### Dualidad

Basado en Bertsimas, Tsitsiklis
"Introduction to Linear Optimization"
Chap. 4
IN 3701 — Modelamiento y Optimización

Nelson Devia C.

## Introducción

• Sea el problema de optimización (P):

(P) 
$$Max \ z = c'x$$
  
 $Ax \le b$   
 $x \ge 0$ 

• Consideremos la siguiente relajación de (P):

$$g(y) = \underset{x \ge 0}{\text{Max}} \left[ c'x + y'(b - Ax) \right] \quad (PR)$$

- Las restricciones se han reemplazado por penalizaciones en la función objetivo, ponderadas por un vector  $y \ge 0$
- Al tener menos restricciones, la región factible de (PR) es mayor o igual que la (P), por lo tanto:

$$g(y) \ge z^* = c'x^*$$

• Luego, para todo vector  $y \ge 0$ , se obtiene una cota superior para (P)

## Introducción

• Luego, la mejor cota que podemos obtener está dada por:

$$Min \ g(y)$$
$$y \ge 0$$

Pero sabemos que:

$$g(y) = \underset{x \ge 0}{\text{Max}} \left[ c'x + y'(b - Ax) \right]$$
$$= y'b + \underset{x \ge 0}{\text{Max}} \left[ (c' - y'A)x \right]$$

• Donde:

$$\max_{x \ge 0} \left[ (c' - y'A)x \right] = \begin{cases} 0 & si \left( c' - y'A \right) \le 0 \\ + \infty & si \ no \end{cases}$$

• Por ahora, sólo nos interesa el caso finito, luego se tiene que la mejor cota posible está dada por:

Min y'b
$$c'-y'A \le 0$$

$$y \ge 0$$

$$(D) \text{Min } w = b' y$$

$$A' y \ge c$$

$$y \ge 0$$

#### El Problema Dual

• El problema original (P) se conoce como el **problema primal**, mientras que (D) se conoce como el **problema dual** de (P)

(P) 
$$Max \ z = c'x$$
 (D)  $Min \ w = b'y$   
 $Ax \le b$   $A'y \ge c$   
 $x \ge 0$   $y \ge 0$ 

• En general:

$$(P) \ \textit{Min } z = c'x \qquad \qquad (D) \ \textit{Max } w = b'y \\ a'_i \ x \ge b_i \quad i \in M_1 \qquad \qquad y_i \ge 0 \quad i \in M_1 \\ a'_i \ x \le b_i \quad i \in M_2 \qquad \qquad y_i \le 0 \quad i \in M_2 \\ a'_i \ x = b_i \quad i \in M_3 \qquad \qquad y_i \ libre \quad i \in M_3 \\ x_j \ge 0 \quad j \in N_1 \qquad \qquad A'_j \ y \le c_j \quad j \in N_1 \\ x_j \le 0 \quad j \in N_2 \qquad \qquad A'_j \ y \ge c_j \quad j \in N_2 \\ x_i \ libre \quad j \in N_3 \qquad \qquad A'_j \ y = c_i \quad j \in N_3$$

#### El Problema Dual

• Notar que por cada variable en el primal se introduce una restricción en el dual y por cada restricción en el primal, una variable en el dual:

| PRIMAL      | rrinimize  | maximize   | DUAL        |
|-------------|------------|------------|-------------|
|             | $\geq b_i$ | ≥ 0        |             |
| constraints | $\leq b_i$ | ≤ 0        | variables   |
|             | $= b_i$    | free       |             |
| variables   | ≥ 0        | $\leq c_j$ |             |
|             | ≤ 0        | $\geq c_j$ | constraints |
|             | free       | $= c_j$    |             |

# Ejemplo

• Consideremos el siguiente problema:

(P) 
$$Max \ z = 3x_1 - 2x_2 + 7x_3$$
  
 $-x_1 - 2x_2 + x_3 \le 10 \quad (y_1)$   
 $5x_1 + x_2 + 4x_3 \le 6 \quad (y_2)$   
 $x_1, x_2, x_3 \ge 0$ 

• Si elegimos  $y_1 = 1$ ,  $y_2 = 2$ , ponderamos las restricciones y las sumamos, obtenemos una cota superior de z para cualquier x factible en (P):

$$z = 3x_1 - 2x_2 + 7x_3$$

$$\leq [1 \cdot (-1) + 2 \cdot 5]x_1 + [1 \cdot (-2) + 2 \cdot 1]x_2 + [1 \cdot 1 + 2 \cdot 4]x_3 \leq [1 \cdot 10 + 2 \cdot 6]$$

$$= 9x_1 + 0x_2 + 9x_3$$

$$\leq 22$$

# Ejemplo

- En particular:  $z^* \le 22$
- La mejor cota está dada por el vector y que resuelva:

Minimizar el valor de la cota: (D) Min 
$$w = 10y_1 + 6y_2$$

• Cota para el coeficiente de 
$$x_1$$
:  $-y_1 + 5y_2 \ge 3$   $(x_1)$ 

• Cota para el coeficiente de 
$$x_2$$
:  $-2y_1 + y_2 \ge -2$   $(x_2)$ 

• Cota para el coeficiente de 
$$x_3$$
:  $y_1 + 4y_2 \ge 7$   $(x_3)$ 

• Multiplicadores positivos 
$$y_1, y_2 \ge 0$$

- (Conservan el sentido de las desigualdades)
- Nota:
  - Se puede formular este problema a partir de (P), usando la tabla de la lámina 5.

# Ejemplo

- Matricialmente:
  - Primal:

$$(P) Max z = (3 -2 7) \cdot (x_1 x_2 x_3)'$$

$$\begin{pmatrix} -1 & -2 & 1 \\ 5 & 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \le \begin{pmatrix} 10 \\ 6 \end{pmatrix}$$

$$x_1, x_2, x_3 \ge 0$$

• Dual:

(D) Min 
$$z = \begin{pmatrix} 10 & 6 \end{pmatrix} \cdot \begin{pmatrix} y_1 & y_2 \end{pmatrix}$$
  

$$\begin{pmatrix} -1 & 5 \\ -2 & 1 \\ 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \ge \begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix}$$

$$y_1, y_2 \ge 0$$

#### Teorema

- Sea un problema de minimización (P) y su correspondiente problema dual (D). Si se obtiene el problema dual de (D) se recupera el problema original (P).
- En otras palabras "El dual del dual es el primal"

(P) 
$$Max \ z = c'x$$
  
 $Ax \le b$   
 $x \ge 0$   
(D)  $Min \ w = b'y$   
 $A'y \ge c$   
 $y \ge 0$ 

#### • Teorema de Dualidad Débil:

- Sea x una solución factible del problema (de minimización) primal (P) e y, una solución factible del problema (de maximización) dual (D), entonces:  $w = b'y \le z = c'x$
- En otras palabras:
  - w es una cota inferior para cualquier solución factible de (P)
  - z es una cota superior para cualquier solución factible de (D)

#### • Corolario 1:

- Si (P) es no acotado, es decir:  $z^* = -\infty$  entonces (D) es infactible
- Si (D) es no acotado, es decir:  $w^* = +\infty$  entonces (P) es infactible

#### • Corolario 2:

• Si b'y = c'x, entonces x e y son soluciones óptimas de los problemas primal y dual, respectivamente.

- Ejemplo:
  - Solución factible de (P):

$$x = \begin{pmatrix} -1\\2\\2 \end{pmatrix} \qquad \Longrightarrow \qquad z = 7$$

• Solución factible de (D):

$$y = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad \longrightarrow \qquad w = 22$$

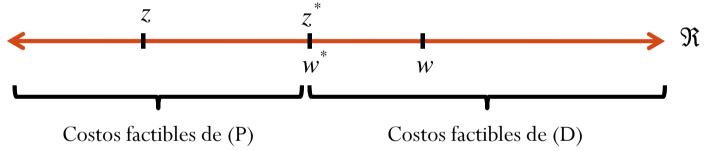
• Dualidad débil 
$$\implies z \le w$$

(P) 
$$Max \ z = 3x_1 - 2x_2 + 7x_3$$
  
 $-x_1 - 2x_2 + x_3 \le 10 \quad (y_1)$   
 $5x_1 + x_2 + 4x_3 \le 6 \quad (y_2)$   
 $x_1, x_2, x_3 \ge 0$ 

(D) Min 
$$w = 10y_1 + 6y_2$$
  
 $-y_1 + 5y_2 \ge 3$   $(x_1)$   
 $-2y_1 + y_2 \ge -2$   $(x_2)$   
 $y_1 + 4y_2 \ge 7$   $(x_3)$   
 $y_1, y_2 \ge 0$ 

#### • Teorema de Dualidad Fuerte:

• Si un problema de programación lineal tiene una solución óptima, también la tiene su dual y los respectivos costos óptimos son iguales:  $z^* = w^*$ 



#### • Posibilidades para el primal y el dual:

|                | Finite optimum | Unbounded  | Infeasible |
|----------------|----------------|------------|------------|
| Finite optimum | Possible       | Impossible | Impossible |
| Unbounded      | Impossible     | Impossible | Possible   |
| Infeasible     | Impossible     | Possible   | Possible   |

- Ejemplo:
  - Solución óptima de (P):

$$x^* = \begin{pmatrix} 0 \\ 0 \\ 1,5 \end{pmatrix} \qquad \Longrightarrow \qquad z^* = 10,5$$

• Solución óptima de (D):

$$y^* = \begin{pmatrix} 0 \\ 1,75 \end{pmatrix} \qquad \Longrightarrow \qquad w^* = 10,5$$

$$(P) Max z = 3x_1 - 2x_2 + 7x_3$$

$$-x_1 - 2x_2 + x_3 \le 10 \quad (y_1)$$

$$5x_1 + x_2 + 4x_3 \le 6 \quad (y_2)$$

$$x_1, x_2, x_3 \ge 0$$

(D) Min 
$$w = 10y_1 + 6y_2$$
  
 $-y_1 + 5y_2 \ge 3 \quad (x_1)$   
 $-2y_1 + y_2 \ge -2 \quad (x_2)$   
 $y_1 + 4y_2 \ge 7 \quad (x_3)$   
 $y_1, y_2 \ge 0$ 

• Dualidad fuerte 
$$\implies z^* = w^*$$

# Holgura Complementaria

#### • Teorema:

• Sean x e y soluciones factibles para el problema primal y dual, respectivamente. Los vectores x e y son soluciones óptimas de sus respectivos problemas si y sólo si:

$$y_i \cdot (a'_i x - b_i) = 0 \quad \forall i$$
$$(c_j - y' A_j) \cdot x_j = 0 \quad \forall j$$

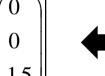
- Es decir:
  - La i-ésima variable dual es cero o la i-ésima restricción primal es activa y
  - la j-ésima variable primal es cero o la j-ésima restricción dual es activa
- Permite encontrar el óptimo del problema primal a través del óptimo del problema dual
  - ¡El dual puede ser más fácil de resolver!

# Holgura Complementaria

#### • Ejemplo:

(P) 
$$Max \ z = 3x_1 - 2x_2 + 7x_3$$
  
 $-x_1 - 2x_2 + x_3 \le 10 \quad (y_1)$   
 $5x_1 + x_2 + 4x_3 \le 6 \quad (y_2)$   
 $x_1, x_2, x_3 \ge 0$ 

$$x^* = \begin{pmatrix} 0 \\ 0 \\ 1,5 \end{pmatrix}$$



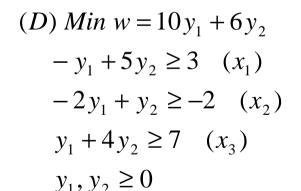
$$0 \cdot \left(-x_1^* - 2x_2^* + x_3^* - 10\right) = 0$$

$$1,75 \cdot \left(5x_1^* + x_2^* + 4x_3^* - 6\right) = 0$$

$$(3 + 0 - 5 \cdot 1,75) \cdot x_1^* = 0$$

$$(-2 + 2 \cdot 0 - 1,75) \cdot x_2^* = 0$$

$$(7 - 0 - 4 \cdot 1,75) \cdot x_3^* = 0$$



$$y^* = \begin{pmatrix} 0 \\ 1,75 \end{pmatrix}$$



$$y_{1}^{*} \cdot \left(-x_{1}^{*} - 2x_{2}^{*} + x_{3}^{*} - 10\right) = 0$$

$$y_{2}^{*} \cdot \left(5x_{1}^{*} + x_{2}^{*} + 4x_{3}^{*} - 6\right) = 0$$

$$\left(3 + y_{1}^{*} - 5y_{2}^{*}\right) \cdot x_{1}^{*} = 0$$

$$\left(-2 + 2y_{1}^{*} - y_{2}^{*}\right) \cdot x_{2}^{*} = 0$$

$$\left(7 - y_{1}^{*} - 4y_{2}^{*}\right) \cdot x_{3}^{*} = 0$$

Teorema de Holgura Complementaria (THC)

### **Precios Sombra**

• Consideremos el problema en forma estándar:

$$(P) Max c'x$$

$$Ax = b$$

$$x \ge 0$$

- Supongamos que existe una solución básica factible óptima no degenerada, luego:  $x_B = A_B^{-1}b > 0$  con  $A_B$  la base asociada
- Si añadimos una perturbación d en b lo suficientemente pequeña:

$$x_B = A_B^{-1}(b+d) > 0$$

- Los costos reducidos no cambian al variar b:  $(\bar{c}'_N = c'_N c'_B A_B^{-1} A_N)$  luego la base permanece óptima.
- El costo óptimo original era:  $c'x^* = c'_B x_B + c'_N x_N$   $(con x_N = 0 y x_B = A_B^{-1}b)$  $c'x^* = c'_B A_B^{-1}b$
- Por dualidad fuerte se sabe que:  $c'x^* = y^*'b$

### **Precios Sombra**

• Luego, la solución óptima del problema dual equivale a:

$$y^* = c_B A_B^{-1}$$

• El costo óptimo luego de la perturbación cambia a:

$$c'x^* = c'_B A_B^{-1}(b+d)$$
  
=  $y^*'(b+d)$ 

• Con esto se concluye que cada componente yi del vector óptimo dual puede interpretarse como el **costo marginal (precio sombra)** por aumentar en una unidad la componente i-ésima del vector b.

### Precios Sombra

• Ejemplo:

(P) 
$$Max \ z = 3x_1 - 2x_2 + 7x_3$$
  $z^* = 10,5$   
 $-x_1 - 2x_2 + x_3 \le 10$   $(y_1)$   
 $5x_1 + x_2 + 4x_3 \le 6$   $(y_2)$   $y^* = \begin{pmatrix} 0 \\ 1,75 \end{pmatrix}$   
 $x_1, x_2, x_3 \ge 0$ 

(D) Min 
$$w = 10y_1 + 6y_2$$
  $w^* = 10,5$   
 $-y_1 + 5y_2 \ge 3$   $(x_1)$   
 $-2y_1 + y_2 \ge -2$   $(x_2)$   $x^* = \begin{pmatrix} 0 \\ 0 \\ 1,5 \end{pmatrix}$   
 $y_1, y_2 \ge 0$ 

- Aumentar la segunda restricción de (P) en 1 genera un mejoramiento de la función objetivo de 1,75 unidades  $z^* = 12,25$ 
  - ¡Aumentar la primera restricción no sirve de nada! (marginalmente)
    - No es activa en el óptimo
- Aumentar la tercera restricción de (D) en 1 genera un empeoramiento de la función objetivo de 1,5 unidades  $w^* = 12$ 
  - ¡Estamos minimizando!
  - ¡Aumentar las dos primeras restricciones no sirve de nada! (marginalmente)

### Dualidad

Basado en Bertsimas, Tsitsiklis
"Introduction to Linear Optimization"
Chap. 4
IN 3701 — Modelamiento y Optimización

Nelson Devia C.