
= max

p1� ���� pN

N∑
n=1

pn E�Dn�pn
�� (32)

subject to
N∑
n=1

E�Dn�pn
�≤ C0� (33)

To ensure feasibility, we assume that there is a price
p� such that

∑N
n=1 E�Dn�p

�
� <C0. The following result
provides an estimate of the quality of the determinis-
tic solution. We define �det

n �=∑n
i=1Dn�p

det
 to be the
cumulative demand up to period n and <2

n to be the
variance of �det

n . We also define  detn �C0
 as follows:

 detn �C0
 �=
√
<2
n+�C0−E��det

n �
2−�C0−E��det
n �


2
� (34)

Proposition 8. Suppose that the deterministic prob-
lem (32)–(33) is feasible with concave objective and con-
vex feasible region. Then, the optimal expected revenue
V1�C0
 is bounded by the deterministic solution, that is,
V1�C0
 ≤ V det

1 �C0
. In addition, let V1�p
det�C0
 be the

expected revenue that is obtained using the deterministic
prices �pdetn � n= 1� � � � �N �. Then, we have that

1 ≥ V1�p
det�C0


V1�C0


≥ 1
V det
1 �C0


N∑
n=1

pdetn E�Dn�p
det
n 
�

(
1−  detn �C0


E�Dn�p
det
n 
�

)

≥ 1−max
n

 detn �C0


E�Dn�p
det
n 
�

� (35)
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Finally, in the time-homogeneous case E�Dn�p
�= Tn '�p
,
where '�p
 is time invariant demand intensity and Tn is
the duration of period n, a single price pdet solves (32)–(33)
and

1≥ V1�p
det�C0


V1�C0

≥ 1− 9�C0


2
� (36)

where 9�C0
 is coefficient of variation of �det
N the cumula-

tive demand over the entire selling horizon.

Proof. See the Appendix.
We note that if there is no uncertainty on the

demand, then the bounds are tied. Proposition 8
shows that it is the coefficient of variation of the
demand and not the variance that regulates the quality
of the deterministic price heuristic. For instance, con-
sider the time-homogeneous case where E�Dn�p

det
�=
Tn '�p

det
 and Var�Dn�p
det

 = Tn <

2�pdet
.9 In this case,
the results in Proposition 8 imply that

1 ≥ V1�p
det�C0


V1�C0

≥ 1− 9det

2
√
T

where

9det = <�pdet


'�pdet

and T =

N∑
n=1

Tn� (37)

This result says that the relative error of the deter-
ministic solution is proportional to the inverse of the
square root of the selling horizon T . A similar result
is reported by Gallego and van Ryzin (1994) for the
case of a Poisson process.

3.2.2. Multiple-Product Case. Similar to the de-
terministic case, the research on optimal pricing pol-
icy in a multiple-product setting is narrower in
scope than the single-product counterpart. There is
an important case, however, that has received consid-
erable attention especially in the yield management
literature on airline seat control. The setting is that of
a single resource that is used to satisfy a set of differ-
ent demand classes. The example of airline seats is of
course one where companies use the same resource
to accommodate leisure and business travelers. Other
applications are in the management of hotel rooms

9 Stochastic processes like the Poisson process or the Brownian
motion with stationary and independent increments satisfy these
assumptions.

or bandwidth capacity of an Internet provider. To
price the same units of capacity differently, companies
need to identify characteristics that differentiate their
potential customers and classify them accordingly. For
example, airlines differentiate leisure passengers from
business passengers according to their willingness to
stay a Saturday night at their destinations.
Static-Price Models. Much of the research on this

problem takes a static view of the price. Specifically,
prices or fares for the different classes are predeter-
mined and the seller’s problem is to accept or reject
the incoming requests of customers dynamically as
functions of time, unsold capacity, and the type (fare).
We can still, however, view this problem as a dynamic
pricing problem. In fact, for each class j the seller has
two possible prices to set at each moment of time. One
is the fixed and predefined price pj and the other is
a high price pnullj � pj , the null price, for which class-j
demand at that price is almost surely zero. The null
price can be thought of as an artificial way to model
customers’ rejections in the context of pricing policies.
For the sake of space, we do not provide an exhaus-

tive review of the literature that has addressed this
problem. Readers are referred to the survey papers
by Belobaba (1987b) and McGill and van Ryzin (1999)
for a more systematic review of the inventory (seat)
control literature.
The general multiple-product version of this prob-

lem can be stated as follows.
(1) Data. An initial m-dimensional vector of

resource C0, a menu of product � having fixed and
predetermined prices pj (j = 1� � � � ��), and a con-
sumption matrix A = �aij � such that aij is the amount
of resource i consumed by one unit of product j .
(2) Problem. Find an admission/rejection policy

u�t�Ct� j
 ∈ �0�1� such that if the current inventory at
time t is Ct and there is a customer demanding prod-
uct j , then u = 1 if the order is accepted and u = 0 if
the order is rejected.
In our pricing setting, given an inventory Ct at time

t we can redefine Step 2 as follows: Charge price pj for
product j if u�t�Ct� j
= 1, otherwise charge price pnullj .
The equivalence between rejections and null prices
implicitly assumes that the effects on the demand pro-
cess of rejecting customers or charging the null prices
are the same.
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As we already mentioned, much of the results
on this problem have been obtained for the single-
resource (or single-leg) case using (i) a continuous
time formulation with Poisson demand processes
(e.g., Liang 1999; Zhao and Zheng 2001; Feng and
Xiao 2001, 2002) or (ii) a discrete time model with
arbitrary demand but with the restriction that at most
one customer can arrive per period (e.g., Lee and
Hersh 1993, Subramanian et al. 1999). Let Vt�C
 be the
optimal value function at time t if the current inven-
tory is C, and let 0t�C
=Vt�C
−Vt�C−1
 be the corre-
sponding bid price function. Then, it is optimal to sell
a unit of product j at time t if and only if pj ≥0t�C
 in
the continuous time case or if pj ≥ 0t−1�C
 in the dis-
crete time version. Otherwise, the null price pnullj (i.e.,
rejection) is recommended. If we assume that for all j
pnullj > 0t�C
 for all t and C, then the optimal pricing
policy for class j at time t, given an inventory C, is
to set the minimum price p ∈ �pj� pnullj � such that p ≥
0t�C
. This property of the optimal solution, which
follows directly from the Bellman equation, empha-
sizes the importance of the opportunity cost of capac-
ity described by the bid prices. Not surprisingly, then,
much of the research has focused on characterizing
the main properties of 0t�C
 such as its monotonic-
ity, i.e., nonincreasing in both t and C. In this single-
resource case, these properties imply a nested structure
of the optimal policy. That is, if it is optimal at time
t to accept class j with price pj , then it is optimal to
accept any class k with pk ≥ pj .
The multiresource problem (or network revenue

management) does not differ much from the single-
resource case in terms of optimality condition. The
main difference is that bid prices in this case are
dependent on the class of the demand. More specif-
ically, if at time t the current vector of capacity is
C and there is a request for product j and if we
accept the offer we collect a price pj and inventory
decreases to a new level C−A·j , where A·j is the jth
column of the consumption matrix A, i.e., the amount
of resources used by product j . Thus, if Vt�C
 is the
value function at time t when the inventory is C, then
it would be optimal to accept a product j request if
pj ≥ Vt�C
−Vt�C −A·j 
 �= 0t�C� j
. Network revenue
management models have been studied by Glover
et al. (1982), Talluri and van Ryzin (1998, 1999), You

(1999), de Boer et al. (2002), Günther et al. (1999),
Bertsimas and Popescu (2000), Feng and Lin (2002),
and Cooper (2002). In general, in these papers10 the
seller does not control prices, but he/she is only able
to accept or reject incoming orders based on their type
and the bid prices 0t�C� j
.
The problem of computing, or estimating, bid

prices has been addressed from different angles. The
first, and probably most straightforward, approach
is to use a deterministic formulation to estimate the
value function. In particular, if the prices for the dif-
ferent products �pj� are fixed, then the static deter-
ministic version of our revenue management problem
(9)–(12) is given by

V det
t �C
=max

x

∑
j

pjxj (38)

subject to Ax ≤ C (39)

0≤ x ≤ E�D�t�T 
�� (40)

where E�D�t�T 
� is the expected cumulative demand
vector from t to the end of the horizon in T .
Williamson (1992) was one of the first to compute bid
prices using the deterministic network flow formula-
tion above. In particular, the dual variables associated
with constraint (39) represent the marginal change in
V det
t �C
 as a function of the RHS vector C. Thus, if

we call ? the vector of dual variables, it is possible
to approximate 0t�C� j
= Vt�C
−Vt�C−A·j 
 by ?′A·j .
Regarding the quality of this approximation, we can
first note that ? captures only the marginal change of
V det
t �C
 with respect to C, that is, ?= /V det

t �C
. Thus,
if the solution to (38)–(40) is sensitive to the values of
C, then we should expect ?′A·j to be a bad approx-
imation for 0t�C� j
. This problem, however, can be
easily corrected by directly computing the difference
V det
t �C
−V det

t �C −A·j 
 solving two times the deter-
ministic problem (38)–(40) for the levels C and C−A·j
of the capacity (e.g., Bertsimas and Popescu 2000). In
addition to this, the deterministic solution relies only
on the expected value of the demand. This is clearly
another source of error especially when demand vari-
ability is high. Talluri and van Ryzin (1999) use a

10 One exception is the paper by Gallego and van Ryzin (1997).
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randomized version of (38)–(40) to solve this prob-
lem. Specifically, they propose to estimate the value
of ? simulating N independent values of D�t�T 
, for
each value they compute the corresponding dual vec-
tor and finally estimate ? as the average of the dif-
ferent dual vectors obtained from the simulations (a
Monte Carlo simulation approach is also proposed in
Bertsimas and Popescu 2000).
Dynamic-Price Models. Dynamic pricing models for

network revenue management have been studied
by Gallego and van Ryzin (1997). Using a Pois-
son demand formulation, the authors derive the
Hamilton-Jacobi-Bellman equation similar to (27). For
this multiple-product case, the optimality condition is
given by

− -Vt�Ct


-t

= sup
p

{ n∑
j=1

'j�p

[
pj − �Vt�Ct
−Vt�Ct−A·j 



]}
� (41)

where 'j�p
 is the demand intensity for product j for
a vector of prices p. Closed-form solutions for this
differential equation are rarely available. For this rea-
son, Gallego and van Ryzin (1997) study two heuris-
tics based on the deterministic solution. Suppose that
pdet�t
 and 'det�t
 are the optimal price path and
demand intensity, respectively, for the deterministic
version of the problem, i.e., the problem that results
from replacing the stochastic demand by its expected
value. The value of pdet�t
 can be obtained using the
results in §3.1.2. The first heuristic, make-to-stock pol-
icy, computes the expected number of orders for prod-
uct j , say zj , under the deterministic solution. That
is,

zj =
⌊∫ T

0
'detj �t
 dt

⌋
� (42)

and it preassembles in advance exactly zj units of
product j at the beginning of the selling period. The
price of the products is set to be the deterministic
solution pdet�t
. In this make-to-stock heuristic, once
the zj units of product are built there is no future rear-
rangement of capacity. The second heuristic, make-
to-order policy, also follows the deterministic price
path, pdet�t
, but it does not assemble any product in
advance. Rather, this policy waits for orders to arrive

and builds products as they are requested. Gallego
and van Ryzin (1997) show that these two heuristics
are asymptotically optimal as the expected sales vol-
ume goes to infinity. They also extend their model to
include overbooking and no-shows.

4. Summary of Results and
New Directions

In terms of results, much of the research on dynamic
pricing has focused on the problem faced by a
monopolist selling a single product and having per-
fect information about the demand distribution. The
deterministic solution of this problem, where demand
is replaced by its expected value, can be obtained
using standard optimization techniques (§3.1) and
represents a good approximation for the more com-
plicated stochastic version (Proposition 8), especially
for high-volume demand products having long sell-
ing horizons. On the other hand, the exact analysis
of the stochastic case and its optimal pricing strategy
requires the solution of the Hamilton-Jacobi-Bellman
Equation (27). This is in general a complex differ-
ential equation for which closed-form solutions are
rarely available; one exception is the case of exponen-
tial demand intensity (see Kincaid and Darling 1963).
From the Hamilton-Jacobi-Bellman equation, the dif-
ference Vt�Ct
−Vt�Ct−1
, which represents the oppor-
tunity cost of selling one unit of product at time t

when the available inventory is Ct , is the key com-
ponent that has to be computed to determine the
optimal pricing policy. Not surprisingly, the approxi-
mation of this opportunity cost has been the depart-
ing point for many approximations and heuristics like
the well-known EMSR method proposed by Belob-
aba (1987a) for airline seat control. Static, single-price
formulations, like those presented in §3.2.1, are also
sources of good approximations specially when they
are used on a rolling-horizon basis (e.g., Bitran et al.
1998).
The multiple-product dynamic pricing problem has

received considerably less attention. Much of the
research on this subject has assumed a static view of
prices, where the main decision is whether to accept
or reject a given customer’s request as a function
of time, available inventory, and the corresponding
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fixed price attached to the incoming order. Again, the
deterministic version of the problem (certainty equiv-
alent control) has been the starting point for most
approximations. Gallego and van Ryzin (1997) show
that two heuristics based on the deterministic solu-
tion are asymptotically optimal as the volume of sales
increases. In this multiple-product case, the opportu-
nity cost of selling a unit of product j at time t is given
by Vt�Ct
−Vt�Ct−A·j 
. Approximations for this quan-
tity form the basis of the so-called bid price control
methods. These bid prices are generally computed at
the resource level and they represent the opportunity
cost of selling one unit of a resource. Using a deter-
ministic formulation like (38)–(40), bid prices can be
interpreted as the shadow prices for the capacity con-
straint. The connection between bid prices and oppor-
tunity costs is studied in Talluri and van Ryzin (1998).
In this paper, using a simple example, the authors
show that, while bid price policies are generally sub-
optimal, they are asymptotically optimal as capacity
increases (see also Cooper 2002).
As we compare our generic formulation in (9)–(12)

with the results presented in §3, a number of research
opportunities become evident. First of all, from the
demand side there are at least two important consid-
erations: (i) demand learning and (ii) demand substi-
tution effects. In general, the research that we have
presented in this paper assumes that the demand
probability distribution is perfectly known to the
seller at the beginning of the selling horizon. In prac-
tice, this is hardly the case especially for new products
for which there are no historical sales data. It would
be interesting to extend the dynamic pricing mod-
els to capture demand learning as the selling process
evolves, for instance using Bayesian updating. In this
case, the pricing strategy can be used to control not
only revenues, but also the speed at which the seller
learns about customers’ preferences.
On the demand substitution side, we believe there

is an opportunity to combine the ongoing efforts in
marketing research to understand consumer choice
behavior (e.g., Roberts and Lilien 1993) with the mod-
eling and solution techniques that we have presented
in this review. In general, the revenue management
literature has tangentially discussed this connection.

Talluri and van Ryzin (2001) analyze the yield man-
agement problem of capacity control under a generic
customer choice model. However, the issue of setting
a dynamic pricing strategy for a given choice model
remains open. Some results have been obtained using
the traditional multinomial logit model.
Closely related to the issue of demand substitution

is the problem of product design and bundling. As
we briefly mentioned in §2, the seller owns an ini-
tial vector of capacity C0 that he can use to produce
a set of final products. All the research that we have
discussed assumes that the set of products is exoge-
nously given. However, in practice the seller has the
ability to decide which specific configurations will be
available to customers. The optimal decision of which
products to offer is strongly connected to the pricing
strategy.
The problem of computing an optimal pricing strat-

egy for the multiple-product case with periodic price
reviews is technically challenging and certainly of
practical importance. In this setting, and because of
product substitution effects, the whole path of the
demand is needed to compute revenues. This tech-
nicality makes the solution of the Hamilton-Jacobi-
Bellman equation particularly hard. In this area,
Awad et al. (2000) have obtained some preliminary
results using approximate dynamic programming.
Incorporating rationality on the behavior of cus-

tomers is another interesting field of research. For
instance, how should the seller set the prices if cus-
tomers act strategically. The natural way to tackle this
problem is using a game-theoretical approach. For
example, Besanko and Winston (1990) solve the prob-
lem of a seller having unlimited capacity that sets
the price of the product during T discrete time peri-
ods. In every period, each consumer who has not yet
bought the product decides whether or not to make
a purchase at the price posted by the seller. Besanko
and Winston (1990) solve for the subgame perfect
Nash equilibria. A different setting occurs when the
seller prefers to conduct an auction to sell the units.
Depending on the nature of the initial capacity and
the menu of products offered by the seller the auc-
tion might be simple or combinatorial. Vulcano et al.
(2002) investigate the case of a seller having k units to
auction during T discrete time periods. Every period
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a random number of consumers show up at the auc-
tion and are assumed to be independent, in terms of
their valuation, of all other customers in the game.
Thus, dynamic strategies from the customers’ side are
not captured by their model. Based on the revenue
equivalent theorem the authors formulate a dynamic
programming model that solves the problem. We
believe that incorporating the strategic behavior of
consumers—extending the models by Besanko and
Winston (1990) or Vulcano et al. (2002)—is an impor-
tant topic especially for Internet-based applications.
The Internet offers customers the ability to keep track
of the evolution of the selling process and therefore
to modify their buying behavior accordingly. In addi-
tion, auction mechanisms are particularly suitable for
the Internet.
Including market competition is another important

extension to the model. For instance, a senior execu-
tive of a major retailer chain in Latin America recog-
nizes that price competition among retailers is today
the main driver in their selection of a particular pric-
ing policy.
Finally, we conclude this list of potential new direc-

tions pointing at the seller’s risk neutrality. Essentially
all the models that we have discussed assume that
the seller is risk neutral. Feng and Xiao (1999) is one
of the exceptions. However, most product managers
in charge of these dynamic pricing policies present
some degree of risk aversion. It would be interest-
ing to measure the impact of adding risk aversion
to the revenue management formulation. Presumably,
the quality of the deterministic solution should be
even better.
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Appendix
Proof of Proposition 4. We will prove the result for the case

of a continuous demand function. The proof of the discrete case is
identical. From Equation (22), we have

V �C0
= p
∫ �

0
min�D�C0� f �D�p
dD�

Thus, the first-order condition is given by

0 =
∫ �

0
min�D�C0�

(
f �D�p
+p fp�D�p


)
dD

=
∫ �

0
min�D�C0� �1+(�D�p

 f �D�p
dD

= E �min�D�C0��1+(�D�p

� �

From this last equality, the result of the proposition follows
directly. �

Proof of Proposition 5. The value function V �C0
 in (22) can
be written as

V �C
= p
∫ C

0
�1− F �D5p�T 

 dD�

The first-order optimality condition (FOC) is given by H�C�p�T 
 �=∫ C
0 �1−F �D5p�T 
−pFp�D5p�T 

dD= 0, and let p∗�C
 be the unique
solution. Note that H�D�0�T 
 ≥ 0 for all D > 0, so we must have
1− F �C5p∗�C
�T 
− p∗�C
 Fp�C5p

∗�C
�T 
 ≤ 0. In addition, we have
that

H�C+1� p∗�C
�T 
 = H�C�p∗�C
�T 
+
∫ C+1

C
�1− F �D5p∗�C
�T 


−p∗�C
 Fp�D5p
∗�C
�T 

 dD

=
∫ C+1

C
�1− F �D5p∗�C
�T 


−p∗�C
 Fp�D5p
∗�C
�T 

 dD�

From the increasing difference property of F �D5p�T 
 on �D�p
,
it follows that for all D ≥ C we have 1 − F �D5p∗�C
�T 
 −
p∗�C
 Fp�D5p

∗�C
�T 
≤ 1−F �C5p∗�C
�T 
−p∗�C
 Fp�C5p
∗�C
�T 
≤ 0.

Thus, H�C+ 1�0�T 
 ≥ 0 and H�C+ 1� p∗�C
�T 
 < 0, and so under
the uniqueness assumption of the optimal price we must have
0≤ p∗�C+1
≤ p∗�C
.

By similar arguments, under the increasing difference prop-
erty of −F �D�p�T 
 on �p�T 
, it is straightforward to show that
H�C�p�T 
 is nondecreasing in T , which implies that p∗�C
 is
increasing in T . �

Proof of Proposition 7. From Condition (27) the optimal price
pt�Ct
 satisfies:

pt�Ct
= argmaxp �' �1− F �p� t

�p−Vt�Ct
+Vt�Ct −1

��

Let us define R�p�a
= '�1−F �p� t

�p−a
. We first note that R�p�a

is supermodular, i.e., ��-2R�p�a

/-p-a
 ≥ 0. Therefore, the set of
optimizers p�a
 = argmaxp R�p�a
 is nondecreasing in a (see, for
example, Theorem 5 in Milgrom and Roberts 1990). Finally, the
result follows from the fact that Vt�Ct
−Vt�Ct −1
≥ 0. �

Proof of Proposition 8. First we note that V det
1 �C0
 define by

(32)–(33) is concave in C0. This follows directly from the concavity
of (32) and the convexity of (33). Let us now show that V1�C0
 ≤
V det
1 �C0
 using induction over N , the number of periods. For N = 1,

we have that

V1�C0
 = max
p

E�p min�D1�p
�C0��≤max
p

p min�E�D1�p
��C0�

= V det
1 �C0
�

where the inequality follows from Jensen’s inequality and the con-
cavity of the function f �x
=min�x�C0�.
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Suppose the result holds for the case of N − 1 periods. Let us
prove the result for N . In fact, let us recall that V2�C
 and V det

2 �C


are the optimal and deterministic value functions for the last N −1
periods. Therefore, we have that

V1�C0
 = max
p1

E �p1�min�D1�p1
�C0�+V2�C0−min�D1�p1
�C0�
�

≤ max
p1

E
[
p1 min�D1�p1
�C0�+V det

2 �C0−min�D1�p1
�C0�

]

≤ max
p1

E �p1 min�D1�p1
�C0��+V det
2 �C0−E�min�D1�p1
�C0��
�

where the first inequality follows from the step of induction and
the second inequality from Jensen’s inequality and the concavity of
V det
2 �C
. Using the definition of V det

2 �C
 we have that

V1�C0
≤ max
p1� ���� pN

{
p1 E �min�D1�p1
�C0��+

N∑
n=2

pn E�Dn�pn
�

}

subject to E �min�D1�p1
�C0��+
N∑
n=2

E�Dn�pn
�≤ C0�

Let 0 be the Lagrangian multiplier for the constraint, then by weak
duality we have that

V1�C0
 ≤ min
0≥0

{
0C0+ max

p1� ���� PN

{
�p1−0
E�min�D1�p1
�C0��

+
N∑
n=2
�pn−0
E�Dn�pn
�

}}
�

We note that for a given 0 the solution of the maximization ensures
that p1 ≥0. Thus, by Jensen’s inequality and the concavity of f �x
=
min�x�C0� we get

V1�C0
 ≤ min
0≥0

{
0C0+ max

p1� ���� PN

{
�p1−0
min�E�D1�p1
��C0�

+
N∑
n=2
�pn−0
E�Dn�pn
�

}}
�

In addition, for a given 0 it is never optimal to choose p1 such that
E�D1�p1
� > C0 because increasing p1 will necessarily increase the
objective, therefore we have

V1�C0
 ≤ min
0≥0

{
0C0+ max

p1� ���� PN

{
�p1−0
E�D1�p1
�

+
N∑
n=2
�pn−0
E�Dn�pn
�

}}
≡	�

Finally, we note that right-hand side correspond to the dual of the
following problem:

V det
1 �C0
= max

p1� ���� PN

{
N∑
n=1

pn E�Dn�pn
�

}

subject to
N∑
n=1

E�Dn�pn
�≤ C0�

Given the concavity and convexity assumptions and the existence
of an interior solution p�, we can apply the strong duality theorem

(e.g., Bazaraa et al. 1993) to conclude that 	 = V det
1 �C0
 that implies

V1�C0
≤ V det
1 �C0
.

To prove the second part of the proposition, we note that

V1�p
det�C0
 =

N∑
n=1
pdetn E

[
Dn�p

det
n 
−

(
Dn�p

det
n 
−(C0−�det

n−1
)+)+]

=
N∑
n=1
pdetn E�Dn�p

det
n 
�


1−

E

[(
Dn�p

det
n 
−�C0−�det

n−1

+
)+]

E�Dn�p
det
n 
�




≥
N∑
n=1
pdetn E�Dn�p

det
n 
�


1− E

[(
�det

n −C0

)+]
E�Dn�p

det
n 
�


�

where the inequality follows from Dn�p
det
n 
 − �C0 − �det

n−1

+ ≤

Dn�p
det
n 
+�det

n−1 −C0 = �det
n −C0. The result follows now from two

observations. First, we have by the previous part that V1�C0
 ≤
V det
1 �C0
 =

∑N
n=1 p

det
n E�Dn�p

det
n 
�. Second, using the inequality (*)

below we have that ��det
n −C0


+ ≤  det
n �C0
. Finally, for the time-

homogenous case, it clear that a single fixed price pdet is optimal
for all periods. Then, we have that

V1�p
det�C0
 = pdetE�min��det

N �C0��= pdet
(
�det

N − ��det
N −C0


+
)

= pdet E��det
N �

(
1− E���det

N −C0

+�

E��det
N �

)

≥ V det
1 �C0


(
1− 9�C0


2

)

≥ V1�C0


(
1− 9�C0


2

)
�

The first inequality is a consequence of the following result by
Gallego (1992) (< 2

N is the variance of �N �p
det
)

E���det
N −C0


+�
E��det

N �
≤
√
< 2+�C0−E��det

N �
2−�C0−E��det
N �


2E��det
N �

≤ 9�C0


2
� �∗


the last inequality follows from the fact that for the deterministic
price solution E��det

N �≤ C0. �
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