Problema

Una partícula se mueve a lo largo de una trayectoria espiral cilíndrica con rapidez v_{θ} constante. El radio del cilindro que contiene la espiral es R y el ángulo que forma la tangente de la espiral con el plano perpendicular a su eje de simetría es α (constante).

- a) Encuentre los componentes de la velocidad y la aceleración en coordenadas cilíndricas
- b) Encuentre los componentes tangencial y normal de la aceleración
- c) Encuentre el radio de curvatura de la trayectoria

Problema

Una partícula se mueve con rapidez constante v_0 sobre la superficie de un cono recto de semiángulo α de modo que la trayectoria que describe forma un ángulo β con la generatriz del cono. La partícula inicia su movimiento a una distancia L del vértice del cono. Determine la ecuación de la trayectoria de la partícula. Utilice coordenadas esféricas con centro en el origen del cono.

Problema

Se tiene un carree de radio R el cual se pretende desenrollar. Lo que se hace es sujetar el hilo desde su extremo M y se va desenrollando (sin girar el carrete), siempre tenso, de modo que el punto T rota con velocidad angular ω constante. Utilizando los vectores $\hat{\rho}$ y $\hat{\varphi}$ asociados al punto T:

- a) Encuentre la posición y velocidad del punto M
- b) El vector tangente y el vector normal de la trayectoria de M
- c) El radio de curvatura de la trayectoria de M