

Profesor: Nelson Zamorano Profesores Auxiliares:

Claudio Jarufe

Francisco Parra

TERMODINÁMICA FI-2004-02 Guía # 3

Problema 1

Se tiene un mol de un gas ideal cuyo estado se caracteriza por V_1 , P_1 en su condición inicial. Manteniendo la precaución de realizar cambios en forma cuasi-estática, se diseña el siguiente ciclo:

- $1 \rightarrow 2$: El mol de gas se expande hasta duplicar su volumen en un proceso donde se cumple P V = cte.
- $2 \rightarrow 3$ Se expande a presión constante (isobárica), hasta duplicar el volumen anterior.
- $3 \rightarrow 4$ Se comprime hasta P_1 donde PV = Cte.
- $4 \rightarrow 1$ Compresión isobárica hasta alcanzar el estado inicial.

Al respecto se pide:

- a) Dibuje el proceso a través de un diagrama P-V.
- b) Calcule el trabajo realizado en cada una de las etapas del ciclo y calcule el trabajo neto.

Problema 2

Considere el siguiente ciclo realizado por n moles de un gas ideal. Este ciclo corresponde al de un motor diesel. Consiste en un proceso adiabiático($PV^{\gamma}=\text{constante}$), cuasi-estático, desde **A** hasta **B**. Una expansión isobárica desde **B** a **C**. Una expansión adiabiática desde **C** a **D** y por último una isocora (volumen constante) hasta cerrar el ciclo. Si el punto **A** está a **P**₁ y **V**₁:

- a) Dibuje el diagrama P V del ciclo.
- b) Determine P, V, T para cada uno de los puntos indicados en el proceso.
- c) Determine el intercambio total de calor y el trabajo realizado por el gas al cabo de un ciclo. Indique e interprete los signos asociados a cada tramo.
 - d) Si la temperatura T_B = T₃¿Qué ocurre con el proceso? ¿Cuánto es el valor de energía interna del proceso?

Datos: C_{ν} , C_{ν} , γ , el índice adiabático, son conocidos.

La Razón de Compresión
$$\equiv r = \frac{V_{max}}{V_{min}} = 4$$

Universidad de Chile Departamento de Física

Problema 3

Un motor de gasolina puede ser representado aproximadamente por un ciclo idealizado **a b c d** a través de los siguientes pasos:

- $a \rightarrow b$ Compresión adiabática de la mezcla aire-gasolina.
- $b \rightarrow c$ Aumenta la presión a volumen constante, debido a la explosión de la mezcla
- c
 ightarrow d Expansión adiabática de la mezcla, durante la cual el motor realiza trabajo útil
- $d \rightarrow a$ Se enfría el gas de forma isocórica

Asuma que el ciclo se realiza de forma cuasi-estática, para una cantidad fija de gas ideal, con un calor específico constante. Defina también el cuociente $\gamma = \frac{C_p}{C_n}$.

- a) Dibuje el diagrama P-V del ciclo.
- b) Calcule la eficiencia $\eta \equiv (\frac{W}{Q_{abs}})$ para este proceso, expresando su respuesta en términos de V_a , V_b y γ .

Problema 4

Un gas ideal se expande adiabáticamente de (p_1, V_1) a (p_2, V_2) . Luego se comprime isobáricamente a (p_2, V_1) . Finalmente la presión se incrementa a p_1 a volumen constante. Ayudado del diagrama **P-V**, muestre que la eficiencia del ciclo $(\eta \equiv (\frac{W}{O_{abs}}))$ es:

$$\eta = 1 - \gamma (V_2/V_1 - 1)/[\mathfrak{p}_1/\mathfrak{p}_2 - 1]$$

Donde $\gamma = C_{\mathfrak{p}}/C_{\mathfrak{p}}$

Problema 5

Un mol de un gas monoatómico ideal está contenido en un cilindro a un volumen V_1 a una temperatura T_1 . El gas debe ser llevado a un estado final V_2 , T_1 . El proceso que se lleva acabo es el siguiente: se expande el gas de forma adiabática de modo que su temperatura cae a T_2 . El gas es expandido al ponerse en contacto con un reservorio termal, que se encuentra a una temperatura T_2 . Finalmente, el gas se comprime adiabáticamente, alcanzando los valores deseados.

- a) Dibuje los tres pasos del proceso en el diagrama T-V, especificando las ecuaciones correspondientes a cada curva.
- b) Considere el segundo paso de este ciclo: ¿A qué valor del volumen el gas debe llegar para que la tercera compresión lo lleve precisamente al estado final deseado?
 - c) Calcule el trabajo y la transferencia de calor en cada proceso.

Problema 6

Consideremos Helio (gas perfecto, monoatómico y talque $C_{\nu}=3\,R/2$) en el estado inicial **A**: $P_A=105\,$ [Pa], $V_A=10^{-2}\,$ [m³] y $T_A=300\,$ [K]. Se llevan a cabo las siguientes transformaciones:

 $A \, \rightarrow \, B$: Transformación isoterma reversible siendo $V_B = 2 \times 10^{-2} [\text{m}^3]$

Universidad de Chile Departamento de Física

- $B \rightarrow C$: Transformación isocórica (Vol. = cte) reversible, con $T_C = 189$ [K].
- $C \rightarrow A$: Transformación adiabiática reversible, que devuelve el gas a sus condiciones iniciales.
- a) Determinar el número de moles de Helio, confeccionar una tabla en la que aparezcan los valores **P**, **V** y **T** en los tres estados **A**, **B** y **C**, y dibujar el ciclo en el diagrama **P-V**.
- b) Calcular, en unidades del sistema internacional, de forma directa (siempre que sea posible) el trabajo W, el calor Q, y la variación de energía interna del gas ΔU , para cada uno de los procesos indicados.
- c) Determinar el rendimiento de este ciclo como motor térmico y comparar el resultado con el de un motor de Carnot que funcione entre las dos temperaturas extremas del ciclo.

Universidad de Chile Departamento de Física