
Tools for Data Mining

Primavera 2010 64 IN4522 - http://wi.dii.uchile.cl

  Artificial Neural Networks
  Self-Organizing Feature Maps
  K-Means
  Decisions Trees
  Bayesian network
  K-Nearest Neighbor
  Support Vector Machines

Primavera 2010 65 IN4522 - http://wi.dii.uchile.cl

Inspired on a biological model ...

Primavera 2010 67 IN4522 - http://wi.dii.uchile.cl

.

. .
.

. outputs

1

2

m

1

2

n

inputs

f

Primavera 2010 70 IN4522 - http://wi.dii.uchile.cl

  The units (individual neurons) operate only locally
on the inputs they receive via connections.

  ANNs undergo some sort of "training" whereby the
connection weights are adjusted on the basis of
presented data. In other words, ANNs "learn" from
examples (as children learn to recognize dogs
from examples of dogs) and exhibit some
generalization capability beyond the training data
(for other data than those included in the training
set).

Primavera 2010 71 IN4522 - http://wi.dii.uchile.cl

f

A single neuron has 6 components:

1. Input “x”
2. Weights “w”
3. Bias “b” (Threshold = -b)
4. Activation function “f”
5. Input function σ
6. Output “y”

Primavera 2010 73 IN4522 - http://wi.dii.uchile.cl

Threshold = 1
Bias = -1 (Threshold = - Bias)

1.5

1.5

Y

X1

X2

Primavera 2010 74 IN4522 - http://wi.dii.uchile.cl

•  Synonym for Single-
Layer,
F
eed-Forward Network

•  First
Studied
i
n the 50’s (Rosenblatt)

•  Other networks were known about
but the Perceptron was the only one capable of learning and thus all research was
c
o
ncentrated in this area

(from G. Kendall, lect. notes Univ. of Nottingham)

Primavera 2010 75 IN4522 - http://wi.dii.uchile.cl

0,0

0,1

1,0

1,1

0,0

0,1

1,0

1,1

AND XOR

Primavera 2010 76 IN4522 - http://wi.dii.uchile.cl

Linear Separability is also possible in more than 3
dimensions – but it is harder to visualize

(from G. Kendall, lect. notes Univ. of Nottingham)

Primavera 2010 77 IN4522 - http://wi.dii.uchile.cl

Y = X1 XOR X2 = (X2 AND NOT X1) OR (X1 AND NOT X2)

Threshold for all nodes = 1.5

X1

X2

Y

2

-1

-1

2

2

2

One neuron layer is not enough, we should introduce an
intermediate (hidden) layer.

Primavera 2010 79 IN4522 - http://wi.dii.uchile.cl

0,0

0,1

1,0

1,1
I1

I2

After weight
initi
a
lization (First Epoch)

0,0

0,1

1,0

1,1
I1

I2

At Convergence

Separation line
w1X1 + w2X2 + b = 0

w1X1 + w2X2 + b > 0

w1X1 + w2X2 + b < 0

X2

X1

X2

X1

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 81

1.   Initialize the weights and threshold to small random numbers.
2.  At time step t present a vector to the neuron inputs and calculate

the perceptron output y(t).
3.   Update the weights and biases as follows:

◦  d(t) is the desired output
◦  y(t) is the computed output
◦  t is the step/iteration number
◦  η is the gain or step size (Learning Rate), where 0.0 < η <= 1.0

4.  Repeat steps 2 and 3 until:
◦  The iteration error is less than a user-specified error threshold
◦  Or a predetermined number of iterations have been completed.

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 82

The perceptron learning algorithm developed originally by
F. Rosenblatt in the late 1950s.

t = 0

t = 9

…

t 
INPUTS 

d(t)  y(t)  E 
WEIGHTS 

x1  x2  x3  x4  b(t)  w1(t)  w2(t)  w3(t)  w4(t) 

0  0  0  0  0  0 

1  0  0  0  1  ‐1  0  1  ‐1  0  0  0  ‐1 

2  1  1  1  0  1  1  2  0  1  1  1  ‐1 

3  1  1  1  1  1  2  0  0  1  1  1  ‐1 

4  0  0  1  1  ‐1  0  1  ‐1  1  1  0  ‐2 

5  0  0  0  0  1  ‐1  2  0  1  1  0  ‐2 

6  0  1  0  1  ‐1  ‐1  0  0  1  1  0  ‐2 

7  1  0  0  0  1  1  0  0  1  1  0  ‐2 

8  1  0  1  1  1  ‐1  2  1  2  1  1  ‐1 

9  0  1  0  0  ‐1  2  3  0  2  0  1  ‐1 

η = 1
Y = f(σ) = Id(σ)

Primavera 2010 83 IN4522 - http://wi.dii.uchile.cl

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 84

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 85

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 86

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 87

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 88

  After all training pattern vectors xi (i=1,...,p) are presented,
the correction to apply to the weights is proportional to the
error E(t):

  Our purpose is to find the vector w which minimizes E(t). At
each step:

  In gradient descent techniques:

  η >0 learning rate

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 89

  By analogy, gradient method can be compared with a ball rolling
down from a hill:
◦  the ball will roll down and finally stop at the valley.
◦  Gradient direction is the direction of uphill (in the Figure – E(w) one dimensional case)

  In a gradient descent algorithm, the ball goes in the opposite
direction to the gradient, i.e., we have

  therefore the ball goes downhill since – E’(w(t)).

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 90

Gradient direction

E(w)

Gradient direction

w(t+k) w(t+k)

E(w)

Primavera 2010 91 IN4522 - http://wi.dii.uchile.cl

xn

x1

x2

Input
Output

Hidden layers
3 proper neuron layers
the first (input layer) is dummy, only transmit the inputs to the next layer

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 93

Set learning rate
Set initial weight values (including biases): W, b

Loop until stopping criteria satisfied:
 For each of the patterns in the training set
 present an input pattern to input units
 compute output signal for hidden units
 compute output signal for output units

 present Target response to output units
 compute error signal for this pattern
 Compute an overall
e
rror for all the patterns (e.g. mean squared err)
 Update weights at output layer
 Update weights at hidden layer
 Increment t to t+1 (t –epoch number)
end loop

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 95

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 96

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 97

valleys

Picture from Jianfeng Feng, lect. notes Univ. of Sussex. Primavera 2010 98 IN4522 - http://wi.dii.uchile.cl

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 99

for output layer

for hidden layer

  Method of reducing problems of instability
while increasing the rate of convergence

  Modified weight update equation is:

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 100

α - Momentum coefficient, 0 <= α < 1

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 101

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 102

xm

Input

x1
x2

Output

Three-layer network (or more)

Hidden layer
f wij

ai

 ≡ Universal Function
 Approximation

Universal Approximation Theorem:
For any given constant ε > 0 and continuous function h (x1,...,xm) with

m inputs and n outputs, there exists a three layer MLP (which computes
the function H) with m inputs and n outputs with the property

| h (x1,...,xm) - H(x1,...,xm) |< ε

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 103

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 104

the appropriate number
of hidden nodes

Primavera 2010 IN4522 - http://wi.dii.uchile.cl
10

5

the appropriate number
of hidden nodes

Number of hidden
nodes

Error

Error on testing set

Error on training set

Right Number of hidden
nodes

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 106

 Backpropagation Neural Networks
 supervised learning

 Kohonen Self Organizing Maps
 unsupervised learning

 Hopfield Neural Networks
 recurrent neural networks

 Radial Basis Function Neural Networks (RBF)
 Neuro-Fuzzy Networks (NF)
 Others: various architectures of recurrent neural
networks,

 networks with dynamic neurons,
 networks with competitive learning, etc.

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 107

 McCulloch & Pitts (1943)
 neural networks and artificial intelligence were born, first well-known
model for a biological neuron

 Hebb(1949)
 Hebb learning rule

 Minsky(1954)
 Neural Networks (PhD Thesis)

 Rosenblatt(1957)
 Perceptron networks (Perceptron learning rule)

 Widrow and Hoff(1959)
 Delta rule for ADALINE networks

 Minsky & Papert(1969)
 Criticism on Perceptron networks (problem of linear separability)

 Kohonen(1982)
 Self-Organizing Maps

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 108

 Hopfield(1982)
 Hopfield Networks

 Rumelhart, Hinton & Williams (1986)
 Back-Propagation algorithm

 Broomhead & Lowe (1988)
 Radial Basis Functions networks (RBF)

 Vapnik (1990)
 Support Vector Machine approach

 In the ’90s
 massive interest in neural networks, many NN applications
were developed
 Neuro-Fuzzy networks emerged

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 109

A competitive learning algorithm for pattern
discovery

Self-Organizing Feature Map (SOFMs)

Primavera 2010 111 IN4522 - http://wi.dii.uchile.cl

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 112

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 113

Primavera 2010 114 IN4522 - http://wi.dii.uchile.cl

Primavera 2010 115 IN4522 - http://wi.dii.uchile.cl

Primavera 2010 116 IN4522 - http://wi.dii.uchile.cl

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 117

Primavera 2010 118 IN4522 - http://wi.dii.uchile.cl

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 119

If neuron j wins the competition
If neuron j loses the competition

  The overall effect of the competitive learning rule
resides in moving the synaptic weight vector Wj of
the winning neuron j towards the input pattern X.
The matching criterion is equivalent to the
minimum Euclidean distance between vectors.

  The Euclidean distance between a pair of n-by-1
vectors X and Wj is defined by

 where xi and wij are the ith elements of the vectors
X and Wj, respectively.

 To identify the winning neuron, jX, that best
matches the input vector X, we should apply
the following condition:

 where m is the number of neurons in the
Kohonen layer.

 Suppose, for instance, that the 2-dimensional
input vector X is presented to the three-
neuron Kohonen network,

 The initial weight vectors, Wj, are given by

  We find the winning (best-matching) neuron jX
using the minimum-distance Euclidean criterion:

  Neuron 3 is the winner and its weight vector W3 is
updated according to the competitive learning rule.

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 123

 The updated weight vector W3 at iteration (p
+ 1) is determined as:

 The weight vector W3 of the wining neuron 3
becomes closer to the input vector X with
each iteration.

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 124

  Set initial synaptic weights to small random
values, say in an interval [0, 1], and assign a
small positive value to the learning rate
parameter α.

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 125

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 126

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 127

  Increase iteration p by one

  Go back to Step 2 and continue until the
minimum-distance Euclidean criterion is
satisfied, or no noticeable changes occur in
the feature map.

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 128

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 129

Kohonen map Five clusters

Winner frequency

1
2

3 4 5

Primavera 2010 IN4522 - http://wi.dii.uchile.cl 136

Primavera 2010 138 IN4522 - http://wi.dii.uchile.cl

Primavera 2010 139 IN4522 - http://wi.dii.uchile.cl

  First we should specify k
◦  the number of clusters we want to find out
◦  Each cluster will be represented by the center of the cluster.

Iteratively minimize the objective function (distance to
clusters).

  Algorithm:
1.   Randomly pick k points (inside the hypervolume containing the

pattern set) as the “centroids” of the k clusters we want
2.  For each pattern in the data set, assign the pattern to the cluster

with the closest centroid
3.   Recompute the cluster centroids using the current cluster

memberships
4.  If there is no (or minimal) change in the identified clusters

between two consecutive iterations stop, otherwise go to step 2

Primavera 2010 140 IN4522 - http://wi.dii.uchile.cl

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

K=2

Arbitrarily choose K
object as initial
cluster center

Assign
each
objects
to most
similar
center

Update
the
cluster
means

Update
the
cluster
means

reassign reassign

|1-1.5|2

Primavera 2010 142 IN4522 - http://wi.dii.uchile.cl

  Objects: 1, 2, 5, 6,7 (1-dimensional objects)
  We want to find 2 clusters (k=2). Numerical difference is used as
distance.
  K-means:

Randomly select 5 and 6 as centroids;
=> Two clusters {1,2,5} and {6,7}; meanC1=8/3, meanC2=6.5
=> {1,2}, {5,6,7}; meanC1=1.5, meanC2=6
=> no change.
Aggregate dissimilarity

sum of squared distances between each point (in all clusters)
and its cluster center--(intra-cluster distance)

 = 0.52+ 0.52+ 12+ 02+12 = 2.5

Primavera 2010 143 IN4522 - http://wi.dii.uchile.cl

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

medoid

centroid
Primavera 2010 144 IN4522 - http://wi.dii.uchile.cl

  Recompute the centroids after every change (or
few changes), rather than after all the patterns are
re-assigned
◦  Improves the convergence speed

  Starting centroids (seeds) may determine to
converge to local minima, as well as the rate of
convergence
◦  Use heuristics to pick good seeds

◦  Run K-means M times and pick the best clustering
obtained

Primavera 2010 145 IN4522 - http://wi.dii.uchile.cl

