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Abstract

Web usage mining has proven to be an important ad-
vance for e-business systems, by finding web user buy-
ing patterns and suggesting ways to improve web user
navigation. An important input is web user sessions
that must be reconstructed from web logs (sessioniza-
tion) when such sessions are not otherwise identified.
We present a new approach for sessionization based on
an integer program. We compare results of our ap-
proach with the timeout heuristic on web logs from an
academic web site. We find our integer program pro-
vides sessions that better match an expected empirical
distribution with about a half of the standard error of
the heuristic.

1. Introduction

A log file from a web server (web log) contains
records of users’ browsing activities. For marketing
purposes, web logs are a potential large source of data
(∼ Gb) on customer preferences [14]. A web log [22]
is typically a large text file with each line (register)
containing the following: the time of a document (web
page) access, the IP address of the user, the agent field
that identifies the user’s browser, and the document
retrieved. A log file contains evidence of each web
user’s activities and serves as a huge electronic survey
of a web site. This has motivated considerable research
on how to mine this important information, a field
coined Web Usage Mining [14].

A web log by itself does not necessarily reflect a
sequence of an individual user’s document access, it
registers every retrieval action but without a unique
identification for each user. This originates the need
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to reconstruct a user’s session from the information
available (sessionization). Prior work on sessionization
has relied on heuristics [2, 6, 20]. These heuristics have
been applied with success on a variety of studies that
include web user navigational behavior, recommender
systems, pattern extraction, and web site keyword
analysis [14]. In this paper, we propose an integer
program to construct sessions and demonstrate its
advantages using web logs from an academic web site.

The rest of this paper is organized as follows.
Section 2 presents a brief summary of related research.
Section 3 outlines our approach and presents our
integer program. Section 4 presents our test data
and results. Section 5 provides some conclusions and
suggests future research.

2. Related Work

Strategies for sessionization can be classified as
reactive and proactive [20]. Proactive sessioniza-
tion strategies capture a rich collection of a user’s
activity during her visit to a site but are invasive
and in some countries forbidden [20] or regulated by
law to protect user privacy [16]. Examples include
cookie oriented session retrieval [3], where personal
data are stored on the user’s computer and from
which a complete session can be retrieved. URL
rewriting [8] stores personal information that is finally
stored on logs. The most invasive example is web
tracking software, close to spyware, on a user’s com-
puter (or browser) that captures the entire session [17].

Reactive sessionization strategies have less privacy
concerns because they only use web log register
information, which does not include explicit user
information [20]. However, a web log only provides
an approximate way of retrieving a user’s session for



several reasons. The same IP address as recorded
in the web log often contains the requests of several
concurrent users without each user being uniquely
identified [14]. Additionally, a user’s activation of
the back and forward browser button is often not
recorded in the web log because, in most cases, the
browser retrieves the page from its own cache. A
proxy server, acting as an internet web page cache to
reduce network traffic, can also capture web requests
that are not recorded in a web log [11].

Prior methods to construct sessions from a web
log have been heuristic and most commonly based
on limited session duration [20]. These heuristics
form one session at a time by grouping log registers
from the same IP address and the same agent so
that the session does not exceed a maximum duration
parameter, usually 30 minutes [2]. After a session is
formed, it is never changed even though its finalization
can impact the construction of other sessions. Another
heuristic approach is to construct sessions that share
the same semantic [15].

Several authors have looked at the overall charac-
teristics of sessions. They find that the size n of a
web user session follows a power law (n−α/

∑
k k−α)

distribution [12, 21]. The size of a session is the total
number of registers in the session.

3. Our Approach

We propose sessionization using an integer program.
Like the heuristic approaches it groups log registers
from the same IP address and agent as well as ensur-
ing the link structure of the site is followed in any
constructed session. Unlike the heuristics, it does not
construct the sessions one at a time but instead simul-
taneously constructs all sessions. The integer program
is therefore able to determine, for example, the max-
imum number of sessions of a certain size whereas a
heuristic can only provide a lower bound on this value.
The ability of the integer program does come at the
cost of increased solution time. The integer program
we present here has been reformulated several times
[7] to improve performance as we experimented with
data. We find most instances of our integer program
solve easily using the commercially available CPLEX
solver [13]. For those not familiar with recent advances
in linear (and integer) programming, Bixby [4], in a
revealing article, compares different CPLEX versions
and concludes in part “a model that might have taken
a year to solve 10 years ago can now solve in less than
30 seconds.” We report more on solution time in the

section 4.

Each constructed session from a web log is an
ordered list of log registers where each register can
only be used once in only one session. Our integer
program uses a binary variable Xros that has value one
if log register r is assigned as the oth request during
session s and zero otherwise. Each index r identifies
a unique register, each index s identifies a unique
user session, and the index o is the ordered request
of a register during a session. In the same session,
it is possible for register r2 to occur immediately
after register r1 if the two registers share the same
IP address and agent, a link exists from the page
requested by r1 to the page requested by r2, and
the request time for register r2 is within an allow-
able time window since the request time for register r1.

We present the integer programming formulation be-
low in NPS standard format [5].

3.1. Indices

o Order of a log register visit during a
session (e.g. o = 1, 2, · · · , 20). The
cardinality defines the maximum
length of a session.

p, p′ Web page.

r, r′ Web log register.

s Web user session.

3.2. Index Sets

r′ ∈ bpager The set of registers that can be
the register immediately before
register r in the same session.
Based on:
- pages that are available from
the page of register r in one click
- IP address matching of register
r and register r′

- agent matching of register r and
register r′

- time of register r and register r′.
Of course, r can not occur before r′

but we assume a user defined
minimum and maximum time
between two consecutive
registers in the same session.



r ∈ first set of registers that must be
first in a session.

3.3. Data [units]

Used to produce the index sets above:

timer the time of register r [seconds].

ipr the IP address for register r.

agentr the agent for register r.

pager the page for register r.

mtp, mtp the minimum, maximum time
between pages in a session [seconds].

adjacentp,p′ one if a page p′ can be reached in
one click from page p.

Used in formulation:

Co the objective function cost of having
a register assigned to the oth position
in a session.

3.4. Binary Variables

Xros 1 if log register r is assigned as the
oth request during session s and
zero otherwise.

3.5. Formulation

Maximize
∑
ros

CoXros

Subject to:

∑
os

Xros ≤ 1 ∀r (1)

∑
r

Xros ≤ 1 ∀o, s (2)

Xr,o+1,s ≤
∑

r′∈bpager

Xr′,o,s ∀r, o, s (3)

Xros ∈ {0, 1}∀r, o, s,
Xros = 0, ∀r ∈ first, o > 1, s

The objective function expresses a total reward for
sessions where a reward of

∑
o′≤o Co′ is obtained for

any session of size o. As an example, setting C3 = 1
and Co = 0 ∀o 6= 3 provides an objective function
for maximizing the number of sessions of size three.
Section 4 reports on how we varied the values of Co

and the results obtained.

Constraint set (1) ensures each register is used at most
once. Constraint set (2) restricts each session to have
at most one register assigned for each ordered request.
Constraint set (3) ensures the proper ordering of reg-
isters in the same session. Xros ∈ {0, 1}∀r, o, s defines
variables as binary. To improve solution time, we can
fix (or eliminate) a subset of these binary variables to
zero (Xros = 0, ∀r ∈ first, o > 1, s). After forming the
set bpager, the set first is easily found (r ∈ first if
bpager = ∅).

3.6. Solving Instances

It is easy to construct instances of our integer
program that can not be solved. For example, a web
log of 100, 000 registers, such as the one we consider
in our computational study, allowing a maximum of
5, 000 sessions, and a maximum session size of 20
produces 1010 binary variables and more than this
number of constraints. Fortunately, a little processing
helps to reduce an instance from a web log into
separable instances or chunks.

We partition a web log into chunks where each one
is formed such that no register in one chunk could
ever be part of a session in another. This is easily
accomplished by partitioning chunks so that each one
corresponds to a unique IP and agent combination.
Even after this partitioning, a chunk may contain
too many registers to be solved easily. In such cases,
a chunk may be further divided whenever the time
difference between two consecutive registers (where
the registers are sorted by time) exceeds mtp.

Heuristic rules could be employed to continue to re-
duce the size of a chunk but such rules were not needed
in our computational study. In fact, we avoided making
a chunk too small because there is a fixed time associ-
ated with generating and solving each chunk. For our
computational work, we used a minimum chunk size of
50.



4. Web Log Test Data

We consider a university web site
(http://www.dii.uchile.cl) that hosts the main
page of the Industrial Engineering Department of the
University of Chile, sub-sites of research groups, per-
sonal homepages, a web mail site, academic programs
and related project sub-sites. As a general purpose
site, it has a lot of diversity and reasonably high
traffic, although much of this traffic comes from web
mail which we do not consider.

3, 756, 006 raw registers were collected over a time
window of one month, April 2008. We want to find
sessions consisting of just web pages so we filtered out
multimedia objects (e.g., pdf, jpg, and avi), faulty
requests (HTTP errors), web spider requests, web mail
requests, hacking attempts (very quick and continuous
request from the same IP on some login pages), and
monitoring tasks (bigbrother like systems). The final
total for our study is 102, 303 clean registers of static
html pages as well some dynamic pages (php and jsp),
with a total of 172 different pages. Of these, 9, 044
registers correspond to visits to the root page of the
site.

We find that only a few IP addresses account for the
vast majority of all clean registers. Over 98 percent
(16, 785 out of a total of 16,985 unique IP addresses)
have less than 50 register for the entire month. Figure
1 displays the number of registers for the 100 IP
addresses that account for the most registers.

Figure 1. The number of registers for the 100
IP addresses that account for the most regis-
ters.

We also found how many unique web pages are vis-
ited by each IP address because we find IP addresses
that visit many unique web pages have more diverse

sessions. Figure 2 shows the number of unique pages
requested by the 2,000 IP addresses that account for
the greatest number of unique page requests. Of the
IP addresses not shown, almost 84 percent (14, 265 out
of 16, 985) visit three or less different pages for the en-
tire month.

Figure 2. The 2,000 IP addresses that account
for the greatest number of unique page re-
quests.

We also performed a web crawling process on the
site in order to recover its structure of hyperlinks, us-
ing the WebSphynx library [18]. We obtain 172 pages
with 1, 228 links between them, for pages identified in
the previous cleaned log registers. We store the infor-
mation in a relational database (MySQL) that includes
tables for unique IP addresses, unique page identifiers,
and unique links between pages and the registers. The
database maintains relational constraints between ta-
bles in order to ensure data consistency.

4.1. The Sessionization Experiments

We select the most relevant chunks for our session-
ization study by IP address. For each IP address,
we find the number of registers and a measure of
the diversity of the pages visited over the regis-
ters. The measure of diversity we use is entropy,
S =

∑
p fpLogN (1/fp), where fp is the frequency

of page p occurrence over all register entries for the
same IP address and N is the number of unique
pages visited by the same IP address. S takes values
from zero to one. When the value of S is near zero,
most register entries are for the same page, if the
value is near one all the pages are visited with similar
frequency. Figure 3 plots for each IP address the
number of registers versus S. There are many IP
addresses with diversity near zero (visiting one page
most of the time) and many IP addresses with high
diversity but a low number of registers for the entire



month. We concentrated on the IP addresses with
high diversity and a high number of registers reckoning
that these are the most interesting (and most difficult
to solve) for sessionization.

Selecting the IP addresses in the upper right rectan-
gle of Figure 3 (more than 50 registers and S greater
than 0.5) results in 130 IP addresses with 17, 709 regis-
ters (17.3% of the total number of registers). We obtain
403 chunks when we partition these registers such that
each chunk has at least 50 registers and mtp = 300.

Figure 3. Log number of registers vs. S for
each IP.

All computation is done using 1.6Ghz PC with two
Gbs of RAM. We generate the integer program using
GAMS [10] and solve it using CPLEX version 10.1.0
[9], controlled by a php script and MySQL 5.0.27 [1]
as storage data engine.

The 403 different integer programs (with mtp = 0,
mtp = 300, and a maximum session size of 20) range
in size from about 4, 000 to 292, 000 binary variables
and 8, 000 to 281, 000 constraints. For each integer
program, we set the maximum time limit to 300
seconds, the relative gap to one percent, and the
absolute gap to 0.9. With such limits, the CPLEX
solver terminates when it has a solution guaranteed
to be with one percent of optimal, or a solution
guaranteed to have an objective function value within
an absolute value of 0.9 from optimal, or it reaches
a 300 second (five minute) limit. If it reaches a 300
second limit, it provides the best solution it has found
by that time.

Without knowledge of the real sessions, it is not
straightforward to measure the quality of sessions
produced by a heuristic or our integer program. One
measure that is available is how well the distribution

of session sizes match the empirically observed power
law distribution [12, 21]. We use linear regression on
the logarithm of the size and the logarithm of the
number of sessions. We report the regression corre-
lation coefficient and standard error as our measures
of sessionization quality. The closer the correlation
coefficient is to one and the standard error near to
zero, the better the sessionization result.

We performed many experiments with the objective
function coefficients Co and found most sets of values
that reward sessions of longer size produced good
quality sessions. Table 1 presents five sets of different
objective function coefficient values used along with
the resulting correlation coefficient and standard error.
For example, we solved the integer program for all
403 chunks using the fifth set of coefficients, Co = o2

∀o, and found the resulting correlation coefficient of
0.9607 and standard error of 0.5145. Figure 4 shows
how many of each session size were found by our
integer program for sizes two and higher, the power
law distribution fit, and the resulting correlation
coefficient for the third set of objective function
coefficients.

Co = R2 StdError
1 1/

√
o 0.9222 1.0548

2 Log(o) 0.9752 0.4126
3 3/2Log(o) + (o− 3)2/12o 0.9784 0.3827
4 o 0.9742 0.4242
5 o2 0.9607 0.5145

Table 1. Five sets of different objective func-
tion coef�cient values and the resulting cor-
relation coef�cient and standard error.

Figure 4. Session size found and the power
law distribution �t.



The computation time was similar for all sets of
coefficients. We report details for the third set. Over
85% (344 out of 403) of the chunks obtained a solution
within one percent of optimal or within 0.9 of the
optimal objective function value. The average relative
gap for these 344 chunks was 1.1% indicating that
almost all were terminated within one percent of
optimal. The average generation and solution time for
these chunks was only 11 seconds. The 300 second
limit was reached in only 59 out of the 403 chunks.
Figure 5 shows solution time by the number of binary
variables. Above 230, 000 discrete variables we see
most of the instances reach the 300s time limit.

For the 59 chunks reaching the limit, the average
relative gap was 70%. The relative gap is the per-
centage difference between the best solution found
and a theoretically best solution. We increased the
solution time for several of these 59 chunks and found
in most cases the additional time did not produce
better solutions but did improve the bound on the
theoretically best solution and therefore improved the
relative gap. A further division of these 59 chunks into
smaller chunks is another possible approach we tried
on a few of these chunks but this too didn’t produce
better sessions.

Figure 5. Solution time in seconds vs. num-
ber of binary variables.

For a variety of chunks, we also doubled the value
of mtp to 600 seconds and the resulting sessions were
almost identical to those found with mtp = 300.

We also considered a change to the objective func-
tion so as to find the maximum number of sessions of a
given size for use in other research [19]. Specifically, for
a specific size session, Co = 0 ∀o 6= size, and Co = 1
for o = size. Results for size two to six are shown
in Table 2. We see that relatively few sessions of size

six (or higher) are possible. These results simplify the
task of finding combinations of parts of a session of
fixed size.

Size Num. Sessions
2 3, 000
3 1, 509
4 755
5 435
6 257

Table 2. The maximum number of sessions
possible of a given size.

4.2. Comparing With a Time-Oriented
Heuristic

We compare our results with a traditional session-
ization timeout heuristic on all clean registers. The
timeout heuristic is substantially faster (only 13 sec-
onds) but results in a distribution of sessions with only
a R2 = 0.9181 correlation coefficient (not as good as
the R2 = 0.9784 found by the integer program) and
a standard error of 0.6401 (nearly twice the standard
error of 0.3817 found by the integer program). Figure
6 provides a comparison of the standard error for both
the timeout heuristic and the integer program.

Figure 6. Predicted value error for the timeout
heuristic shown as (X) and the integer pro-
gram shown as (•). Also shown is the stan-
dard error (0.3817) band for the integer pro-
gram.

5. Conclusions and Future Research

We present a new approach for sessionization using
integer programming. When compared to a commonly



used heuristic, we find the sessions produced by the
integer program better match an expected empirical
distribution. The integer program also allows us
to determine the maximum number of sessions of a
certain size.

Future research will focus on improving solution
time. We will also change our integer program to seek
the maximum number of a specific session(s) (pattern
matching) that could be possible for a given log file.
We will also enhance our integer program to model the
possibility of a user’s activation of the back and forward
browser button.
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