Revenue Management

René Caldentey

Outline

- I. A Brief History of RM
- II. RM Framework
- III. Components of a RM System
- IV. Examples of Models and Methodology
 - V. Summary and Future Directions

...But Before an Example

New York - Chicago

A Wednesday-Friday ticket is 15%-20% more expensive than a Thursday-Saturday ticket!!

...But Before an Example

New York - Chicago

A Wednesday-Friday ticket is 15%-20% more expensive than a Thursday-Saturday ticket!!

Revenue Management:

"Selling the Right product to the Right customer at the Right price."

...and a Warning

COCA-COLA: A MAYOR CALOR, MÁS ALTO EL PRECIO.

AIRLINE INDUSTRY

Time

AIRLINE INDUSTRY

Standardized Prices and Profitability Targets

1970

Time

AIRLINE INDUSTRY

AIRLINE INDUSTRY

AIRLINE INDUSTRY

AIRLINE INDUSTRY

- 1) Fare Restrictions: Buy 30 days in advance, Saturday overnight, non-refundable.
- 2) Capacity Control: Restricted number of discount seats sold on each flight.

AIRLINE INDUSTRY

- 1) Fare Restrictions: Buy 30 days in advance, Saturday overnight, non-refundable.
- 2) Capacity Control: Restricted number of discount seats sold on each flight.

AIRLINE INDUSTRY

- 1) Fare Restrictions: Buy 30 days in advance, Saturday overnight, non-refundable.
- 2) Capacity Control: Restricted number of discount seats sold on each flight.

AIRLINE INDUSTRY

- 1) Fare Restrictions: Buy 30 days in advance, Saturday overnight, non-refundable.
- 2) Capacity Control: Restricted number of discount seats sold on each flight.

Revenue Management Decisions

RM ADDRESSES THREE TYPES OF DEMAND MANAGEMENT DECISIONS

• Structural Decisions

- Selling formats
- Product bundling
- Terms of sale
- Price Decisions
 - Initial prices
 - MarkdownsPromotions
- Quantity Decisions
 - Accept/Reject demand
 - Rationing by

 \checkmark channel \checkmark location 🗸 time

Strategic

Changed relatively infrequently

Tactical

Price or quantity is used depending on commitments, flexibility of channel, time scale, etc.

What's New About RM?

- Demand management decisions are old news
 - Practice
 - Economic theory

 \circ The 'new twist' is <u>how</u> the decisions are made

- Information technology
 - \checkmark Databases
 - \checkmark Enterprise planning and execution systems
 - ✓ Internet
- Scientific decision making
 - \checkmark Statistics
 - \checkmark Economic & behavioral modeling
 - ✓ Optimization

When Does RM Apply?

A CONCEPTUAL VIEW OF A FIRM'S "DEMAND LANDSCAPE"

RM tries to exploit this landscape and manage the resulting trade-offs

Conditions Favoring RM

- 1. Customer heterogeneity
- 2. Demand variability and uncertainty
- 3. Fixed selling horizon / Perishable products
- 4. Production inflexibility
- 5. Price is not a signal for quality
- 6. Data and IS infrastructure exist
- 7. Management culture accepting of science and tech.

A Revenue Management System

History **Data Collection Layer** TWO MAIN METHODOLOGICAL COMPONENTS Management Model **Estimation/Forecasting** Revenue • Forecasting Optimization Optimization Allocation Control Overbooking Control CRS/PMS/ERP

Distribution Points

Ο

Classification of Models and Methods

• Quantity-based Revenue Management

- Single-resource capacity control
- Network capacity control
- Overbooking

• Price-based Revenue Management

Dynamic pricing

 ✓ Markdowns
 ✓ Promotions

- Auctions

The Revenue Management Problem

Revenue Management

Revenue Management Taxonomy

	Elements	Descriptor
A	Resource	Discrete/Continuous
В	Capacity	Fixed/Nonfixed
C	Prices	Predetermined/Set Optimally/Set Jointly
D	Willingness to Pay	Buildup/Drawdown
E	Discount Price Classes	$1/2/3/\ldots/I$
F	Reservation Demand	Deterministic/Mixed/Random-
		independent/ Random-correlated
G	Show-Up of Discount Reservation	Certain/Uncertain without Cancellation/
		Uncertain with cancellation
H	Show-Up of Full-Price Reservation	Certain/Uncertain without Cancellation/
		Úncertain with cancellation
II	Group Reservations	No/Yes
J	Diversion	No/Yes
K	Displacement	No/Yes
	Bumping Procedure	None/Full-price/Discount/FCFS/Auction
M	Asset Control Mechanism	Distinct/Nested
N	Decision Rule	Simple Static / Advanced Static / Dynamic

Source: Weatherford & Bodily (1992), Ops. Res. 40, 831-844.

Example: A1-B1-C1-E3-N3

Quantity-Based Revenue Management

Single-Resource Capacity Control

TRADITIONAL AIRLINE/HOTEL QUANTITY-BASED RM MODELS:

Given requests for different products....

... decide which ones to accept or reject.

Revenue Management

Types of Controls

BOOKING LIMITS: Maximum capacity assigned to a particular class at a given time.

- Partitioned: Partition available capacity into separate blocks (or buckets).
- Nested: Capacity is assigned in a hierarchical and overlapping manner.

PROTECTION LEVELS: Total capacity minus booking limit

Revenue Management

Types of Controls (contd')

BID PRICES: Threshold price for "Accept/Reject" requests.

DISPLACEMENT COST: V(x) - V(x-1).

- D_i : Demand for class i = 1, ..., n + 1 (continuous i.i.d r.v.)
- f_i : Fare (net contribution) of class i

$$f_1 > f_2 > \dots > f_{n+1}$$

• x_i : Number of class *i* customers accepted (control)

$$0 \le x_i \le D_i$$

 \circ Low-before-high order arrival...

KEY RESULTS: "Bid prices" and "nested allocations" are optimal.

KEY RESULTS: "Bid prices" and "nested allocations" are optimal.1) Bid price decision rule: Open class j iff....

 $f_j \ge \Delta V_{j-1}(x)$

KEY RESULTS: "Bid prices" and "nested allocations" are optimal. 1) Bid price decision rule: Open class j iff....

$$f_j \ge \Delta V_{j-1}(x)$$

2) Nested allocation decision rule:

 y_i : Nested protection level for class i and higher

Littlewood's Two-Class Model (AGIFORS'72)

- Fixed Capacity C.
- Two fares $f_1 > f_2$.
- Demand D_i is random with cdf F_i .
- Demand D_2 arrives first than D_1 .

Littlewood's Two-Class Model (AGIFORS'72)

- Fixed Capacity C.
- Two fares $f_1 > f_2$.
- Demand D_i is random with cdf F_i .
- Demand D_2 arrives first than D_1 .

PROPOSITION. The optimal protection level for class 1, y_1 , satisfies

$$f_2 = f_1 \mathbb{P}(D_1 > y_1) \iff y_1 = F_1^{-1} \left(1 - \frac{f_1}{f_1} \right).$$

Littlewood's Two-Class Model (AGIFORS'72)

- Fixed Capacity C.
- Two fares $f_1 > f_2$.
- Demand D_i is random with cdf F_i .
- Demand D_2 arrives first than D_1 .

PROPOSITION. The optimal protection level for class 1, y_1 , satisfies

$$f_2 = f_1 \mathbb{P}(D_1 > y_1) \iff y_1 = F_1^{-1} \left(1 - \frac{f_1}{f_1}\right)$$

- Booking Limit: $b_2 = (C y_1)^+$
- BID PRICE: $\pi(x) = f_1 \mathbb{P}(D_1 > x).$

The n-Class Model

How we solve the general static model with n classes of customers?

The n-Class Model

How we solve the general static model with n classes of customers? Define $V_j(x)$ = optimal expected payoff-to-go if the available capacity is x and the classes j, j - 1, ..., 1 are yet to arrive.

$$V_j(x) = \mathbb{E}\left[\max_{0 \le u \le \min\{x, D_j\}} \{f_j \, u + V_{j-1}(x-u)\}\right], \qquad V_0(x) = 0.$$

Define $\Delta V_j(x) := V_j(x) - V_j(x-1)$.

The n-Class Model

How we solve the general static model with n classes of customers? Define $V_j(x)$ = optimal expected payoff-to-go if the available capacity is x and the classes j, j - 1, ..., 1 are yet to arrive.

$$V_j(x) = \mathbb{E}\left[\max_{0 \le u \le \min\{x, D_j\}} \{f_j \, u + V_{j-1}(x-u)\}\right], \qquad V_0(x) = 0.$$

Define
$$\Delta V_j(x) := V_j(x) - V_j(x-1)$$
.

PROPOSITION.

$$-) \ \Delta V_j(x+1) \le \Delta V_j(x)$$

$$-) \ \Delta V_{j+1}(x) \ge \Delta V_j(x).$$
The n-Class Model (cont'd)

COMPUTATION OF OPTIMAL PROTECTION LEVELS (Brumelle & McGill, OR'93)

"Fill Events"

$$A_1(X, y) = \{D_1 > y_1\}$$

$$A_2(X, y) = \{D_1 > y_1 \cap D_1 + D_2 > y_2\}$$

$$\vdots$$

$$A_i(X, y) = \{D_1 > y_1 \cap D_1 + D_2 > y_2 \cap \ldots \cap D_1 + D_2 + \dots + D_i > y_i\}$$

Optimality Conditions:

$$\mathbb{P}(A_i(X,y)) = \frac{f_{i+1}}{f_1}$$

Solved via Monte-Carlo integration (Robinson OR'95)

Revenue Management

Network Revenue Management

Network Capacity Control

(ii) Airline hub-and-spoke network

Network Capacity Control

(ii) Airline hub-and-spoke network

Optimize accept/deny decisions for path requests

Revenue Management

- \circ t: time period
- \circ C_t : *m*-vector of leg capacities
- $A = [a_{ij}]: m \times n$ -incidence matrix

$$a_{ij} = \begin{cases} 1 & \text{if itinerary } j \text{ uses leg } i \\ 0 & \text{otherwise} \end{cases}$$

- ξ_t : *n*-vector of randomly arriving revenues
- $\circ u_t$: *n*-vector of 0-1 controls (accept/deny decisions)

Dynamic Program

$$V_t(C_t) = \max_u \mathbb{E} \left[\xi_t^T u_t(C_t, \xi) + V_{t-1}(C_t - A u_t(C_t, \xi)) \right]$$

subject to $C_t - A u_t(C_t, \xi) \ge 0$

STRUCTURE OF AN OPTIMAL CONTROL:

Accept revenue f_j for itinerary j if and only if

$$f_j \ge \underbrace{V_{t-1}(C) - V_{t-1}(C - A_j)}_{\text{displayment cost}}$$

displacement cost

ISSUES:

- Approximating control structure
- Approximating displacement cost

APPROXIMATE CONTROL STRUCTURES

I) Bid Prices:

Given values $\mu_i(C, t)$, i = 1, ..., m for each leg, accept a request for itinerary $j = (i_1, i_2, ..., i_k)$ if

$$f_j \ge \mu_{i_1}(C, t) + \mu_{i_2}(C, t) + \dots + \mu_{i_k}(C, t)$$

II) Displacement Adjusted Virtual Nesting (DAVN):

$$f_j - \mu_{i_1}(C, t) - \mu_{i_2}(C, t) - \dots - \mu_{i_k}(C, t)$$

Compute displacement-adjusted revenue for each itinerary and apply the resulting revenues and demand in a single-leg model on each leg.

APPROXIMATING THE PROBLEM

Step 1: Use alternative model to approximate the value function

 $V_t(C) \approx V_t^A(C)$ $V_t^A(C) \approx \text{Optimal value of alternative model}$ given capacity = C and time = t

Step 2: Use approximate value function to decide Accept revenue f_j for itinerary j only if

$$f_j \ge V_t^A(C) - V_t^A(C - A_j) \approx \nabla^T V_t^A(C) A_j$$

Example: Deterministic LP

$$V_t^{LP}(C) = \max_y \sum_j f_j y_j$$

subject to $A y \le C$
 $0 \le y \le \mathbb{E}[D]$

Then, $\nabla V_t^{LP}(C) = \lambda$ (provided gradient exists) and we accept f_j if

$$f_{j} \geq V_{t}^{LP}(C) - V_{t}^{LP}(C - A_{j}) \text{ (Bertsimas and Popescu, Trans. Sci., 93)}$$

$$\approx \nabla^{T} V_{t}^{LP}(C) A_{j}$$

$$= \sum_{i \in A_{j}} \lambda_{i} \text{ (Williamson'88)}$$

Extension: Code-Share Revenue Management

Extension: Code-Share Revenue Management

Literature

- Bitran, G., R. Caldentey (2003) . An Overview of Pricing Models for Revenue Management. *Management Science*, Vol. **5**, No. 3, Summer 2003, 203229.
- Cross R., (1997). Revenue Management: Hard Core for Market Domination, Broadway Books, NY.
- Ingold, A., McMahon-Beattie, U. Yeoman (2002). *Revenue Management*. Thomson Publications, London.
- Kimes, S.E. (1989). Yield Management: A Tool for Capacity-Constrained Service Firms. *Journal of Operations Management*, Vol. **8**, 348-363.
- Phillips, R. (2004). *Pricing and Revenue Optimization*. Stanford University Press, Stanford, CA.
- Talluri, K., G. Van Ryzin (2005). *The Theory and Practice of Revenue Management*. Kluwer Academic Publishers, Boston.