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Chapter 9 
Rotation 
 
Conceptual Problems 
 
*1 •  
Determine the Concept Because r is greater for the point on the rim, it moves the 
greater distance. Both turn through the same angle. Because r is greater for the point on 
the rim, it has the greater speed. Both have the same angular velocity. Both have zero 
tangential acceleration. Both have zero angular acceleration. Because r is greater for the 
point on the rim, it has the greater centripetal acceleration.  
 
2 •  

(a) False. Angular velocity has the dimensions ⎥⎦
⎤

⎢⎣
⎡
T
1

whereas linear velocity has 

dimensions ⎥⎦
⎤

⎢⎣
⎡
T
L

. 

 
(b) True. The angular velocity of all points on the wheel is dθ/dt. 
 
(c) True. The angular acceleration of all points on the wheel is dω/dt. 
 
3 ••  
Picture the Problem The constant-acceleration equation that relates the given variables 
is θαωω ∆+= 22

0
2 . We can set up a proportion to determine the number of revolutions 

required to double ω and then subtract to find the number of additional revolutions to 
accelerate the disk to an angular speed of 2ω. 
 
Using a constant-acceleration 
equation, relate the initial and final 
angular velocities to the angular 
acceleration: 

θαωω ∆+= 22
0

2  

or, because 2
0ω = 0, 

θαω ∆= 22  
 

Let ∆θ10 represent the number of 
revolutions required to reach an 
angular velocity ω: 
 

10
2 2 θαω ∆=                     (1) 

Let ∆θ2ω represent the number of 
revolutions required to reach an 
angular velocity ω: 
 

( ) ωθαω 2
2 22 ∆=                 (2) 

Divide equation (2) by equation (1) 
and solve for ∆θ2ω: 

( )
10102

2

2 42 θθ
ω
ωθ ω ∆=∆=∆  
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The number of additional revolutions is: ( ) rev30rev10334 101010 ==∆=∆−∆ θθθ

and correct. is )(c  

 
*4 •  

Determine the Concept Torque has the dimension ⎥
⎦

⎤
⎢
⎣

⎡
2

2

T
ML

. 

(a) Impulse has the dimension ⎥⎦
⎤

⎢⎣
⎡

T
ML

.  

(b) Energy has the dimension ⎥
⎦

⎤
⎢
⎣

⎡
2

2

T
ML

. correct. is )(b  

(c) Momentum has the dimension ⎥⎦
⎤

⎢⎣
⎡

T
ML

.  

  
5 •  
Determine the Concept The moment of inertia of an object is the product of a constant 
that is characteristic of the object’s distribution of matter, the mass of the object, and the 
square of the distance from the object’s center of mass to the axis about which the object 
is rotating. Because both (b) and (c) are correct correct. is )(d  

 
*6 •  
Determine the Concept Yes. A net torque is required to change the rotational state of an 
object. In the absence of a net torque an object continues in whatever state of rotational 
motion it was at the instant the net torque became zero. 
 
7 •  
Determine the Concept No. A net torque is required to change the rotational state of an 
object. A net torque may decrease the angular speed of an object. All we can say for sure 
is that a net torque will change the angular speed of an object. 
 
8 •  
(a) False. The net torque acting on an object determines the angular acceleration of the 
object. At any given instant, the angular velocity may have any value including zero. 
 
(b) True. The moment of inertia of a body is always dependent on one’s choice of an axis 
of rotation. 
 
(c) False. The moment of inertia of an object is the product of a constant that is 
characteristic of the object’s distribution of matter, the mass of the object, and the square 
of the distance from the object’s center of mass to the axis about which the object is 
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rotating. 
 
9 •  
Determine the Concept The angular acceleration of a rotating object is proportional to 
the net torque acting on it. The net torque is the product of the tangential force and its 
lever arm.  
 
Express the angular acceleration of 
the disk as a function of the net 
torque acting on it: 

d
I
F

I
Fd

I
=== netτα  

i.e., d∝α  
 

Because d∝α , doubling d will 
double the angular acceleration. 

correct. is )(b  

 
*10 •  
Determine the Concept From the parallel-axis theorem we know that 

,2
cm MhII += where Icm is the moment of inertia of the object with respect to an axis 

through its center of mass, M is the mass of the object, and h is the distance between the 
parallel axes. Therefore, I is always greater than Icm by Mh2. correct. is )( d  

 
11 •  
Determine the Concept The power delivered by the constant torque is the product of the 
torque and the angular velocity of the merry-go-round. Because the constant torque 
causes the merry-go-round to accelerate, neither the power input nor the angular velocity 
of the merry-go-round is constant. correct. is )(b  

 
12 •  
Determine the Concept Let’s make the simplifying assumption that the object and the 
surface do not deform when they come into contact, i.e., we’ll assume that the system is 
rigid. A force does no work if and only if it is perpendicular to the velocity of an object, 
and exerts no torque on an extended object if and only if it’s directed toward the center of 
the object. Because neither of these conditions is satisfied, the statement is false. 
 
13 •  
Determine the Concept For a given applied force, this increases the torque about the 
hinges of the door, which increases the door’s angular acceleration, leading to the door 
being opened more quickly.  It is clear that putting the knob far from the hinges means 
that the door can be opened with less effort (force).  However, it also means that the hand 
on the knob must move through the greatest distance to open the door, so it may not be 
the quickest way to open the door.  Also, if the knob were at the center of the door, you 
would have to walk around the door after opening it, assuming the door is opening 
toward you. 
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*14 •  
Determine the Concept If the wheel is rolling without slipping, a point at the top of the 
wheel moves with a speed twice that of the center of mass of the wheel, but the bottom of 
the wheel is momentarily at rest. correct. is )(c  

 
15 ••  
Picture the Problem The kinetic energies of both objects is the sum of their translational 
and rotational kinetic energies. Their speed dependence will differ due to the differences 
in their moments of inertia. We can express the total kinetic of both objects and equate 
them to decide which of their translational speeds is greater. 
 
Express the kinetic energy of the 
cylinder: 

( )
2
cyl4

3

2
cyl2

1
2

2
cyl2

2
1

2
1

2
cyl2

12
cylcyl2

1
cyl

mv

mv
r
v

mr

mvIK

=

+=

+= ω

 

 
Express the kinetic energy of the 
sphere: 

( )
2
sph10

7

2
sph2

1
2

2
sph2

5
2

2
1

2
sph2

12
sphlsph2

1
sph

mv

mv
r

v
mr

mvIK

=

+=

+= ω

 

 
Equate the kinetic energies and 
simplify to obtain: 

sphsph15
14

cyl vvv <=  

and correct. is )(b  

 
*16 •  
Determine the Concept You could spin the pipes about their center.  The one which is 
easier to spin has its mass concentrated closer to the center of mass and, hence, has a 
smaller moment of inertia. 
 
17 ••  
Picture the Problem Because the coin and the ring begin from the same elevation, they 
will have the same kinetic energy at the bottom of the incline. The kinetic energies of 
both objects is the sum of their translational and rotational kinetic energies. Their speed 
dependence will differ due to the differences in their moments of inertia. We can express 
the total kinetic of both objects and equate them to their common potential energy loss to 
decide which of their translational speeds is greater at the bottom of the incline. 
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Express the kinetic energy of the 
coin at the bottom of the incline: 

( )
2
coincoin4

3

2
coincoin2

1
2

2
coin2

coin2
1

2
1

2
coincoin2

12
coincyl2

1
coin

vm

vm
r

vrm

vmIK

=

+=

+= ω

 

 
Express the kinetic energy of the 
ring at the bottom of the incline: 

( )
2
ringring

2
ringring2

1
2

2
ring2

ring2
1

2
ringring2

12
ringring2

1
ring

vm

vm
r

v
rm

vmIK

=

+=

+= ω

 

 
Equate the kinetic of the coin to its 
change in potential energy as it 
rolled down the incline and solve for 
vcoin: 

ghv

ghmvm

3
42

coin

coin
2
coincoin4

3

and
=

=

 

 
Equate the kinetic of the ring to its 
change in potential energy as it 
rolled down the incline and solve for 
vring: 

ghv

ghmvm

=

=

2
ring

ring
2
ringring

and  

 
 

correct.
 is )(  and  Therefore, ringcoin bvv >

 

 
18 ••  
Picture the Problem We can use the definitions of the translational and rotational kinetic 
energies of the hoop and the moment of inertia of a hoop (ring) to express and compare 
the kinetic energies. 
 
Express the translational kinetic 
energy of the hoop: 
 

2
2
1

trans mvK =  

Express the rotational kinetic energy 
of the hoop: 

( ) 2
2
1

2

2
2

2
12

hoop2
1

rot mv
r
vmrIK === ω  

 
 Therefore, the translational and rotational 

kinetic energies are the same and  
correct. is )( c  
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19 ••  
Picture the Problem We can use the definitions of the translational and rotational kinetic 
energies of the disk and the moment of inertia of a disk (cylinder) to express and compare 
the kinetic energies. 
 
Express the translational kinetic 
energy of the disk: 
 

2
2
1

trans mvK =  

Express the rotational kinetic energy 
of the disk: 

( ) 2
4
1

2

2
2

2
1

2
12

hoop2
1

rot mv
r
vmrIK === ω  

 
 Therefore, the translational kinetic energy is 

greater and correct. is )( a  

 
20 ••  
Picture the Problem Let us assume that f ≠ 0 and acts along the direction of motion. 
Now consider the acceleration of the center of mass and the angular acceleration about 
the point of contact with the plane. Because Fnet ≠ 0, acm ≠ 0. However, τ  = 0 because l  
= 0, so α  = 0. But  α  = 0 is not consistent with acm ≠ 0. Consequently, f = 0. 
 
21 •  
Determine the Concept True. If the sphere is slipping, then there is kinetic friction 
which dissipates the mechanical energy of the sphere. 
 
22 •  
Determine the Concept Because the ball is struck high enough to have topspin, the 
frictional force is forward; reducing ω until the nonslip condition is satisfied. 

correct. is )(a  

 
Estimation and Approximation 
 
23 ••  
Picture the Problem Assume the wheels are hoops, i.e., neglect the mass of the spokes, 
and express the total kinetic energy of the bicycle and rider. Let M represent the mass of 
the rider, m the mass of the bicycle, mw the mass of each bicycle wheel, and r the radius 
of the wheels. 
 
Express the ratio of the kinetic 
energy associated with the rotation 
of the wheels to that associated with 
the total kinetic energy of the 
bicycle and rider: 

rottrans

rot

tot

rot

KK
K

K
K

+
=                  (1) 
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Express the translational kinetic 
energy of the bicycle and rider: 2

2
12

2
1

riderbicycletrans

Mvmv

KKK

+=

+=
 

 
Express the rotational kinetic energy 
of the bicycle wheels: 

( )
( ) 2

w2

2
2

w

2
w2

1
wheel1rot,rot 22

vm
r
vrm

IKK

==

== ω
 

 
Substitute in equation (1) to obtain: 
 

w

w2
1

2
1

w
2

w
2

2
12

2
1

2
w

tot

rot

2

2

m
MmmMm

m
vmMvmv

vm
K
K

+
+

=
++

=
++

=  

Substitute numerical values and 
evaluate Krot/Ktot: 

%3.10

kg3
kg38kg142

2

tot

rot =
+

+
=

K
K

 

 
24 ••  
Picture the Problem We can apply the definition of angular velocity to find the angular 
orientation of the slice of toast when it has fallen a distance of 0.5 m from the edge of the 
table. We can then interpret the orientation of the toast to decide whether it lands jelly-
side up or down. 
 
Relate the angular orientation θ  of 
the  toast to its initial angular 
orientation, its angular velocity ω, 
and time of fall ∆t:  
 

t∆+= ωθθ 0                            (1) 

Use the equation given in the 
problem statement to find the 
angular velocity corresponding to 
this length of toast: 
 

rad/s9.47
0.1m

m/s9.81956.0
2

==ω  

Using a constant-acceleration 
equation, relate the distance the 
toast falls ∆y to its time of fall ∆t: 
 

( )2
2
1

0 tatvy yy ∆+∆=∆  
or, because v0y = 0 and ay = g, 

( )2
2
1 tgy ∆=∆  

 
Solve for ∆t: 
 g

yt ∆
=∆

2
 

 
Substitute numerical values and 
evaluate ∆t: 

( ) s0.319
m/s9.81

m0.52
2 ==∆t  
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( )
0

2
f cos

2
' θ+

gL
v

Substitute in equation (1) to 

find θ : 

( )( )

°=
°

×=

+=

203
rad

180rad54.3

s0.319rad/s9.47
6

π

πθ
 

 

down. side-jelly  with thei.e. ground,  therespect towith 
203 of anglean at  be  thereforel toast wilof slice  theofn orientatio The °

 

 
*25 ••  
Picture the Problem Assume that the mass of an average adult male is about 80 kg, and 
that we can model his body when he is standing straight up with his arms at his sides as a 
cylinder.  From experience in men’s clothing stores, a man’s average waist circumference 
seems to be about 34 inches, and the average chest circumference about 42 inches.  We’ll 
also assume that about 20% of the body’s mass is in the two arms, and each has a length 
L = 1 m, so that each arm has a mass of about m = 8 kg.   
 
Letting Iout represent his moment of 
inertia with his arms straight out and 
Iin his moment of inertia with his 
arms at his side, the ratio of these 
two moments of inertia is: 
 

in

armsbody

in

out

I
II

I
I +

=           (1) 

Express the moment of inertia of the 
″man as a cylinder″: 
 

2
2
1

in MRI =  

Express the moment of inertia of his 
arms: 
 

( ) 2
3
1

arms 2 mLI =  
 

Express the moment of inertia of his 
body-less-arms: 
 

( ) 2
2
1

body RmMI −=  
 

Substitute in equation (1) to obtain: 
 

( ) ( )
2

2
1

2
3
12

2
1

in

out 2
MR

mLRmM
I
I +−

=  

 
Assume the circumference of the 
cylinder to be the average of the 
average waist circumference and the 
average chest circumference: 
 

in38
2

in42in34
av =

+
=c  

Find the radius of a circle whose 
circumference is 38 in: 
 

m154.0
2π

cm100
m1

in
cm2.54in38

2
av

=

××
==

π
cR  

 
Substitute numerical values and evaluate  Iout/ Iin: 
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( )( ) ( )( )
( )( )

42.6
m0.154kg80

m1kg8m0.154kg16kg80
2

2
1

2
3
22

2
1

in

out =
+−

=
I
I

 

 
Angular Velocity and Angular Acceleration 
 
26 •  
Picture the Problem The tangential and angular velocities of a particle moving in a 
circle are directly proportional. The number of revolutions made by the particle in a given 
time interval is proportional to both the time interval and its angular speed. 
 
(a) Relate the angular velocity of 
the particle to its speed along the 
circumference of the circle: 
 

ωrv =  

Solve for and evaluate ω: rad/s0.278
m90

m/s25
===

r
vω  

 
(b) Using a constant-acceleration 
equation, relate the number of 
revolutions made by the particle in a 
given time interval to its angular 
velocity: 

( )

rev33.1

rad2
rev1s30

s
rad278.0

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=∆=∆

π
ωθ t

 
27 •  
Picture the Problem Because the angular acceleration is constant; we can find the 
various physical quantities called for in this problem by using constant-acceleration 
equations. 
 
(a) Using a constant-acceleration 
equation, relate the angular velocity 
of the wheel to its angular 
acceleration and the time it has been 
accelerating: 
 

t∆+= αωω 0  

or, when ω0 = 0, 
t∆= αω  

Evaluate ω when ∆t = 6 s: ( ) rad/s15.6s62rad/s2.6 =⎟
⎠
⎞⎜

⎝
⎛=ω  

 
(b) Using another constant-
acceleration equation, relate the 
angular displacement to the wheel’s 
angular acceleration and the time it 

( )2
2
1

0 tt ∆+∆=∆ αωθ  

or, when ω0 = 0, 
( )2

2
1 t∆=∆ αθ  
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has been accelerating: 
 
Evaluate θ∆  when ∆t = 6 s: ( ) ( )( ) rad8.46s6rad/s2.6s6 22

2
1 ==∆θ

 
 

(c) Convert ( )s6θ∆ from rad to 

revolutions: 
( ) rev45.7

rad2
rev1rad8.46s6 =×=∆

π
θ  

 
(d) Relate the angular velocity of the 
particle to its tangential speed and 
evaluate the latter when  
∆t = 6 s: 
 

( )( ) m/s4.68rad/s15.6m0.3 === ωrv

 

Relate the resultant acceleration of 
the point to its tangential and 
centripetal accelerations when  
∆t = 6 s: 
 

( ) ( )
42

2222
c

2
t

ωα

ωα

+=

+=+=

r

rraaa
 

Substitute numerical values and 
evaluate a: 

( ) ( ) ( )
2

422

m/s73.0

rad/s15.6rad/s2.6m0.3

=

+=a
 

 
*28 •  
Picture the Problem Because we’re assuming constant angular acceleration; we can find 
the various physical quantities called for in this problem by using constant-acceleration 
equations. 
 
(a) Using its definition, express the 
angular acceleration of the 
turntable: 
 

tt ∆
−

=
∆
∆

= 0ωωωα  

 

Substitute numerical values and 
evaluate α: 

2

3
1

rad/s0.134

s26
s60

min1
rev

rad2π
min
rev330

=

××−
=α  
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(b) Because the angular acceleration 
is constant, the average angular 
velocity is the average of its initial 
and final values: 

rad/s75.1
2

s60
min1

rev
rad2

min
rev33

2

3
1

0
av

=

××
=

+
=

π

ωωω

 

 
(c) Using the definition of ωav, find 
the number or revolutions the 
turntable makes before stopping: 

( )( )

rev24.7
rad2

rev1rad5.45

s26rad/s1.75av

=×=

=∆=∆

π

ωθ t
 

 
29 •  
Picture the Problem Because the angular acceleration of the disk is constant, we can use 
a constant-acceleration equation to relate its angular velocity to its acceleration and the 
time it has been accelerating. We can find the tangential and centripetal accelerations 
from their relationships to the angular velocity and angular acceleration of the disk. 
 
(a) Using a constant-acceleration 
equation, relate the angular velocity 
of the disk to its angular 
acceleration and time during which 
it has been accelerating: 
 

t∆+= αωω 0  

or, because ω0 = 0, 
t∆= αω  

Evaluate ω when t = 5 s: ( ) ( )( ) rad/s40.0s5rad/s8s5 2 ==ω  

 
(b) Express at in terms of α: 
 

αra =t  

Evaluate at when t = 5 s: ( ) ( )( )
2

2
t

m/s960.0

rad/s8m0.12s5

=

=a
 

 
Express ac in terms of ω: 
 

2
c ωra =  

Evaluate ac when t = 5 s: ( ) ( )( )
2

2
c

m/s192

rad/s40.0m0.12s5

=

=a
 

 
30 •  
Picture the Problem We can find the angular velocity of the Ferris wheel from its 
definition and the linear speed and centripetal acceleration of the passenger from the 
relationships between those quantities and the angular velocity of the Ferris wheel.  
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(a) Find ω from its definition: rad/s233.0
s27

rad2
==

∆
∆

=
πθω

t
 

 
(b) Find the linear speed of the 
passenger from his/her angular speed:  
 

( )( )
m/s79.2

rad/s0.233m12

=

== ωrv
 

Find the passenger’s centripetal 
acceleration from his/her angular 
velocity: 

( )( )
2

22
c

m/s651.0

rad/s0.233m12

=

== ωra
 

 
31 •  
Picture the Problem Because the angular acceleration of the wheels is constant, we can 
use constant-acceleration equations in rotational form to find their angular acceleration 
and their angular velocity at any given time. 
 
(a) Using a constant-acceleration 
equation, relate the angular 
displacement of the wheel to its 
angular acceleration and the time it 
has been accelerating: 
 

( )2
2
1

0 tt ∆+∆=∆ αωθ  

or, because ω0 = 0, 
( )2

2
1 t∆=∆ αθ  

Solve for α: 
( )2
2

t∆
∆

=
θα  

 
Substitute numerical values and 
evaluate α: 

( )

( )
2

2 rad/s589.0
s8

rev
rad2rev32

=
⎟
⎠
⎞

⎜
⎝
⎛

=

π

α  

 
(b) Using a constant-acceleration 
equation, relate the angular velocity 
of the wheel to its angular 
acceleration and the time it has been 
accelerating: 
 

t∆+= αωω 0  

or, when ω0 = 0, 
t∆= αω  

Evaluate ω when ∆t = 8 s: ( ) ( )( ) rad/s71.4s8rad/s589.0s8 2 ==ω
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32 •  
Picture the Problem The earth rotates through 2π radians every 24 hours. 
 
Find ω using its definition: 

rad/s1027.7
h

s3600h24

rad2

5−×=

×
=

∆
∆

≡
πθω

t
 

 
33 •  
Picture the Problem When the angular acceleration of a wheel is constant, its average 
angular velocity is the average of its initial and final angular velocities. We can combine 
this relationship with the always applicable definition of angular velocity to find the 
initial angular velocity of the wheel. 
 
Express the average angular velocity 
of the wheel in terms of its initial and 
final angular speeds: 

2
0

av
ωω

ω
+

=  

or, because ω = 0, 
02

1
av ωω =  

 
Express the definition of the average 
angular velocity of the wheel: 
 

t∆
∆

≡
θω av  

Equate these two expressions and 
solve for ω0: 

( ) s57.3
s2.8

rad522
0 ==

∆
∆

=
t
θω and 

correct. is )(d  

 
34 •  
Picture the Problem The tangential and angular accelerations of the wheel are directly 
proportional to each other with the radius of the wheel as the proportionality constant. 
Provided there is no slippage, the acceleration of a point on the rim of the wheel is the 
same as the acceleration of the bicycle. We can use its defining equation to determine the 
acceleration of the bicycle. 
 
Relate the tangential acceleration of 
a point on the wheel (equal to the 
acceleration of the bicycle) to the 
wheel’s angular acceleration and 
solve for its angular acceleration: 
 

αraa == t  

and 

r
a

=α  
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Use its definition to express the 
acceleration of the wheel: t

vv
t
va

∆
−

=
∆
∆

= 0  

or, because v0 = 0,  

t
va
∆

=  

 
Substitute in the expression for α to 
obtain: tr

v
∆

=α  

 
Substitute numerical values and 
evaluate α: 

( )( )
2rad/s794.0

s14.0m0.6
km

m1000
s3600

h1
h

km24

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

=α  

 
*35 ••  
Picture the Problem The two tapes will have the same tangential and angular velocities 
when the two reels are the same size, i.e., have the same area. We can calculate the 
tangential speed of the tape from its length and running time and relate the angular 
velocity to the constant tangential speed and the radius of the reels when they are turning 
with the same angular velocity. 
 
Relate the angular velocity of the 
tape to its tangential speed: 
 

r
v

=ω                                       (1) 

Letting Rf represent the outer radius 
of the reel when the reels have the 
same area,  express the condition 
that they have the same speed: 
 

( )22
2
122

f rRrR ππππ −=−  

Solve for Rf: 

2

22

f
rRR +

=  

 
Substitute numerical values and 
evaluate Rf: 

( ) ( ) mm32.9
2

mm12mm45 22

f =
+

=R  

 
Find the tangential speed of the tape 
from its length and running time: cm/s42.3

h
s3600h2

m
cm100m246

∆
=

×

×
==

t
Lv  
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Substitute in equation (1) and 
evaluate ω: 

rad/s1.04

mm10
cm1mm32.9

cm/s3.42

f

=

×
==

R
vω

 

 
Convert 1.04 rad/s to rev/min: 

rev/min93.9

min
s60

rad2
rev1

s
rad04.1rad/s04.1

=

××=
π  

 
Torque, Moment of Inertia, and Newton’s Second Law for 
Rotation 
 
36 •  
Picture the Problem The force that the woman exerts through her axe, because it does 
not act at the axis of rotation, produces a net torque that changes (decreases) the angular 
velocity of the grindstone. 
 
(a) From the definition of angular 
acceleration we have: tt ∆

−
=

∆
∆

= 0ωωωα  

or, because ω = 0, 

t∆
−

= 0ωα  

 
Substitute numerical values and 
evaluate α: 

2rad/s49.8

s9
s60

min1
rev

rad2
min
rev730

−=

××
−=

π

α  

where the minus sign means that the 
grindstone is slowing down. 
 

(b) Use Newton’s 2nd law in 
rotational form to relate the angular 
acceleration of the grindstone to the 
net torque slowing it: 
 

ατ I=net  

Express the moment of inertia of 
disk with respect to its axis of 
rotation:  
 

2
2
1 MRI =  
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Substitute to obtain: ατ MR2
1

net =  

 
Substitute numerical values and 
evaluate τnet: 

( )( ) ( )
mN0462.0

rad/s8.49m0.08kg1.7 22
2
1

net

⋅=

=τ
 

 
*37 •  
Picture the Problem We can find the torque exerted by the 17-N force from the 
definition of torque. The angular acceleration resulting from this torque is related to the 
torque through Newton’s 2nd law in rotational form. Once we know the angular 
acceleration, we can find the angular velocity of the cylinder as a function of time. 
 
(a) Calculate the torque from its 
definition: 

( )( ) mN1.87m0.11N17 ⋅=== lFτ  

 
(b) Use Newton’s 2nd law in 
rotational form to relate the 
acceleration resulting from this 
torque to the torque: 
 

I
τα =  

Express the moment of inertia of the 
cylinder with respect to its axis of 
rotation: 
 

2
2
1 MRI =  

Substitute to obtain: 
2

2
MR

τα =  

 
Substitute numerical values and 
evaluate α: 

( )
( )( )

2
2 rad/s124

m0.11kg2.5
mN1.872

=
⋅

=α  

 
(c) Using a constant-acceleration 
equation, express the angular 
velocity of the cylinder as a function 
of time: 
 

tαωω += 0  

or, because ω0 = 0, 
tαω =  

 

Evaluate ω (5 s): ( ) ( )( ) rad/s620s5rad/s124s5 2 ==ω  

 
38 ••  
Picture the Problem We can find the angular acceleration of the wheel from its 
definition and the moment of inertia of the wheel from Newton’s 2nd law. 
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(a) Express the moment of inertia of 
the wheel in terms of the angular 
acceleration produced by the applied 
torque: 
 

α
τ

=I  

Find the angular acceleration of the 
wheel: 

2rad/s14.3
s20

s60
min1

rev
rad2

min
rev600

=

××
=

∆
∆

=

π
ωα
t  

 
Substitute and evaluate I: 2

2 mkg9.15
rad/s3.14

mN50
⋅=

⋅
=I  

 
(b) Because the wheel takes 120 s to 
slow to a stop (it took 20 s to 
acquire an angular velocity of 600 
rev/min) and its angular acceleration 
is directly proportional to the 
accelerating torque: 

( ) mN33.8mN506
1

6
1

fr ⋅=⋅== ττ  

 
39 ••   
Picture the Problem The pendulum and 
the forces acting on it are shown in the 
free-body diagram. Note that the tension in 
the string is radial, and so exerts no 
tangential force on the ball. We can use 
Newton’s 2nd law in both translational and 
rotational form to find the tangential 
component of the acceleration of the bob.  
 
(a) Referring to the FBD, express 
the component of g

r
m that is tangent 

to the circular path of the bob: 
 

θsint mgF =  

 
 

Use Newton’s 2nd law to express the 
tangential acceleration of the bob: 

θsint
t g

m
Fa ==  

 
(b) Noting that, because the line-of-
action of the tension passes through 
the pendulum’s pivot point, its lever 
arm is zero and the net torque is due 

∑ = θτ sinpointpivot mgL  
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to the weight of the bob, sum the 
torques about the pivot point to 
obtain: 
 
(c) Use Newton’s 2nd law in 
rotational form to relate the angular 
acceleration of the pendulum to the 
net torque acting on it: 
 

αθτ ImgL == sinnet  

Solve for α to obtain: 
 I

mgL θα sin
=  

 
Express the moment of inertia of the 
bob with respect to the pivot point: 
 

2mLI =  

Substitute to obtain: 
L

g
mL

mgL θθα sinsin
2 ==  

 
Relate α to at: θθα sinsin

t g
L

gLra =⎟
⎠
⎞

⎜
⎝
⎛==  

 
*40 ••• 
Picture the Problem We can express the velocity of the center of mass of the rod in 
terms of its distance from the pivot point and the angular velocity of the rod. We can find 
the angular velocity of the rod by using Newton’s 2nd law to find its angular acceleration 
and then a constant-acceleration equation that relates ω to α. We’ll use the impulse-
momentum relationship to derive the expression for the force delivered to the rod by the 
pivot. Finally, the location of the center of percussion of the rod will be verified by 
setting the force exerted by the pivot to zero. 
 
(a) Relate the velocity of the center 
of mass to its distance from the 
pivot point: 
 

ω
2cm
Lv =                            (1) 

Express the torque due to F0: 
 

ατ pivot0 IxF ==  

Solve for α: 
 pivot

0

I
xF

=α  

 
Express the moment of inertia of the 
rod with respect to an axis through 

2
3
1

pivot MLI =  



                                                                                                     Rotation 
 

 

641

its pivot point: 
 
Substitute to obtain: 

2
03

ML
xF

=α  

 
Express the angular velocity of the 
rod in terms of its angular 
acceleration: 
 

2
03

ML
txFt ∆

=∆= αω  

 

Substitute in equation (1) to obtain: 

ML
txF

v
2

3 0
cm

∆
=  

 
(b) Let IP be the impulse exerted by 
the pivot on the rod. Then the total 
impulse (equal to the change in 
momentum of the rod) exerted on 
the rod is: 
 

cm0P MvtFI =∆+  

and 
tFMvI ∆−= 0cmP  

Substitute our result from (a) to 
obtain: 

⎟
⎠
⎞

⎜
⎝
⎛ −∆=∆−

∆
= 1

2
3

2
3

00
0

P L
xtFtF

L
txFI  

 
Because tFI ∆= PP : 

⎟
⎠
⎞

⎜
⎝
⎛ −= 1

2
3

0P L
xFF  

 
In order for FP to be zero: 

01
2
3

=−
L
x

⇒
3

2Lx =  

 
41 •••  
Picture the Problem We’ll first express the torque exerted by the force of friction on the 
elemental disk and then integrate this expression to find the torque on the entire disk. 
We’ll use Newton’s 2nd law to relate this torque to the angular acceleration of the disk 
and then to the stopping time for the disk. 
 
(a) Express the torque exerted on 
the elemental disk in terms of the 
friction force and the distance to the 
elemental disk: 
 

kf rdfd =τ                       (1) 

Using the definition of the 
coefficient of friction, relate the 

gdmdf kk µ=                   (2) 
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force of friction to µk and the weight 
of the circular element: 
 
Letting σ represent the mass per unit 
area of the disk, express the mass of 
the circular element: 
 

drrdm σπ2=                 (3) 

Substitute equations (2) and (3) in 
(1) to obtain: 
 

drrgd 2
kf 2 σµπτ =        (4) 

Because 2R
M

π
σ = : drr

R
gMd 2

2
k

f
2µτ =  

 
(b) Integrate fτd to obtain the total 

torque on the elemental disk: 
gMRdrr

R
gM R

k3
2

0

2
2

k
f

2 µµτ == ∫  

 
(c) Relate the disk’s stopping time 
to its angular velocity and 
acceleration: 
 

α
ω

=∆t  

Using Newton’s 2nd law, express α 
in terms of the net torque acting on 
the disk: 
 

I
fτ

α =  

The moment of inertia of the disk, 
with respect to its axis of rotation, 
is: 
 

2
2
1 MRI =  

Substitute and simplify to obtain: 
g

Rt
k4

3
µ

ω
=∆  

 
Calculating the Moment of Inertia 
 
42 •  
Picture the Problem One can find the formula for the moment of inertia of a thin 
spherical shell in Table 9-1. 
 
The moment of inertia of a thin 
spherical shell about its diameter is: 
 

2
3
2 MRI =  
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Substitute numerical values and 
evaluate I: 

( )( )
25

2
3
2

mkg104.66

m0.035kg0.057

⋅×=

=
−

I
 

 
*43 • 
Picture the Problem The moment of inertia of a system of particles with respect to a 
given axis is the sum of the products of the mass of each particle and the square of its 
distance from the given axis. 
 
Use the definition of the moment of 
inertia of a system of particles to 
obtain: 
 

2
44

2
33

2
22

2
11

i

2
ii

rmrmrmrm

rmI

+++=

= ∑
 

Substitute numerical values and 
evaluate I: 

( )( ) ( )( )
( )( ) ( )( )

2

22

22

mkg0.56

m2kg30kg4

m22kg4m2kg3

⋅=

++

+=I

 

 
44 •  
Picture the Problem Note, from symmetry considerations, that the center of mass of the 
system is at the intersection of the diagonals connecting the four masses. Thus the 
distance of each particle from the axis through the center of mass is m2 . According to 
the parallel-axis theorem, 2

cm MhII += , where Icm is the moment of inertia of the 

object with respect to an axis through its center of mass, M is the mass of the object, and 
h is the distance between the parallel axes. 
 
Express the parallel axis theorem: 
 

2
cm MhII +=  

Solve for Icm and substitute from 
Problem 44: ( )( )

2

22

2
cm

mkg28.0

m2kg14mkg6.05

⋅=

−⋅=

−= MhII

 

 
Use the definition of the moment of 
inertia of a system of particles to 
express Icm: 
 

2
44

2
33

2
22

2
11

i

2
iicm

rmrmrmrm

rmI

+++=

= ∑
 

Substitute numerical values and 
evaluate Icm: 

( )( ) ( )( )
( )( ) ( )( )

2

22

22

cm

mkg0.28

m2kg3m2kg4

m2kg4m2kg3

⋅=

++

+=I
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45 •  
Picture the Problem The moment of inertia of a system of particles with respect to a 
given axis is the sum of the products of the mass of each particle and the square of its 
distance from the given axis. 
 
(a) Apply the definition of the 
moment of inertia of a system of 
particles to express Ix: 

2
44

2
33

2
22

2
11

i

2
ii

rmrmrmrm

rmI x

+++=

= ∑
 

 
Substitute numerical values and 
evaluate Ix: 

( )( ) ( )( )
( )( ) ( )( )

2

22

mkg0.28

0kg30kg4
m2kg4m2kg3

⋅=

++
+=xI

 

 
(b) Apply the definition of the 
moment of inertia of a system of 
particles to express Iy: 

2
44

2
33

2
22

2
11

i

2
ii

rmrmrmrm

rmI y

+++=

= ∑
 

 
Substitute numerical values and 
evaluate Iy: 

( )( ) ( )( )
( )( ) ( )( )

2

2

2

mkg0.28

m2kg30kg4

m2kg40kg3

⋅=

++

+=yI

 

 
Remarks: We could also use a symmetry argument to conclude that Iy = Ix . 
 
46 •  
Picture the Problem According to the parallel-axis theorem, ,2

cm MhII +=  where Icm 

is the moment of inertia of the object with respect to an axis through its center of mass, M 
is the mass of the object, and h is the distance between the parallel axes. 
 
Use Table 9-1 to find the moment of 
inertia of a sphere with respect to an 
axis through its center of mass: 
 

2
5
2

cm MRI =  

Express the parallel axis theorem: 
 

2
cm MhII +=  

Substitute for Icm and simplify to 
obtain: 

2
5
722

5
2 MRMRMRI =+=  
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47 ••  
Picture the Problem The moment of inertia of the wagon wheel is the sum of the 
moments of inertia of the rim and the six spokes. 
 
Express the moment of inertia of the 
wagon wheel as the sum of the 
moments of inertia of the rim and 
the spokes: 
 

spokesrimwheel III +=  

Using Table 9-1, find formulas for 
the moments of inertia of the rim 
and spokes: 2

spoke3
1

spoke

2
rimrim

and
LMI

RMI

=

=
 

 
Substitute to obtain: ( )

2
spoke

2
rim

2
spoke3

12
rimwheel

2

6

LMRM

LMRMI

+=

+=
 

 
Substitute numerical values and 
evaluate Iwheel: 

( )( ) ( )( )
2

22
wheel

mkg60.2

m0.5kg1.22m5.0kg8

⋅=

+=I

 
 
*48 ••  
Picture the Problem The moment of inertia of a system of particles depends on the axis 
with respect to which it is calculated. Once this choice is made, the moment of inertia is 
the sum of the products of the mass of each particle and the square of its distance from 
the chosen axis. 
 
(a) Apply the definition of the 
moment of inertia of a system of 
particles: 
 

( )2
2

2
1

i

2
ii xLmxmrmI −+== ∑  

(b) Set the derivative of I with 
respect to x equal to zero in order to 
identify values for x that correspond 
to either maxima or minima: 
 

( )( )

( )
extremafor  0

2

122

221

21

=
−+=

−−+=

Lmxmxm

xLmxm
dx
dI

 

If 0=
dx
dI

, then: 

 

0221 =−+ Lmxmxm  
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Solve for x: 

21

2

mm
Lmx

+
=  

 
Convince yourself that you’ve found 

a minimum by showing that 2

2

dx
Id

is 

positive at this point. 
. from mass ofcenter   theof distance

  the,definitionby  is, 
21

2

m
mm
Lmx

+
=

 
  

49 ••  
Picture the Problem Let σ be the mass 
per unit area of the uniform rectangular 
plate. Then the elemental unit has mass 
dm = σ dxdy. Let the corner of the plate 
through which the axis runs be the 
origin. The distance of the element 
whose mass is dm from the corner r is 
related to the coordinates of dm through 
the Pythagorean relationship r2 = x2 + y2.  
 
(a) Express the moment of inertia of 
the element whose mass is dm  with 
respect to an axis perpendicular to it 
and passing through one of the 
corners of the uniform rectangular 
plate: 
 

( )dxdyyxdI 22 += σ  

Integrate this expression to find I: ( )

( ) ( )32
3
133

3
1

0 0

22

bamabba

dxdyyxI
a b

+=+=

+= ∫ ∫
σ

σ
 

 
(b) Letting d represent the distance 
from the origin to the center of mass 
of the plate, use the parallel axis 
theorem to relate the moment of 
inertia found in (a) to the moment of 
inertia with respect to an axis 
through the center of mass: 
 

( ) 222
3
12

cm

2
cm

or
mdbammdII

mdII

−+=−=

+=
 

Using the Pythagorean theorem, 
relate the distance d to the center of 

( ) ( ) ( )22
4
12

2
12

2
12 babad +=+=  
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mass to the lengths of the sides of 
the plate:  
 
Substitute for d2 in the expression 
for Icm and simplify to obtain: 

( ) ( )
( )22

12
1

222
4
122

3
1

cm

bam

bambamI

+=

+−+=
 

   
*50 •• 
Picture the Problem Corey will use the point-particle relationship 

2
22

2
11

i

2
iiapp rmrmrmI +== ∑ for his calculation whereas Tracey’s calculation will take 

into account not only the rod but also the fact that the spheres are not point particles. 
 
(a) Using the point-mass 
approximation and the definition of 
the moment of inertia of a system of 
particles, express Iapp: 
 

2
22

2
11

i

2
iiapp rmrmrmI +== ∑  

 

Substitute numerical values and 
evaluate Iapp: 

( )( ) ( )( )
2

22
app

mkg0.0400

m0.2kg0.5m0.2kg0.5

⋅=

+=I
 

 
Express the moment of inertia of the 
two spheres and connecting rod 
system: 
 

rodspheres III +=  

Use Table 9-1 to find the moments 
of inertia of a sphere (with respect 
to its center of mass) and a rod (with 
respect to an axis through its center 
of mass): 
 

2
rod12

1
rod

2
sphere5

2
sphere

and
LMI

RMI

=

=

 

Because the spheres are not on the 
axis of rotation, use the parallel axis 
theorem to express their moment of 
inertia with respect to the axis of 
rotation: 
 

rotation.
 of axis  the tosphere a of mass of

center   thefrom distance  theish  where

2
sphere

2
sphere5

2
sphere hMRMI +=

 

Substitute to obtain: { } 2
rod12

12
sphere

2
sphere5

22 LMhMRMI ++=  

 
Substitute numerical values and evaluate I: 
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( )( ) ( )( ){ } ( )( )
2

2
12
122

5
2

mkg0415.0

m0.3kg0.06m0.2kg0.5m0.05kg0.52

⋅=

++=I
 

 
Compare I and Iapp by taking their ratio: 

964.0
mkg0.0415
mkg0.0400

2

2
app =

⋅
⋅

=
I

I
 

 

(b) 
sphere. solid a of an greater th

is sphere hollow a of  because increase  wouldinertia rotational The

cm

cm

I
I

 

 
51 ••  
Picture the Problem The axis of rotation 
passes through the center of the base of the 
tetrahedron. The carbon atom and the 
hydrogen atom at the apex of the 
tetrahedron do not contribute to I because 
the distance of their nuclei from the axis of 
rotation is zero. From the geometry, the 
distance of the three H nuclei from the 
rotation axis is 3/a , where a is the 
length of a side of the tetrahedron.  
 
Apply the definition of the moment of 
inertia for a system of particles to 
obtain: 2

H

2

H

2
3H

2
2H

2
1H

i

2
ii

3
3 amam

rmrmrmrmI

=⎟
⎠

⎞
⎜
⎝

⎛=

++== ∑
 

 
Substitute numerical values and 
evaluate I: 

( )( )
247

2927

mkg1041.5

m1018.0kg101.67

⋅×=

××=
−

−−I
 

 
52 ••   
Picture the Problem Let the mass of 
the element of volume dV be  
dm = ρdV = 2πρhrdr where h is the 
height of the cylinder. We’ll begin by 
expressing the moment of inertia dI for 
the element of volume and then 
integrating it between R1 and R2. 
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Express the moment of inertia of the 
element of mass dm: 
 

drhrdmrdI 32 2πρ==  

Integrate dI from R1 to R2 to obtain: ( )

( )( )2
1

2
2

2
1

2
22

1

4
1

4
22

13
2

1

2

RRRRh

RRhdrrhI
R

R

+−=

−== ∫
πρ

πρπρ
 

 
The mass of the hollow cylinder 
is ( )2

1
2
2 RRhm −= ρπ , so: 

 

( )2
1

2
2 RRh
m

−
=

π
ρ  

Substitute for ρ and simplify to obtain: 
 

( ) ( )( ) ( )2
1

2
22

12
1

2
2

2
1

2
22

1
2
2

2
1 RRmRRRRh

RRh
mI +=+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
π

π  

 
53 •••  
Picture the Problem We can derive the given expression for the moment of inertia of a 
spherical shell by following the procedure outlined in the problem statement. 
 
Find the moment of inertia of a 
sphere, with respect to an axis 
through a diameter, in Table 9-1: 
 

2
5
2 mRI =  

Express the mass of the sphere as a 
function of its density and radius: 
 

3
3
4 Rm ρπ=  

Substitute to obtain: 
 

5
15
8 RI ρπ=  

Express the differential of this 
expression:  

dRRdI 4
3
8 ρπ=               (1) 

 
Express the increase in mass dm as 
the radius of the sphere increases by 
dR: 
 

dRRdm 24 ρπ=               (2) 

Eliminate dR between equations (1) 
and (2) to obtain: 
 

dmRdI 2
3
2=  

. is  mass of shell sphericalthe
 of inertia ofmoment   theTherefore,
2

3
2 mRm
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*54  •••  
Picture the Problem We can find C in terms of M and R by integrating a spherical shell 
of mass dm with the given density function to find the mass of the earth as a function of 
M and then solving for C. In part (b), we’ll start with the moment of inertia of the same 
spherical shell, substitute the earth’s density function, and integrate from 0 to R. 
 
(a) Express the mass of the earth 
using the given density function:  

33

0

3

0

2

0

2

22.1
3

4

422.14

4

CRCR

drr
R

CdrrC

drrdmM

RR

R

ππ

ππ

ρπ

−=

−=

==

∫∫

∫∫

 

 
Solve for C as a function of M and R 
to obtain: 
 

3508.0
R
MC =  

(b) From Problem 9-40 we have: drrdI 4
3
8 ρπ=  

 
Integrate to obtain: 

( )

2

55
3

0 0

54
3

0

4
3
8

329.0

6
1

5
22.126.4

122.1
3
508.08

MR

RR
R

M

drr
R

drr
R

M

drrI

R R

R

=

⎥⎦
⎤

⎢⎣
⎡ −=

⎥
⎦

⎤
⎢
⎣

⎡
−=

=

∫ ∫

∫
π

ρπ
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55 •••  
Picture the Problem Let the origin be at 
the apex of the cone, with the z axis along 
the cone’s symmetry axis. Then the radius 
of the elemental ring, at a distance z from 
the apex, can be obtained from the 

proportion
H
R

z
r

= . The mass dm of the 

elemental disk is ρdV = ρπr2dz. We’ll 
integrate r2dm to find the moment of inertia 
of the disk in terms of R and H and then 
integrate dm to obtain a second equation in 
R and H that we can use to eliminate H in 
our expression for I. 

 

 

 
Express the moment of inertia of the 
cone in terms of the moment of 
inertia of the elemental disk: 

102

4

0

4
4

4

2
2

2
2

0
2

2

2
1

2
2
1

HRdzz
H
R

dzz
H
Rz

H
R

dmrI

H

H

πρπρ

ρπ

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

∫

∫

∫
 

 
Express the total mass of the cone in 
terms of the mass of the elemental 
disk: HR

dzz
H
RdzrM

HH

2
3
1

0

2
2

2

0

2

πρ

πρπρ

=

== ∫∫  

 
Divide I by M, simplify, and solve 
for I to obtain: 

2
10
3 MRI =  

 
56 •••  
Picture the Problem Let the axis of 
rotation be the x axis. The radius r of the 

elemental area is 22 zR − and its mass, 

dm, is dzzRdA 222 −= σσ . We’ll 

integrate z2 dm to determine I in terms of σ 
and then divide this result by M in order to 
eliminate σ  and express I in terms of M 
and R. 
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Express the moment of inertia about 
the x axis: 

( )
4

4
1

222

22

2

R

dzzRz

dAzdmzI
R

R

σπ

σ

σ

=

−=

==

∫

∫∫

−

 

 
The mass of the thin uniform disk 
is: 

2RM σπ=  
 

Divide I by M, simplify, and solve 
for I to obtain: 
 

2
4
1 MRI = , a result in agreement with 

the expression given in Table 9-1 for a 
cylinder of length L = 0. 

 
57 •••  
Picture the Problem Let the origin be at 
the apex of the cone, with the z axis along 
the cone’s symmetry axis, and the axis of 
rotation be the x rotation. Then the radius 
of the elemental disk, at a distance z from 
the apex, can be obtained from the 

proportion
H
R

z
r

= . The mass dm of the 

elemental disk is ρdV = ρπr2dz. Each 
elemental disk rotates about an axis that is 
parallel to its diameter but removed from it 
by a distance z. We can use the result from 
Problem 9-57 for the moment of inertia of 
the elemental disk with respect to a 
diameter and then use the parallel axis 
theorem to express the moment of inertia 
of the cone with respect to the x axis. 

 
 
 

 

 
Using the parallel axis theorem, 
express the moment of inertia of the 
elemental disk with respect to the x 
axis: 

2
disk zdmdIdI x +=            (1) 

where 
dzrdVdm 2ρπρ ==  

 
In Problem 9-57 it was established 
that the moment of inertia of a thin 
uniform disk of mass M and radius 
R rotating about a diameter 
is 2

4
1 MR . Express this result in 

( )

dzz
H
R

rdzrdI
2

2
2

2

4
1

22
4
1

disk

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

ρπ

ρπ
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terms of our elemental disk: 
 
Substitute in equation (1) to obtain: 

2
2

2
2

2

2

4
1

zdzz
H
R

dzz
H
RdI x

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

πρ

πρ

 

 
Integrate from 0 to H to obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∫

520

4
1

324

0

4
2

22
2

2

2

HRHR

dzz
H
Rz

H
RI

H

x

πρ

πρ
 

 
Express the total mass of the cone in 
terms of the mass of the elemental 
disk: HR

dzz
H
RdzrM

HH

2
3
1

0

2
2

2

0

2

πρ

πρπρ

=

== ∫∫  

 
Divide Ix by M, simplify, and solve 
for Ix to obtain: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

205
3

22 RHMI x  

 
 Remarks: Because both H and R appear in the numerator, the larger the cones are, 

the greater their moment of inertia and the greater the energy consumption 
required to set them into motion. 
 
Rotational Kinetic Energy 
 
58 • 
Picture the Problem The kinetic energy of this rotating system of particles can be 
calculated either by finding the tangential velocities of the particles and using these 
values to find the kinetic energy or by finding the moment of inertia of the system and 
using the expression for the rotational kinetic energy of a system. 
 
(a) Use the relationship between v 
and ω to find the speed of each 
particle: 

( )( )

( )( ) m/s0.8rad/s2m0.4
and

m/s0.4rad/s2m0.2

11

33

===

===

ω

ω

rv

rv
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Find the kinetic energy of the 
system: ( )( ) ( )( )

J1.12

m/s0.8kg1m/s0.4kg3

22
22

2
11

2
3313

=

+=

+=+= vmvmKKK

 

 
(b) Use the definition of the moment 
of inertia of a system of particles to 
obtain: 

2
44

2
33

2
22

2
11

2

rmrmrmrm

rmI
i

ii

+++=

= ∑
 

 
Substitute numerical values and 
evaluate I: 

( )( ) ( )( )
( )( ) ( )( )

2

22

22

mkg560.0
m0.2kg3m0.4kg1

m0.2kg3m0.4kg1

⋅=

++

+=I

 

 
Calculate the kinetic energy of the 
system of particles: 

( )( )
J1.12

rad/s2mkg0.560 22
2
12

2
1

=

⋅== ωIK
 

 
*59 •  
Picture the Problem We can find the kinetic energy of this rotating ball from its angular 
speed and its moment of inertia. We can use the same relationship to find the new angular 
speed of the ball when it is supplied with additional energy. 
 
(a) Express the kinetic energy of the 
ball: 

2
2
1 ωIK =  

 
Express the moment of inertia of 
ball with respect to its diameter: 
 

2
5
2 MRI =  

 

Substitute for I: 22
5
1 ωMRK =  

 
Substitute numerical values and 
evaluate K: 

( )( )

Jm6.84

s60
min1

rev
rad2

min
rev70

m0.075kg1.4
2

2
5
1

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×××

=

π

K

 

 
(b) Express the new kinetic energy 
with K′ = 2.0846 J: 
 

2
2
1 '' ωIK =  

Express the ratio of K to K′: 2

2
2
1

2
2
1

'
⎟
⎠
⎞

⎜
⎝
⎛==

ω
ω

ω
ω '

I
'I

K
K'

 



                                                                                                     Rotation 
 

 

655

Solve for ω′: 

K
K'' ωω =  

 
Substitute numerical values and 
evaluate ω′: ( )

rev/min347

J0.0846
J2.0846rev/min70

=

='ω
 

 
60 •  
Picture the Problem The power delivered by an engine is the product of the torque it 
develops and the angular speed at which it delivers the torque. 
 
Express the power delivered by the 
engine as a function of the torque it 
develops and the angular speed at 
which it delivers this torque: 
 

ωτ=P  

Substitute numerical values and evaluate P: 
 

( ) kW155
s60

min1
rev

rad2
min
rev3700mN400 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
××⋅=

πP  

 
61 ••  
Picture the Problem Let r1 and r2 be the distances of m1 and m2 from the center of mass. 
We can use the definition of rotational kinetic energy and the definition of the center of 
mass of the two point masses to show that K1/K2 = m2/m1. 
 
Use the definition of rotational 
kinetic energy to express the ratio of 
the rotational kinetic energies: 

2
22

2
11

22
22

22
11

2
22

1

2
12

1

2

1

rm
rm

rm
rm

I
I

K
K

===
ω
ω

ω
ω

 

 
Use the definition of the center of 
mass to relate m1, m2, r1, and r2: 
 

2211 mrmr =  

Solve for 
2

1

r
r

, substitute and 

simplify to obtain: 
1

2

2

1

2

2

1

2

1

m
m

m
m

m
m

K
K

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 
62 ••  
Picture the Problem The earth’s rotational kinetic energy is given by 

2
2
1

rot ωIK = where I is its moment of inertia with respect to its axis of rotation. The 
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center of mass of the earth-sun system is so close to the center of the sun and the earth-
sun distance so large that we can use the earth-sun distance as the separation of their 
centers of mass and assume each to be point mass. 
 
Express the rotational kinetic energy 
of the earth: 
 

2
2
1

rot ωIK =                     (1) 

Find the angular speed of the earth’s 
rotation using the definition of ω: 

rad/s1027.7
h

s3600h24

rad2

5−×=

×
=

∆
∆

=
πθω

t
 

 
From Table 9-1, for the moment of 
inertia of a homogeneous sphere, we 
find: 

( )( )
237

2624
5
2

2
5
2

mkg109.83

m106.4kg106.0

⋅×=

××=

= MRI

 

 
Substitute numerical values in 
equation (1) to obtain: 

( )
( )

J102.60

rad/s107.27

mkg109.83

29

25

237
2
1

rot

×=

××

⋅×=
−

K

 

 
Express the earth’s orbital kinetic 
energy: 
 

2
orb2

1
orb ωIK =                     (2) 

Find the angular speed of the center 
of mass of the earth-sun system: 

rad/s1099.1
h

s3600
day
h24days365.25

rad2

7−×=

××
=

∆
∆

=

π

θω
t

 

 
Express and evaluate the orbital 
moment of inertia of the earth: ( )( )

247

21124

2
orbE

mkg101.35
m101.50kg106.0

⋅×=

××=

= RMI

 

 
Substitute in equation (2) to obtain: ( )

( )
J102.67

rad/s101.99

mkg101.35

33

27

247
2
1

orb

×=

××

⋅×=
−

K
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Evaluate the ratio 
rot

orb

K
K

: 4
29

33

rot

orb 10
J102.60
J102.67

≈
×
×

=
K
K

 

 
*63 ••  
Picture the Problem Because the load is not being accelerated, the tension in the cable 
equals the weight of the load. The role of the massless pulley is to change the direction 
the force (tension) in the cable acts. 
 
(a) Because the block is lifted at 
constant speed: 
 

( )( )
kN19.6

m/s9.81kg2000 2

=

== mgT
 

 
(b) Apply the definition of torque at 
the winch drum: 
 

( )( )
mkN5.89

m0.30kN19.6

⋅=

== Trτ
 

(c) Relate the angular speed of the 
winch drum to the rate at which the 
load is being lifted (the tangential 
speed of the cable on the drum): 
 

rad/s0.267
m0.30

m/s0.08
===

r
vω  

(d) Express the power developed by 
the motor in terms of the tension in 
the cable and the speed with which 
the load is being lifted: 

( )( )
kW1.57

m/s0.08kN19.6

=

== TvP
 

 
64 ••  
Picture the Problem Let the zero of gravitational potential energy be at the lowest point 
of the small particle. We can use conservation of energy to find the angular velocity of 
the disk when the particle is at its lowest point and Newton’s 2nd law to find the force the 
disk will have to exert on the particle to keep it from falling off. 
 
(a) Use conservation of energy to 
relate the initial potential energy of 
the system to its rotational kinetic 
energy when the small particle is at 
its lowest point: 
 

0=∆+∆ UK  
or, because Uf = Ki = 0, 

( ) 02
fparticledisk2

1 =∆−+ hmgII ω  

Solve for ωf: 

particledisk
f

2
II

hmg
+

∆
=ω  
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Substitute for Idisk, Iparticle, and ∆h 
and simplify to obtain: 

( )
( )MmR

mg
mRMR
Rmg

+
=

+
=

2
822

22
2
1fω

 
(b) The mass is in uniform circular 
motion at the bottom of the disk, so 
the sum of the force F exerted by 
the disk and the gravitational force 
must be the centripetal force: 
 

2
fωmRmgF =−  

Solve for F and simplify to obtain: 

( )

⎟
⎠
⎞

⎜
⎝
⎛

+
+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=

Mm
mmg

mMR
mgmRmg

mRmgF

2
81

2
8

2
fω

 

 
65 ••  
Picture the Problem Let the zero of gravitational potential energy be at the center of 
mass of the ring when it is directly below the point of support. We’ll use conservation of 
energy to relate the maximum angular velocity and the initial angular velocity required 
for a complete revolution to the changes in the potential energy of the ring. 
 
(a) Use conservation of energy to 
relate the initial potential energy of 
the ring to its rotational kinetic 
energy when its center of mass is 
directly below the point of support: 
 

0=∆+∆ UK  
or, because Uf = Ki = 0, 

02
max2

1 =∆− hmgIPω              (1) 

Use the parallel axis theorem and 
Table 9-1 to express the moment of 
inertia of the ring with respect to its 
pivot point P: 
 

2
cm mRII P +=  

Substitute in equation (1) to obtain: ( ) 02
max

22
2
1 =−+ mgRmRmR ω  

 
Solve for ωmax: 

R
g

=maxω  

 
Substitute numerical values and 
evaluate ωmax: 

rad/s3.62
m0.75

m/s9.81 2

max ==ω  
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(b) Use conservation of energy to 
relate the final potential energy of 
the ring to its initial rotational 
kinetic energy: 
 

0=∆+∆ UK  
or, because Ui = Kf = 0, 

02
i2

1 =∆+− hmgI Pω               

Noting that the center of mass must 
rise a distance R if the ring is to 
make a complete revolution, 
substitute for IP and ∆h to obtain: 
 

( ) 02
i

22
2
1 =++− mgRmRmR ω  

Solve for ωi: 

R
g

i =ω  

 
Substitute numerical values and 
evaluate ωi: rad/s3.62

m0.75
m/s9.81 2

==iω  

 
66 ••  
Picture the Problem We can find the energy that must be stored in the flywheel and 
relate this energy to the radius of the wheel and use the definition of rotational kinetic 
energy to find the wheel’s radius. 
 
Relate the kinetic energy of the 
flywheel to the energy it must 
deliver: 
 

( )( )
MJ600

km300MJ/km22
cyl2

1
rot

=

== ωIK
 

Express the moment of inertia of the 
flywheel: 
 

2
2
1

cyl MRI =  

Substitute for Icyl and solve for ω: 

M
KR rot2

ω
=  

 
Substitute numerical values and 
evaluate R: 

m95.1

kg100
MJ

J10MJ600

rev
rad2

s
rev400

2
6

=

×

×
= πR

 

67 ••  
Picture the Problem We’ll solve this problem for the general case of a ladder of length 
L, mass M, and person of mass m. Let the zero of gravitational potential energy be at 
floor level and include you, the ladder, and the earth in the system. We’ll use 
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conservation of energy to relate your impact speed falling freely to your impact speed 
riding the ladder to the ground.   
 
Use conservation of energy to relate 
the speed with which a person will 
strike the ground to the fall distance 
L: 
 

0=∆+∆ UK  
or, because Ki = Uf = 0, 

02
f2

1 =− mgLmv  

Solve for 2
fv : gLv 22

f =  

 
Letting ωr represent the angular 
velocity of the ladder+person 
system as it strikes the ground, use 
conservation of energy to relate the 
initial and final momenta of the 
system: 
 

0=∆+∆ UK  
or, because Ki = Uf = 0, 

( ) 0
2

2
rladderperson2

1 =⎟
⎠
⎞

⎜
⎝
⎛ +−+

LMgmgLII ω  

 

Substitute for the moments of inertia 
to obtain: 
 

0
23

1 2
f

2
2
1 =⎟

⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ +

LMgmgLLMm ω  

Substitute vr for Lωf and solve for 
2
rv : 

3

2
2

2
r Mm

MmgL
v

+

⎟
⎠
⎞

⎜
⎝
⎛ +

=  

 

Express the ratio 2
f

2
r

v
v

: 

3

2
2
f

2
r

Mm

Mm

v
v

+

+
=  

 
Solve for vr to obtain: 
 Mm

Mmvv
26
36

fr +
+

=  

 

ground.  the tofall
 and golet  better to isIt  . zero, is ladder,  theof mass  the, Unless fr vvM >
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Pulleys, Yo-Yos, and Hanging Things 
 
*68 ••  
Picture the Problem We’ll solve this problem for the general case in which the mass of 
the block on the ledge is M, the mass of the hanging block is m, and the mass of the 
pulley is Mp, and R is the radius of the pulley. Let the zero of gravitational potential 
energy be 2.5 m below the initial position of the 2-kg block and R represent the radius of 
the pulley. Let the system include both blocks, the shelf and pulley, and the earth. The 
initial potential energy of the 2-kg block will be transformed into the translational kinetic 
energy of both blocks plus rotational kinetic energy of the pulley. 
 
(a) Use energy conservation to 
relate the speed of the 2 kg block 
when it has fallen a distance ∆h to 
its initial potential energy and the 
kinetic energy of the system: 
 

0=∆+∆ UK  
or, because Ki = Uf = 0, 

( ) 02
pulley2

12
2
1 =−++ mghIvMm ω  

Substitute for Ipulley and ω to obtain:  ( ) ( ) 02

2
2

2
1

2
12

2
1 =−++ mgh

R
vMRvMm  

 
Solve for v: 

pMmM
mghv

2
1

2
++

=  

 
Substitute numerical values and 
evaluate v: 

( )( )( )
( )

m/s3.95

kg0.6kg2kg4
m2.5m/s9.81kg22

2
1

2

=

++
=v

 

 
(b) Find the angular velocity of the 
pulley from its tangential speed:  

rad/s49.3
m0.08

m/s3.95
===

R
vω  

 
69 ••  
Picture the Problem The diagrams show 
the forces acting on each of the masses and 
the pulley. We can apply Newton’s 2nd law 
to the two blocks and the pulley to obtain 
three equations in the unknowns T1, T2, and 
a. 
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Apply Newton’s 2nd law to the two 
blocks and the pulley: 

∑ == amTFx 41 ,                        (1) 

( )∑ =−= ατ pp IrTT 12 ,             (2) 

and 

∑ =−= amTgmFx 222               (3) 

 
Eliminate α in equation (2) to 
obtain: 

aMTT p2
1

12 =−                            (4) 

 
Eliminate T1 and T2 between 
equations (1), (3) and (4) and solve 
for a: 

pMmm
gma

2
1

42

2

++
=  

 
Substitute numerical values and 
evaluate a: 

( )( )
( )

2

2
1

2

m/s3.11
kg0.6kg4kg2

m/s9.81kg2
=

++
=a

 
 

Using equation (1), evaluate T1: ( )( ) N12.5m/s3.11kg4 2
1 ==T  

 
Solve equation (3) for T2: ( )agmT −= 22  

 
Substitute numerical values and 
evaluate T2: 

( )( )
N13.4

m/s3.11m/s9.81kg2 22
2

=

−=T
 

 
70 ••  
Picture the Problem We’ll solve this problem for the general case in which the mass of 
the block on the ledge is M, the mass of the hanging block is m, the mass of the pulley is 
Mp, and R is the radius of the pulley. Let the zero of gravitational potential energy be 2.5 
m below the initial position of the 2-kg block. The initial potential energy of the 2-kg 
block will be transformed into the translational kinetic energy of both blocks plus 
rotational kinetic energy of the pulley plus work done against friction. 
 
(a) Use energy conservation to 
relate the speed of the 2 kg block 
when it has fallen a distance ∆h to 
its initial potential energy, the 
kinetic energy of the system and the 
work done against friction: 
 

0f =+∆+∆ WUK  

or, because Ki = Uf = 0, 
( )

0k

2
pulley2

12
2
1

=+−

++

Mghmgh

IvMm

µ

ω
 

Substitute for Ipulley and ω to obtain:  ( ) ( )
0k

2

2

2
1

2
12

2
1

=+−

++

Mghmgh
R
vMvMm p

µ
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Solve for v: ( )
pMmM

Mmghv
2
1

k2
++
−

=
µ

 

 
Substitute numerical values and evaluate v: 
 

( )( ) ( )( )[ ]
( ) m/s79.2

kg0.6kg2kg4
kg425.0kg2m2.5m/s9.812

2
1

2

=
++

−
=v  

 
(b) Find the angular velocity of the pulley 
from its tangential speed:  

rad/s9.43
m0.08

m/s79.2
===

R
vω  

 
71 ••  
Picture the Problem Let the zero of gravitational potential energy be at the water’s 
surface and let the system include the winch, the car, and the earth. We’ll apply energy 
conservation to relate the car’s speed as it hits the water to its initial potential energy. 
Note that some of the car’s initial potential energy will be transformed into rotational 
kinetic energy of the winch and pulley. 
 
Use energy conservation to relate 
the car’s speed as it hits the water to 
its initial potential energy: 

0=∆+∆ UK  
or, because Ki = Uf = 0, 

02
pp2

12
ww2

12
2
1 =∆−++ hmgIImv ωω  

 
Express ωw and ωp in terms of the 
speed v of the rope, which is the 
same throughout the system: 
 

2
p

2

p2
w

2

w and
r
v

r
v

== ωω  

 

Substitute to obtain: 
02

p

2

p2
1

2
w

2

w2
12

2
1 =∆−++ hmg

r
vI

r
vImv  

 
Solve for v: 

2
p

p
2

w

w

2

r
I

r
Im

hmgv
++

∆
=  

 
Substitute numerical values and 
evaluate v: 

( )( )( )

( ) ( )
m/s21.8

m0.3
mkg4

m0.8
mkg320kg1200

m5m/s9.81kg12002

2

2

2

2

2

=

⋅
+

⋅
+

=v
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*72 •• 
Picture the Problem Let the system 
include the blocks, the pulley and the earth. 
Choose the zero of gravitational potential 
energy to be at the ledge and apply energy 
conservation to relate the impact speed of 
the 30-kg block to the initial potential 
energy of the system. We can use a 
constant-acceleration equations and 
Newton’s 2nd law to find the tensions in the 
strings and the descent time.  

 
(a) Use conservation of energy to 
relate the impact speed of the 30-kg 
block to the initial potential energy 
of the system: 

0=∆+∆ UK  
or, because Ki = Uf = 0, 

03020

2
pp2

12
202

12
302

1

=∆−∆+

++

hgmhgm

Ivmvm ω
 

 
Substitute for ωp and Ip to obtain: ( )

03020

2

2
2

p2
1

2
12

202
12

302
1

=∆−∆+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

hgmhgm
r
vrMvmvm

 

 
Solve for v: ( )

p2
1

3020

20302
Mmm

mmhgv
++
−∆

=  

 
Substitute numerical values and 
evaluate v: 

( )( )( )
( )

m/s73.2

kg5kg30kg20
kg20kg30m2m/s9.812

2
1

2

=

++
−

=v
 

 
(b) Find the angular speed at impact 
from the tangential speed at impact 
and the radius of the pulley: 
 

rad/s27.3
m0.1
m/s2.73

===
r
vω  

(c) Apply Newton’s 2nd law to the 
blocks: 

∑ =−= amgmTFx 20201             (1) 

∑ =−= amTgmFx 30230             (2) 

 
Using a constant-acceleration 
equation, relate the speed at impact 
to the fall distance and the 

havv ∆+= 22
0

2  

or, because v0 = 0, 
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acceleration and solve for and 
evaluate a: 
 

( )
( )

2
22

m/s1.87
m22
m/s2.73

2
==

∆
=

h
va  

 
Substitute in equation (1) to find T1: ( )

( )( )
N234

m/s1.87m/s9.81kg20 22
201

=

+=

+= agmT

 

 
Substitute in equation (2) to find T2: ( )

( )( )
N238

m/s1.87m/s9.81kg30 22
302

=

−=

−= agmT

 

 
(d) Noting that the initial speed of 
the 30-kg block is zero, express the 
time-of-fall in terms of the fall 
distance and the block’s average 
speed: 
 

v
h

v
h

v
ht ∆

=
∆

=
∆

=∆
2

2
1

av

 

Substitute numerical values and 
evaluate ∆t: 

( ) s1.47
m/s2.73
m22

==∆t  

 
73 ••  
Picture the Problem The force diagram 
shows the forces acting on the sphere and 
the hanging object. The tension in the 
string is responsible for the angular 
acceleration of the sphere and the 
difference between the weight of the object 
and the tension is the net force acting on 
the hanging object. We can use Newton’s 
2nd law to obtain two equations in a and T 
that we can solve simultaneously. 

 

 
 
(a)Apply Newton’s 2nd law to the 
sphere and the hanging object: 

∑ == ατ sphere0 ITR                 (1) 

and 

∑ =−= maTmgFx               (2) 

 
Substitute for Isphere and α in 
equation (1) to obtain: 
 

( )
R
aMRTR 2

5
2=                         (3) 
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Eliminate T between equations (2) 
and (3) and solve for a to obtain: 

m
M

ga

5
21+

=  

 
(b) Substitute for a in equation (2) 
and solve for T to obtain: Mm

mMgT
25

2
+

=  

 
74 ••  
Picture the Problem The diagram shows 
the forces acting on both objects and the 
pulley. By applying Newton’s 2nd law of 
motion, we can obtain a system of three 
equations in the unknowns T1, T2, and a 
that we can solve simultaneously. 

 
 
(a) Apply Newton’s 2nd law to the 
pulley and the two objects: 

∑ =−= amgmTFx 111 ,          (1) 

( )∑ =−= ατ 0120 IrTT ,          (2) 

and 

∑ =−= amTgmFx 222           (3) 

 
Substitute for I0 = Ipulley and α in 
equation (2) to obtain: 

( ) ( )
r
amrrTT 2

2
1

12 =−                (4) 

 
Eliminate T1 and T2 between 
equations (1), (3) and (4) and solve 
for a to obtain: 
 

( )
mmm

gmma
2
1

21

12

++
−

=  

 

Substitute numerical values and 
evaluate a: 

( )( )
( )

2

2
1

2

cm/s9.478

g50g510g500
cm/s981g500g510

=

++
−

=a
 

 
(b) Substitute for a in equation (1) 
and solve for T1 to obtain: 

( )
( )( )

N4.9524

m/s0.09478m/s9.81kg0.500 22
11

=

+=

+= agmT
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Substitute for a in equation (3) and 
solve for T2 to obtain: 

( )
( )( )

N4.9548

m/s0.09478m/s9.81kg0.510 22
22

=

−=

−= agmT

 
 

Find ∆T: 

N0.0024

N4.9524N.9548412

=

−=−=∆ TTT
 

 
(c) If we ignore the mass of the 
pulley, our acceleration equation is: 

( )
21

12

mm
gmma

+
−

=  

 
Substitute numerical values and 
evaluate a: 

( )( )

2

2

cm/s9.713

g510g500
cm/s981g500g510

=

+
−

=a
 

 
Substitute for a in equation (1) and 
solve for T1 to obtain: 
 

( )agmT += 11  

 

Substitute numerical values and evaluate T1: 
 

( )( ) N4.9536m/s0.09713m/s9.81kg0.500 22
1 =+=T  

 
From equation (4), if m = 0: 

21 TT =  

 
*75 ••  
Picture the Problem The diagram shows 
the forces acting on both objects and the 
pulley. By applying Newton’s 2nd law of 
motion, we can obtain a system of three 
equations in the unknowns T1, T2, and α 
that we can solve simultaneously. 

 
 
(a) Express the condition that the 
system does not accelerate: 
 

02211net =−= gRmgRmτ  
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Solve for m2: 

2

1
12 R

Rmm =  

 
Substitute numerical values and 
evaluate m2: 

( ) kg72.0
m0.4
m1.2

kg242 ==m  

 
(b) Apply Newton’s 2nd law to the 
objects and the pulley: 

∑ =−= amTgmFx 111 ,        (1) 

∑ =−= ατ 022110 IRTRT ,    (2) 

and 

∑ =−= amgmTFx 222         (3) 

 
Eliminate a in favor of α in equations 
(1) and (3) and solve for T1 and T2: 

( )α111 RgmT −=                    (4) 

and 
( )α222 RgmT +=                   (5) 

 
Substitute for T1 and T2 in equation 
(2) and solve for α to obtain: 
 

( )
0

2
22

2
11

2211

IRmRm
gRmRm

++
−

=α  

Substitute numerical values and evaluate α: 
 

( )( ) ( )( )[ ]( )
( )( ) ( )( )

2
222

2

rad/s37.1
mkg40m0.4kg72m1.2kg36

m/s9.81m0.4kg72m1.2kg36
=

⋅++
−

=α  

 
Substitute in equation (4) to find T1: 
 

( )[ ( )( )] N294rad/s1.37m1.2m/s9.81kg36 22
1 =−=T  

 
Substitute in equation (5) to find T2: 
 

( )[ ( )( )] N467rad/s1.37m4.0m/s9.81kg27 22
2 =+=T  
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76 •• 
Picture the Problem Choose the 
coordinate system shown in the diagram. 
By applying Newton’s 2nd law of motion, 
we can obtain a system of two equations in 
the unknowns T and a. In (b) we can use 
the torque equation from (a) and our value 
for T to findα. In (c) we use the condition 
that the acceleration of a point on the rim 
of the cylinder is the same as the 
acceleration of the hand, together with the 
angular acceleration of the cylinder, to find 
the acceleration of the hand. 

 

 

 
(a) Apply Newton’s 2nd law to the 
cylinder about an axis through its 
center of mass: 

∑ ==
R
aITR 00τ                       (1) 

and 

∑ =−= 0TMgFx                      (2) 

 
Solve for T to obtain: 
 

MgT =  

 
(b) Rewrite equation (1) in terms of 
α: 
 

α0ITR =  

Solve for α: 

0I
TR

=α  

 
Substitute for T and I0 to obtain: 

R
g

MR
MgR 2

2
2
1

==α  

 
(c) Relate the acceleration a of the 
hand to the angular acceleration of 
the cylinder: 
 

αRa =  

Substitute for α to obtain: g
R
gRa 22

=⎟
⎠
⎞

⎜
⎝
⎛=  
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77 ••  
Picture the Problem Let the zero of 
gravitational potential energy be at the 
bottom of the incline. By applying 
Newton’s 2nd law to the cylinder and the 
block we can obtain simultaneous 
equations in a, T, and α from which we 
can express a and T. By applying the 
conservation of energy, we can derive 
an expression for the speed of the block 
when it reaches the bottom of the 
incline. 

 
 

 

 
(a) Apply Newton’s 2nd law to the 
cylinder and the block: 

∑ == ατ 00 ITR                            (1) 

and 

∑ =−= amTgmFx 22 sinθ          (2) 

 
Substitute for α in equation (1), 
solve for T, and substitute in 
equation (2) and solve for a to 
obtain: 

2

1

2
1

sin

m
m

ga
+

=
θ

 

 
(b) Substitute for a in equation (2) 
and solve for T: 

2

1

12
1

2
1

sin

m
m

gm
T

+
=

θ
 

 
(c) Noting that the block is released 
from rest, express the total energy of 
the system when the block is at 
height h: 
 

ghmKUE 2=+=  

(d) Use the fact that this system is 
conservative to express the total 
energy at the bottom of the incline: 
 

ghmE 2bottom =  

(e) Express the total energy of the 
system when the block is at the 
bottom of the incline in terms of its 
kinetic energies: 
 

2
02

12
22

1

rottranbottom

ωIvm

KKE

+=

+=
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Substitute for ω and I0 to obtain: ( ) ghm
r
vrmvm 22

2
2

12
1

2
12

22
1 =+  

 
Solve for v to obtain: 

2

1

2
1

2

m
m

ghv
+

=  

 
(f) For θ = 0: 0== Ta  

 
For θ = 90°: 

2

1

2
1

m
m

ga
+

= , 

am

m
m
gm

T 12
1

2

1

12
1

2
1

=
+

= , 

and 

2

1

2
1

2

m
m

ghv
+

=  

 
For m1 = 0: θsinga = , 0=T , and 

ghv 2=  

 
*78 •• 
Picture the Problem Let r be the radius of 
the concentric drum (10 cm) and let I0 be 
the moment of inertia of the drum plus 
platform. We can use Newton’s 2nd law in 
both translational and rotational forms to 
express I0 in terms of a and a constant-
acceleration equation to express a and then 
find I0. We can use the same equation to 
find the total moment of inertia when the 
object is placed on the platform and then 
subtract to find its moment of inertia. 

 
 

 

 
(a) Apply Newton’s 2nd law to the 
platform and the weight: 

∑ == ατ 00 ITr                    (1) 

∑ =−= MaTMgFx           (2) 
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Substitute a/r for α in equation (1) 
and solve for T: 

a
r
IT 2

0=  

 
Substitute for T in equation (2) and 
solve for a to obtain: 

( )
a

agMrI −
=

2

0                      (3) 

 
Using a constant-acceleration 
equation, relate the distance of fall 
to the acceleration of the weight and 
the time of fall and solve for the 
acceleration: 
 

( )2
2
1

0 tatvx ∆+∆=∆  

or, because v0 = 0 and ∆x = D, 

( )2
2

t
Da

∆
=  

 

Substitute for a in equation (3) to 
obtain: 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∆
=⎟

⎠
⎞

⎜
⎝
⎛ −= 1

2
1

2
22

0 D
tgMr

a
gMrI  

 
Substitute numerical values and 
evaluate I0: 

( )( )
( )( )

( )
2

22

2
0

mkg1.177

1
m1.82

s4.2m/s9.81

m0.1kg2.5

⋅=

⎥
⎦

⎤
⎢
⎣

⎡
−×

=I

 

 
(b) Relate the moments of inertia of 
the platform, drum, shaft, and pulley 
(I0) to the moment of inertia of the 
object and the total moment of 
inertia: 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∆
=

⎟
⎠
⎞

⎜
⎝
⎛ −=+=

1
2

1

2
2

2
0tot

D
tgMr

a
gMrIII

 

 
Substitute numerical values and 
evaluate Itot: 

( )( )
( )( )

( )
2

22

2
tot

mkg125.3

1
m1.82

s8.6m/s9.81

m0.1kg2.5

⋅=

⎥
⎦

⎤
⎢
⎣

⎡
−×

=I

 

 
Solve for and evaluate I: 

2

2

2
0tot

mkg1.948

mkg1.177

mkg3.125

⋅=

⋅−

⋅=−= III
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Objects Rolling Without Slipping 
 
*79 ••  
Picture the Problem The forces acting on 
the yo-yo are shown in the figure. We can 
use a constant-acceleration equation to 
relate the velocity of descent at the end of 
the fall to the yo-yo’s acceleration and 
Newton’s 2nd law in both translational and 
rotational form to find the yo-yo’s 
acceleration. 

 
 
Using a constant-acceleration 
equation, relate the yo-yo’s final 
speed to its acceleration and fall 
distance: 

havv ∆+= 22
0

2  

or, because v0 = 0, 
hav ∆= 2                              (1) 

 
Use Newton’s 2nd law to relate the 
forces that act on the yo-yo to its 
acceleration: 

∑ =−= maTmgFx              (2) 

and 
ατ 00 ITr ==∑                     (3)   

        
Use αra =  to eliminate α in 
equation (3) r

aITr 0=                                  (4) 

 
Eliminate T between equations (2) 
and (4) to obtain: 

maa
r
I

mg =− 2
0                        (5) 

 
Substitute 2

2
1 mR for I0 in equation 

(5): 
maa

r
mR

mg =− 2

2
2
1

 

 
Solve for a: 

2

2

2
1

r
R

ga
+

=  

 
Substitute numerical values and 
evaluate a: ( )

( )

2

2

2

2

m/s0.0864

m0.12
m1.51

m/s9.81
=

+
=a  

 
Substitute in equation (1) and 
evaluate v: 

( )( )
m/s3.14

m57m/s0.08642 2

=

=v
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80 ••  
Picture the Problem The diagram shows 
the forces acting on the cylinder. By 
applying Newton’s 2nd law of motion, we 
can obtain a system of two equations in the 
unknowns T, a, and α that we can solve 
simultaneously. 

 
 
(a) Apply Newton’s 2nd law to the 
cylinder: 

∑ == ατ 00 ITR                (1) 

and 

∑ =−= MaTMgFx        (2) 

 
Substitute for α and I0 in equation 
(1) to obtain: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=

R
aMRTR 2

2
1  

Solve for T: 
 

MaT 2
1=                              (3) 

Substitute for T in equation (2) and 
solve for a to obtain: 
 

ga 3
2=  

(b) Substitute for a in equation (3) 
to obtain: 

( ) MggMT 3
1

3
2

2
1 ==  

 
81 ••  
Picture the Problem The forces acting on 
the yo-yo are shown in the figure. Apply 
Newton’s 2nd law in both translational and 
rotational form to obtain simultaneous 
equations in T, a, and α from which we can 
eliminate α and solve for T and a. 

 
 
Apply Newton’s 2nd law to the yo-yo: ∑ =−= maTmgFx                      (1) 

and 
ατ 00 ITr ==∑                             (2)   

        
Use αra =  to eliminate α in 
equation (2) r

aITr 0=                                         (3) 
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Eliminate T between equations (1) 
and (3) to obtain: 
 

maa
r
I

mg =− 2
0                              (4) 

Substitute 2
2
1 mR for I0 in equation 

(4): 
maa

r
mR

mg =− 2

2
2
1

 

 
Solve for a: 

2

2

2
1

r
R

ga
+

=  

 
Substitute numerical values and 
evaluate a: ( )

( )

2

2

2

2

m/s0.192

m0.012
m1.01

m/s9.81
=

+
=a  

 
Use equation (1) to solve for and 
evaluate T: 

( )
( )( )

N0.962

m/s0.192m/s9.81kg0.1 22

=

−=

−= agmT
 

 
*82 •  
Picture the Problem We can determine the kinetic energy of the cylinder that is due to 
its rotation about its center of mass by examining the ratio KK rot . 

 
Express the rotational kinetic energy of 
the homogeneous solid cylinder: 
 

( ) 2
4
1

2

2
2

2
1

2
12

cyl2
1

rot mv
r
vmrIK === ω  

Express the total kinetic energy of the 
homogeneous solid cylinder: 
 

2
4
32

2
12

4
1

transrot mvmvmvKKK =+=+=

 

Express the ratio 
K

K rot : 3
1

2
4
3

2
4
1

rot ==
mv
mv

K
K

and correct. is )(b  

 
83 •  
Picture the Problem Any work done on the cylinder by a net force will change its 
kinetic energy. Therefore, the work needed to give the cylinder this motion is equal to its 
kinetic energy. 
 
Express the relationship between the 
work needed to stop the cylinder and 
its kinetic energy: 
 

2
2
12

2
1 ωImvKW +=∆=  
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Because the cylinder is rolling without 
slipping, its translational and angular 
speeds are related according to: 
 

ωrv =  

Substitute for I (see Table 9-1) and ω 
and simplify to obtain: 

( )
2

4
3

2

2
2

2
1

2
12

2
1

2
2
12

2
1

mv
r
vmrmv

ImvW

=

+=

+= ω

 

 
Substitute for m and v to obtain: ( )( ) kJ1.13m/s5kg60 2

4
3 ==W  

 
84 •  
Picture the Problem The total kinetic energy of any object that is rolling without 
slipping is given by rottrans KKK += . We can find the percentages associated with each 

motion by expressing the moment of inertia of the objects as kmr2 and deriving a general 
expression for the ratios of rotational kinetic energy to total kinetic energy and 
translational kinetic energy to total kinetic energy and substituting the appropriate values 
of k.  
 
Express the total kinetic energy 
associated with a rotating and 
translating object: ( )

( )kmvkmvmv
r
vkmrmv

ImvKKK

+=+=

+=

+=+=

12
2
12

2
12

2
1

2

2
2

2
12

2
1

2
2
12

2
1

rottrans ω

 

 

Express the ratio 
K

K rot : 
( )

k
k

k
kmv

kmv
K

K
11

1
112

2
1

2
2
1

rot

+
=

+
=

+
=  

Express the ratio 
K

K trans : 
( ) kkmv

mv
K

K
+

=
+

=
1

1
12

2
1

2
2
1

trans  

 
(a) Substitute k = 2/5 for a uniform 
sphere to obtain: 

%6.28286.0

4.0
11

1rot ==
+

=
K

K
 

and 

%4.71714.0
4.01

1trans ==
+

=
K

K
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(b) Substitute k = 1/2 for a uniform 
cylinder to obtain: 

%3.33

5.0
11

1rot =
+

=
K

K
 

and 

%7.66
5.01

1trans =
+

=
K

K
 

 
(c) Substitute k = 1 for a hoop to obtain: %0.50

1
11

1rot =
+

=
K

K
 

and 

%0.50
11

1trans =
+

=
K

K
 

 
85 •  
Picture the Problem Let the zero of gravitational potential energy be at the bottom of the 
incline. As the hoop rolls up the incline its translational and rotational kinetic energies are 
transformed into gravitational potential energy. We can use energy conservation to relate 
the distance the hoop rolls up the incline to its total kinetic energy at the bottom of the 
incline. 
 
Using energy conservation, relate 
the distance the hoop will roll up the 
incline to its kinetic energy at the 
bottom of the incline: 
 

0=∆+∆ UK  
or, because Kf = Ui = 0, 

0fi =+− UK                       (1) 

Express Ki as the sum of the 
translational and rotational kinetic 
energies of the hoop: 

2
2
12

2
1

rottransi ωImvKKK +=+=  

 
 

When a rolling object moves with 
speed v, its outer surface turns with 
a speed v also. Hence ω  = v/r. 
Substitute for I and ω to obtain: 
 

( ) 2
2

2
2

2
12

2
1

i mv
r
vmrmvK =+=  

 

Letting ∆h be the change in 
elevation of the hoop as it rolls up 
the incline and ∆L the distance it 
rolls along the incline, express Uf: 
 

θsinf LmghmgU ∆=∆=  

Substitute in equation (1) to obtain: 
 

0sin2 =∆+− θLmgmv  



   Chapter 9 
 

 

678 

Solve for ∆L: 
θsin

2

g
vL =∆  

 
Substitute numerical values and 
evaluate ∆L: 

( )
( ) m45.9

sin30m/s9.81
m/s15

2

2

=
°

=∆L  

 
*86 ••  
Picture the Problem From Newton’s 2nd law, the acceleration of the center of mass 
equals the net force divided by the mass. The forces acting on the sphere are its weight 

grm downward, the normal force nF
r

that balances the normal component of the weight, 

and the force of friction f
r

acting up the incline. As the sphere accelerates down the 
incline, the angular velocity of rotation must increase to maintain the nonslip condition. 
We can apply Newton’s 2nd law for rotation about a horizontal axis through the center of 
mass of the sphere to find α, which is related to the acceleration by the nonslip condition. 
The only torque about the center of mass is due to f

r
because both grm and nF

r
act through 

the center of mass. Choose the positive direction to be down the incline. 

 
 
Apply aF rr

m=∑ to the sphere: cmsin mafmg =−θ                 (1) 
 

Apply ατ cmI=∑ to the sphere: αcmIfr =  
 

Use the nonslip condition to 
eliminate α and solve for f: 
 

r
aIfr cm

cm=  

and 

cm2
cm a

r
If =  

 
Substitute this result for f in 
equation (1) to obtain: 
 

cmcm2
cmsin maa

r
Img =−θ  

From Table 9-1 we have, for a solid 
sphere: 
 

2
5
2

cm mrI =  
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Substitute in equation (1) and simplify 
to obtain: 
 

cmcm5
2sin maamg =−θ  

 

Solve for and evaluate θ : 

( )
°=⎥

⎦

⎤
⎢
⎣

⎡
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

−

3.16
5

2.07sin

5
7sin

1

cm1

g
g

g
aθ

 

 
87 ••  
Picture the Problem From Newton’s 2nd law, the acceleration of the center of mass 
equals the net force divided by the mass. The forces acting on the thin spherical shell are 
its weight grm downward, the normal force nF

r
that balances the normal component of the 

weight, and the force of friction f
r

acting up the incline. As the spherical shell accelerates 
down the incline, the angular velocity of rotation must increase to maintain the nonslip 
condition. We can apply Newton’s 2nd law for rotation about a horizontal axis through the 
center of mass of the sphere to find α, which is related to the acceleration by the nonslip 
condition. The only torque about the center of mass is due to f

r
because both grm and 

nF
r

act through the center of mass. Choose the positive direction to be down the incline. 

 
 
Apply aF rr

m=∑ to the thin 
spherical shell: 
 

cmsin mafmg =−θ                 (1) 
 

Apply ατ cmI=∑ to the thin 
spherical shell: 
 

αcmIfr =  
 

Use the nonslip condition to 
eliminate α and solve for f: 
 

r
aIfr cm

cm= and cm2
cm a

r
If =  

 
Substitute this result for f in 
equation (1) to obtain: 
 

cmcm2
cmsin maa

r
Img =−θ  

From Table 9-1 we have, for a thin 2
3
2

cm mrI =  
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spherical shell: 
 

 

Substitute in equation (1) and 
simplify to obtain: 

cmcm3
2sin maamg =−θ  

 
Solve for and evaluate θ : 

( )
°==

=

−

−

5.19
3

2.05sin

3
5sin

1

cm1

g
g

g
aθ

 

 
Remarks: This larger angle makes sense, as the moment of inertia for a given mass 
is larger for a hollow sphere than for a solid one. 
 
88 ••  
Picture the Problem The three forces 
acting on the basketball are the weight of 
the ball, the normal force, and the force of 
friction.  Because the weight can be 
assumed to be acting at the center of mass, 
and the normal force acts through the 
center of mass, the only force which exerts 
a torque about the center of mass is the 
frictional force. We can use Newton’s 2nd 
law to find a system of simultaneous 
equations that we can solve for the 
quantities called for in the problem 
statement. 

 

 
(a) Apply Newton’s 2nd law in both 
translational and rotational form to the 
ball: 

∑ =−= mafmgFx ssinθ ,          (1) 

∑ =−= 0cosn θmgFFy              (2) 

and 

∑ == ατ 0s0 Irf                           (3) 

 
Because the basketball is rolling 
without slipping we know that: 
 

r
a

=α  

Substitute in equation (3) to obtain: 
 r

aIrf 0s =                                       (4) 

 
From Table 9-1 we have: 
 

2
3
2

0 mrI =  

Substitute for I0 and α in equation 
(4) and solve for fs: 

( ) maf
r
amrrf 3

2
s

2
3
2

s =⇒=           (5) 
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Substitute for fs in equation (1) and 
solve for a: 

θsin5
3 ga =  

 
(b) Find fs using equation (5): ( ) θθ sinsin 5

2
5
3

3
2

s mggmf ==  

 
(c) Solve equation (2) for Fn: 
 

θcosn mgF =  

Use the definition of  fs,max to obtain:  
 

maxsnsmaxs, cosθµµ mgFf ==  

Use the result of part (b) to obtain: maxsmax5
2 cossin θµθ mgmg =  

 
Solve for θmax: ( )s2

51
max tan µθ −=  

 
89 ••   
Picture the Problem The three forces 
acting on the cylinder are the weight of the 
cylinder, the normal force, and the force of 
friction.  Because the weight can be 
assumed to be acting at the center of mass, 
and the normal force acts through the 
center of mass, the only force which exerts 
a torque about the center of mass is the 
frictional force. We can use Newton’s 2nd 
law to find a system of simultaneous 
equations that we can solve for the 
quantities called for in the problem 
statement. 

 

 

 
(a) Apply Newton’s 2nd law in both 
translational and rotational form to 
the cylinder: 

∑ =−= mafmgFx ssinθ ,          (1) 

∑ =−= 0cosn θmgFFy              (2) 

and 

∑ == ατ 0s0 Irf                           (3) 

 
Because the cylinder is rolling 
without slipping we know that: 
 

r
a

=α  

Substitute in equation (3) to obtain: 
 r

aIrf 0s =                                       (4) 

 
From Table 9-1 we have: 
 

2
2
1

0 mrI =  
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Substitute for I0 and α in equation 
(4) and solve for fs: 

( ) maf
r
amrrf 2

1
s

2
2
1

s =⇒=           (5) 

 
Substitute for fs in equation (1) and 
solve for a: 

θsin3
2 ga =  

 
(b) Find fs using equation (5): ( ) θθ sinsin 3

1
3
2

2
1

s mggmf ==  

 
(c) Solve equation (2) for Fn: 
 

θcosn mgF =  

Use the definition of  fs,max to obtain:  
 

maxsnsmaxs, cosθµµ mgFf ==  

Use the result of part (b) to obtain: maxsmax3
1 cossin θµθ mgmg =  

 
Solve for θmax: ( )s

1
max 3tan µθ −=  

 
*90 ••  
Picture the Problem Let the zero of gravitational potential energy be at the elevation 
where the spheres leave the ramp. The distances the spheres will travel are directly 
proportional to their speeds when they leave the ramp. 
 
Express the ratio of the distances 
traveled by the two spheres in terms 
of their speeds when they leave the 
ramp: 
 

v
v'

tv
tv'

L
L'

=
∆
∆

=                               (1) 

Use conservation of mechanical 
energy to find the speed of the 
spheres when they leave the ramp: 
 

0=∆+∆ UK  
or, because Ki = Uf = 0, 

0if =−UK                                    (2) 

Express Kf for the spheres: 

( )

( ) 2
2
1

2
2
12

2
1

2

2
2

2
12

2
1

2
cm2

12
2
1

rottransf

1 mvk

kmvmv
R
vkmRmv

Imv

KKK

+=

+=

+=

+=

+=

ω

 

where k is 2/3 for the spherical shell and 2/5 
for the uniform sphere. 
 

Substitute in equation (2) to obtain: ( ) mgHmvk =+ 2
2
11  



                                                                                                     Rotation 
 

 

683

Solve for v: 

k
gH

v
+

=
1
2

 

 
Substitute in equation (1) to obtain: 

09.1
1
1

1
1

5
2
3
2

=
+
+

=
+
+

=
k'
k

L
L'

 

or 
LL' 09.1=  

 
91 ••  
Picture the Problem Let the subscripts u and h refer to the uniform and thin-walled 
spheres, respectively. Because the cylinders climb to the same height, their kinetic 
energies at the bottom of the incline must be equal. 
 
Express the total kinetic energy of 
the thin-walled cylinder at the 
bottom of the inclined plane: ( ) 2

h2

2
2

h2
12

h2
1

2
h2

12
h2

1
rottransh

vm
r
vrmvm

IvmKKK

=+=

+=+= ω
 

 
Express the total kinetic energy of 
the solid cylinder at the bottom of 
the inclined plane: ( ) 2

u4
3

2

2
2

u2
1

2
12

u2
1

2
u2

12
u2

1
rottransu '

v'm
r
v'rmv'm

IvmKKK

=+=

+=+= ω
 

 
Because the cylinders climb to the 
same height: 

ghmvm

ghmv'm

h
2

h

u
2

u4
3

and
=

=
 

 
Divide the first of these equations 
by the second: ghm

ghm
vm
v'm

h

u
2

h

2
u4

3
=  

 
Simplify to obtain: 

1
4
3

2

2

=
v
v'

 

 
Solve for v′: 

vv'
3
4

=  
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92 ••  
Picture the Problem Let the subscripts s 
and c refer to the solid sphere and thin-
walled cylinder, respectively. Because the 
cylinder and sphere descend from the same 
height, their kinetic energies at the bottom 
of the incline must be equal. The force 
diagram shows the forces acting on the 
solid sphere. We’ll use Newton’s 2nd law to 
relate the accelerations to the angle of the 
incline and use a constant acceleration to 
relate the accelerations to the distances 
traveled down the incline. 

 

  
Apply Newton’s 2nd law to the sphere: 

sssin∑ =−= mafmgFx θ ,         (1) 

∑ =−= 0cosn θmgFFy ,            (2) 

and 

∑ == ατ 0s0 Irf                             (3) 

 
Substitute for I0 and α in equation 
(3) and solve for fs: 
 

( ) s5
2

s
2

5
2

s maf
r
amrrf =⇒=  

Substitute for fs in equation (1) and 
solve for a: 
 

θsin7
5

s ga =  

Proceed as above for the thin-walled 
cylinder to obtain: 
 

θsin2
1

c ga =  

Using a constant-acceleration 
equation, relate the distance traveled 
down the incline to its acceleration 
and the elapsed time: 

( )2
2
1

0 tatvs ∆+∆=∆  

or, because v0 = 0, 
( )2

2
1 tas ∆=∆                                     (4) 

 
Because ∆s is the same for both objects: 2

cc
2
ss tata =  

where  
( ) 76.58.44.2 s

2
s

2
s

2
c ++=+= tttt  

provided tc and ts are in seconds. 
 

Substitute for as and ac to obtain the 
quadratic equation: 
 

2
s7

10
s

2
s 76.58.4 ttt =++  
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Solve for the positive root to obtain: 
 

s3.12s =t  

Substitute in equation (4), simplify, 
and solve for θ : ⎥

⎦

⎤
⎢
⎣

⎡ ∆
= −

2
s

1

5
14sin

gt
sθ  

 
Substitute numerical values and 
evaluate θ : 

( )
( )( )
°=

⎥
⎦

⎤
⎢
⎣

⎡
= −

324.0

s12.3m/s9.815
m314sin 22

1θ
 

 
93 •••  
Picture the Problem The kinetic energy of the wheel is the sum of its translational and 
rotational kinetic energies. Because the wheel is a composite object, we can model its 
moment of inertia by treating the rim as a cylindrical shell and the spokes as rods. 
Express the kinetic energy of the 
wheel: 

2

2

cm2
12

tot2
1

2
cm2

12
tot2

1

rottrans

R
vIvM

IvM

KKK

+=

+=

+=

ω  

where Mtot = Mrim + 4Mspoke 
 

Express the moment of inertia of 
the wheel: ( )

( ) 2
spoke3

4
rim

2
spoke3

12
rim

spokesrimcm

4

RMM

RMRM

III

+=

+=

+=

 

 
Substitute for Icm in the equation 
for K: 

( )[ ]
( )[ ] 2

spoke3
2

rimtot2
1

2

2
2

spoke3
4

rim2
12

tot2
1

vMMM
R
vRMMvMK

++=

++=
 

 
Substitute numerical values and 
evaluate K: 

( ) ( )[ ]( )
J223

m/s6kg1.2kg3kg7.8 2
3
2

2
1

=

++=K
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94 •••  
Picture the Problem Let M represent the 
combined mass of the two disks and their 
connecting rod and I their moment of 
inertia. The object’s initial potential energy 
is transformed into translational and 
rotational kinetic energy as it rolls down 
the incline. The force diagram shows the 
forces acting on this composite object as it 
rolls down the incline. Application of 
Newton’s 2nd law will allow us to derive an 
expression for the acceleration of the 
object.  

 

 

 
(a) Apply Newton’s 2nd law to the 
disks and rod: 

∑ =−= MafMgFx ssinθ ,          (1) 

∑ =−= 0cosn θMgFFy ,            (2) 

and 

∑ == ατ Irf s0                              (3) 

 
Eliminate fs and α between 
equations (1) and (3) and solve for a 
to obtain: 2

sin

r
IM

Mga
+

=
θ

                                   (4) 

 
Express the moment of inertia of the 
two disks plus connecting rod: ( )

2
rod2

12
disk

2
rod2

12
disk2

1

roddisk

2

2

rmRm

rmRm

III

+=

+=

+=

 

 
Substitute numerical values and 
evaluate I: 

( )( ) ( )( )
2

2
2
12

mkg1.80

m0.02kg1m0.3kg20

⋅=

+=I
 

 
Substitute in equation (4) and 
evaluate a: 

( )( )

( )
2

2

2

2

m/s0.0443

m0.02
mkg1.80kg41

sin30m/s9.81kg41

=

⋅
+

°
=a

 

 
(b) Find α from a: 2

2

rad/s2.21
m0.02
m/s0.0443

===
r
aα  
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(c) Express the kinetic energy of 
translation of the disks-plus-rod 
when it has rolled a distance ∆s 
down the incline: 
 

2
2
1

trans MvK =  

Using a constant-acceleration 
equation, relate the speed of the 
disks-plus-rod to their acceleration 
and the distance moved: 
 

savv ∆+= 22
0

2  

or, because v0 = 0, 
sav ∆= 22  

Substitute to obtain: 
( )( )( )

J3.63

m2m/s0.0443kg41 2
trans

=

=

∆= sMaK

 

 
(d) Express the rotational kinetic 
energy of the disks after rolling 2 m 
in terms of their initial potential 
energy and their translational kinetic 
energy: 
 

transtransirot KMghKUK −=−=  

Substitute numerical values and 
evaluate Krot: 

( )( )( )

J399

J3.63
sin30m2m/s9.81kg41 2

rot

=

−
°=K

 

 
95 •••  
Picture the Problem We can express the coordinates of point P as the sum of the 
coordinates of the center of the wheel and the coordinates, relative to the center of the 
wheel, of the tip of the vector 0r

r
. Differentiation of these expressions with respect to time 

will give us the x and y components of the velocity of point P. 
 
(a) Express the coordinates of point 
P relative to the center of the wheel: 

θ

θ

sin
and

cos

0

0

ry

rx

=

=
 

 
Because the coordinates of the 
center of the circle are X and R: 
 

( ) ( )θθ sin,cos, 00 rRrXyx PP ++=  
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(b) Differentiate xP to obtain: ( )

dt
dr

dt
dX

rX
dt
dvPx

θθ

θ

⋅−=

+=

sin

cos

0

0

 

 
Note that 

R
V

dt
dV

dt
dX

−=−== ωθand  so: 
θsin0

R
Vr

VvPx +=  

 
Differentiate yP to obtain: ( )

dt
drrR

dt
dvPy

θθθ ⋅=+= cossin 00  

 

Because
R
V

dt
d

−=−= ωθ
: θcos0

R
VrvPy −=  

 
(c) Calculate rv rr

⋅ : 

( )

( )

0

sincos

cossin

0
0

0
0

=

+⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛ +=

+=⋅

θθ

θθ

rR
R
Vr

r
R
VrV

rvrv yPyxPxrv rr

 

 
(d) Express v in terms of its components: 

2

2
00

2
0

2
0

22

sin21

cossin

R
r

R
r

V

R
Vr

R
Vr

V

vvv yx

++=

⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛ +=

+=

θ

θθ  

 
Express r in terms of its components: 

( ) ( )

2

2
00

2
0

2
0

22

sin21

sincos

R
r

R
r

R

rRr

rrr yx

++=

++=

+=

θ

θθ  

 
Divide v by r to obtain: 

R
V

r
v

==ω  

 



                                                                                                     Rotation 
 

 

689

*96 •••  
Picture the Problem Let the letter B 
identify the block and the letter C the 
cylinder. We can find the accelerations of 
the block and cylinder by applying 
Newton’s 2nd law and solving the resulting 
equations simultaneously.  
 
Apply xx maF =∑ to the block: B' mafF =−                               (1) 

    
Apply xx maF =∑ to the cylinder: CMaf = ,                                   (2) 

 
Apply ατ CMCM I=∑ to the cylinder: 

 

αCMIfR =                                  (3) 

Substitute for ICM in equation (3) 
and solve for f = f ′ to obtain: 
 

αMRf 2
1=                                 (4) 

Relate the acceleration of the block 
to the acceleration of the cylinder: 

CBBC aaa +=  

or, because aCB =  −Rα is the acceleration 
of the cylinder relative to the block, 

αRaa −= BC  

and 
CB aaR −=α                             (5) 

Equate equations (2) and (4) and 
substitute from (5) to obtain: 
 

CB 3aa =  

Substitute equation (4) in equation (1) 
and substitute for aC to obtain: 
 

BB3
1 maMaF =−  

Solve for aB: 
mM

Fa
3

3
B +

=  

 
97 •••  
Picture the Problem Let the letter B 
identify the block and the letter C the 
cylinder. In this problem, as in Problem 97, 
we can find the accelerations of the block 
and cylinder by applying Newton’s 2nd law 
and solving the resulting equations 
simultaneously. 
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Apply xx maF =∑ to the block: BmafF =−                                (1) 

 
Apply xx maF =∑ to the cylinder: CMaf = ,                                    (2) 

 
Apply ατ CMCM I=∑ to the cylinder: 

 

αCMIfR =                                    (3) 

Substitute for ICM in equation (3) 
and solve for f: 
 

αMRf 2
1=                                  (4) 

Relate the acceleration of the block 
to the acceleration of the cylinder: 

CBBC aaa +=  

or, because aCB = −Rα, 
αRaa −= BC  

and 
CB aaR −=α                               (5) 

 
 (a) Solve for α and substitute for aB 
to obtain: 

( )mMR
F

R
a

R
aa

R
aa

3
2

23 CCCCB

+
=

=
−

=
−

=α
 

 
 

direction. ckwisecounterclo the
in  is  , thereforeand,  torquethat the

evident isit  diagram force  theFrom
α  

 
(b) Equate equations (2) and (4) and 
substitute (5) to obtain: 
 

CB 3aa =  

From equations (1) and (4) we 
obtain: 
 

BB3
1 maMaF =−  

Solve for aB: 
mM

Fa
3

3
B +

=  

 
Substitute to obtain the linear 
acceleration of the cylinder relative 
to the table: 
 

mM
Faa B 33

1
C +

==  
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(c) Express the acceleration of the 
cylinder relative to the block: 

mM
F

aaaaaa

3
2

23 CCCBCCB

+
−=

−=−=−=
 

 
98 •••  
Picture the Problem Let the system 
include the earth, the cylinder, and the 
block. Then F

r
is an external force that 

changes the energy of the system by doing 
work on it. We can find the kinetic energy 
of the block from its speed when it has 
traveled a distance d. We can find the 
kinetic energy of the cylinder from the sum 
of its translational and rotational kinetic 
energies. In part (c) we can add the kinetic 
energies of the block and the cylinder to 
show that their sum is the work done by 
F
r

in displacing the system a distance d. 

 

 

 
(a) Express the kinetic energy of the block: 2

B2
1

blockonB mvWK ==     

 
Using a constant-acceleration 
equation, relate the velocity of the 
block to its acceleration and the 
distance traveled: 
 

davv B
2
0

2
B 2+=  

or, because the block starts from rest, 
dav B

2
B 2=  

Substitute to obtain: 
 

( ) dmadamK BB2
1

B 2 ==                   (1) 

Apply xx maF =∑ to the block: BmafF =−                                     (2)        

 
Apply xx maF =∑ to the cylinder: CMaf = ,                                          (3)        

   
Apply ατ CMCM I=∑ to the 

cylinder: 
 

αCMIfR =                                          (4) 

Substitute for ICM in equation (4) 
and solve for f: 
 

αMRf 2
1=                                         (5) 

Relate the acceleration of the block 
to the acceleration of the cylinder: 

CBBC aaa +=  

or, because aCB =  −Rα, 
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αRaa −= BC  

and 
CB aaR −=α                                      (6) 

 
Equate equations (3) and (5) and 
substitute in (6) to obtain: 
 

CB 3aa =  

Substitute equation (5) in equation 
(2) and use CB 3aa = to obtain: 

 

BC maMaF =−  

or 
BB3

1 maMaF =−  

 
Solve for aB: 

Mm
Fa

3
1B +

=  

 
Substitute in equation (1) to obtain: 
 Mm

mFdK
3
1B +

=  

 
(b) Express the total kinetic energy of 
the cylinder: 

2

2
CB

CM2
12

C2
1

2
CM2

12
C2

1
rottranscyl

R
vIMv

IMvKKK

+=

+=+= ω
(7) 

where BCCB vvv −= . 

 
In part (a) it was established that:  CB 3aa =  

 
Integrate both sides of the equation 
with respect to time to obtain: 
 

constant3 CB += vv  

where the constant of integration is 
determined by the initial conditions that vC 
= 0 when vB = 0. 
 

Substitute the initial conditions to obtain: 0constant =  
and 

CB 3vv =  

 
Substitute in our expression for vCB 
to obtain: 
 

CCCBCCB 23 vvvvvv −=−=−=  

Substitute for ICM and vCB in 
equation (7) to obtain: ( )( )

2
C2

3

2

2
C2

2
1

2
12

C2
1

cyl
2

Mv
R
vMRMvK

=

−
+=

      (8) 
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Because B3
1

C vv = : 2
B9

12
C vv =  

 
It part (a) it was established that: dav B

2
B 2=  

and 

Mm
Fa

3
1B +

=  

 
Substitute to obtain: 
 ( )

( )Mm
Fd

d
Mm

Fdav

3
1

3
19

2
B9

12
C

9
2

2

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

==
 

 
Substitute in equation (8) to obtain: 

( )

( )Mm
MFd

Mm
FdMK

3
1

3
12

3
cyl

3

9
2

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

 

 
(c) Express the total kinetic energy 
of the system and simplify to obtain: 

( )
( )
( ) FdFd

Mm
Mm

Mm
MFd

Mm
mFd

KKK

=
+
+

=

+
+

+
=

+=

3
1

3
1

3
1

cylBtot

3
3

3
 

 
99 ••  
Picture the Problem The forces 
responsible for the rotation of the gears are 
shown in the diagram to the right. The 
forces acting through the centers of mass of 
the two gears have been omitted because 
they produce no torque. We can apply 
Newton’s 2nd law in rotational form to 
obtain the equations of motion of the gears 
and the not slipping condition to relate 
their angular accelerations. 

 

 
 
(a) Apply ατ I=∑ to the gears to 
obtain their equations of motion: 
 

111mN 2 αIFR =−⋅                     (1) 
and 

222 αIFR =                                  (2) 
where F is the force keeping the gears from 
slipping with respect to each other.   
 

Because the gears do not slip 
2211 αα RR =  
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relative to each other, the tangential 
accelerations of the points where 
they are in contact must be the 
same: 

or 

12
1

1
2

1
2 ααα ==

R
R

                         (3) 

 
Divide equation (1) by R1 to obtain: 

1
1

1

1

mN 2 α
R
IF

R
=−

⋅
 

 
Divide equation (2) by R2 to obtain: 

2
2

2 α
R
IF =  

 
Add these equations to obtain: 

2
2

2
1

1

1

1

mN 2 αα
R
I

R
I

R
+=

⋅
 

 
Use equation (3) to eliminate α2: 

1
2

2
1

1

1

1 2
mN 2 αα

R
I

R
I

R
+=

⋅
 

 
Solve for α1 to obtain: 

2
2

1
1

1

2

mN2

I
R
RI +

⋅
=α  

 
Substitute numerical values and 
evaluate α1: 

( ) ( )
2

22
1

rad/s400.0

mkg16
m12
m0.5mkg1

mN2

=

⋅+⋅

⋅
=α

 

 
Use equation (3) to evaluate α2: ( ) 22

2
1

2 rad/s0.200rad/s0.400 ==α  

 
(b) To counterbalance the 2-N·m 
torque, a counter torque of 2 N·m 
must be applied to the first gear. Use 
equation (2) with α1 = 0 to find F:    

0mN 2 1 =−⋅ FR  
and 

N4.00
m0.5
mN2mN2

1

=
⋅

=
⋅

=
R

F  
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*100 ••   
Picture the Problem Let r be the radius of 
the marble, m its mass, R the radius of the 
large sphere, and v the speed of the marble 
when it breaks contact with the sphere. The 
numeral 1 denotes the initial configuration 
of the sphere-marble system and the 
numeral 2 is configuration as the marble 
separates from the sphere. We can use 
conservation of energy to relate the initial 
potential energy of the marble to the sum 
of its translational and rotational kinetic 
energies as it leaves the sphere. Our choice 
of the zero of potential energy is shown on 
the diagram. 

 

 
(a) Apply conservation of energy: 
 

0=∆+∆ KU  
or 

01212 =−+− KKUU  
 

Because U2 = K1 = 0: ( )[ ]
0

cos
2

2
12

2
1 =++

+−+−

ω

θ

Imv
rRrRmg

 

or 
( )( )[ ]

0
cos1

2
2
12

2
1 =++

−+−

ω

θ

Imv
rRmg

 

 
Use the rolling-without-slipping 
condition to eliminate ω: 
 

( )( )[ ]

0

cos1

2

2

2
12

2
1 =++

−+−

r
vImv

rRmg θ
 

 
From Table 9-1 we have: 2

5
2 mrI =  

 
Substitute to obtain: ( )( )[ ]

( ) 0

cos1

2

2
2

5
2

2
12

2
1 =++

−+−

r
vmrmv

rRmg θ
 

or 
( )( )[ ]

0
cos1

2
5
12

2
1 =++

−+−

mvmv
rRmg θ

 

 
Solve for v2 to obtain: ( )( )θcos1

7
102 −+= rRgv  

 
Apply rr maF =∑ to the marble as 
it separates from the sphere: 
 

rR
vmmg
+

=
2

cosθ  

or 
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( )rRg
v

+
=

2

cosθ  

 
Substitute for v2: 

( ) ( )( )

( )⎥⎦
⎤

⎢⎣
⎡ −=

⎥⎦
⎤

⎢⎣
⎡ −+

+
=

θ

θθ

cos1
7

10

cos1
7

101cos rRg
rRg

 

 
Solve for and evaluate θ : 

°=⎟
⎠
⎞

⎜
⎝
⎛= − 0.54
17
10cos 1θ  

 

(b)

sphere.  theleavesit  before slippingwithout 
 rolling ball  thekeep  toneeded force  than theless bemust friction 

of force  that themeaning sphere,  theleaves ball  theepoint wher
 at the 0  todecreases force normal  theHowever,  marble. on the force

normal by the multiplied  than less always isfriction  of force The sµ

 

 
Rolling With Slipping  
 
101 •  
Picture the Problem Part (a) of this problem is identical to Example 9-16. In part (b) we 
can use the definitions of translational and rotational kinetic energy to find the ratio of the 
final and initial kinetic energies. 
 
(a) From Example 9-16: 

g
v

s
k

2
0

1 49
12

µ
= , 

g
v

t
k

0
1 7

2
µ

= , and 

01k2
5

1 7
5 vgtv == µ                 

 
(b) When the ball rolls without 
slipping, v1 = rω. Express the final 
kinetic energy of the ball: 

( )
2
014

52
110

7

2

2
12

5
2

2
12

12
1

2
2
12

12
1

rottransf

MvMv
r
vMrMv

IMv

KKK

==

+=

+=

+=

ω
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Express the ratio of the final and 
initial kinetic energies: 7

5
2
02

1

2
014

5

i

f ==
Mv
Mv

K
K

 

 
(c) Substitute in the expressions in 
(a) to obtain: 

( )
( )( ) m6.26

m/s9.810.06
m/s8

49
12

2

2

1 ==s  

 
 

( )( ) s3.88
m/s9.810.06

m/s8
7
2

21 ==t  

 
 ( ) m/s5.71m/s8

7
5

1 ==v  

  
*102 ••  
Picture the Problem The cue stick’s blow delivers a rotational impulse as well as a 
translational impulse to the cue ball. The rotational impulse changes the angular 
momentum of the ball and the translational impulse changes its linear momentum. 
 
Express the rotational impulse Prot 
as the product of the average torque 
and the time during which the 
rotational impulse acts: 
 

tP ∆= avrot τ  

Express the average torque it 
produces about an axis through the 
center of the ball: 
 

( ) ( )rhPrhP −=−= 00av sinθτ  

where θ  (= 90°) is the angle between F 
and the lever arm h − r. 
 

Substitute in the expression for Prot 
to obtain: 
 

( ) ( )( )
( ) 0trams

00rot

ωILrhP
rhtPtrhPP

=∆=−=
−∆=∆−=

 

 
The translational impulse is also 
given by: 
 

00trans mvptPP =∆=∆=  

Substitute to obtain: ( ) 0
2

5
2

0 ωmrrhmv =−  

 
Solve for ω0: ( )

2
0

0 2
5

r
rhv −

=ω  
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103 ••  
Picture the Problem The angular velocity 
of the rotating sphere will decrease until 
the condition for rolling without slipping is 
satisfied and then it will begin to roll. The 
force diagram shows the forces acting on 
the sphere. We can apply Newton’s 2nd law 
to the sphere and use the condition for 
rolling without slipping to find the speed of 
the center of mass when the sphere begins 
to roll without slipping.   
 
Relate the velocity of the sphere 
when it begins to roll to its 
acceleration and the elapsed time: 
 

tav ∆=                                           (1) 

Apply Newton’s 2nd law to the 
sphere: 

∑ == mafFx k  ,                        (2) 

∑ =−= 0n mgFFy ,                  (3) 

and 

∑ == ατ 0k0 Irf                         (4) 

 
Using the definition of fk and Fn 
from equation (3), substitute in 
equation (2) and solve for a: 
 

ga kµ=  

Substitute in equation (1) to obtain: tgtav ∆=∆= kµ                           (5) 

 
Solve for α in equation (4): 

r
g

mr
mar

I
rf k

2
5
2

0

k

2
5 µα ===  

 
Express the angular speed of the 
sphere when it has been moving for 
a time ∆t: 
 

t
r
gt ∆−=∆−=

2
5 k

00
µωαωω      (6) 

 

Express the condition that the 
sphere rolls without slipping: 
 

ωrv =  

Substitute from equations (5) and 
(6) and solve for the elapsed time 
until the sphere begins to roll: 

g
r

t
k

0

7
2

µ
ω

=∆  
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Use equation (4) to find v when the 
sphere begins to roll: 7

2
7
2 0

k

k0
k

ω
µ

µωµ r
g

grtgv ==∆=  

 
104 ••  
Picture the Problem The sharp force 
delivers a rotational impulse as well as a 
translational impulse to the ball. The 
rotational impulse changes the angular 
momentum of the ball and the translational 
impulse changes its linear momentum. In 
parts (c) and (d) we can apply Newton’s 2nd 
law to the ball to obtain equations 
describing both the translational and 
rotational motion of the ball. We can then 
solve these equations to find the constant 
accelerations that allow us to apply 
constant-acceleration equations to find the 
velocity of the ball when it begins to roll 
and its sliding time.   

 
 

 

 
(a) Relate the translational impulse 
delivered to the ball to its change in 
its momentum: 
 

0avtrans mvptFP =∆=∆=  

Solve for v0: 
m

tFv ∆
= av

0  

 
Substitute numerical values and 
evaluate v0: 

( )( ) m/s200
kg0.02

s102kN20 4

0 =
×

=
−

v  

 
(b) Express the rotational impulse 
Prot as the product of the average 
torque and the time during which 
the rotational impulse acts: 
 

tP ∆= avrot τ  

Letting h be the height at which the 
impulsive force is delivered, express 
the average torque it produces about 
an axis through the center of the ball: 
 

θτ sinav lF=  

where θ is the angle between F and the 
lever arm l . 

Substitute h − r for l  and 90° for θ  ( )rhF −=avτ  
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to obtain: 
 
Substitute in the expression for Prot 
to obtain: 
 

( ) trhFP ∆−=rot  

Because Ptrans = F∆t: 
 

( )
0

2
5
2

0transrot

ω

ω

mr

ILrhPP

=

=∆=−=
 

 
Express the translational impulse 
delivered to the cue ball: 
 

00trans mvptPP =∆=∆=  

Substitute for Ptrans to obtain: 
 

00
2

5
2 mvmr =ω  

Solve for ω0: ( )
2

0
0 2

5
r

rhv −
=ω  

 
Substitute numerical values and 
evaluate ω0: 

( )( )
( )

rad/s8000

m.052
m0.05m0.09m/s2005

20

=

−
=ω

 

 
(c) and (d) Relate the velocity of the 
ball when it begins to roll to its 
acceleration and the elapsed time: 
 

tav ∆=                                       (1) 

Apply Newton’s 2nd law to the ball: ∑ == mafFx k ,                       (2) 

∑ =−= 0n mgFFy ,                 (3) 

and 

∑ == ατ 0k0 Irf                       (4) 

 
Using the definition of fk and Fn 
from equation (3), substitute in 
equation (2) and solve for a: 
 

ga kµ=  

Substitute in equation (1) to obtain: tgtav ∆=∆= kµ                          (5) 

 
Solve for α in equation (4): 

r
g

mr
mar

I
rf k

2
5
2

0

k

2
5 µα ===  
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Express the angular speed of the ball 
when it has been moving for a time 
∆t: 
 

t
r
gt ∆−=∆−=

2
5 k

00
µωαωω     (6) 

Express the speed of the ball when it 
has been moving for a time ∆t: 
 

tgvv ∆+= k0 µ                              (7) 

Express the condition that the ball 
rolls without slipping: 
 

ωrv =  

Substitute from equations (6) and 
(7) and solve for the elapsed time 
until the ball begins to roll: 
 

g
vrt

k

00

7
2

µ
ω −

=∆  

 

Substitute numerical values and 
evaluate ∆t: 

( )( )
( )( )

s11.6

m/s9.810.5
m/s200rad/s8000m0.05

7
2

2

=

⎥
⎦

⎤
⎢
⎣

⎡ −
=∆t

 

 
Use equation (4) to express v when 
the ball begins to roll: 
 

tgvv ∆+= k0 µ  

Substitute numerical values and 
evaluate v: 

( )( )( )
m/s572

s11.6m/s9.810.5m/s200 2

=

+=v
 

 
105 ••  
Picture the Problem Because the impulse is applied through the center of mass,  
ω0 = 0. We can use the results of Example 9-16 to find the rolling time without slipping, 
the distance traveled to rolling without slipping, and the velocity of the ball once it begins 
to roll without slipping. 
 
(a) From Example 9-16 we have: 

g
vt
k

0
1 7

2
µ

=  

 
Substitute numerical values and 
evaluate t1: 
 

( )( ) s0.194
m/s9.810.6

m/s4
7
2

21 ==t  

(b) From Example 9-16 we have: 
g

vs
k

2
0

1 49
12

µ
=  
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Substitute numerical values and 
evaluate s1: 
 

( )
( )( ) m0.666

m/s9.810.6
m/s4

49
12

2

2

1 ==s  

(c) From Example 9-16 we have: 
01 7

5 vv =  

 
Substitute numerical values and 
evaluate v1: 

( ) m/s2.86m/s4
7
5

1 ==v  

 
106 •• 
Picture the Problem Because the 
impulsive force is applied below the center 
line, the spin is backward, i.e., the ball will 
slow down. We’ll use the impulse-
momentum theorem and Newton’s 2nd law 
to find the linear and rotational velocities 
and accelerations of the ball and constant-
acceleration equations to relate these 
quantities to each other and to the elapsed 
time to rolling without slipping.  
 
(a) Express the rotational impulse 
delivered to the ball: 

( ) 0
2

5
2

0cm00rot 3
2

ω

ω

mR

IRmvrmvP

=

===
 

 
Solve for ω0: 

R
v0

0 3
5

=ω  

 
(b) Apply Newton’s 2nd law to the 
ball to obtain: 

∑ == ατ cmk0 IRf ,                     (1) 

∑ =−= 0n mgFFy ,                   (2) 

and 

∑ =−= mafFx k                         (3) 

 
Using the definition of fk and Fn 

from equation (2), solve for α: R
g

mR
mgR

I
mgR

2
5 k

2
5
2

k

cm

k µµµα ===  

 
Using a constant-acceleration 
equation, relate the angular speed of 
the ball to its acceleration: 

t
R

gt ∆+=∆+=
2

5 k
00

µωαωω  
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Using the definition of fk and Fn 

from equation (2), solve equation 
(3) for a: 
 

ga kµ−=  

Using a constant-acceleration 
equation, relate the speed of the ball 
to its acceleration: 
 

tgvtavv ∆−=∆+= k00 µ                (4) 

Impose the condition for rolling 
without slipping to obtain: 

tgvt
R

gR ∆−=⎟
⎠
⎞

⎜
⎝
⎛ ∆+ k0

k
0 2

5
µ

µ
ω  

 
Solve for ∆t: 

g
v

t
k

0

21
16

µ
=∆  

 
Substitute in equation (4) to obtain: 

0

0
k

0
k0

238.0

21
5

21
16

v

vgvgvv

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

µ
µ

 

 
(c) Express the initial kinetic energy 
of the ball: 

( )
2
0

2
0

2
02

5
2

2
12

02
1

2
02

12
02

1
rottransi

056.1

18
19

3
5

mv

mv
R
vmRmv

ImvKKK

=

=⎟
⎠
⎞

⎜
⎝
⎛+=

+=+= ω

 

(d) Express the work done by friction 
in terms of the initial and final kinetic 
energies of the ball: 
 

fifr KKW −=  

Express the final kinetic energy of the 
ball: 

( )
( ) 2

0
2

010
7

2
10
7

2

2
2

5
2

2
12

2
1

2
cm2

12
2
1

f

0397.0238.0 mvvm

mv
R
vmRmv

ImvK

==

=+=

+= ω

 

 
Substitute to find Wfr: 

2
0

2
0

2
0fr

016.1

0397.0056.1

mv

mvmvW

=

−=
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107 ••  
Picture the Problem The figure shows the 
forces acting on the bowling during the 
sliding phase of its motion. Because the 
ball has a forward spin, the friction force is 
in the direction of motion and will cause 
the ball’s translational speed to increase. 
We’ll apply Newton’s 2nd law to find the 
linear and rotational velocities and 
accelerations of the ball and constant-
acceleration equations to relate these 
quantities to each other and to the elapsed 
time to rolling without slipping. 

 

 

 
(a) and (b) Relate the velocity of the 
ball when it begins to roll to its 
acceleration and the elapsed time: 
 

tavv ∆+= 0                                  (1) 

Apply Newton’s 2nd law to the ball: ∑ == mafFx k ,                         (2) 

∑ =−= 0n mgFFy ,                   (3) 

and 

∑ == ατ 0k0 IRf                        (4) 

 
Using the definition of fk and Fn 
from equation (3), substitute in 
equation (2) and solve for a: 
 

ga kµ=  

Substitute in equation (1) to obtain: tgvtavv ∆+=∆+= k00 µ           (5) 

 
Solve for α in equation (4): 

R
g

mR
maR

I
Rf k

2
5
2

0

k

2
5 µα ===  

 
Relate the angular speed of the ball 
to its acceleration: 

t
R

g
∆−= k

0 2
5 µ

ωω  

 
Apply the condition for rolling 
without slipping: 

⎟
⎠
⎞

⎜
⎝
⎛ ∆−=

⎟
⎠
⎞

⎜
⎝
⎛ ∆−==

t
R

g
R
vR

t
R

gRRv

k0

k
0

2
53

2
5

µ

µωω
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∴ tgvv ∆−= k0 2
53 µ                    (6) 

 
Equate equations (5) and (6) and 
solve ∆t: g

v
t

k

0

7
4

µ
=∆     

 
Substitute for ∆t in equation (6) to 
obtain: 00 57.1

7
11 vvv ==  

 
(c) Relate ∆x to the average speed of 
the ball and the time it moves before 
beginning to roll without slipping: 

( )

g
v

g
v

g
vvv

tvvtvx

k

2
0

k

2
0

k

0
002

1

02
1

av

735.0
49
36

7
4

7
11

µµ

µ

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=

∆+=∆=∆

 

 
*108 ••  
Picture the Problem The figure shows the 
forces acting on the cylinder during the 
sliding phase of its motion. The friction 
force will cause the cylinder’s translational 
speed to decrease and eventually satisfy the 
condition for rolling without slipping. 
We’ll use Newton’s 2nd law to find the 
linear and rotational velocities and 
accelerations of the ball and constant-
acceleration equations to relate these 
quantities to each other and to the distance 
traveled and the elapsed time until the 
satisfaction of the condition for rolling 
without slipping. 

 
 

 

 
(a) Apply Newton’s 2nd law to the 
cylinder: 

∑ =−= MafFx k ,                 (1) 

∑ =−= 0n MgFFy ,             (2) 

and 

∑ == ατ 0k0 IRf                   (3) 

 
Use  fk = µkFn to eliminate Fn 
between equations (1) and (2) and 
solve for a: 

ga kµ−=  
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Using a constant-acceleration 
equation, relate the speed of the 
cylinder to its acceleration and the 
elapsed time: 
 

tgvtavv ∆−=∆+= k00 µ  

Similarly, eliminate fk between 
equations (2) and (3) and solve for 
α: 
 

R
gk2µ

α =  

Using a constant-acceleration 
equation, relate the angular speed of 
the cylinder to its acceleration and 
the elapsed time: 
 

t
R

gt ∆=∆+= k
0

2µαωω  

Apply the condition for rolling 
without slipping: 

tg

t
R

gRRtgvv

∆=

⎟
⎠
⎞

⎜
⎝
⎛ ∆==∆−=

k

k
k0

2

2

µ

µωµ
 

 
Solve for ∆t: 

g
v

t
k

0

3µ
=∆  

 
Substitute for ∆t in the expression 
for v: 0

k

0
k0 3

2
3

v
g

vgvv =−=
µ

µ  

 
(b) Relate the distance the cylinder 
travels to its average speed and the 
elapsed time: 

( )

g
v

g
vvvtvx

k

2
0

k

0
03

2
02

1
av

18
5

3

µ

µ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=∆=∆

 

 
(c) Express the ratio of the energy 
dissipated in friction to the cylinder’s 
initial mechanical energy: 
 

i

fi

i

fr

K
KK

K
W −

=  

Express the kinetic energy of the 
cylinder as it begins to roll without 
slipping: ( )

2
0

2

0
2

2

2
2

2
1

2
12

2
1

2
cm2

12
2
1

f

3
1

3
2

4
3

4
3 MvvMMv

R
vMRMv

IMvK

=⎟
⎠
⎞

⎜
⎝
⎛==

+=

+= ω
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Substitute for Ki and Kf and simplify 
to obtain: 3

1
2
02

1

2
03

12
02

1

i

fr =
−

=
Mv

MvMv
K
W

 

 
109 ••  
Picture the Problem The forces acting on 
the ball as it slides across the floor are its 
weight ,mg

r
 the normal force nF

r
exerted by 

the floor, and the friction force .f
v

Because 
the weight and normal force act through 
the center of mass of the ball and are equal 
in magnitude, the friction force is the net 
(decelerating) force. We can apply 
Newton’s 2nd law in both translational and 
rotational form to obtain a set of equations 
that we can solve for the acceleration of the 
ball. Once we have determined the ball’s 
acceleration, we can use constant-
acceleration equations to obtain its velocity 
when it begins to roll without slipping. 

 
 

 

 
(a) Apply aF rr

m=∑ to the ball: ∑ =−= mafFx                          (1) 
and 

∑ =−= 0n mgFFy                     (2) 
 

From the definition of the 
coefficient of kinetic friction we 
have: 
 

nk Ff µ=                                       (3) 

Solve equation (2) for Fn: mgF =n  
 

Substitute in equation (3) to obtain: mgf kµ=  
 

Substitute in equation (1) to obtain: mamg =− kµ  
or 

ga kµ−=  
 

Apply ατ I=∑ to the ball: αIfr =  
 

Solve for α to obtain: 
I
mgr

I
fr kµα ==  

 
Assuming that the coefficient of 
kinetic friction is constant*, we 
can use constant-acceleration 
equations to describe how long 
it will take the ball to begin 

tgtavv k ∆−=∆=− µf                 (4) 
and 

t
I
gmrk ∆=

µωf                            (5) 
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rolling without slipping: 
 

 

Once rolling without slipping 
has been established, we also 
have: r

vf
f =ω                                        (6) 

 
Equate equations (5) and (6): 

t
I
gmr

r
v k ∆=

µf  

 
Solve for ∆t: 

2
f

gmr
Ivt

kµ
=∆  

 
Substitute in equation (4) to obtain: 

f2

2
f

f

v
mr

I
gmr

Ivgvv
k

k

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−

µ
µ

 

 
Solve for vf: 

v

mr
Iv f

21

1

+
=  

 
(b) Express the total kinetic 
energy of the ball: 

2
f

2
f 2

1
2
1 ωImvK +=  

 
Because the ball is now rolling without slipping, fωrv = and: 
 

( )

⎟
⎠
⎞

⎜
⎝
⎛

+
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+
+=⎟

⎠
⎞

⎜
⎝
⎛

+
+⎟

⎠
⎞

⎜
⎝
⎛

+
=

2
2

2

2
22

2

22

2
2

2

2

/1
1

2
1

/1
1/1

2
1

/1
1

2
1

/1
1

2
1

mrI
mv

mrI
mrImv

r
v

mrI
Iv

mrI
mK

 

 
* Remarks: This assumption is not necessary.  One can use the impulse-momentum 
theorem and the related theorem for torque and change in angular momentum to 
prove that the result holds for an arbitrary frictional force acting on the ball, so long 
as the ball moves along a straight line and the force is directed opposite to the 
direction of motion of the ball. 
 
General Problems 
 
*110 •  
Picture the Problem The angular velocity of an object is the ratio of the number of 
revolutions it makes in a given period of time to the elapsed time. 
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The moon’s angular velocity is: 

rad/s102.66

s3600
h1

h24
day1

rev
rad2

days27.3
rev1
days27.3

rev1

6−×=

×××=

=

π

ω

 

 
111 •  
Picture the Problem The moment of inertia of the hoop, about an axis perpendicular to 
the plane of the hoop and through its edge, is related to its moment of inertia with respect 
to an axis through its center of mass by the parallel axis theorem. 
 
Apply the parallel axis theorem:  2222

cm 2mRMRMRMhII =+=+=

 
 
112 ••  
Picture the Problem The force you exert on the rope results in a net torque that 
accelerates the merry-go-round. The moment of inertia of the merry-go-round, its angular 
acceleration, and the torque you apply are related through Newton’s 2nd law. 
 
(a) Using a constant-acceleration 
equation, relate the angular 
displacement of the merry-go-round 
to its angular acceleration and 
acceleration time: 
 

( )2
2
1

0 tt ∆+∆=∆ αωθ  

or, because ω0 = 0, 
( )2

2
1 t∆=∆ αθ  

Solve for and evaluate α: 
( )

( )
( )

2
22 rad/s0873.0

s12
rad222

==
∆
∆

=
πθα

t
 
 

(b) Use the definition of torque to obtain: ( )( ) mN572m2.2N260 ⋅=== Frτ  

 
(c) Use Newton’s 2nd law to find the 
moment of inertia of the merry-go-
round: 23

2
net

mkg106.55

rad/s0.0873
mN572

⋅×=

⋅
==

α
τI
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113 •  
Picture the Problem Because there are no 
horizontal forces acting on the stick, the 
center of mass of the stick will not move in 
the horizontal direction. Choose a 
coordinate system in which the origin is at 
the horizontal position of the center of 
mass. The diagram shows the stick in its 
initial raised position and when it has fallen 
to the ice.  
 
Express the displacement of the right 
end of the stick ∆x as the difference 
between the position coordinates x2 
and x2: 
 

12 xxx −=∆  

Using trigonometry, find the initial 
coordinate of the right end of the 
stick: 
 

( ) m0.866cos30m1cos1 =°== θlx  

Because the center of mass has not 
moved horizontally: 
 

m12 == lx  

Substitute to find the displacement of 
the right end of the stick: 

m0.134m0.866m1 =−=∆x  

 
114 ••  
Picture the Problem The force applied to the string results in a torque about the center 
of mass of the disk that accelerates it. We can relate these quantities to the moment of 
inertia of the disk through Newton’s 2nd law and then use constant-acceleration equations 
to find the disk’s angular velocity the angle through which it has rotated in a given period 
of time. The disk’s rotational kinetic energy can be found from its definition. 
 
(a) Use the definition of torque to 
obtain: 

( )( ) mN2.40m0.12N20 ⋅==≡ FRτ  

 
(b) Use Newton’s 2nd law to express 
the angular acceleration of the disk 
in terms of the net torque acting on 
it and its moment of inertia: 
 

2
2
1

netnet

MRI
ττα ==  

 

Substitute numerical values and 
evaluate α: 

( )
( )( )

2
2 rad/s66.7

m0.12kg5
mN2.402

=
⋅

=α  

 
(c) Using a constant-acceleration 
equation, relate the angular velocity 
of the disk to its angular 

t∆+= αωω 0  

or, because ω0 = 0, 
t∆= αω  
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acceleration and the elapsed time: 
 

 

Substitute numerical values and 
evaluate ω: 
 

( )( ) rad/s333s5rad/s66.7 2 ==ω  

(d) Use the definition of rotational 
kinetic energy to obtain: 
 

( ) 22
2
1

2
12

2
1

rot ωω MRIK ==  

 

Substitute numerical values and 
evaluate Krot: 

( )( ) ( )
kJ2.00

rad/s333m0.12kg5 22
4
1

rot

=

=K
 

 
(e) Using a constant-acceleration 
equation, relate the angle through 
which the disk turns to its angular 
acceleration and the elapsed time: 

( )2
2
1

0 tt ∆+∆=∆ αωθ  

or, because ω0 = 0, 
( )2

2
1 t∆=∆ αθ  

 
Substitute numerical values and 
evaluate ∆θ : 
 

( )( ) rad834s5rad/s66.7 22
2
1 ==∆θ  

(f) Express K in terms of τ and θ : ( ) ( )

θτ

ατα
α
τω

∆=

∆=∆⎟
⎠
⎞

⎜
⎝
⎛== 2

2
12

2
12

2
1 ttIK

 

 
115 ••   
Picture the Problem The diagram shows 
the rod in its initial horizontal position and 
then, later, as it swings through its vertical 
position. The center of mass is denoted by 
the numerals 0 and 1. Let the length of the 
rod be represented by L and its mass by m. 
We can use Newton’s 2nd law in rotational 
form to find, first, the angular acceleration 
of the rod and then, from 
α, the acceleration of any point on the rod. 
We can use conservation of energy to find 
the angular velocity of the center of mass 
of the rod when it is vertical and then use 
this value to find its linear velocity. 

 
 

 

  
(a) Relate the acceleration of the 
center of the rod to the angular 

αα
2
La == l  
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acceleration of the rod: 
 
Use Newton’s 2nd law to relate the 
torque about the suspension point of 
the rod (exerted by the weight of the 
rod) to the rod’s angular 
acceleration: 
 

L
g

ML

LMg

I 2
32

2
3
1

===
τα  

 

Substitute numerical values and 
evaluate α: 

( )
( )

2
2

rad/s18.4
m0.82

m/s9.813
==α  

 
Substitute numerical values and 
evaluate a: 

( )( ) 22
2
1 m/s7.36rad/s18.4m0.8 ==a  

 
(b) Relate the acceleration of the 
end of the rod to α: 

( )( )
2

2
end

m/s14.7

rad/s18.4m0.8

=

== αLa
 

 
(c) Relate the linear velocity of the 
center of mass of the rod to its 
angular velocity as it passes through 
the vertical: 
 

Lhv ωω 2
1=∆=  

Use conservation of energy to relate 
the changes in the kinetic and 
potential energies of the rod as it 
swings from its initial horizontal 
orientation through its vertical 
orientation: 
 

00101 =−+−=∆+∆ UUKKUK  

or, because K0 = U1 = 0, 
001 =−UK  

Substitute to obtain: 
 

hmgI P ∆=2
2
1 ω  

Substitute for ∆h and solve for ω: 

L
g3

=ω  

 
Substitute to obtain: 
 gL

L
gLv 33

2
1

2
1 ==  

 
Substitute numerical values and evaluate v: ( )( ) m/s2.43m0.8m/s9.813 2

2
1 ==v  
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116 ••    
Picture the Problem Let the zero of gravitational potential energy be at the bottom of 
the track. The initial potential energy of the marble is transformed into translational and 
rotational kinetic energy as it rolls down the track to its lowest point and then, because 
the portion of the track to the right is frictionless, into translational kinetic energy and, 
eventually, into gravitational potential energy. 
 
Using conservation of energy, relate 
h2 to the kinetic energy of the 
marble at the bottom of the track: 
 

0=∆+∆ UK  
or, because Kf = Ui = 0, 

0fi =+− UK  

Substitute for Ki and Uf to obtain: 02
2

2
1 =−− MghMv  

 
Solve for h2: 

g
vh
2

2

2 =                           (1) 

 
Using conservation of energy, relate 
h1 to the kinetic energy of the 
marble at the bottom of the track: 

0=∆+∆ UK  
or, because Ki = Uf = 0, 

0if =−UK  

 
Substitute for Kf and Ui to obtain: 01

2
2
12

2
1 =−+ MghIMv ω  

 
Substitute for I and solve for v2 to 
obtain: 

17
102 ghv =  

 
Substitute in equation (1) to obtain: 

17
517

10

2 2
h

g
gh

h ==  

 
*117 ••    
Picture the Problem To stop the wheel, the tangential force will have to do an amount of 
work equal to the initial rotational kinetic energy of the wheel. We can find the stopping 
torque and the force from the average power delivered by the force during the slowing of 
the wheel. The number of revolutions made by the wheel as it stops can be found from a 
constant-acceleration equation. 
 
(a) Relate the work that must be 
done to stop the wheel to its kinetic 
energy: 
 

( ) 22
4
122

2
1

2
12

2
1 ωωω mrmrIW ===  
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Substitute numerical values and 
evaluate W: 

( )( )

kJ780

s60
min1

rev
rad2

min
rev1100

m1.4kg120
2

2
4
1

=

⎥
⎦

⎤
⎢
⎣

⎡
×××

=

π

W

 

 
(b) Express the stopping torque is 
terms of the average power 
required: 
 

avav τω=P  

Solve for τ : 

av

av

ω
τ P

=  

 
Substitute numerical values and 
evaluate τ : ( )( )

( )( )( )

mN3.90
2

smin/601rad/rev2rev/min1100
s/min60min2.5

kJ780

⋅=

= πτ

 
Relate the stopping torque to the 
magnitude of the required force and 
solve for F: 
 

N151
m0.6

mN90.3
=

⋅
==

R
F τ

 

 

(c) Using a constant-acceleration 
equation, relate the angular 
displacement of the wheel to its 
average angular velocity and the 
stopping time: 
 

t∆=∆ avωθ  

Substitute numerical values and 
evaluate ∆θ: 

( )

rev1380

min2.5
2

rev/min1100

=

⎟
⎠
⎞

⎜
⎝
⎛=∆θ

 

 
118 ••    
Picture the Problem The work done by the four children on the merry-go-round will 
change its kinetic energy. We can use the work-energy theorem to relate the work done 
by the children to the distance they ran and Newton’s 2nd law to find the angular 
acceleration of the merry-go-round. 
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(a) Use the work-kinetic energy 
theorem to relate the work done by 
the children to the kinetic energy of 
the merry-go-round: 

f

forcenet

K

KW

=

∆=
 

or 
2

2
14 ωIsF =∆  

 
Substitute for I and solve for ∆s to obtain: 

F
mr

F
mr

F
Is

1688

2222
2
12 ωωω

===∆  

 
Substitute numerical values and 
evaluate ∆s: ( )( )

( )
m6.11

N2616
rev

rad2
s2.8

rev1m2kg240
2

2

=

⎥
⎦

⎤
⎢
⎣

⎡
×

=∆

π

s  

 
(b) Apply Newton’s 2nd law to 
express the angular acceleration of 
the merry-go-round: 
 

mr
F

mr
Fr

I
84

2
2
1

net ===
τα  

 

Substitute numerical values and 
evaluate α: 

( )
( )( )

2rad/s0.433
m2kg240

N268
==α  

 
(c) Use the definition of work to 
relate the force exerted by each 
child to the distance over which that 
force is exerted: 
 

( )( ) J302m11.6N26 ==∆= sFW  

(d) Relate the kinetic energy of the 
merry-go-round to the work that 
was done on it: 
 

sFKKW ∆=−=∆= 40fforcenet  

Substitute numerical values and 
evaluate Wnet force: 

( )( ) kJ1.21m11.6N264forcenet ==W  

 
119 ••  
Picture the Problem Because the center of mass of the hoop is at its center, we can use 
Newton’s second law to relate the acceleration of the hoop to the net force acting on it. 
The distance moved by the center of the hoop can be determined using a constant-
acceleration equation, as can the angular velocity of the hoop. 
 
(a) Using a constant-acceleration 
equation, relate the distance the 

( )2
cm2

1 tas ∆=∆  
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center of the travels in 3 s to the 
acceleration of its center of mass: 
 
Relate the acceleration of the center 
of mass of the hoop to the net force 
acting on it: 
 

m
F

a net
cm =  

Substitute to obtain: ( )
m
tFs

2

2∆
=∆  

 
Substitute numerical values and 
evaluate ∆s: 

( )( )
( ) m15.0

kg1.52
s3N5 2

==∆s  

 
(b) Relate the angular velocity of the 
hoop to its angular acceleration and 
the elapsed time: 
 

t∆= αω  

Use Newton’s 2nd law to relate the 
angular acceleration of the hoop to 
the net torque acting on it:  
 

mR
F

mR
FR

I
=== 2

netτα  

Substitute to obtain: 
mR

tF∆
=ω  

 
Substitute numerical values and 
evaluate ω: 

( )( )
( )( ) rad/s15.4

m0.65kg1.5
s3N5

==ω  

 
120 ••   
Picture the Problem Let R represent the radius of the grinding wheel, M its mass, r the 
radius of the handle, and m the mass of the load attached to the handle. In the absence of 
information to the contrary, we’ll treat the 25-kg load as though it were concentrated at a 
point. Let the zero of gravitational potential energy be where the 25-kg load is at its 
lowest point. We’ll apply Newton’s 2nd law and the conservation of mechanical energy to 
determine the initial angular acceleration and the maximum angular velocity of the 
wheel. 
 
(a) Use Newton’s 2nd law to relate 
the acceleration of the wheel to the 
net torque acting on it: 
 

22
2
1

net

mrMR
mgr

I +
==

τα  
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Substitute numerical values and 
evaluate α: 

( )( )( )
( )( ) ( )( )

2

22
2
1

2

rad/s9.58

m0.65kg25m0.45kg60
m0.65m/s9.81kg25

=

+
=α

 

 
(b) Use the conservation of 
mechanical energy to relate the 
initial potential energy of the load to 
its kinetic energy and the rotational 
kinetic energy of the wheel when 
the load is directly below the center 
of mass of the wheel: 
 

0=∆+∆ UK  
or, because Ki = Uf = 0, 

0irotf,transf, =−+ UKK . 

 

Substitute and solve for ω: ( ) 022
2
1

2
12

2
1 =−+ mgrMRmv ω , 

022
4
122

2
1 =−+ mgrMRmr ωω , 

and 

222
4

MRmr
mgr
+

=ω  

 
Substitute numerical values and 
evaluate ω: 

( )( )( )
( )( ) ( )( )

rad/s38.4

m0.45kg60m0.65kg252
m0.65m/s9.81kg254

22

2

=

+
=ω

 
 
*121 ••  
Picture the Problem Let the smaller block 
have the dimensions shown in the diagram. 
Then the length, height, and width of the 
larger block are ,lS h,S and w,S  
respectively. Let the numeral 1 denote the 
smaller block and the numeral 2 the larger 
block and express the ratios of the surface 
areas, masses, and moments of inertia of 
the two blocks. 

 

 
 
(a) Express the ratio of the surface 
areas of the two blocks: 

( )( ) ( )( ) ( )( )

( )

2

2
1

2

S
222
222S

222
SS2SS2SS2

=

++
++

=

++
++

=

whhw
whhw

whhw
hwhw

A
A

ll

ll

ll

ll
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(b) Express the ratio of the masses 
of the two blocks: 
 

( )( )( )

( ) 3
3

1

2

1

2

1

2

SS

SSS

==

===

hw
hw

hw
hw

V
V

V
V

M
M

l

l

l

l

ρ
ρ

 

 
(c) Express the ratio of the moments 
of inertia, about the axis shown in 
the diagram, of the two blocks:  

( ) ( )[ ]
[ ]

[ ]
[ ] ( )2

1

2
22

222

1

2

22
112

1

22
212

1

1

2

SS

SS

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+
+

=

+
+

=

M
M

h
h

M
M

hM
hM

I
I

l

l

l

l

 

 
In part (b) we showed that: 3

1

2 S=
M
M

 

 
Substitute to obtain: ( )( ) 523

1

2 SSS ==
I
I

 

 
122 •• 
Picture the Problem We can derive the perpendicular-axis theorem for planar objects by 
following the step-by-step procedure outlined in the problem. 
 
(a) and (b) ( )

yx

z

II

dmydmx

dmyxdmrI

+=

+=

+==

∫ ∫
∫∫

22

222

 

 
(c) Let the z axis be the axis of 
rotation of the disk. By symmetry: 
 

yx II =  

Express Iz in terms of Ix: 
 

xz II 2=  

Letting M represent the mass of the 
disk,  solve for Ix: 

( ) 2
4
12

2
1

2
1

2
1 MRMRII zx ===  

 
123 ••  
Picture the Problem Let the zero of gravitational potential energy be at the center of the 
disk when it is directly below the pivot. The initial gravitational potential energy of the 
disk is transformed into rotational kinetic energy when its center of mass is directly 
below the pivot. We can use Newton’s 2nd law to relate the force exerted by the pivot to 
the weight of the disk and the centripetal force acting on it at its lowest point. 
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(a) Use the conservation of 
mechanical energy to relate the 
initial potential energy of the disk to 
its kinetic energy when its center of 
mass is directly below the pivot: 
 

0=∆+∆ UK  
or, because Ki = Uf = 0, 

0irotf, =−UK  

Substitute for rotf,K and iU : 

 

02
2
1 =− MgrIω            (1) 

Use the parallel-axis theorem to 
relate the moment of inertia of the 
disk about the pivot to its moment of 
inertia with respect to an axis 
through its center of mass: 
 

2
cm MhII +=  

or 
2

2
322

2
1 MrMrMrI =+=  

 

Solve equation (1) for ω and 
substitute for I to obtain: r

g
3
4

=ω  

 
(b) Letting F represent the force 
exerted by the pivot, use Newton’s 
2nd law to express the net force 
acting on the swinging disk as it 
passes through its lowest point: 
 

2
net ωMrMgFF =−=  

Solve for F and simplify to obtain: 

MgMgMg
r
gMrMgMrMgF

3
7

3
4

2

3
4

=+=

+=+= ω
 

 
124 ••  
Picture the Problem The diagram shows a 
vertical cross-piece. Because we’ll need to 
take moments about the point of rotation 
(point P), we’ll need to use the parallel-
axis theorem to find the moments of inertia 
of the two parts of this composite structure. 
Let the numeral 1 denote the vertical 
member and the numeral 2 the horizontal 
member. We can apply Newton’s 2nd law 
in rotational form to the structure to 
express its angular acceleration in terms of 
the net torque causing it to fall and its 
moment of inertia with respect to point P. 
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(a) Taking clockwise rotation to be 
positive (this is the direction the 
structure is going to rotate), apply 

ατ PI=∑ : 
 

αPIwgmgm =⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

22 1
2

2
l

 

Solve for α to obtain: 

PI
gwmgm

2
122 −

=
lα    

or 
( )

( )PP II
wmmg

21

122

2 +
−

=
lα                      (1) 

 
Convert wand,, 21 ll to SI units: 
 

m3.66
ft3.281

m1ft121 =×=l , 

m83.1
ft3.281

m1ft62 =×=l , and 

m610.0
ft3.281

m1ft2 =×=w  

 
Using Table 9-1 and the parallel-
axis theorem, express the moment of 
inertia of the vertical member about 
an axis through point P: 
 

( )2
4
12

13
1

1

2

1
2
113

1
1 2

wm

wmmI P

+=

⎟
⎠
⎞

⎜
⎝
⎛+=

l

l
 

 
Substitute numerical values and 
evaluate I1P: 

( ) ( ) ( )[ ]
23

2
4
12

3
1

1

mkg1060.1

m0.610m3.66kg350

⋅×=

+=PI

 
Using the parallel-axis theorem, 
express the moment of inertia of the 
horizontal member about an axis 
through point P: 
 

2
2cm,22 dmII P +=                       (2)      

where 
( ) ( )2

22
12

2
1

1
2 wwd −++= ll   

Solve for d: 
 ( ) ( )2

22
12

2
1

1 wwd −++= ll  
 

Substitute numerical values and evaluate d: 
 

( )[ ] ( )[ ] m86.3m0.610m1.83m0.610m3.66 2
2
12

2
1 =−++=d  

 
From Table 9-1 we have: 2

2212
1

cm,2 lmI =  
 

Substitute in equation (2) to obtain: 
 ( )22

212
1

2

2
2

2
2212

1
2

dm

dmmI P

+=

+=

l

l
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Evaluate I2P: ( ) ( ) ( )[ ]
23

22
12
1

2

mkg1066.2

m3.86m1.83kg175

⋅×=

+=PI
 

 
Substitute in equation (1) and evaluate α: 
 

( ) ( )( ) ( )( )[ ]
( )

2
23

2

rad/s123.0
mkg102.661.602

m0.61kg350m1.83kg175m/s9.81
=

⋅×+
−

=α  

 
(b) Express the magnitude of the 
acceleration of the sparrow: 
 

Ra α=  
where R is the distance of the sparrow from 
the point of rotation and 

( ) ( )2
2

2
1

2 wwR −++= ll  
 

Solve for R: ( ) ( )2
2

2
1 wwR −++= ll  

 
Substitute numerical values and evaluate R: 
 

( ) ( ) m4.44m0.610m1.83m0.610m3.66 22 =−++=R  
 

Substitute numerical values and evaluate a: 
 

( )( )
2

2

m/s0.546

m4.44rad/s0.123

=

=a
 

 
(c) Refer to the diagram to express ax 
in terms of a: 
 R

waaax
+

== 1cos lθ  

Substitute numerical values and 
evaluate ax: ( )

2

2

m/s0.525

m4.44
m0.61m3.66m/s0.546

=

+
=xa
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125 ••  
Picture the Problem Let the zero of 
gravitational potential energy be at the 
bottom of the incline. The initial potential 
energy of the spool is transformed into 
rotational and translational kinetic energy 
when the spool reaches the bottom of the 
incline. We can apply the conservation of 
mechanical energy to find an expression 
for its speed at that location. The force 
diagram shows the forces acting on the 
spool when there is enough friction to keep 
it from slipping. We’ll use Newton’s 2nd 
law in both translational and rotational 
form to derive an expression for the static 
friction force. 

 

 
(a) In the absence of friction, the 
forces acting on the spool will be its 
weight, the normal force exerted by 
the incline, and the tension in the 
string. A component of its weight will 
cause the spool to accelerate down the 
incline and the tension in the string 
will exert a torque that will cause 
counterclockwise rotation of the 
spool. 
 

unwinds.
 string asdirection  ckwisecounterclo a

in  spinning on,acceleraticonstant  at 
 plane down the move  willspool The

 

Use the conservation of mechanical 
energy to relate the speed of the center 
of mass of the spool at the bottom of 
the slope to its initial potential energy:  
 

0=∆+∆ UK  
or, because Ki = Uf = 0, 

0irotf,transf, =−+ UKK . 

 

Substitute for transf,K , rotf,K and iU : 

 

0sin2
2
12

2
1 =−+ θω MgDIMv      (1) 

Substitute for ω and solve for v to 
obtain: 

0sin
2

2

2
12

2
1 =−+ θMgD

r
vIMv  

and 

2

sin2

r
IM

MgDv
+

=
θ

 



                                                                                                     Rotation 
 

 

723

(b) Apply Newton’s 2nd law to the spool: ∑ =−−= 0sin sfTMgFx θ  

∑ =−= 0s0 RfTrτ  

 
Eliminate T between these equations to 
obtain: 

r
R

Mgf
+

=
1

sin
s

θ
, up the incline. 

 
126 ••  
Picture the Problem While the angular acceleration of the rod is the same at each point 
along its length, the linear acceleration and, hence, the force exerted on each coin by the 
rod, varies along its length. We can relate this force the linear acceleration of the rod 
through Newton’s 2nd law and the angular acceleration of the rod. 
 
Letting x be the distance from the 
pivot, use Newton’s 2nd law to 
express the force F acting on a coin: 
 

( ) ( )xmaxFmgF =−=net  

or 
( ) ( )( )xagmxF −=                        (1) 

Use Newton’s 2nd law to relate the 
angular acceleration of the system to 
the net torque acting on it: L

g
ML

LMg

I 2
32

2
3
1

net ===
τα  

 
Relate a(x) and α: ( ) ( ) gxgxxxa ===

m5.12
3α  

 
Substitute in equation (1) to obtain: 
 

( ) ( ) ( )xmggxgmxF −=−= 1  

Evaluate F(0.25 m):  ( ) ( ) mgmgF 75.0m25.01m25.0 =−=

 
Evaluate F(0.5 m): ( ) ( ) mgmgF 5.0m5.01m5.0 =−=  

 
Evaluate F(0.75 m): ( ) ( ) mgmgF 25.0m75.01m75.0 =−=

 
Evaluate F(1 m): ( ) ( ) ( ) 0m5.1m25.1m1 === FFF  

 
*127 ••  
Picture the Problem The diagram shows the force the hand supporting the meterstick 
exerts at the pivot point and the force the earth exerts on the meterstick acting at the 
center of mass. We can relate the angular acceleration to the acceleration of the end of the 
meterstick using αLa = and use Newton’s 2nd law in rotational form to relate α to the 
moment of inertia of the meterstick. 
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(a) Relate the acceleration of the far 
end of the meterstick to the angular 
acceleration of the meterstick: 
 

αLa =                               (1) 

Apply ατ PP I=∑ to the 
meterstick: 
 

αPILMg =⎟
⎠
⎞

⎜
⎝
⎛

2
 

 
Solve for α: 
 

PI
MgL
2

=α  

 
From Table 9-1, for a rod pivoted at 
one end, we have: 
 

2

3
1 MLIP =  

 
Substitute to obtain: 
 L

g
ML
MgL

2
3

2
3

2 ==α  

 
Substitute in equation (1) to obtain: 
 2

3ga =  

 
Substitute numerical values and 
evaluate a: 

( ) 2
2

m/s14.7
2
m/s9.813

==a  

 
(b) Express the acceleration of a 
point on the meterstick a distance x 
from the pivot point: 
 

x
L
gxa

2
3

== α  

Express the condition that the 
meterstick leaves the penny behind: 
 

ga >  

Substitute to obtain: 
gx

L
g

>
2
3

 

 
Solve for and evaluate x: ( ) cm7.66

3
m12

3
2

==>
Lx  
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128 ••  
Picture the Problem Let m represent the 0.2-kg mass, M the 0.8-kg mass of the cylinder, 
L the 1.8-m length, and x + ∆x the distance from the center of the objects whose mass is 
m. We can use Newton’s 2nd law to relate the radial forces on the masses to the spring’s 
stiffness constant and use the work-energy theorem to find the work done as the system 
accelerates to its final angular speed. 
 
(a) Express the net inward force 
acting on each of the 0.2-kg masses: 
 

( )∑ ∆+=∆= 2
radial ωxxmxkF  

Solve for k: ( ) 2

x
xxmk

∆
∆+

=
ω

 

 
Substitute numerical values and 
evaluate k: 

( )( )( )

N/m230

m0.4
rad/s24m0.8kg0.2 2

=

=k
 

 
(b) Using the work-energy theorem, 
relate the work done to the change 
in energy of the system: 
 

( )2
2
12

2
1

springrot

xkI

UKW

∆+=

∆+=

ω
                (1) 

Express I as the sum of the moments 
of inertia of the cylinder and the 
masses: 

m

mM

IMLMr

III

22
12
12

2
1

2

++=

+=
 

 
From Table 9-1 we have, for a solid 
cylinder about a diameter through 
its center: 
 

2
12
12

4
1 mLmrI +=  

where L is the length of the cylinder. 

For a disk (thin cylinder),  L is small 
and: 
 

2
4
1 mrI =  

Apply the parallel-axis theorem to obtain: 
 

22
4
1 mxmrIm +=  

Substitute to obtain: ( )
( )22

4
12

12
12

2
1

22
4
12

12
12

2
1

2

2

xrmMLMr

mxmrMLMrI

+++=

+++=
 

 
Substitute numerical values and evaluate I: 
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( )( ) ( )( ) ( ) ( ) ( )[ ]
2

22
4
12

12
12

2
1

mN492.0

m0.8m0.2kg0.22m1.8kg0.8m0.2kg0.8

⋅=

+++=I
 

 
Substitute in equation (1) to obtain: 
 

( )( ) ( )( ) J160m0.4N/m230rad/s24mN0.492 2
2
122

2
1 =+⋅=W  

 
129 ••  
Picture the Problem Let m represent the 0.2-kg mass, M the 0.8-kg mass of the cylinder, 
L the 1.8-m length, and x + ∆x the distance from the center of the objects whose mass is 
m. We can use Newton’s 2nd law to relate the radial forces on the masses to the spring’s 
stiffness constant and use the work-energy theorem to find the work done as the system 
accelerates to its final angular speed. 
 
Using the work-energy theorem, 
relate the work done to the change 
in energy of the system: 
 

( )2
2
12

2
1

springrot

xkI

UKW

∆+=

∆+=

ω
                (1) 

Express I as the sum of the moments 
of inertia of the cylinder and the 
masses: 

m

mM

IMLMr

III

22
12
12

2
1

2

++=

+=
 

 
From Table 9-1 we have, for a solid 
cylinder about a diameter through 
its center: 
 

2
12
12

4
1 mLmrI +=  

where L is the length of the cylinder. 

For a disk (thin cylinder),  L is small 
and: 
 

2
4
1 mrI =  

Apply the parallel-axis theorem to 
obtain: 
 

22
4
1 mxmrIm +=  

Substitute to obtain: ( )
( )22

4
12

12
12

2
1

22
4
12

12
12

2
1

2

2

xrmMLMr

mxmrMLMrI

+++=

+++=
 

 
Substitute numerical values and evaluate I: 
 

( )( ) ( )( ) ( ) ( ) ( )[ ]
2

22
4
12

12
12

2
1

mN492.0

m0.8m0.2kg0.22m1.8kg0.8m0.2kg0.8

⋅=

+++=I
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Express the net inward force acting 
on each of the 0.2-kg masses: 
 

( )∑ ∆+=∆= 2
radial ωxxmxkF  

Solve for ω: 

( )xxm
xk
∆+

∆
=ω  

 
Substitute numerical values and 
evaluate ω: 

( )( )
( )( ) rad/s12.2

m0.8kg0.2
m0.4N/m60

==ω  

 
Substitute numerical values in 
equation (1) to obtain: 

( )( )
( )( )
J4.14

m0.4N/m06

rad/s2.21mN0.492
2

2
1

22
2
1

=

+

⋅=W

 

 
130 ••  
Picture the Problem The force diagram 
shows the forces acting on the cylinder. 
Because F causes the cylinder to rotate 
clockwise, f, which opposes this motion, is 
to the right. We can use Newton’s 2nd law 
in both translational and rotational forms to 
relate the linear and angular accelerations 
to the forces acting on the cylinder.  
 
(a) Use Newton’s 2nd law to relate the 
angular acceleration of the center of 
mass of the cylinder to F: 
 

MR
F

MR
FR

I
2

2
2
1

net ===
τα  

Use Newton’s 2nd law to relate the 
acceleration of the center of mass of 
the cylinder to F: 

M
F

M
Fa == net

cm  

 
 

Express the rolling-without-slipping 
condition to the accelerations: 
 

αα 2cm ===
MR
F

R
a'  

(b) Take the point of contact with the 
floor as the ″pivot″ point, express the 
net torque about that point, and solve 
for α:  

ατ IFR == 2net  

and 

I
FR2

=α  
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Express the moment of inertia of the 
cylinder with respect to the pivot 
point: 
 

2
2
322

2
1 MRMRMRI =+=  

 
 

Substitute to obtain: 
MR
F

MR
FR

3
42

2
2
3

==α  

 
Express the linear acceleration of the 
cylinder: M

FRa
3
4

cm == α  

 
Apply Newton’s 2nd law to the forces 
acting on the cylinder: 
 

∑ =+= cmMafFFx  

Solve for f: 

direction.  positive in the 
3

4

3
1

cm

xF

FFFMaf

=

−=−=
 

 
131  ••  
Picture the Problem As the load falls, mechanical energy is conserved. As in Example 
9-7, choose the initial potential energy to be zero. Apply conservation of mechanical 
energy to obtain an expression for the speed of the bucket as a function of its position and 
use the given expression for t to determine the time required for the bucket to travel a 
distance y. 
 
Apply conservation of mechanical energy: 
 

000iiff =+=+=+ KUKU      (1) 
 

Express the total potential energy 
when the bucket has fallen a 
distance y: 
 

⎟
⎠
⎞

⎜
⎝
⎛−−=

++=

2c

wfcfbff

y'gmmgy

UUUU
 

where 'mc is the mass of the hanging part 
of the cable. 
 

Assume the cable is uniform and 
express 'mc in terms of mc, y, and L: L

m
y
'm cc = or y

L
m'm c

c =  

 
Substitute to obtain: 
 L

gym
mgyU

2

2
c

f −−=  
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Noting that bucket, cable, and rim of 
the winch have the same speed v, 
express the total kinetic energy when 
the bucket is falling with speed v: 
 ( )

2
4
12

c2
12

2
1

2

2
2

2
1

2
12

c2
12

2
1

2
f2

12
c2

12
2
1

wfcfbff

Mvvmmv
R
vMRvmmv

Ivmmv

KKKK

++=

++=

++=

++=

ω
 

 
Substitute in equation (1) to obtain: 

0
2

2
4
12

c2
1

2
2
1

2
c

=++

+−−

Mvvm

mv
L
gymmgy

 

 
Solve for v: 

c

c

mmM
L
gymmgy

v
22

24
2

++

+
=  

 
A spreadsheet solution is shown below. The formulas used to calculate the quantities in 
the columns are as follows: 
 

Cell Formula/Content Algebraic Form 
D9 0 y0 

D10 D9+$B$8 y + ∆y 
E9 0 v0 

E10 ((4*$B$3*$B$7*D10+2*$B$7*D10^2/(2*$B$5))/ 
($B$1+2*$B$3+2*$B$4))^0.5 

c

c

mmM
L
gymmgy

22

24
2

++

+
 

F10 F9+$B$8/((E10+E9)/2) 
yvvt nn

n ∆⎟
⎠
⎞

⎜
⎝
⎛ +

+ −
− 2

1
1  

 
J9 0.5*$B$7*H9^2 2

2
1 gt   

 
 A B C D E F G H I J 

1 M= 10 kg        
2 R= 0.5 m        
3 m= 5 kg        
4 mc= 3.5 kg        
5 L= 10 m        
6           
7 g= 9.81 m/s^2        
8 dy= 0.1 m y v(y) t(y)  t(y) y 1/2gt^2
9    0.0 0.00 0.00  0.00 0.0 0.00 

10    0.1 0.85 0.23  0.23 0.1 0.27 
11    0.2 1.21 0.33  0.33 0.2 0.54 
12    0.3 1.48 0.41  0.41 0.3 0.81 
13    0.4 1.71 0.47  0.47 0.4 1.08 
15    0.5 1.91 0.52  0.52 0.5 1.35 
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105    9.6 9.03 2.24  2.24 9.6 24.61 
106    9.7 9.08 2.25  2.25 9.7 24.85 
107    9.8 9.13 2.26  2.26 9.8 25.09 
108    9.9 9.19 2.27  2.27 9.9 25.34 
109    10.0 9.24 2.28  2.28 10.0 25.58  

 
The solid line on the graph shown below shows the position y of the bucket when it is in 
free fall and the dashed line shows y under the conditions modeled in this problem.  
 

0

2

4

6

8

10

12

14

16

18

20

0.0 0.4 0.8 1.2 1.6 2.0

t (s)

y  
(m

)

y'
free fall

 
 
132 ••  
Picture the Problem The pictorial 
representation shows the forces acting on 
the cylinder when it is stationary. First, we 
note that if the tension is small, then there 
can be no slipping, and the system must 
roll. Now consider the point of contact of 
the cylinder with the surface as the “pivot” 
point. If τ about that point is zero, the 
system will not roll. This will occur if the 
line of action of the tension passes through 
the pivot point.  
  
From the diagram we see that: 

⎟
⎠
⎞

⎜
⎝
⎛= −

R
r1cosθ  
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*133 ••  
Picture the Problem Free-body diagrams 
for the pulley and the two blocks are shown 
to the right. Choose a coordinate system in 
which the direction of motion of the block 
whose mass is M (downward) is the 
positive y direction. We can use the given 
relationship θµ ∆= s

max' TeT to relate the 
tensions in the rope on either side of the 
pulley and apply Newton’s 2nd law in both 
rotational form (to the pulley) and 
translational form (to the blocks) to obtain 
a system of equations that we can solve 
simultaneously for a, T1, T2, and M.  
 
(a) Use θµ ∆= s

max' TeT to evaluate 
the maximum tension required to 
prevent the rope from slipping on 
the pulley: 
 

( ) ( ) N7.25N10' 3.0
max == πeT  

 

(c) Given that the angle of wrap is π 
radians, express T2 in terms of T1: 
 

1
3.0

12 57.2 TeTT == π                     (1) 

Because the rope doesn’t slip, we 
can relate the angular acceleration, 
α, of the pulley to the acceleration, 
a, of the hanging masses by: 

 
 

r
a

=α  

 
Apply yy maF =∑ to the two 
blocks to obtain: 
 

mamgT =−1                                (2) 
and 

MaTMg =− 2                               (3) 
 

Apply ∑ = ατ I to the pulley to 
obtain: 

( )
r
aIrTT =− 12                             (4) 

 
Substitute for T2 from equation (1) 
in equation (4) to obtain: 
 

( )
r
aIrTT =− 1157.2  

Solve for T1 and substitute 
numerical values to obtain: 
 ( )

( )a

aa
r

IT

kg91.9
m0.151.57
mkg0.35

57.1 2

2

21

=

⋅
==

 (5) 

 
Substitute in equation (2) to obtain: 
 

( ) mamga =−kg91.9  
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Solve for and evaluate a: 

2
2

m/s10.1
1

kg1
kg9.91
m/s9.81

1kg91.9kg91.9

=
−

=

−
=

−
=

m

g
m

mga

 

 
(b) Solve equation (3) for M: 

ag
TM
−

= 2  

 
Substitute in equation (5) to find T1: ( )( ) N10.9m/s1.10kg91.9 2

1 ==T  
 

Substitute in equation (1) to find T2: ( )( ) N28.0N10.9.5722 ==T  
 

Evaluate M:  
kg21.3

m/s1.10m/s9.81
N28.0

22 =
−

=M  

 
134 •••  
Picture the Problem When the tension is horizontal, the cylinder will roll forward and 
the friction force will be in the direction of .T

r
 We can use Newton’s 2nd law to obtain 

equations that we can solve simultaneously for a and f. 
 
(a) Apply Newton’s 2nd law to the 
cylinder: 

∑ =+= mafTFx                 (1) 

and 

∑ =−= ατ IfRTr                 (2) 

 
Substitute for I and α in equation (2) 
to obtain: 

mRa
R
amRfRTr 2

12
2
1 ==−    (3) 

 
Solve equation (3) for f: ma

R
Trf 2

1−=                           (4) 

 
Substitute equation (4) in equation 
(1) and solve for a: 

⎟
⎠
⎞

⎜
⎝
⎛ +=

R
r

m
Ta 1

3
2

                        (5) 

 
Substitute equation (5) in equation 
(4) to obtain: ⎟

⎠
⎞

⎜
⎝
⎛ −= 12

3 R
rTf  

 
(b) Equation (4) gives the 
acceleration of the center of mass: ⎟

⎠
⎞

⎜
⎝
⎛ +=

R
r

m
Ta 1

3
2
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(c) Express the condition that 
m
Ta > : 11

3
21

3
2

>⎟
⎠
⎞

⎜
⎝
⎛ +⇒>⎟

⎠
⎞

⎜
⎝
⎛ +

R
r

m
T

R
r

m
T

 

or 
Rr 2

1>  

 
(d) If Rr 2

1> : . ofdirection  in the i.e., ,0 T
r

>f  

 
135 •••  
Picture the Problem The system is shown 
in the drawing in two positions, with angles 
θ0 and θ with the vertical. The drawing also 
shows all the forces that act on the stick. 
These forces result in a rotation of the 
stick—and its center of mass—about the 
pivot, and a tangential acceleration of the  
center of mass. We’ll apply the 
conservation of mechanical energy and 
Newton’s 2nd law to relate the radial and 
tangential forces acting on the stick.  
 
Use the conservation of mechanical 
energy to relate the kinetic energy of 
the stick when it makes an angle θ 
with the vertical and its initial 
potential energy: 
 

0ifif =−+− UUKK  

or, because Kf = 0, 

0cos
2

cos
2 0

2
2
1 =−+− θθω LMgLMgI

 

Substitute for I and solve for ω2: ( )0
2 coscos3 θθω −=

L
g

 

 
Express the centripetal force acting 
on the center of mass: 

( )

( )0

0

2
c

coscos
2

3

coscos3
2

2

θθ

θθ

ω

−=

−=

=

Mg
L
gLM

LMF

 

 
Express the radial component of g

r
M : 

 
( ) θcosradial MgMg =  

 
Express the total radial force at the 
hinge: 

F|| = Fc + (Mg)radial 
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( )

( )02
1

0

cos3cos5

coscoscos
2

3

θθ

θθθ

−=

+−=

Mg

MgMg
 

 
Relate the tangential acceleration of 
the center of mass to its angular 
acceleration: 
 

a⊥= 2
1 Lα 

 

Use Newton’s 2nd law to relate the 
angular acceleration of the stick to the 
net torque acting on it: L

g
ML

LMg

I 2
sin3sin

2
2

3
1

net θθτα ===  

 
Express a⊥ in terms of α: a⊥= 2

1 Lα = 4
3 gsinθ = gsinθ + F⊥/M 

 
Solve for F⊥ to obtain: F⊥ θsin4

1 Mg−= where the minus sign 

indicates that the force is directed 
oppositely to the tangential component of 

.g
r

M  
 
 


