
Tools for Data Mining 
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  Artificial Neural Networks 
  Self-Organizing Feature Maps 
  K-Means 
  Decisions Trees 
  Bayesian network 
  K-Nearest Neighbor 
  Support Vector Machines  
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Inspired on a biological model ... 
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  The units (individual neurons) operate only locally 
on the inputs they receive via connections.  

  ANNs undergo some sort of "training"  whereby the 
connection weights are adjusted on the basis of 
presented data. In other words, ANNs "learn" from 
examples (as children learn to recognize dogs 
from examples of dogs) and exhibit some 
generalization capability beyond the training data 
(for other data than those included in the training 
set). 
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f 

A single neuron has 6 components: 

1. Input “x” 
2. Weights “w” 
3. Bias “b” (Threshold = -b) 
4. Activation function “f” 
5. Input function  σ 
6. Output “y” 
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Threshold = 1 
Bias = -1 (Threshold  =  - Bias) 
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•  Synonym for Single-
Layer, 
F
eed-Forward Network 

•  First 
Studied 
i
n the 50’s (Rosenblatt) 

•  Other networks were known about 
but the Perceptron was the only one capable of learning and thus all research was 
c
o
ncentrated in this area 

( from G. Kendall, lect. notes Univ. of  Nottingham) 
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Linear Separability is also possible in more than 3 
dimensions – but it is harder to visualize 

( from G. Kendall, lect. notes Univ. of  Nottingham) 
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Y  = X1 XOR X2 = (X2 AND NOT X1) OR (X1 AND NOT X2) 

Threshold for all nodes = 1.5 
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One neuron layer is not enough, we should introduce an  
intermediate (hidden) layer. 
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1.   Initialize the weights and threshold to small random numbers.  
2.  At time step t present a vector to the neuron inputs and calculate 

the perceptron output y(t). 
3.   Update the weights and biases as follows:  

◦  d(t) is the desired output  
◦  y(t) is the computed output 
◦  t is the step/iteration number 
◦  η is the gain or step size (Learning Rate), where 0.0 < η <= 1.0  

4.  Repeat steps 2 and 3 until:  
◦  The iteration error is less than a user-specified error threshold   
◦  Or a predetermined number of iterations have been completed.  
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The perceptron learning algorithm developed originally by  
F. Rosenblatt in the late 1950s.  



t = 0 

t = 9 

… 

t 
INPUTS 

d(t)  y(t)  E 
WEIGHTS 

x1  x2  x3  x4  b(t)  w1(t)  w2(t)  w3(t)  w4(t) 

0  0  0  0  0  0 

1  0  0  0  1  ‐1  0  1  ‐1  0  0  0  ‐1 

2  1  1  1  0  1  1  2  0  1  1  1  ‐1 

3  1  1  1  1  1  2  0  0  1  1  1  ‐1 

4  0  0  1  1  ‐1  0  1  ‐1  1  1  0  ‐2 

5  0  0  0  0  1  ‐1  2  0  1  1  0  ‐2 

6  0  1  0  1  ‐1  ‐1  0  0  1  1  0  ‐2 

7  1  0  0  0  1  1  0  0  1  1  0  ‐2 

8  1  0  1  1  1  ‐1  2  1  2  1  1  ‐1 

9  0  1  0  0  ‐1  2  3  0  2  0  1  ‐1 

η = 1 
Y = f(σ) = Id(σ) 

Primavera 2010 83 IN4522 - http://wi.dii.uchile.cl 



Primavera 2010 IN4522 - http://wi.dii.uchile.cl 84 



Primavera 2010 IN4522 - http://wi.dii.uchile.cl 85 



Primavera 2010 IN4522 - http://wi.dii.uchile.cl 86 



Primavera 2010 IN4522 - http://wi.dii.uchile.cl 87 



Primavera 2010 IN4522 - http://wi.dii.uchile.cl 88 



  After all training pattern vectors xi  (i=1,...,p) are presented, 
the correction to apply to  the weights is proportional to the 
error E(t):  

  Our purpose is to find the vector w which minimizes E(t). At 
each step: 

  In gradient descent techniques: 

  η >0 learning rate 
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  By analogy, gradient method can be compared with a ball rolling 
down from a hill:  
◦  the ball will roll down and finally stop at the valley.  
◦  Gradient direction is the direction of uphill (in the Figure – E(w) one dimensional case) 

  In a gradient descent algorithm, the ball goes in the opposite 
direction to the gradient, i.e.,  we have 

  therefore the ball goes downhill  since – E’(w(t)). 
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Gradient direction 

E(w) 



Gradient direction 

w(t+k) w(t+k) 

E(w) 
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Hidden layers 
3 proper neuron layers 
the first (input layer) is dummy, only transmit the inputs to the next layer 
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Set learning rate  
Set initial weight values (including biases):  W, b 

Loop until stopping criteria satisfied: 
   For each of the patterns in the training set 
     present an input pattern  to input units 
     compute output signal for hidden units 
     compute output signal for output units 

    present Target response to output units 
    compute error signal for this pattern 
  Compute an overall 
e
rror for all the patterns (e.g. mean squared err ) 
  Update weights at output layer 
  Update weights at hidden layer 
   Increment t  to t+1 (t –epoch number) 
end loop 
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valleys 

Picture from Jianfeng Feng, lect. notes Univ. of Sussex.  Primavera 2010 98 IN4522 - http://wi.dii.uchile.cl 
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for output layer 

for hidden layer 



  Method of reducing problems of instability 
while increasing the rate of convergence 

  Modified weight update equation is:  
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α - Momentum coefficient, 0 <= α < 1 
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xm 
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f wij 

ai 

 ≡ Universal Function  
       Approximation 

Universal Approximation Theorem: 
For any given constant ε > 0 and continuous function h (x1,...,xm) with  

m inputs and  n outputs,  there  exists a three layer MLP (which computes 
the function H) with m inputs and n outputs with the property 

| h (x1,...,xm) - H(x1,...,xm) |< ε 
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the appropriate number  
of hidden nodes 
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 Backpropagation Neural Networks 
 supervised learning 

 Kohonen Self Organizing Maps 
 unsupervised learning 

 Hopfield Neural Networks 
 recurrent neural networks 

 Radial Basis Function Neural Networks (RBF) 
 Neuro-Fuzzy Networks (NF) 
 Others: various architectures of recurrent neural  
networks, 

 networks with dynamic neurons, 
 networks with competitive learning, etc. 
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 McCulloch & Pitts (1943) 
 neural networks and artificial intelligence were born, first well-known  
model for a biological neuron  

 Hebb(1949) 
 Hebb learning rule 

 Minsky(1954) 
 Neural Networks (PhD Thesis) 

 Rosenblatt(1957) 
 Perceptron networks (Perceptron learning rule) 

 Widrow and Hoff(1959) 
 Delta rule for ADALINE networks 

 Minsky & Papert(1969) 
 Criticism on Perceptron networks (problem of linear separability) 

 Kohonen(1982) 
 Self-Organizing Maps 



Primavera 2010 IN4522 - http://wi.dii.uchile.cl 108 

 Hopfield(1982)  
 Hopfield Networks 

 Rumelhart, Hinton & Williams (1986) 
 Back-Propagation algorithm  

 Broomhead & Lowe  (1988) 
 Radial Basis Functions networks (RBF) 

 Vapnik (1990) 
 Support Vector Machine approach 

 In the ’90s 
 massive interest in neural networks, many NN applications  
were developed 
 Neuro-Fuzzy networks emerged 
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A competitive learning algorithm for pattern 
discovery 

Self-Organizing Feature Map (SOFMs) 
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If neuron j wins the competition 
If neuron j loses the competition 



  The overall effect of the competitive learning rule 
resides in moving the synaptic weight vector Wj of 
the winning neuron j towards the input pattern X. 
The matching criterion is equivalent to the 
minimum Euclidean distance between vectors. 

  The Euclidean distance between a pair of n-by-1 
vectors X and Wj is defined by 

 where xi and wij are the ith elements of the vectors 
X and Wj, respectively. 



 To identify the winning neuron, jX, that best 
matches the input vector X, we should apply 
the following condition: 

 where m is the number of neurons in the 
Kohonen layer. 



 Suppose, for instance, that the 2-dimensional 
input vector X is presented to the three-
neuron Kohonen network, 

 The initial weight vectors, Wj, are given by 



  We find the winning (best-matching) neuron jX 
using the minimum-distance Euclidean criterion: 

  Neuron 3 is the winner and its weight vector W3 is 
updated according to the competitive learning rule. 
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 The updated weight vector W3 at iteration (p 
+ 1) is determined as: 

 The weight vector W3 of the wining neuron 3 
becomes closer to the input vector X with 
each iteration. 
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  Set initial synaptic weights to small random 
values, say in an interval [0, 1], and assign a 
small positive value to the learning rate 
parameter α. 
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  Increase iteration p by one 

  Go back to Step 2 and continue until the 
minimum-distance Euclidean criterion is 
satisfied, or no noticeable changes occur in 
the feature map. 
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  First we should specify k  
◦  the number of clusters we want to find out 
◦  Each cluster will be represented by the center of the cluster. 

Iteratively minimize the objective function (distance to 
clusters). 

  Algorithm: 
1.   Randomly pick k points (inside the hypervolume containing the 

pattern set) as the “centroids” of the k clusters we want 
2.  For each pattern in the data set, assign the pattern to the cluster 

with the closest centroid 
3.   Recompute the cluster centroids using the current cluster 

memberships 
4.  If there is no (or minimal) change in the identified clusters 

between two consecutive iterations stop, otherwise go to step 2 
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  Objects: 1, 2,    5, 6,7 (1-dimensional objects)  
  We want to find 2 clusters (k=2). Numerical difference is used as  
distance. 
  K-means:  

Randomly select 5 and 6 as centroids;  
=> Two clusters {1,2,5} and {6,7}; meanC1=8/3, meanC2=6.5 
=> {1,2}, {5,6,7}; meanC1=1.5, meanC2=6 
=> no change. 
Aggregate dissimilarity  

sum of squared distances between each point (in all clusters)  
and its cluster center--(intra-cluster distance)  

                    = 0.52+ 0.52+ 12+ 02+12 = 2.5 
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  Recompute the centroids after every change (or 
few changes), rather than after all the patterns are 
re-assigned 
◦  Improves the convergence speed 

  Starting centroids (seeds) may determine to 
converge to local minima, as well as the rate of 
convergence 
◦  Use heuristics to pick good seeds 

◦  Run K-means M times and pick the best clustering 
obtained 
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