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PREFACE

MATLAB is one of the most widely used computational tools in science and 
engineering. No matter what your background—be it physics, chemistry, math, or 
engineering—it would behoove you to at least learn the basics of this powerful tool.

There are three good reasons to learn a computational mathematics tool. The first is 
that it serves as a background check for work you might be doing by hand. If you are 
a student, it’s nice to have a back up that you can use to check your answers. I advise 
that you don’t become co-dependent on a computational tool or trust it as though it 
were an Oracle. Do your work by hand when requested by your professors and just use 
MATLAB or any other tool to check your work to make sure it’s correct.

The second reason is having a tool like MATLAB is priceless for generating 
plots and for doing numerical methods. Instead of having to go through a tedious 
process of plotting something by hand you can just have MATLAB generate any 
nice plot you desire.

Thirdly, the bottom line is that at some point in your career you will have to use 
a computational mathematics tool. If you’re a professor doing theoretical work, at 
one point or another you are going to be working on a project where analytical 
solutions are not possible. If you work in industry or in a national lab, chances are 
the work you’re doing can’t be done by hand and will require a numerical solution. 
MATLAB is widely used in universities, in national laboratories and at private 
companies. Knowing MATLAB will definitely be a plus on your resume.

Now a word about this particular book. This book is aimed squarely at the MATLAB 
beginner. The purpose is not to wow experts with complicated solutions built with 
MATLAB. Rather, the purpose of this book is to introduce a person new to MATLAB 
to the world of computational mathematics. The approach taken here is to set about 
learning how to use MATLAB to do some basic things-plot functions, solve algebraic 
equations, compute integrals and solve differential equations for example. So the 
examples we present in this book are going to be simple and aimed at the novice. If 
you have never touched MATLAB before or are having lot’s of trouble with it, this 
book will help you build a basic skill set that can be used to master it. The book is a 
stepping stone to mastery and nothing more.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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CHAPTER 1

The MATLAB 

Environment

We begin our tour of MATLAB by considering the basic structure of the user inter-
face. We’ll learn how to enter commands, create fi les, and do other sorts of mun-

dane tasks that we’ll need to know before we can tackle solving mathematics prob-

lems. The elements covered in this chapter will be used throughout the book and 

indeed throughout the lifetime of your MATLAB use. In this book we are going to 

cover a core bit of knowledge about MATLAB to get you started using it. Our 

approach in this book is to take a few small bites in each chapter so that you can 

learn how to do a few important tasks at a time. At the end of the book you won’t 

be a MATLAB expert, but you’ll be on your way to getting comfortable with it and 

will know how to accomplish lots of common tasks, helping you make progress in 

your class at school or making it easier to grab a thick hard-to-read MATLAB book 

at the offi ce so you can do real computing. Anyway, let’s begin by considering the 

main MATLAB screen you see when you start the program.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 



 2 MATLAB Demystifi ed

Overview of the User Interface

In this book we will assume that you are using Windows, although that won’t be 

relevant for the most part. Please note that we will be using MATLAB version 7.1 

in this book. MATLAB is started just like any other Windows program. Just go to 

your program fi les menu and search for the MATLAB folder. When you click on it, 

you will see several options depending on your installation, but you will have at 

least the following three options

• MATLAB (version number)

• M-fi le editor

• Uninstaller

To start the program, you select MATLAB (7.1). The default MATLAB desktop 

will then open on your screen (see Figure 1-1). As shown in the fi gure, the screen is 

divided into three main elements. These are

• File listing in the current directory

Figure 1-1 The MATLAB desktop
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• Command History Window

• Command Window

The standard mix of menus appears on the top of the MATLAB desktop that 
allows you to do things like fi le management and debugging of fi les you create. You 
will also notice a drop-down list on the upper right side of the desktop that allows 
you to select a directory to work in. The most important item of business right now 
is the Command Window.

Command Window and Basic Arithmetic

The Command Window is found on the right-hand side of the MATLAB desktop. 
Commands are entered at the prompt with looks like two successive “greater than” 
signs:

>>

Let’s start by entering a few really basic commands. If you want to fi nd the value 

of a numerical expression, simply type it in. Let’s say we want to know the value of 

433.12 multiplied by 15.7. We type 433.12 * 15.7 at the MATLAB prompt and hit 

the enter key. The result looks like this:

>> 433.12*15.7
ans =
 6.8000e+003

MATLAB spits out the answer to our query conveniently named ans. This is a 

variable or symbolic name that can be used to represent the value later. Chances are 

we will wish to use our own variable names. So for example, we might want to call 

a variable x. Suppose we want to set it equal to fi ve multiplied by six. To do this, we 

type the input as

>> x=5*6
x =
 30

Once a variable has been entered into the system, we can refer to it later. Suppose 

that we want to compute a new quantity that we’ll call y, which is equal to x 

multiplied by 3.56. Then we type

>> y = x * 3.56
y =
 106.8000
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Now, you will notice that in this example we put spaces in between each term in 
our equation. This was only done to enhance the readability and professional 
appearance of our output. MATLAB does not require you to include these spaces in 
your input. We could just as well type y = x * 3.56 as y = x * 3.56; however, the 
latter presentation is cleaner and easier to read. When your expressions get 
complicated, it will be more important to keep things neat so it’s advisable to 

include the spaces.

Let’s summarize basic arithmetical input in MATLAB. To write the multiplication 

ab, in MATLAB we type

a * b

For division, the quantity 
a

b
 is typed as

a / b

This type of division is referred to as right division. MATLAB also allows 

another way to enter division, called left division. We can enter the quantity b
a  by 

typing the slash mark used for division in the opposite way, that is, we use a back 

slash instead of a forward slash

a \ b

Exponentiation ab is entered in the following way

a ^ b

Finally, addition and subtraction are entered in the usual way

a + b
a – b

The precedence followed in mathematical operations by MATLAB is the same 

used in standard mathematics, but with the following caveat for left and right 

division. That is, exponentiation takes precedence over multiplication and division, 

which fall on equal footing. Right division takes precedence over left division. 

Finally, addition and subtraction have the lowest precedence in MATLAB. To 

override precedence, enclose expression in parentheses.

EXAMPLE 1-1

Use MATLAB to evaluate

5
3

4

9

5

9

2 3

⎛
⎝⎜

⎞
⎠⎟

+ +⎡
⎣⎢

⎤
⎦⎥

and 4
3

4
3

( )
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SOLUTION 1-1

The command required to fi nd the value of the fi rst expression is

>> 5*(3/4) + 9/5
ans =
 5.5500

For the second expression, we use some parentheses along with the exponentiation 
operator a ^ b. Although this is a simple expression, let’s enter it in pieces to get 

used to using variables. We obtain

>> r = 4^3
r =
 64
>> s = 3/4 + 9/(2*3)
s = 
 2.2500
>> t=r*s
t =
 144

The Assignment Operator

The equals sign “=” is known as the assignment operator. While it does what you 

think it does much of the time, that is, describes an equation, at other times in 

MATLAB it’s more appropriate to think of it as an instruction to assign a value to a 

variable the way you would in a computer program. The distinction between the 

two interpretations can be illustrated in the following way. If you type

x + 6 = 90

in MATLAB, you get the following response

??? x+6=90
Error: The expression to the left of the equals sign is not 
a valid target for an assignment.

So while the expression is a completely valid equation you could write down if 

doing algebra on paper, MATLAB doesn’t know what to do with it. On the other 

hand, MATLAB is completely happy if you assign the value 90 – 6 to the variable 

x by writing

x = 90 – 6
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Another way that the assignment operator works more like an assignment in a 
computer program is in a recursive type assignment to a variable. That is, MATLAB 
allows you to write

x = x + 4

if we have previously defi ned the variable x. For example, the following sequence 
is completely valid

>> x = 34^2
x =
 1156
>> x = x + 4
x =
 1160

To use a variable on the right-hand side of the assignment operator, we must 
assign a value to it beforehand. So while the following command sequence will 
generate an error

>> x = 2
x =
 2
>> t = x + a
??? Undefi ned function or variable 'a'.

The following sequence does not

>> x = 2
x =
 2
>> a = 3.5
a =
 3.5000
>> t = x + a
t =
 5.5000

In many instances, it is not desirable to have MATLAB spit out the result of an 
assignment. To suppress MATLAB output for an expression, simply add a semicolon 
(;) after the expression. In the following command sequence, fi rst we just type in 
the assignment x = 3. MATLAB duly reports this back to us. On the next line, we 
enter x = 3; so that MATLAB does not waste space by telling us something we 
already know. Instead it comes back with the command prompt waiting for our next 
input:

>> x = 3
x =
 3
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>> x = 3;
>>

We can include multiple assignments on the same line. For example, the following 
expressions are valid

>> x = 2; y = 4; z = x*y
z =
 8

Notice the two semicolons, they tell MATLAB we don’t want to see the values of 

x and y.

When doing a lot of calculations, you may end up with a large number of 

variables. You can refresh your memory by typing who in the MATLAB command 

window. Doing this will tell MATLAB to display all of the variable names you have 

used up to this point. For instance, in our case we have

>> who
Your variables are:
V a ans r s t x y z

By typing whos, we get a bit more information. This will tell us the variables 

currently in memory, their type, how much memory is allocated to each variable, 

and whether or not they are complex (see below). In our case we have

>> whos
Name Size Bytes Class

V 1x1 8 double array
a 1x1 8 double array
ans 1x1 16 double array (complex)
r 1x1 8 double array
s 1x1 8 double array
t 1x1 8 double array
x 1x1 8 double array
y 1x1 8 double array
z 1x1 8 double array

Grand total is 9 elements using 80 bytes

Now suppose we want to start all over. We can do this by issuing a clear command. 

Clear can be applied globally by simply typing clear and then hitting the enter key, 

or to specifi c variables by typing clear followed by a space delimited variable list. 

If we wanted to reset or clear the variables x, y, and z that we have been using, then 

we could type

clear x y z
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MATLAB will simply return the command prompt and won’t say anything else, 

but if you try to use these variables again without assigning them values it will be 

as if they had not been seen before.

Long assignments can be extended to another line by typing an ellipsis which is 

just three periods in a row. For example 

>> FirstClassHolders = 72;
>> Coach = 121;
>> Crew = 8;
>> TotalPeopleOnPlane = FirstClassHolders + Coach...
+ Crew

TotalPeopleOnPlane =

 201

The ellipsis follows Coach on the line used to defi ne TotalPeopleOnPlane. After 

you type the ellipsis, just hit the enter key. MATLAB will move to the following 

line awaiting further input.

OK, something you are probably wondering, as I was when I started using 

MATLAB, was how in the world do you control the way numbers are displayed on 

the screen? So far in our examples, MATLAB has been spitting out numbers with 

four decimal places. This is known as short format in MATLAB. It’s the default in 

MATLAB and if that’s all the precision you require, then you don’t have to do 

anything. If you want more, then you can tell MATLAB to add more digits to the 

right of the decimal point by using the format command. If we want 16 digits 

instead of 4, we type format long. To see how this works, look at the following 

calculation, displayed in both formats

>> format long
>> x = 3 + 11/16 + 2^1.2
x =
 5.98489670999407

>> format short
>> x = 3 + 11/16 + 2^1.2
x =
 5.9849

Comparing the long and short formats, notice that the fourth decimal place was 

rounded up to nine when format short was used. If you want to do fi nancial 

calculations, you can use the format bank command. As expected, this rounds 

everything off to two decimal places.

>> format bank
>> hourly = 35.55
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hourly = 
 35.55

>> weekly = hourly*40
weekly =
 1422.00

MATLAB displays large numbers using exponential notation. That is it represents  
5.4387 × 103 as 5.4387e + 003. If you want all numbers to be represented in this 
fashion, you can do so. This type of notation can also be defi ned using the short or 
long formats. For short (four decimal places plus the exponent) you can type format 

short e. To allow 15 decimal digits plus the exponent, type format long e. Here is an 
example of the short exponent format

>> format short e
>> 7.2*3.1
ans =
 2.2320e+001

If you type format rat, then MATLAB will fi nd the closest rational expression it 
can that corresponds to the result of a calculation. Pretty neat tool huh? Let’s repeat 

the previous calculation

>> format rat
>> 7.2*3.1
ans =
 558/25

Basic Mathematical Defi nitions

MATLAB comes with many basic or familiar mathematical quantities and functions 

built in. Let’s show how to use π in an example.

EXAMPLE 1-2

Find the volume of a sphere of radius 2 m.

SOLUTION 1-2

The volume of a sphere is given by

V R=
4

3
3π
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Of course MATLAB comes with π predefi ned. To use it, we just type pi. So after 
defi ning a variable to hold the radius, we can fi nd the volume by typing

>> r = 2;
>> V = (4/3) *pi*r^3
V =
 33.5103

Another famous number that shows up in many mathematical applications is the 
exponential function. That is, e ≈ 2.718. We can reference e in MATLAB by typing 
exp(a) which gives us the value of ea. Here are a few quick examples             

>> exp(1)
ans =
 2.7183

>> exp(2)
ans =
 7.3891

To fi nd the square root of a number, we type sqrt. For example

>> x = sqrt(9)
x =
 3

>> y = sqrt(11)
y =
 3.3166

To fi nd the natural log of a number x, type log(x). 

>> log(3.2)
ans =
 1.1632
>> x = 5; log(5)
ans =
 1.6094

If you want the base ten logarithm, type log10(x)

>> x = 3; log10(x)
ans =
 0.4771

MATLAB comes equipped with the basic trig functions and their inverses, taking 
radian argument by default. These are typed in lower case using the standard 
notation. For instance
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>> cos(pi/4)
ans =
 0.7071

To use an inverse of a trig function, add on an a before the name of the trig 
function. For example, to compute the inverse tangent of a number we can use the 
following

>> format rat
>> atan(pi/3)
ans =
 1110/1373

Complex Numbers

We can also enter complex numbers in MATLAB. To remind members of our 
audience who are Aggie graduates, the square root of –1 is defi ned as

i = −1

A complex number is one that can be written in the form z = x +iy, where x is the 
real part of z and y is the imaginary part of z. It is easy to enter complex numbers in 
MATLAB, by default it recognizes i as the square root of minus one. We can do 
calculations with complex numbers in MATLAB pretty easily. For example

a = 2 +3i
b = 1 − i
⇒ a + b = 3 + 2i

Let’s verify this in MATLAB. It is not necessary to add spaces or include a 

multiplication symbol (*) when typing i in MATLAB.

>> format short
>> a = 2 + 3i;
>> b = 1 - i;
>> c = a + b
c = 
 3.0000 + 2.0000i
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Fixing Typos

It’s going to be a fact that now and then you are going to type in an expression with 

an error. If you hit the enter key and then later realize what happened, it’s not 

necessary to retype the line. Just use your arrow keys to move back up to the 

offending line. Fix your error, and then hit enter again and MATLAB will correct 

the output.

Some File Basics

Let’s round out the chapter by considering some basic operations with fi les. 

MATLAB wouldn’t be that useful if you couldn’t save and retrieve your work 

right? Let’s say you want to save all the expressions and variables you have entered 

in the command window for use at a later time. You can do this by executing the 

following actions:

 1. Click on the File pull-down menu

 2. Select Save Workspace As…

 3. Type in a fi le name

 4. Click on the Save button

This method creates a MATLAB fi le which has a .MAT fi le extension in Windows. 

If you save a fi le this way, you can retrieve all the commands in it and work with it 

again just like you can when working with fi les in any other computer program. 

Sometimes, especially when working on complicated projects, you won’t want 

to sit there and type every expression in a command window. It might be more 

appropriate to type a long sequence of operations and store them in a fi le that can 

be executed with a single command in the command window. This is done by 

creating a script fi le. This type of fi le is known as a MATLAB program and is saved 

in a fi le format with a .M extension. For this reason, we also call them M-fi les. We 

can also create M-fi les that are function fi les.

From what we’ve done so far, you already know how to create a script fi le. All a 

script fi le comes down to is a saved sequence of MATLAB commands. Let’s create 

a simple script fi le that will compute ex for a few values of x. First, open the 

MATLAB editor. Either

• Click New → M-File under the File pull-down menu

• Or click on the New File icon on our toolbar at the top of the screen



CHAPTER 1 The MATLAB Environment 13

Now type in the following lines:

% script fi le example1.m to compute exponential of a set of numbers

x = [1:2:3:4];

y = exp(x)

Notice the fi rst line begins with a % sign. This line is a comment. This is a line 
of text that is there for our benefi t, it’s a descriptive note that MATLAB ignores. 

The next line creates an array or set of numbers. An array is denoted using square 

braces [] and by delimiting the elements of the array with colons or commas.  The 

fi nal line will tell MATLAB to calculate the exponential of each member of the 

array, in other words the values e1, e2, e3, e4. Save the fi le by clicking the Save icon 

in the fi le editor or by selecting Save As from the File pull-down menu. Save the fi le 

as example1.m in your MATLAB directory.

Now return to the MATLAB desktop command window. Type in example1. If 

you did everything right, then you will see the following output

>> example1
y =
 2.7183 7.3891 20.0855 54.5982

We can also use M-fi les to create and store data. Following an example from 

another McGraw-Hill book on MATLAB, let’s create a set of temperatures that we 

will store in a fi le. We do this by creating a list of temperatures in the fi le editor

temps = [32,50,65,70,85]

Now we save this as a fi le that we’ll call TemperatureData.m. We store this fi le 

in the MATLAB directory. To access it in the command window, we just type the 

name of the fi le. MATLAB responds by spitting out the list of numbers:

>> TemperatureData
temps = 
 32 50 65 70 85

Now we can use the data by referring to the array name used in the fi le. Let’s 

create another set of numbers called Celsius that converts these familiar temps into 

the European style Celsius temperatures we are so familiar with. This can be done 

with the following command

>> CelsiusTemps = (5/9) * (temps - 32)
CelsiusTemps =
 0 10.0000 18.3333 21.1111 29.4444

Later, we will investigate programming in MATLAB and we will show you how 

to create functions that can be called later in the command window.
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Ending Your MATLAB Session

OK we have gotten started with a few very basic MATLAB commands. You might 
want to save your work and then shut down MATLAB. How do you get it off your 
screen? Well you can end your MATLAB session by selecting exit from the File 
pull-down menu, just like you would with any other program. Optionally, you can 
type quit in the command window and MATLAB will close.

Quiz

Use MATLAB to calculate the following quantities:

 1. 5
11
14

 2. 5
8
3

37+

 3. 91.25

 4. True or False. If y has not been assigned a value, MATLAB will allow you 
to defi ne the equation x = y ^2 to store in memory for later use.

 5. If the volume of a cylinder of height h and radius r is given by V = πr2h, 
use MATLAB to fi nd the volume enclosed by a cylinder that is 12 cm high 
with a diameter of 4 cm.

 6. Use MATLAB to compute the sin of π/3 expressed as a rational number.

 7. Create a MATLAB m fi le to display the results of sin(π/4), sin(π/3), 
sin(π/2) as rational numbers.



CHAPTER 2

Vectors and 

Matrices

One area where MATLAB is particularly useful is in the computer implementation 
of linear algebra problems. This is because MATLAB has exceptional capabilities 
for handling arrays of numbers, making it a useful tool for many scientifi c and 
engineering applications.

Vectors

A vector is a one-dimensional array of numbers. MATLAB allows you to create 
column vectors or row vectors. A column vector can be created in MATLAB by 
enclosing a set of semicolon delimited numbers in square brackets. Vectors can 
have any number of elements. For example, to create a column vector with three 
elements we write:

>> a = [2; 1; 4]
a =
     2
     1
     4

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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Basic operations on column vectors can be executed by referencing the variable 
name used to create them. If we multiply a column vector by a number, this is called 
scalar multiplication. Suppose that we wanted to create a new vector such that its 
components were three times the components in the vector a we just created above. 
We could start by defi ning a scalar variable (remember that a semicolon after a 
command suppresses the output):

>> c = 3;   

Next, we just perform the operation treating a like another variable:

>> b = c*a
b =
     6
     3
    12

To create a row vector, we enclose a set of numbers in square brackets but this 
time use a space or comma to delimit the numbers. For example:

>> v = [2 0 4]
v =
     2     0     4

Or using commas:

>> w = [1,1,9]
w =
     1     1     9

Column vectors can be turned into row vectors and vice versa using the transpose 

operation. Suppose that we have a column vector with n elements denoted by:

v

v

v

vn

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1

2

M

Then the transpose is given by:

v v v vT
n= ⎡⎣ ⎤⎦1 2 L
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In MATLAB, we represent the transpose operation with a single quote or tickmark 
(‘). Taking the transpose of a column vector produces a row vector:

>> a = [2; 1; 4];
>> y = a'
y =
     2     1     4

Now let’s take the transpose of a row vector to produce a column vector:

>> Q = [2 1 3]
Q =
     2     1     3
>> R = Q'
R =
     2
     1
     3

It is also possible to add or subtract two vectors to produce another. In order to 
perform this operation the vectors must both be of the same type and the same 
length, so we can add two column vectors together to produce a new column vector 
or we can add two row vectors to produce a new row vector, for example. This can 
be done referencing the variables only, it is not necessary for the user to list the 
components. For example, let’s add two column vectors together:

>> A = [1; 4; 5];
>> B = [2; 3; 3];
>> C = A + B
C =
     3
     7
     8

Now let’s subtract one row vector from another:

>> W = [3,0,3];
>> X = [2,1,1];
>> Y = W – X
Y =
     1    –1     2
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Creating Larger Vectors 
from Existing Variables

MATLAB allows you to append vectors together to create new ones. Let u and v be 
two column vectors with m and n elements respectively that we have created in 
MATLAB. We can create a third vector w whose fi rst m elements are the elements 
of u and whose next n elements are the elements of v. The newly created column 
vector has m + n elements. This is done by writing w = [u; v]. For example:

>> A = [1; 4; 5];
>> B = [2; 3; 3];
>> D = [A;B]
D =
     1
     4
     5
     2
     3
     3

This can also be done using row vectors. To create a row vector u with m + n 

elements from a vector r with m elements and a vector s with n elements, we write 
u = [r, s]. For example:

>> R = [12, 11, 9]
>> S = [1, 4];
>> T = [R, S]
T =
    12    11     9     1     4

Creating Vectors with Uniformly 
Spaced Elements

It is possible to create a vector with elements that are uniformly spaced by an 
increment q, where q is any real number. To create a vector x with uniformly spaced 
elements where xi is the fi rst element and xe is the fi nal element, the syntax is:

x = [xi : q : xe]
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For example, we can create a list of even numbers from 0 to 10 by writing:

>> x = [0:2:10]
x =
     0     2     4     6     8    10

We have already been using this technique in the last chapter to create a list of 
values for plotting purposes. Let’s see how this works behind the scenes by looking 
at some vectors with a small number of elements. First we create a set of x values:

>> x = [0:0.1:1]
x =

Columns 1 through 10

         0    0.1000    0.2000    0.3000    0.4000    0.5000    
0.6000    0.7000    0.8000    0.9000

Column 11

    1.0000

The set of x values can be used to create a list of points representing the values 
of some given function. For example, suppose that y = ex. Then we have:

>> y = exp(x)
y =

Columns 1 through 10 

    1.0000    1.1052    1.2214    1.3499    1.4918    1.6487    
1.8221    2.0138    2.2255            2.4596

Column 11

    2.7183

Or we could have y = x2 :

>> y = x^2
y =

Columns 1 through 10

         0    0.0100    0.0400    0.0900    0.1600    0.2500    
0.3600    0.4900    0.6400    0.8100

Column 11

    1.0000
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An aside—note that when squaring a vector in MATLAB, a period must precede 
the power operator (^). If we just enter >> y = x^2, MATLAB gives us an error 
message:

??? Error using ==> mpower
Matrix must be square.

Returning to the process of creating an array of uniformly spaced elements, be 
aware that you can also use a negative increment. For instance, let’s create a list of 
numbers from 100 to 80 decreasing by 5:

>> u = [100:–5:80]
u =
   100    95    90    85    80

When looking at plotting we have also seen how to create a row vector with 
elements from a to b with n regularly spaced elements using the linspace command. 
To review, linspace(a,b) creates a row vector of 100 regularly spaced elements 
between a and b, while linspace(a,b,n) creates a row vector of n regularly spaced 
elements between a and b. In both cases MATLAB determines the increment in 
order to have the correct number of elements.

MATLAB also allows you to create a row vector of n logarithmically spaced 
elements by typing

logspace(a,b,n)

This creates n regularly spaced elements between 10
a
 and 10

b
. For example:

>> logspace(1,2,5)
ans =
   10.0000   17.7828   31.6228   56.2341  100.0000

Or another example:

>> logspace(–1,1,6)
ans =
    0.1000    0.2512    0.6310    1.5849    3.9811   10.0000

Characterizing a Vector

The length command returns the number of elements that a vector contains. For 
example:
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>> A = [2;3;3;4;5];
>> length(A)
ans =
     5
>> B = [1;1];
>> length(B)
ans =
     2

The length command can be applied to row and column vectors (see “Basic 
Operations with Matrices”, later in this chapter) and, as we will see below, to 
matrices. 

We can fi nd the largest and smallest elements in a vector using the max and min 

commands. For example:

>> A = [8 4 4 1 7 11 2 0];
>> max(A)
ans =
    11
>> min(A)
ans =
     0

To fi nd the magnitude of a vector we can employ two operations. Recall that the 
magnitude of a vector

v

v

v

vn

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1

2

M

is given by:

v v v vn= + +1
2

2
2 2L

To perform this operation, we will fi rst take the dot product of a vector with 
itself. This is done by using array multiplication (.*). First let’s defi ne a vector:

>> J = [0; 3; 4];

Now we can do array multiplication:

>> J.*J
ans =
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     0
     9
    16

This produces a vector whose elements are v2
1, v

2
2,…. To get the summation we 

need, we can use the sum operator:

>> a = sum(J.*J)
a =
    25

Then the magnitude of the vector is the square root of this quantity:

>> mag = sqrt(a)
mag =
     5

If a vector contains complex numbers, then more care must be taken when 
computing the magnitude. When computing the row vector, we must compute the 
complex conjugate transpose of the original vector. For example, if:

u =

i

i1 2
4

+
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Then to compute the magnitude, we need the following vector:

u† = [−i 1−2i 4]

Then the summation we need to compute is:

u u i i

i

i i i i† = [ 1 2 4] 1+ 2
4

= ( )( ) + (1 2 )(− − − −
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

11+ 2 ) + (4)(4) = 22i

Hence the magnitude of a vector with complex elements is:

u u u= = 22†

You can see how using the complex conjugate transpose when computing our 
sum ensures that the magnitude of the vector will be real. Now let’s see how to do 
this in MATLAB. First let’s enter this column vector:

>> u = [i; 1 + 2i; 4];
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If we just compute the sum of the vector multiplication as we did in the previous 
example, we get a complex number that won’t work:

>> sum(u.*u)
ans =
  12. 

So let’s defi ne another vector which is the complex conjugate transpose of u. 
MATLAB does this automatically with the transpose operator:

>> v = u'
v =
        0 – 1.0000i   1.0000 – 2.0000i   4.0000   

Now we can perform our sum:

>> b = sum(v.*u)
??? Error using ==> times

Matrix dimensions must agree.
Unfortunately it looks like we’ve been led down a blind alley! It appears there 

isn’t quite a one to one correspondence to what we would do on paper. How can we 
get around this? Let’s just compute the complex conjugate of the vector, and form 
the sum. We can get the complex conjugate of a vector with the conj command:

>> v = conj(u)
v =
        0 – 1.0000i
   1.0000 – 2.0000i
   4.0000    

Now we obtain the correct answer, and can get the magnitude:

>> b = sum(v.*u)
b =
    22
>> magu = sqrt(b)
magu =
    4.6904

Of course this could all be done in one step by writing:

>> c = sqrt(sum(conj(u).*u))
c = 
    4.6904
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Here we are actually doing things the hard way—just to illustrate the method and 
some MATLAB commands. In the next section we will see how to compute the 
magnitude of a vector automatically.

We can use the abs command to return the absolute value of a vector, which is 
a vector whose elements are the absolute values of the elements in the original 
vector, i.e.:

>> A = [–2 0 –1 9] >> B = abs(A)
B =
     2     0     1     9

Vector Dot and Cross Products

The dot product between two vectors A = (a1 a2 … an) and B = (b1 b2 … bn) is 
given by

A B a b⋅ = ∑ i i

i

In MATLAB, the dot product of two vectors a, b can be calculated using the 
dot(a,b) command.

The dot product between two vectors is a scalar, i.e. it’s just a number. Let’s 
compute a simple example using MATLAB:

>> a = [1;4;7]; b = [2;–1;5];
>> c = dot(a,b)
c =
    33

The dot product can be used to calculate the magnitude of a vector. All that needs 
to be done is to pass the same vector to both arguments. Consider the vector in the 
last section:

>> J = [0; 3; 4];

Calling dot we obtain:

>> dot(J,J)
ans =
    25
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Or we can calculate the magnitude of the vector this way:

>> mag = sqrt(dot(J,J))
mag =
     5

The dot operation works correctly with vectors that contain complex elements:

>> u = [–i; 1 + i; 4 + 4*i];
>> dot(u,u)
ans =
    35

Another important operation involving vectors is the cross product. To compute 
the cross product, the vectors must be three dimensional. For example:

>> A = [1 2 3]; B = [2 3 4];
>> C = cross(A,B)
C =
    –1     2    –1

Referencing Vector Components

MATLAB has several techniques that can be used to reference one or more of the 
components of a vector. The ith component of a vector v can be referenced by 
writing v(i). For example:

>> A = [12; 17; –2; 0; 4; 4; 11; 19; 27];
>> A(2)
ans =
    17
>> A(8)
ans =
    19

Referencing the vector with a colon, such as v(:); tells MATLAB to list all of the 
components of the vector:

>> A(:)
ans =
    12
    17
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    –2
     0
     4
     4
    11
    19
    27

We can also pick out a range of elements out of a vector. The example we’ve 
been working with so far in this section is a vector A with nine components. We can 
reference components four to six by writing A(4:6) and use these to create a new 
vector with three components:

>> v = A(4:6)
v =
     0
     4
     4

In the next section, we will see how these techniques can be used to reference the 
columns or rows in an array of numbers called a matrix.

Basic Operations with Matrices

A matrix is a two-dimensional array of numbers. To create a matrix in MATLAB, 
we enter each row as a sequence of comma or space delimited numbers, and then 
use semicolons to mark the end of each row. For example, consider:

A =
−⎡

⎣⎢
⎤
⎦⎥

1 6
7 11

This matrix is entered in MATLAB using the following syntax:

>> A = [–1,6; 7, 11];

Or consider the matrix:

B = −
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2 0 1
1 7 4

3 0 1
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We enter it in MATLAB in the following way:

>> B = [2,0,1;–1,7,4; 3,0,1] 

Many of the operations that we have been using on vectors can be extended for 
use with matrices. After all a column vector with n elements is just a matrix with 
one column and n rows while a row vector with n elements is just a matrix with one 
row and n columns. For example, scalar multiplication can be carried out referencing 
the name of the matrix:

>> A = [–2 2; 4 1]
A =
    –2     2
     4     1
>> C = 2*A
C =
    –4     4
     8     2

If two matrices have the same number of rows and columns, we can add and 
subtract them:

>> A = [5 1; 0 9];
>> B = [2 –2; 1 1];
>> A + B
ans =
     7    –1
     1    10
>> A – B
ans =
     3     3
    –1     8

We can also compute the transpose of a matrix. The transpose operation switches 
the rows and columns in a matrix, for example:

A AT=
−⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⇒ =
−⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1 2 4
0 1 6
2 7 1

1 0 2
2 1 7
4 6 1

,
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We can take the transpose of a matrix using the same notation used to calculate 
the transpose of a vector:

>> A = [–1 2 0; 6 4 1]
A =
    –1     2     0
     6     4     1
>> B = A'
B =
    –1     6
     2     4
     0     1

If the matrix contains complex elements, the transpose operation will compute 
the conjugates:

>> C = [1 + i, 4 – i; 5 + 2*i, 3 – 3*i]
C =
   1.0000 + 1.0000i   4.0000 – 1.0000i
   5.0000 + 2.0000i   3.0000 – 3.0000i
>> D = C'
D =
   1.0000 – 1.0000i   5.0000 – 2.0000i
   4.0000 + 1.0000i   3.0000 + 3.0000i

If we want to compute the transpose of a matrix with complex elements without 
computing the conjugate, we use (.’):

>> D = C'
D =
   1.0000 + 1.0000i   5.0000 + 2.0000i
   4.0000 – 1.0000i   3.0000 – 3.0000i

We can perform array multiplication. It is important to recognize that this is not 
matrix multiplication. We use the same notation used when multiplying two vectors 
together (.*). For example:

>> A = [12 3; –1 6]; B = [4 2; 9 1];
>> C = A.*B
C =
    48     6
    –9     6
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As you can see, what the operation  A. *B does is it performs component by 
component multiplication. Abstractly it works as follows:

A B
a a

a a

b b

b b
.*

(
= ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=11 12

21 22

11 12

21 22

aa b a b

a b a b
11 11 12 12

21 21 22 22

)( ) ( )( )
( )( ) ( )( )

⎛
⎝⎜

⎞⎞
⎠⎟

We see how to perform matrix multiplication in the next section.

Matrix Multiplication

Consider two matrices A and B. If A is an m × p matrix and B is a p × n matrix, they 
can be multiplied together to produce an m × n matrix. To do this in MATLAB, we 
leave out the period (.) and simply write A*B. Keep in mind that if the dimensions 
of the two matrices are not correct, the operation will generate an error.

Let’s consider two matrices:

A B= ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

2 1
1 2

3 4
5 6

,

These are both 2 × 2 matrices, so matrix multiplication is permissible. First, let’s 
do array multiplication so we can see the difference:

>> A = [2 1; 1 2]; B = [3 4; 5 6];
>> A.*B
ans =
     6     4
     5    12

Now we leave out the ‘.’ character and execute matrix multiplication, which 
produces quite a different answer:

>> A*B
ans =
    11    14
    13    16
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Here is another example. Consider:

A B=
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
−

−
⎛
⎝⎜

⎞
⎠⎟

1 4
8 0
1 3

1 7 4
2 1 2

,

The matrix A is a 3 × 2 matrix, while B is a 2 × 3 matrix. Since the number of 
columns of A matches the number of rows of B, we can calculate the product AB. 
In MATLAB:

>> A = [1 4; 8 0; –1 3]; B = [–1 7 4; 2 1 –2];
>> C = A*B
C =
     7    11    –4
    –8    56    32
     7    –4   –10

While matrix multiplication is possible in this case, array multiplication is not. 
To use array multiplication, both row and column dimensions must agree for each 
array. Here is what MATLAB tells us:

>> A.*B
??? Error using ==> times
Matrix dimensions must agree.

More Basic Operations

MATLAB also allows several operations on matrices that you might not be 
immediately used to from your linear algebra background. For example, MATLAB 
allows you to add a scalar to an array (vector or matrix). This operation works by 
adding the value of the scalar to each component of the array. Here is how it works 
with a row vector:

>> A = [1 2 3 4];
>> b = 2;
>> C = b + A
C =
     3     4     5     6
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We can also perform left and right division on an array. This works by matching 
component by component, so the arrays have to be of the same size. For example, 
we tell MATLAB to perform array right division by typing (./ ):

A = [2 4 6 8]; B = [2 2 3 1];
>> C = A./B
C =
     1     2     2     8

Array left division is indicated by writing C = A.\B (this is the same as C = B./A):

>> C = A.\B
C = 
    1.0000    0.5000    0.5000    0.1250

Basically any mathematical operation you can think of can be implemented in 
MATLAB with arrays. For instance, we can square each of the elements:

>> B = [2 4; –1 6]
B =
     2     4
    –1     6
>> B.^2
ans =
     4    16
     1    36

Special Matrix Types

The identity matrix is a square matrix that has ones along the diagonal and zeros 
elsewhere. To create an n × n identity matrix, type the following MATLAB 
command:

eye(n)

Let’s create a 4 × 4 identity matrix:

>> eye(4)
ans =
     1     0     0     0
     0     1     0     0
     0     0     1     0
     0     0     0     1
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To create an n × n matrix of zeros, we type zeros(n). We can also create a m × n 

matrix of zeros by typing zeros(m,n). It is also possible to generate a matrix 
completely fi lled with 1’s. Surprisingly, this is done by typing ones(n) or ones(m,n) 
to create n × n and m × n matrices fi lled with 1’s, respectively.

Referencing Matrix Elements

Individual elements and columns in a matrix can be referenced using MATLAB. 
Consider the matrix:

>> A = [1 2 3; 4 5 6; 7 8 9]
A =
     1     2     3
     4     5     6
     7     8     9

We can pick out the element at row position m and column position n by typing 
A(m,n). For example:

>> A(2,3)
ans =
     6

To reference all the elements in the ith column we write A(:,i). For example, we 
can pick out the second column of A:

>> A(:,2)
ans =
     2
     5
     8

To pick out the elements in the ith through jth columns we type A(:,i:j). Here we 
return the second and third columns:

>> A(:,2:3)
ans =
     2     3
     5     6
     8     9
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We can pick out pieces or submatrices as well. Continuing with the same matrix, 
to pick out the elements in the second and third rows that are also in the fi rst and 
second columns, we write:

>> A(2:3,1:2)
ans =
     4     5
     7     8

We can change the value of matrix elements using these references as well. Let’s 
change the element in row 1 and column 1 to –8:

>> A(1,1) = –8
A =
    –8     2     3
     4     5     6
     7     8     9

To create an empty array in MATLAB, simply type an empty set of square braces 
[]. This can be used to delete a row or column in a matrix. Let’s delete the second 
row of A:

>> A(2,:)=[]
A =
    –8     2     3
     7     8     9

This has turned the formerly 3 × 3 matrix into a 2 × 3 matrix. 
It’s also possible to reference rows and columns in a matrix and use them to 

create new matrices. In this example, we copy the fi rst row of A four times to create 
a new matrix:

>> E = A([1,1,1,1],:)
E =
    –8     2     3
    –8     2     3
    –8     2     3
    –8     2     3

This example creates a matrix out of both rows of A:

>> F = A([1,2,1],:)
F =
    –8     2     3
     7     8     9
    –8     2     3
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Finding Determinants and Solving 
Linear Systems

The determinant of a square matrix is a number. For a 2 × 2 matrix, the determinant 
is given by:

D
a a

a a
a a a a= = −11 12

21 22
11 22 12 21

To calculate the determinant of a matrix A in MATLAB, simply write det(A). 
Here is the determinant of a 2 × 2 matrix:

>> A = [1 3; 4 5];
>> det(A)
ans =
    –7

In this example, we fi nd the determinant of a 4 × 4 matrix:

>> B = [3 –1 2 4; 0 2 1 8; –9 17 11 3; 1 2 3 –3];
>> det(B)
ans =
  –533

Needless to say, such a calculation would be extremely tedious by hand. 
Determinants can be used to fi nd out if a linear system of equations has a solution. 
Consider the following set of equations:

5x + 2y − 9z = 44
−9x − 2y + 2z = 11
6x + 7y + 3z = 44

To fi nd a solution to a system of equations like this, we can use two steps. First 
we fi nd the determinant of the coeffi cient matrix A, which in this case is:

A =
−

− −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

5 2 9
9 3 2

6 7 3
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The determinant is:

>> A = [5 2 –9; –9 –3 2; 6 7 3]
>> det(A)
ans =
   368

When the determinant is nonzero, a solution exists. This solution is the column 
vector:

x =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x

y

z

MATLAB allows us to generate the solution readily using left division. First we 
create a column vector of the numbers on the right-hand side of the system. We 
fi nd:

>> b = [44;11;5];
>> A\b
ans =
   –5.1250
    7.6902
   –6.0272

Finding the Rank of a Matrix

The rank of a matrix is a measure of the number of linearly independent rows or 
columns in the matrix. If a vector is linearly independent of a set of other vectors 
that means it cannot be written as a linear combination of them. Simple example:

u v w= −
⎛
⎝⎜

⎞
⎠⎟

= −
⎛
⎝⎜

⎞
⎠⎟

= −
⎛
⎝⎜

⎞
⎠⎟

1

2

3

4

5

6
, ,

Looking at these column vectors we see that:

2u + v = w
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Hence w is linearly dependent on u and v, since it can be written as a linear 
combination of them. On the other hand:

u v w=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2
0
0

0
1

0

0
0
7

, ,

form a linearly independent set, since none of these vectors can be written as a 
linear combination of the other two.

Consider the matrix:

A = ⎛
⎝⎜

⎞
⎠⎟

0 1 0 2
0 2 0 4

The second row of the matrix is clearly twice the fi rst row of the matrix. Hence 
there is only one unique row and the rank of the matrix is 1. Let’s check this in 
MATLAB. We compute the rank in the following way:

>> A = [0 1 0 2; 0 2 0 4];
>> rank(A)
ans =
     1

Another example:

B =
− −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 2 3
3 0 9
1 2 3

The third column is three times the fi rst column:

3
9
3

3
1
3
1−

=
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Therefore, it’s linearly dependent on the other two columns (add zero times the 
second column). The other two columns are linearly independent since there is no 
constant α  such that:

2
0
2

1
3
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

α

So we conclude that there are two linearly independent columns, and rank(B) = 2. 
Let’s check it in MATLAB:

>> B = [1 2 3; 3 0 9; –1 2 –3];
>> rank(B)
ans =
     2

Now let’s consider the linear system of equations with m equations and n 

unknowns:

Ax = b

The augmented matrix is formed by concatenating the vector b onto the matrix A:

[A b]

The system has a solution if and only if rank(A) = rank(A b). If the rank is equal 
to n, then the system has a unique solution. If rank(A) = rank(A b) but the rank 
< n, there are an infi nite number of solutions. If we denote the rank by r, then r of 
the unknown variables can be expressed as linear combinations of n – r of the other 
variables.

Since the rank can be computed easily in MATLAB and we can readily 
concatenate arrays together, we can use these facts to analyze linear systems with 
relative ease. If the rank condition is met and the rank is equal to the number of 
unknowns, the solution can be computed by using left division. Let’s illustrate the 
technique. Consider the system:

x − 2y + z = 12
3x + 4y + 5z = 20
−2x + y + 7z = 11
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The coeffi cient matrix is:

A =
−

−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 2 1
3 4 5
2 1 7

We also have:

b =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

12
20
11

And the augmented matrix is:

A b( ) =
−

−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 2 1 12
3 4 5 20
2 1 7 11

The fi rst step is to enter these matrices in MATLAB:

>> A = [1 –2 1; 3 4 5; –2 1 7] b = [12; 20; 11]

We can create the augmented matrix by using concatenation:

>> C = [A b]
C =
     1    –2     1    12
     3     4     5    20
    –2     1     7    11

Now let’s check the rank of A:

>> rank(A)
ans =
     3

The rank of the augmented matrix is:

>> rank(C)
ans =
     3
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Since the ranks are the same, a solution exists. We also note that the rank r 
satisfi es r = n since there are three unknown variables. This means the solution is 
unique. We fi nd it by left division:

>> x = A\b
x =
    4.3958
   –2.2292
    3.1458

Finding the Inverse of a Matrix 
and the Pseudoinverse

The inverse of a matrix A is denoted by A−1 such that the following relationship is 
satisfi ed:

AA−1 = A−1A = 1

Consider the following matrix equation:

Ax = b

If the inverse of A exists, then the solution can be readily written as:

x = A−1b

In practice, this is much harder than it looks because computing the inverse of a 
matrix can be a tedious pain. Luckily MATLAB makes things easy for us by doing 
all of the tedious work we want to avoid. The inverse of a matrix A can be calculated 
in MATLAB by writing:

inv(A)

The inverse of a matrix does not always exist. In fact, we can use the determinant 
to determine whether or not the inverse exists. If det(A) = 0, then the inverse does 
not exist and we say the matrix is singular.

Let’s get started by calculating a few inverses just to see how easy this is to do in 
MATLAB. Starting with a simple 2 × 2 matrix:

A = ⎛
⎝⎜

⎞
⎠⎟

2 3
4 5
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First, let’s check the determinant:

>> A = [2 3; 4 5]
A =
     2     3
     4     5
>> det(A)
ans =
    –2

Since det(A) ≠ 0, we can fi nd the inverse. MATLAB tells us that it is:

>> inv(A)
ans =
   –2.5000    1.5000
    2.0000   –1.0000

We can verify that this is the inverse by hand:

AA− = ⎛
⎝⎜

⎞
⎠⎟

−
−

⎛
⎝⎜

⎞
⎠⎟

=
− + −1 2 3

4 5
5 2 3 2
2 1

10 2 6 6 2/ / / / 33
20 2 10 12 2 5

1 0
0 1− + −

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟/ /

We aren’t going to bother to tell you how to calculate a matrix inverse by hand, 
that’s something you can fi nd in most linear algebra books. Suffi ce it to say that it’s 
something you want to avoid doing, especially for larger matrices. Let’s consider a 
4 × 4 case in MATLAB.

First we create the matrix:

>> S = [1 0 –1 2; 4 –2 –3 1; 0 2 –1 1; 0 0 9 8];

Checking its determinant we fi nd:

>> det(S)
ans =
  –108

Since det(S) ≠ 0, the inverse must exist. MATLAB spits it out for us:

>> T = inv(S)
T =
   –0.9259    0.4815    0.4815    0.1111
   –0.6296    0.1574    0.6574    0.0556
   –0.5926    0.1481    0.1481    0.1111
    0.6667   –0.1667   –0.1667         0
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Finding this by hand would not have been pleasant, and chances are we would 
have generated some errors. Now let’s check that this is in fact the inverse:

>> S*T
ans =
    1.0000         0         0               0
    0.0000    1.0000   –0.0000         0
    0.0000   –0.0000    1.0000         0
         0         0         0             1.0000

The –0.0000 terms come from some rounding errors and all that. Within computer 
precision, it looks like we do in fact have the correct inverse. Let’s check 
multiplication the other way:

>> T*S
ans =
    1.0000         0         0         0
         0    1.0000         0    0.0000
         0         0    1.0000         0
         0         0    0.0000    1.0000

This time, for mysterious reasons left behind the MATLAB curtain that aren’t 
important for those of us just using it for some basics, the result comes out a bit 
nicer. 

Now let’s look at how we can solve a system of equations using the inverse. 
Consider:

3x − 2y = 5
6x − 2y = 2

The coeffi cient matrix is:

>> A = [3 –2; 6 –2]
A =
     3    –2
     6    –2

The vector b for the system Ax = b is:

>> b = [5;2]
b =
     5
     2
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First let’s check the determinant of A to ensure that the inverse exists:

>> det(A)
ans =
     6

Since the inverse exists, we can generate the solution readily in MATLAB:

>> x = inv(A)*b
x =
   –1.0000
   –4.0000

We can only use the method described earlier, multiplying by the inverse of the 
coeffi cient matrix to obtain a solution, if the coeffi cient matrix is square. What this 
means for the system of equations is that the number of equations equals the number 
of unknowns. If there are fewer equations than unknowns, the system is called 
underdetermined. This means that the system has an infi nite number of solutions. 
This is because only some of the unknown variables can be determined. The 
variables that remain unknown can assume any value, hence there are an infi nite 
number of solutions. We take a simple example:

x + 2y − z = 3
5y + z = 0

A little manipulation tells us that:

z = − 5y

x = 3 − 7y

In this system, while we can fi nd values for two of the variables (x and z), the 
third variable y is undetermined. We can choose any value of y we like, and the 
system will have a solution. 

Another case where an infi nite number of solutions exist for a system of equations 
and unknowns is when det(A) = 0.

So what is a poor mathematician to do in such a scenario? Luckily the 
pseudoinverse comes to the rescue. This solution gives the minimum norm solution 
for real values of the variables. That is, the solution vector x is chosen to have the 
smallest norm such that the components of x are real. Let’s consider a linear system 
of equations:

3x + 2y − z = 7
4y + z = 2
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Obviously this system has an infi nite number of solutions. We enter the data:

>> A= [3 2 –1; 0 4 1]; b = [7;2];
>> C = [A b]
C =
     3     2    –1     7
     0     4     1     2

Now we compute the ranks:

>> rank(A)
ans =
     2
>> rank(C)
ans =
     2

Since these ranks are equal, a solution exists. We can have MATLAB generate a 
solution using left division:

>> x = A\b
x =
    2.0000
    0.5000
         0

MATLAB has generated a solution by setting one of the variables ( z in this case) 
to zero. This is typically what it does in cases like these, if you try to generate a 
solution using left division. The solution is valid of course, but remember it only 
holds when z = 0, and z can be anything.

We can also solve the system using the pseudoinverse. We do this by typing:

>> x = pinv(A)*b
x =
    1.6667
    0.6667
   –0.6667

MATLAB uses the Moore-Penrose pseudoinverse to calculate pinv.
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Reduced Echelon Matrices

The MATLAB function rref(A) uses Gauss-Jordan elimination to generate the 
reduced row echelon form of  a matrix A. A simple example you can verify with a 
hand calculation:

>> A = [1 2; 4 7]
A =
     1     2
     4     7
>> rref(A)
ans =
     1     0
     0     1

Now let’s consider an example you’re unlikely to calculate by hand. A magic 
matrix is an n × n matrix. The components of the matrix range from 1 to n2 and the 
sum of the elements in a column is equal to the sum of the elements in a row. Trying 
to generate one of these by hand might cause a brain hemorrhage, but MATLAB 
does it for us with the magic(n) command. For example:

>> A = magic(5)
A =
    17    24     1     8    15
    23     5     7    14    16
     4     6    13    20    22
    10    12    19    21     3
    11    18    25     2     9

Let’s check the sum of the columns to see that they’re equal:

>> sum(A)
ans =
    65    65    65    65    65

Using Gauss-Jordan elimination on this matrix to fi nd the reduced row echelon 
form would be a bit too much work for me to tackle. So I am going to have MATLAB 
tell us what it is:

>> rref(A)
ans =
     1     0     0     0     0
     0     1     0     0     0
     0     0     1     0     0
     0     0     0     1     0
     0     0     0     0     1
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Well how about that. We got the identity again. Let’s try a larger matrix:

>> magic(8)
ans =
    64     2     3    61    60     6     7    57
     9    55    54    12    13    51    50    16
    17    47    46    20    21    43    42    24
    40    26    27    37    36    30    31    33
    32    34    35    29    28    38    39    25
    41    23    22    44    45    19    18    48
    49    15    14    52    53    11    10    56
     8    58    59     5     4    62    63     1

This matrix is too big for most of us to tackle, but MATLAB fi nds:

>> rref(magic(8))
ans =
     1     0     0     1     1     0     0     1
     0     1     0     3     4    –3    –4     7
     0     0     1    –3    –4     4     5    –7
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0

Matrix Decompositions

MATLAB can be used to quickly generate the LU, QR, or SVD decompositions of 
a matrix. In this section, we will take a look at LU decomposition and see how to 
use it to solve a linear system of equations in MATLAB. We can fi nd the LU 
decomposition of a matrix A by writing:

[L, U] = lu(A)

For example, let’s fi nd the LU decomposition of:

A =
−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 2 0
4 1 8
2 7 1
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We enter the matrix and fi nd:

>> A = [–1 2 0; 4 1 8; 2 7 1];
>> [L, U] = lu(A)
L =
   –0.2500    0.3462    1.0000
    1.0000         0         0
    0.5000    1.0000         0
U =
    4.0000    1.0000    8.0000
         0    6.5000   –3.0000
         0         0    3.0385

We can use the LU decomposition to solve a linear system. Suppose that A was 
a coeffi cient matrix for a system with 

b = −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

12
8

6

The solution can be generated with two left divisions:

x = U\(L\b)

We fi nd:

>> x = U\(L\b)
x =
   –6.9367
    2.5316
    2.1519

Consider the system:

3x + 2y − 9z = −65
−9x + 5y + 2z = 16

6x + 7y +3z = 5

We enter the system in MATLAB:

>> A = [3 2 –9; –9 –5 2; 6 7 3]; b = [–65; 16; 5];
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Now let’s fi nd the LU decomposition of A:

>> [L, U] = lu(A)
L =
   –0.3333    0.0909    1.0000
    1.0000         0         0
   –0.6667    1.0000         0
U =
   –9.0000   –5.0000    2.0000
         0    3.6667    4.3333
         0         0   –8.7273

Now we use these matrices together with left division to generate the solution:

>> x = U\(L\b)
x =
    2.0000
   –4.0000
    7.0000

Quiz

 1. Find the magnitude of the vector A = (−1 7 3 2).

 2. Find the magnitude of the vector A = (−1 + i 7i 3 −2−2i).

 3. Consider the numbers 1, 2, 3. Enter these as components of a column 
vector and as components of a row vector.

 4. Given A = [1; 2; 3]; B = [4; 5; 6];, fi nd the array product of the two vectors.

 5. What command would create a 5 × 5 matrix with ones on the diagonal and 
zeros everywhere else?

 6. Consider the two matrices A B= −
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

8 7 11
6 5 1
0 2 8

2 1 2
1 6 4

2 2 2
,  and compute 

their array product and matrix product.

 7. Suppose that A =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 2 3
4 5 6
7 8 9

. Use it to create B =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

7 8 9
7 8 9
4 5 6
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 8. Find a solution to the following set of equations:

  x + 2y + 3z = 12
−4x + y + 2z = 13

9y − 8z = −1

  What is the determinant of the coeffi cient matrix?

 9. Does a solution to the following system exist? What is it?

  x − 2y + 3z = 1
x + 4y + 3z = 2
2x + 8y + z = 3

 10. Use LU decomposition to fi nd a solution to the system:

  x + 7y − 9z = 12
2x − y + 4z = 16
x + y − 7z = 16



CHAPTER 3

Plotting

 and Graphics

Plotting is one of the most useful applications of a math package used on the 
computer, and MATLAB is no exception to this rule. Often we need to visualize 
functions that are too hard to graph “by hand” or to plot experimental or generated 
data. In this chapter we will introduce the commands and techniques used in 
MATLAB to accomplish these kinds of tasks.

Basic 2D Plotting

Let’s start with the most basic type of plot we can create, the graph of a function of 
one variable. Plotting a function in MATLAB involves the following three steps:

 1. Defi ne the function

 2. Specify the range of values over which to plot the function

 3. Call the MATLAB plot(x, y) function

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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When specifying the range over which to plot the function, we must also tell 
MATLAB what increment we want it to use to evaluate the function. It doesn’t take 
a rocket scientist to figure out that using smaller increments will result in plots with 
a smoother appearance. If the increment is smaller, MATLAB will evaluate the 
function at more points. But it’s generally not necessary to go that small. Let’s look 
at a simple example to see how this works.

Let’s plot the function y = cos(x) over the range 0 ≤ x ≤ 10. To start, we want to 
define this interval and tell MATLAB what increment to use. The interval is defined 
using square brackets [] that are filled in the following manner:

[ start : interval : end ]

For example, if we want to tell MATLAB to plot over 0 ≤ x ≤ 10 with an interval 
of 0.1, we type:

[0:0.1:10]

To assign this range to a variable name, we use the assignment operator. We also 
do this to tell MATLAB what the dependent variable is and what function we want 
to plot. Hence to plot y = cos(x), we enter the following commands:

>> x = [0:0.1:10];
>> y = cos(x)

Notice that we ended each line with semicolons. Remember, this suppresses 
MATLAB output. It’s unlikely you would want MATLAB to spit out all the x values 
over the interval onto the screen, so we use the semicolon to prevent this. Now we 
can plot the function. This is done by entering the following command:

>> plot(x, y)

After typing the plot command, hit the enter key. After a moment MATLAB will 
open a new window on the screen with the caption Figure 1. The plot is found in 
this window. For the example we used, we obtain the plot shown in Figure 3-1.

Now what about the increment? Suppose that we make the increment ten times 
as large, so we set it to 1. This is done by entering the following command:

>> x = [0:1:10];

If we try to plot again, we get an error message:

>> plot(x, y);
??? Error using ==> plot
Vector must be the same lengths.
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We had already made the definition y = cos(x), yet MATLAB can’t plot it. What 
happened here? Turns out we need to tell MATLAB to reevaluate the function for 
the number of points and values that we gave it when we redefined x. In other 
words, the correct course of action is to reenter all of the commands all over 
again:

>> y = cos(x)

y =

 Columns 1 through 10

  1.000  0.5403  -0.4161  -0.9900  -0.6536  0.2837  0.9602  0.7539  -0.1455  -0.9111

 Column 11

  -08391

>> plot(x, y)

A quick aside—notice that we left off the semicolon after our definition of y—so 
MATLAB outputs the evaluation of cos(x) at each point. If you have a large number 
of points, you can see that this probably would be undesirable. 

OK back to the plot. When we plot with a larger increment, the plot is less 
accurate. Look at what MATLAB generates for y = cos(x) in Figure 3-2, where we 
used an increment size of 1.

The plot of the function in this case is choppy. Let’s try going the other way. We 
will make the increment ten times smaller than our original attempt, setting it to 0.01. 

Figure 3-1 A plot of y = cos(x) generated by MATLAB for 0 ≤ x ≤ 10
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Remember we need to redefine y again, therefore the commands we need to type in 
are:

>> x = [0:0.01:10];
>> y = cos(x);
>> plot(x, y)

This time we get a very nice smooth rendition of y = cos(x), this is shown in 
Figure 3-3.

OK now we know how to get a straightforward plot on the screen. The next 
thing you might want to do is generate a plot that had the axes labeled. This can 
be done using the xlabel and ylabel functions. These functions can be used with 
a single argument, the label you want to use for each axis enclosed in quotes. 
Place the xlabel and ylabel functions separated by commas on the same line as 
your plot command. For example, the following text generates the plot shown in 
Figure 3-4:

x=[0:0.01:10];
y=cos(x);
plot(x,y), xlabel(‘x’), ylabel(‘cos(x)’);

Figure 3-2 A plot of the cosine function with a larger increment
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Figure 3-3 A plot of y = cos(x) with a smaller increment

Figure 3-4 Sprucing up the plot with axis labels
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More 2D Plotting Options

OK so at this point we basically know how to spit out a generic plot of a given 
function. Let’s look at some other options we might consider with plots. If you’re 
going to use a plot in a presentation or homework assignment, you might want to 
give the plot a title. MATLAB allows you to do this by using the title command 
which takes a character string enclosed in single quotes. The title is printed just 
above the plot. Let’s say that we were plotting some force data that happened to vary 
as f(t) e−2t sin t for 0 ≤ t ≤ 4, where t is time in seconds with data at intervals of 
0.02 seconds. We want to title the plot “Damped Spring Forcing.” How do we do it?

The first step is to define our interval. We do this in the usual way, calling our 
independent variable t instead of x.

>> t = [0:0.02:1];

Now let’s define our function. This should be pretty straightforward:

>> f = exp(-t)*sin(t);

However, if you try this, you’ll notice we get an error message. MATLAB tells 
us that

??? Error using ==> mtimes
Inner matrix dimensions must agree.

So how do we get around this? One way is to use the fplot function instead. The 
function fplot gets around our choice of interval used to generate the plot, and 
instead decides the number of plotting points to use for us. Generally, fplot will 
allow you to generate the most accurate plots possible, but it also helps us get 
around errors like these. The formal call to fplot goes like fplot ( ‘function string,’ 
[xstart, xend]). The argument function string tells fplot the function you want to plot 
while xstart and xend define the range over which to display the plot. This is pretty 
straightforward, let’s see how it works out in the current example. 

We can do it all in one go by typing the following command and hitting the enter 
key:

>> fplot('exp(-2*t)*sin(t)',[0, 4];

MATLAB quickly produces the plot shown in Figure 3-5.
If we want to add labels and a title to the plot, we can follow the same procedure 

used with plot(x,y). Let’s try it again this time adding our title “Damped Spring 
Forcing” and labeling our axes:

fplot('exp(–2*t)*sin(t)',[0,4]), xlabel('t'), ylabel('f(t)'),
title('Damped Spring Forcing')
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This produces the labeled plot shown in Figure 3-6.
Well this provided a nice intro to the fplot command, but it turns out we had a 

typo in our command multiplying the exponential and trig function which generated 
the error. We had typed:

>> f = exp(-t)*sin(t);

??? Error using ==> mtimes
Inner matrix dimensions must agree.

The correct way to type this in MATLAB is to include a period prior to the 
multiplication symbol. Confused? Let’s show the correct way to type this 
function.

>> t = [0:0.01:4];
>> f = exp(-2*t).*sin(t);
>> plot(t, f)

This time, there is no error and the function plots correctly. Therefore, when 
generating a function, which is formed by the product of two or more other functions, 
be sure to tell MATLAB we’re multiplying two matrices by including a ‘.’ character. 

Figure 3-5 The function f(t) e−2t sin t generated using the fplot command
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For the current example we replaced >> f = exp(-t)*sin(t); with y = 

exp(-1.2*x).*sin(10*x + 5);. The difference is that in the second case, we 
used matrix multiplication (indicated by typing .*).

Well we are back to the old plot(x, y) command. What are some other ways we 
can spruce up your basic two-dimensional plot? One way is to add a grid to the plot. 
This is done by adding the phrase grid on to your plot statement. For the next 
example, we will plot y = tanh(x) over the range −6 ≤ x ≤ 6 with a grid display. First 
we define our interval:

>> x = [–6:0.01:6];

Next, we define the function:

>> y = tanh(x);

The plot command looks like this, and produces the plot shown in Figure 3-7.

Plot(x,y),grid on

Figure 3-6 A labeled plot generated with the fplot command
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The Axis Commands

Figure 3-7 A plot made with the grid on command

MATLAB allows you to adjust the axes used in two-dimensional plots in the 
following way. If we add axis square to the line containing the plot command, this 
will cause MATLAB to generate a square plot. If we type axis equal, then MATLAB 
will generate a plot that has the same scale factors and tick spacing on both axes.

Let’s return to the example y = tanh(x), which we plotted in Figure 3-7. If you 
run this plot with axis square, you will get the same plot that we did using the 
default settings. But suppose that we typed:

>> plot(x,y),grid on, axis equal

In this case, we get the plot shown in Figure 3-8. Notice that the spacing used for 
the y axis in Figure 3-7 and Figure 3-8 are quite different. In the first case, the 
spacing used on the vertical or y axis is different than the spacing used on the x axis. 
In contrast, in Figure 3-8, the spacing is identical.
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As you can see from this dramatic example, we can use the axis command to 
generate plots that differ quite a bit in appearance. Hence we can use the command 
to play with different plot styles and select what we need for the particular application. 
To let MATLAB set the axis limits automatically, type axis auto. This isn’t necessary, 
of course, unless you’ve been playing with the options described here.

Showing Multiple Functions on One Plot

In many cases, it is necessary to plot more than one curve on a single graph. The 
procedure used to do this in MATLAB is fairly straightforward. Let’s start by 
showing two functions on the same graph. In this case let’s plot the following two 
functions over 0 ≤ t ≤ 5:

f(t) = e−t

g(t) = e−2t

Figure 3-8 Plotting y = tanh(x) using the axis equal option
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We will differentiate between the two curves by plotting g with a dashed line. 
Following the usual procedure, we first define our interval:

>> t = [0:0.01:5];

Next, we define the two functions:

>> f = exp(–t);
>> g = exp(–2*t);

To plot multiple functions, we simply call the plot(x, y) command with multiple 
pairs x, y defining the independent and dependent variables used in the plot in pairs. 
This is followed by a character string enclosed in single quotes to tell us what kind 
of line to use to generate the second curve. In this case we have:

>> plot(t,f,t,g,'--')

This tells MATLAB to generate plots of f(t) and g(t) with the latter function 
displayed as a dashed line. Note that while we can’t show it in the book, MATLAB 
displays each curve with a unique color. The result is shown in Figure 3-9.

MATLAB has four basic line types that can be defined in a plot. These are, along 
with the character strings, used to define them in the plot command:

• Solid line ′-′

• Dashed line ′--′

Figure 3-9 Plotting two curves on the same graph
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• Dash-dot line ′-.′

• Dotted line ′:′

Let’s generate the same graph as in Figure 3-9 making the curve f(t) = e−t appear 
with a dotted line. The command is

plot(t,f,':',t,g,'--')

This generates the plot shown in Figure 3-10.
If you want to plot all curves using solid lines and simply differentiate them by 

their colors, just leave off the character string specifying the curve type. The plot 
will be generated using solid lines, which is the default.

Adding Legends

A professionally done plot often has a legend that lets the reader know which curve 
is which. In the next example, let’s suppose that we are going to plot two potential 
energy functions that are defined in terms of the hyperbolic trig functions sinh(x)  
and cosh(x) for 0 ≤ x ≤ 2. First we define x:

>> x = [0:0.01:2];

Figure 3-10 Using a dotted line to represent f(t) = e−t 
and a dashed line to represent g(t) = e−2t
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Now we define our two functions. There is nothing magical about calling a 
function y or anything else in MATLAB, so let’s call the second function z. So we 
have

>> y = sinh(x);
>> z = cosh(x);

The legend command is simple to use. Just add it to the line used for the plot(x, y) 
command and add a text string enclosed in single quotes for each curve you want 
to label. In our case we have:

legend('sinh(x)','cosh(x)')

We just add this to the plot command. For this example, we include x and y labels 
as well, and plot the curves using a solid line for the first curve and a dot-dash for 
the second curve:

>> plot(x,y,x,z,'-.'),xlabel('x'),ylabel('Potential'),legend('sinh(x)','cosh(x)')

The plot that results is shown in Figure 3-11. The legend didn’t originally show 
up where it is in the figure, and it probably won’t do so on your system either. To 
move the legend to a more favorable position that might be better for printing or 
display, just hold the mouse pointer over the legend and drag it to the location 
where you want it to display.

Figure 3-11 A plot of two curves that includes a legend
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Setting Colors

The color of each curve can be set automatically by MATLAB or we can manually 
select which color we want. This is done by enclosing the appropriate letter assigned 
to each color used by MATLAB in single quotes immediately after the function to 
be plotted is specified. Let’s illustrate with an example.

Let’s plot the hyperbolic sine and cosine functions again. This time we’ll use a 
different interval for our plot, we will take −5 ≤ x ≤ 5. So we define our data array 
as

>> x = [–5:0.01:5];

Now we redefine the functions. Remember if we don’t do this and we’re in the 
same session of MATLAB, the program is going to think that the functions are 
defined in terms of the previous x we had used. So now we type:

>> y = sinh(x);
>> z = cosh(x);

Now we will generate the plot representing y with a red curve and z with a blue 
curve. We do this by following our entries for y and z in the plot function by the 
character strings ′r′ and ′b′ respectively. The command looks like this:

>> plot(x,y,'r',x,z,'b')

Try this on your own system to see the plot it generates. Now, it is possible to set 
more than one option for each curve. So let’s use the colors red and blue for the 
curves, and set the cosh function (the blue curve) to draw with a dashed line. This 
is done in the following way, enclosing all of the plot options for the selected curve 
within the same set of quotes:

>> plot(x,y,'r',x,z,'b--')

This gives us the plot shown in Figure 3-12. You can’t see it in the black and 
white image, but the dashed line prints on screen as a blue curve.

MATLAB gives the user eight basic color options for drawing curves. These are 
shown with their codes in Table 3-1.
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Figure 3-12 A plot generated setting colors and line types with the same command

Table 3-1 MATLAB specifiers for selecting plot colors.

Color Specifier

White w

Black k

Blue b

Red r

Cyan c

Green g

Magenta m

Yellow y
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Setting Axis Scales

Let’s take another look at the axis command and see how to set the plot range. This 
is done by calling axis in the following way:

axis ( [xmin xmax ymin ymax] )

Suppose that we want to generate a plot of y = sin(2x + 3) for 0 ≤ x ≤ 5. We might 
consider that the function ranges over −1 ≤ y ≤ 1. We can set the y axis to only show 
these values by using the following sequence of commands:

>> x = [0:0.01:5];
>> y = sin(2*x + 3);
>> plot(x,y), axis([0 5 –1 1])

This generates the plot shown in Figure 3-13.
Now let’s make a plot of y = e−3/2x sin(5x + 3). First we try 0 ≤ x ≤ 5, −1 ≤ y ≤ 1.

>> y = exp(–1.5*x).*sin(5*x+3);
>> plot(x,y), axis([0 5 –1 1])

This generates the plot shown in Figure 3-14. As you can see from the figure, the 
range used for the y axis could be adjusted.

Figure 3-13 A plot generated manually setting the limits on the 
x and y axes for a plot of y = sin(2x + 3) for 0 ≤ x ≤ 5
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Let’s try adjusting the range of y values on the plot, so that −0.7 ≤ y ≤ 0.3. We do 
this by adjusting the axis command as follows:

>> plot(x,y), axis([0 5 –0.7 0.3])

This gives us a much tighter view of the graph, as shown in Figure 3-15.
We aren’t restricted to plot only over the entire set of values of x we use to 

generate a function. To see what we mean by this, let’s generate a couple of plots of 
y = sin2(5x). First as an aside, let’s make a note of how one would square the sin 

function in MATLAB. If you type:

>> y = sin(5*x)^2

MATLAB is going to lash out at you:

??? Error using ==> mpower

Matrix must be square.
The correct way to square the sin function is to use the arraywise power notation, 

which uses A. ^B to represent AB. Hence the following command will work

>> y = sin(5*x).^2;

Figure 3-14 A plot of y = e−3/2x sin(5x + 3). First we try 0 ≤ x ≤ 5, −1 ≤ y ≤ 1
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This squares each element of the array, instead of the array as a whole. Now let’s 
plot it using the automatic settings. If we just type plot(x, y), then MATLAB generates 
the plot shown in Figure 3-16.

Figure 3-15 The plot of y = e−3/2x sin(5x + 3) with 
−0.7 ≤ y ≤ 0.3, generated by using axis([0 5 –0.7 0.3])

Figure 3-16 The result of plot(x,y) where y = sin2(5x)
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Suppose that we only want to look at the plot over a restricted set of x values. For 
example, we can set 0 ≤ x ≤ 1 by typing:

>> plot(x,y), axis([0 1 0 1])

This generates the plot shown in Figure 3-17.
At this point you should have a handle on the basics needed to generate plots in 

MATLAB. Now let’s consider putting two or more plots in the same figure.

Figure 3-17 A plot of y = sin2(5x) again, this time with 0 ≤ x ≤ 1

Subplots

A subplot is one member of an array of plots that appears in the same figure. The 
subplot command is called using the syntax subplot(m, n, p). Here m and n tell 
MATLAB to generate a plot array with m rows and n columns. Then we use p to tell 
MATLAB where to put the particular plot we have generated. As always, these 
ideas are best illustrated with an example.

Each plot created with the subplot command can have its own characteristics. For 
our first example, we will show y = e−1.2x sin(20x) and y = e−2x sin(20x) side by side. 
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In both cases, we will set 0 ≤ x ≤ 5 and −1 ≤ y ≤ 1. First we define the values used in 
our domain, define the first function, and then make a call to subplot:

>> x = [0:0.01:5];
>> y = exp(–1.2*x).*sin(20*x);
>> subplot(1,2,1)

By passing (1, 2, 1) to subplot, we have told MATLAB that we are going to create 
an array with 2 panes and 1 row, and that this particular plot will appear in the first 
pane. Panes are numbered in the usual way, moving from left to right, so this plot 
will appear in the left pane. At this point, MATLAB has generated the first pane in 
the figure, but hasn’t placed anything in it. This is illustrated in Figure 3-18.

Now we call the plot command:

>> plot(x,y),xlabel('x'),ylabel('exp(–1.2x)*sin(20x)'),axis([0 5 –1 1])

If we look at the figure, the function has been plotted in the first pane, as shown 
in Figure 3-19.

Figure 3-18 The result of the first call to subplot
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With the first plot created, we can move on to generating the second plot. First 
we define the function

>> y = exp(–2*x).*sin(20*x);

(Aside—remember to include the period before * when multiplying two functions 
together). Now we call subplot, this time telling MATLAB to place this function in 
the second pane:

>> subplot(1,2,2)

MATLAB hasn’t put any data in there yet—remember we still have to call the 
plot command. The figure now looks like that shown in Figure 3-20.

Now we plot it:

>> plot(x,y),xlabel('x'),ylabel('exp(–2x)*sin(20x)'),axis([0 5 –1 1])

The result, two side-by-side plots, is shown in Figure 3-21.

Figure 3-19 A glance at the MATLAB output after our first calls to subplot and plot
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Figure 3-20 The graphics window after our second call to subplot

Figure 3-21 Two side-by-side plots generated by MATLAB. Define 
your first function, call subplot, and tell MATLAB where to place it, 

then call plot to draw the curve. Then repeat for the next function
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Overlaying Plots and linspace

Let’s suppose that we plot a function, and then decide that we want the plot of a 
second function to appear on the same graph. We can do this with two calls to the 
plot command by telling MATLAB to hold on.

In the following example we will generate plots of cos(x) and sin(x) and place 
them on the same graphic. First, let’s learn a new command that can be used to 
generate a set of x data. This can be done using the linspace command. It can be 
called in one of two ways. If we write:

x = linspace(a,b)

MATLAB will generate a line (or row vector) of 100 uniformly spaced points 
from a to b. If instead we write

x = linspace(a,b,n)

Then MATLAB will create a line of n uniformly spaced points from a to b. Now 
let’s use this tool to plot cos(x) and sin(x). We define a set of 100 linearly spaced 
points from 0 to 2π by entering the following command:

>> x = linspace(0,2*pi);

Now let’s plot cos(x);

>> plot(x,cos(x))

We get the graphic shown in Figure 3-22.
If now type:

>> plot(x,sin(x))

MATLAB just overwrites our previous output. Now the graphics window has the 
plot shown in Figure 3-23. 

A quick detour—notice that even though we defined our range of x values to be 
0 ≤ x ≤ 2p, MATLAB has carried the graph out a bit further than where the function 
has been calculated. We can fix that up by including the axis command in our call 
to plot(x,y):

>> plot(x,sin(x)),axis([0 2*pi –1 1])
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This generates the nicer plot shown in Figure 3-24.
Returning to our dilemma, let’s say we have plotted cos(x) and want to overlay sin(x) 

on the same graphic. We can do this with the following sequence of commands:

>> x = linspace(0,2*pi);
>> plot(x,cos(x)),axis([0 2*pi –1 1])

Figure 3-23 We overwrite the previous plot by typing plot[x, sin(x)]

Figure 3-22 A plot of cos(x) generated using the linspace command
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>> hold on
>> plot(x, sin(x)), axis ([0 2*pi –1 1])

The result, shown in Figure 3-25, displays both curves on the same plot. You can 
use the same options that we described earlier, such as choosing the color or line 
style of each curve if it’s necessary.

Figure 3-24 Now we fix the plot by calling axis

Figure 3-25 Both curves overlayed on the same graph
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Polar and Logarithmic Plots

If you’ve taken calculus then no doubt you’re familiar with polar and logarithmic 
plots. Back in my day we had to generate these manually—wouldn’t it be nice to 
have a computer program do that for you or at least check your answers? Thankfully 
MATLAB comes to the rescue. Let’s start by looking at polar plots, which plot the 
radius r as a function of polar angle q.

For our first example let’s generate a spiral. The so-called spiral of Archimedes 
is defined by the simple relationship:

r = aq

where a is some constant. Let’s generate a polar plot of this function for the case 
where a = 2 and 0 ≤ q ≤ 2p. The first statement we’ll use defines the constant:

>> a = 2;

Well that was simple enough. Now let’s define the function r(q). This is done in 
two steps, first we have to treat q the same way we would the independent variable 
x in our previous plots, so we define the label name, the range over which it is valid, 
and the increment we want to use. Next we define r:

>> theta = [0:pi/90:2*pi];
>> r = a*theta;

These statements tell MATLAB that theta is defined as 0 ≤ q ≤ 2p. We have 
chosen our increment to be p / 90. The call to generate a polar plot is:

polar ( theta, r)

Let’s call it and add a title to the plot:

>> polar(theta,r), title('Spiral of Archimedes')

The result is shown in Figure 3-26.
Many of the same options available with plot can be used with polar. As a second 

example, let’s suppose that we want to generate a polar plot of the function:

r = 1 + 2 cos q

where 0 ≤ q ≤ 6p, and display the resulting curve as a dashed line. First let’s define 
our new range for q

>> theta = [0:pi/90:6*pi];
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Now we enter the function r(q);

>> r = 1 + 2*cos(theta);

Let’s tell MATLAB to draw a red curve with a dash-dot line. This is done by 
typing;

>> polar(theta,r,'r-.')

The plot that is generated is shown in Figure 3-27. Unfortunately in our black 
and white book you can’t see the red line, but give it a try yourself to see the 
results.

Now let’s take a look at how MATLAB can be used to generate logarithmic 
plots. This is something that used to give me headaches, and if you’re an electrical 
engineer you will find this feature particularly useful. The first type of logarithmic 
plot we can use is the log-log plot. To see how this works, we are going to follow a 
typical example of an electrical circuit that consists of a voltage source, resistor, 
and capacitor. It is bound to be the case that many readers are not electrical engineers, 

Figure 3-26 A polar plot of the spiral of Archimedes
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so we aren’t going to worry about the details of what’s used to generate the equations, 
our purpose here is just to show you how to spit out a log-log plot. 

It turns out that in an RC circuit that if the input voltage is sinusoidal where vi = 
Ai sin w t, then the output voltage will be some other sinusoidal function that we can 
write as vo = Ao sin(w t + f). Something that is of interest to electrical engineers (and 
aren’t they a strange lot) is the frequency response. This is the ratio of the output 
amplitude to the input amplitude, and for reasons that we can’t understand this ratio 
turns out to be:

A

A i RC
o

i

= +
1

1 ω

Basically the frequency response is going to tell us how strong the output signal is 
relative to the input signal at different frequencies. It’s common to denote s = iw, 
since electrical engineers are so fond of the Laplace transform. So let’s go ahead and 
do that, and let w range over 1 ≤ w ≤ 100 rad/s. The product of resistance and 
capacitance, RC has units of seconds. For our example, we will let RC = 0.25 seconds. 
Let’s define these quantities in MATLAB:

>> RC = 0.25;
>> s = [1:100]*I;

Figure 3-27 A polar plot of r = 1 + 2 cos q
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Notice on the second line that we have defined s as a complex variable. The 
frequency response is a log-log plot of output/input ratio versus frequency. So let’s 
define our function Ao /Ai. Notice from the definition we need the absolute value, 
this is done in MATLAB by passing the function to the abs command:

>> F = abs(1./(1+RC*s));

Now we’ve got everything we need to generate the plot. We can use many of the 
same options with loglog that can be applied to plot. First of all, chances are you 
want to include the grid on a log-log plot. We can do that and include axis labels and 
a graph title with the command:

>> loglog(imag(s),F),grid,xlabel('Frequency (rad/s)'), 
ylabel('Output/Input Ratio'),title('Frequency Response')

This command generates the very nice log-log plot shown in Figure 3-28.
In my opinion the log-log plot was very easy to generate and we get nice output 

as a result. One way that log-log plots can be used is when a given function varies 

Figure 3-28 An example of a log-log plot generated using MATLAB
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very rapidly over a small part of the domain. As a simple example, let’s consider 
y = e−10x

2

, where 0 ≤ x ≤ 20. We can generate a regular plot of this function with these 
commands:

>> x = [0:0.1:20];
>> y = exp(–10*x.^2);
>> plot(x,y);

As you can see in Figure 3-29, all the action occurs over a very tiny part of the 
data set.

Let’s try a log-log plot of this function. We type:

>> loglog(x,y)

This generates the log plot in Figure 3-30. Notice that the close-up features of the 
function are present but we still have access to the entire range of data (with the 
exception of the origin where the log blows up to minus infinity).

We have two more options that are available, the first is semilogx(x, y) which 
generates a plot with a logarithmic x axis and a rectilinear y axis. Conversely, 
semilogy(x, y) generates a plot with a rectilinear x axis and a logarithmic y axis. 

Figure 3-29 A plot of y = e−10x
2
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Plotting Discrete Data

Figure 3-30 A log-log plot of y = e−10x
2

Now let’s touch on some practical uses of MATLAB that you might need at work 
or in the field. First let’s see how we can use plot(x, y) to plot a discrete set of data 
points and connect them with a line. Let’s say we have a class with five students: 
Adrian, Jim, Joe, Sally, and Sue. They took an exam and received scores of 50, 98, 
75, 80, and 98, respectively. How can we plot this data?

The first thing to do is define two arrays containing the list of students and the 
scores on the test. Our list of students plays the role of x in this case, so we just 
create an array of x values with 5 elements:

>> x = [1:5];

Since we aren’t modeling a continuous function, it’s not necessary to specify an 
increment. We are defaulting to the increment being 1, so MATLAB has just gone 
ahead and generated 5 points for us. Now let’s put in the scores that correspond to 
each point, these are the y values, which we just create as a row vector. We enter the 
test scores as a comma delimited list with square brackets

>> y = [50,98,75,80,98];
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Now we can plot the data, and tell MATLAB what labels to use. This is done 
with the set command. This looks complicated:

>> plot(x,y,'o',x,y),set(gca,'XTicklabel',['Adrian'; 'Jim';'
Joe';'Sally';'Sue']),…
set(gca,'XTick',[1:5]),axis([1 5 0 100]),xlabel('Student'),
ylabel('Final Test Score'),title('Final Exam December 2005')

Unfortunately, when we do this we get the following error:

??? Error using ==> vertcat

All rows in the bracketed expression must have the same number of columns.
Turns out we can’t use the student names, each element in the list provided to set 

must have the same number of characters. So let’s assign each student, a student ID 
number (something that would probably be done anyway). We make the following 
assignment:

'Adrian'; 'Jim';'Joe';'Sally';'Sue'] ‡  ['001'; 
'002';'003';'004';'005']

Now the command looks like:

plot(x,y,'o',x,y),set(gca,'XTicklabel',['001'; '002';'003';
'004';'005']), …    
set(gca,'XTick',[1:5]),axis([1 5 0 100]),xlabel('Student'),…
ylabel('Final Test Score'),title('Final Exam December 2005')

This generates the plot shown in Figure 3-31.
We can also plot the data as a two-dimensional bar chart. This is done by making 

a call to bar(x, y). This is a relatively simple and straightforward procedure. The 
commands to plot the test scores using bar(x, y) with axis labels and a chart title are:

>> x = [1:5];
>> y = [50,98,75,80,98];
>> bar(x,y), xlabel('Student'),ylabel('Score'),
title('Final Exam')

The result is shown in Figure 3-32.
The next way that is useful when plotting discrete data points is the stem plot. A 

stem plot generates a graph of a function with data at certain discrete points. At 
each point, a vertical line extends from the horizontal or x axis up to the value of the 
function at that point, which is marked off with a selected marker. As an example, 
let’s consider the function f(t) = e−bt sin(t/4), where b = 0.01 and pretend it represents 
the response of a spring to some force. Let’s plot it in the continuous case to see 
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Figure 3-31 A plot of test scores with labels generated with the set command

Figure 3-32 Test data shown on a bar chart
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what it looks like when we take t out to 200 seconds. The commands we enter for 
the continuous plot are:

>>t = [0:0.1:200];
>> f = exp(–0.01*t).*sin(t/4);
>> plot(t,f),xlabel('time(sec)'),ylabel('spring response')

The plot is shown in Figure 3-33, showing the decaying oscillations of the 
spring.

Now let’s suppose that the plot is going to be generated from a discrete data set. 
It might have been produced experimentally or in a computer simulation. We will 
suppose that the system was sampled every 5 seconds. We can pretend we’ve got 
this data by first generating a set of sampling times. We simply create our array of 
times with a time step of 5 seconds:

>> t = [0: 5: 200];

Figure 3-33 A plot of a decaying oscillation
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If you had been doing an experiment or computer simulation, then you would 
have a set of output values that corresponded to each time sampled. To simulate this 
with known data, we simply define the function again and plot:

>> f = exp(–0.01*t).*sin(t/4)
>> plot(t,f),xlabel('time(sec)'),ylabel('spring response')

This time we get a somewhat crude representation of the function, shown in 
Figure 3-34.

In situations like this, engineers often like to generate stem plots. This is easily 
done in MATLAB using the stem(x,y) command. The command we use in this 
case is:

>> stem(t,f),xlabel('time(sec)'),ylabel('spring response')

Figure 3-34 The same function shown in Figure 3-33, with a coarse sampling interval



 84 MATLAB Demystifi ed

The plot is shown in Figure 3-35.
The options available for line types using plot(x, y) can also be applied to stem. 

For example, we can have MATLAB generate dotted or dashed lines, or select 
which color we would like to use to draw the lines (blue is the default). We can 
also tell MATLAB to fill in the markers used at each data point by passing the 
character string ′fill′ to stem(x,y). We also have the freedom to select the marker 
used, including square (s), diamond (d), five-pointed star (p), circle (o), cross (x), 
asterisk (*), and dot (.). Let’s try filled diamonds, with green dashed lines. We tell 
MATLAB to use green dashed lines by adding the string ‘—g’ to the arguments 
input to stem. Redrawing the plot in Figure 3-35 in this way produces the plot 
shown in Figure 3-36. The command is:

>> stem(t,f,'--dg','fill'),xlabel('time(sec)'),ylabel('spring response')

Figure 3-35 The spring response example generated using stem plot
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Contour Plots

Figure 3-36 Stem plot generated using green, 
filled diamonds as markers and dashed lines

Now let’s see how MATLAB can be used to generate more sophisticated plots. We 
start by considering contour plots. The simplest type of contour we can generate is 
one that just shows the contour lines for a given function, but does not fill in the 
entire plot with colors. This is done by considering some function of two variables, 
z = f(x, y). The first step, as always, is to generate the independent variables, which 
this time includes two sets of data x and y. This is done by calling the meshgrid 
command. Meshgrid is a straightforward extension of what we’ve already been 
doing to set up our independent variables. All it does is generate a matrix of elements 
that give the range over x and y we want to use along with the specification of 
increment in each case. So suppose that we’re going to plot some function z = f(x, y) 
where −5 ≤ x ≤ 5, −3 ≤ y ≤ 3. If we chose our increment in both cases to be 0.1, this 
simple call will do it:

>> [x,y] = meshgrid(–5:0.1:5,–3:0.1:3);
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Next we enter the function we want to use. For our first example, we try a simple 
function for which the contours are just circles, let’s set z = x2 + y2. This is done by 
typing:

>> z = x.^2 + y.^2;

Now we call the contour command as follows:

>> contour(x,y,z)

This generates the plot shown in Figure 3-37.
OK that’s a good start, but most contour plots you see have a bit more information 

than this. A good piece of info that is usually included is a label which tells you the 
constant value of each contour line. This can be done with a call to the set command. 
First we need to add a label we can use to reference the contour plot later, so we 
enter it this way:

[C,h] = contour(x,y,z);

Be sure to add the semicolon at the end so that the data isn’t spit out at you. Now 
we call set:

>> set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2)

This time, MATLAB puts labels on each curve, as shown in Figure 3-38.

Figure 3-37 A contour plot of z = x2 + y2
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Let’s try the same thing with z = cos(x)sin(y). The commands we use are:

>> z = cos(x).*sin(y);
>> [C,h] = contour(x,y,z);
>> set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2)

This generates the contour map shown in Figure 3-39.
We can make the contour map three dimensional with a call to contour3. If we 

call contour3(z, n), it will generate a three-dimensional contour map with n contour 
levels. Let’s stick with the same function z = cos(x)sin(y). The call >> contour3(z,10) 
generates the plot shown in Figure 3-40.

This is helpful, but probably not as sophisticated as we would like. Let’s make 
the plot more professional by telling MATLAB to fill in some more information. 
This time let’s consider z = ye−x2 + y2

, where −2 ≤ x, y ≤ 2. Since both variables have 
the same range of data, the meshgrid command is easier to enter:

>> [x,y] = meshgrid(–2:0.1:2);
>> z = y.*exp(–x.^2–y.^2);

That is, when both independent variables range over the same values, you can 
define the meshgrid as [x, y] = meshgrid(x). Now let’s do an ordinary contour plot 
of the function:

>> contour(x,y,z),xlabel('x'),ylabel('y')

Figure 3-38 Adding labels to contour lines
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The result is shown in Figure 3-41.
Next, we will generate the three-dimensional contour plot. If we just type in 

contour3(x, y, z, 30), we get the image shown in Figure 3-42.

Figure 3-40 Our first call to contour3 for z = cos(x)sin(y)

Figure 3-39 A contour map of z = cos(x)sin(y) with −5 ≤ x ≤ 5, −3 ≤ y ≤ 3
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By adding the following surface command, we can spruce up the appearance of 
this plot quite a bit:

surface(x,y,z,'EdgeColor',[.8 .8 .8],'FaceColor','none')
grid off
view(–15,20)

Figure 3-41 A contour plot of z = ye−x2 + y2

Figure 3-42 Three-dimensional contour plot of z = ye−x2 + y2
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The result, shown in Figure 3-43, is reminiscent of the kinds of three-dimensional 
images you might see in your calculus book.

Three-Dimensional Plots

We have already seen a hint of the three-dimensional plotting capability using 
MATLAB when we considered the surface command. We can generate three-
dimensional plots in MATLAB by calling mesh(x, y, z). First let’s try this with z = 
cos(x)sin(y) and −2p ≤ x, y ≤ 2p. We enter:

>> [x,y] = meshgrid(–2*pi:0.1:2*pi);
>> z = cos(x).*sin(y);
>> mesh(x,y,z),xlabel('x'),ylabel('y'),zlabel('z')

If you look at the final statement, you can see that mesh is just an extension of 
plot(x, y) to three dimensions. The result is shown in Figure 3-44.

Let’s try it using z = ye−x2 + y2

 with the same limits used in the last section. We enter 
the following commands:

>> [x,y] = meshgrid(–2:0.1:2);
>> z = y.*exp(–x.^2–y.^2);
>> mesh(x,y,z),xlabel('x'),ylabel('y'),zlabel('z')

Figure 3-43 A dressing up of the contour plot using surface to show 
the surface plot of the function along with the contour lines
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This plot is shown in Figure 3-45.
Now let’s plot the function using a shaded surface plot. This is done by calling 

either surf or surfc. Simply changing the command used in the last example to:

>> surf(x,y,z),xlabel('x'),ylabel('y'),zlabel('z')

Figure 3-44 Plotting z = cos(x)sin(y) using the mesh command

Figure 3-45 Plot of z = ye−x2 + y2 generated with mesh
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Gives us the plot shown in Figure 3-46. 
The colors used are proportional to the surface height at a given point. Using 

surfc instead includes a contour map in the plot, as shown in Figure 3-47.

Figure 3-46 The same function plotted using surf(x, y, z)

Figure 3-47 Using surfc displays contour lines at the bottom of the figure
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Calling surfl (the ‘l’ tells us this is a lighted surface) is another nice option that 
gives the appearance of a three-dimensional illuminated object. Use this option if 
you would like a three-dimensional plot without the mesh lines shown in the other 
figures. Plots can be generated in color or grayscale.  For instance, we use the 
following commands:

>> surfl(x,y,z),xlabel('x'),ylabel('y'),zlabel('z')
>> shading interp
>> color map(gray);

This results in the impressive grayscale plot of z = ye−x2 + y2

 shown in Figure 3-48.
The shading used in a plot can be set to flat, interp, or faceted. Flat shading assigns 

a constant color value over a mesh region with hidden mesh lines, while faceted 
shading adds the meshlines. Using interp tells MATLAB to interpolate what the color 
value should be at each point so that a continuously varying color map or grayscale 
shading scheme is generated, as we considered in Figure 3-48. Let’s show the three 
variations using color (well unfortunately you can’t see it, but you can try it). 

Figure 3-48 A plot of the function using surfl
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Let’s generate a funky cylindrical plot. You can generate plots of basic shapes 
like spheres or cylinders using built-in MATLAB functions. In our case, let’s try

>> t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(1+sin(t));
surf(X,Y,Z)
axis square

If we set shading to flat, we get the funky picture shown in Figure 3-49 that looks 
kind of like a psychedelic raindrop.

Now let’s try a slightly different function, this time going with faceted shading. 
We enter:

>> t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(1+cos(t));
surf(X,Y,Z)
axis square
>> shading faceted

This gives us the plot shown in Figure 3-50.
If we go to shading interp, we get the image shown in Figure 3-51.

Figure 3-49 Plot generated using the cylinder function and flat shading
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Figure 3-50 Cylindrical plot of cylinder[1+cos(t)] using faceted shading

Figure 3-51 Plot of cylinder[1+cos(t)] with interpolated shading
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Quiz

 1. Generate a plot of the tangent function over 0 ≤ x ≤ 1 labeling the x and y 

axes. Set the increment to 0.1.

 2. Show the same plot, with sin(x) added to the graph as a second curve.

 3. Create a row vector of data points to represent −p ≤ x ≤ p with an increment 
of 0.2. Represent the same line using linspace with 100 points and with 
50 points.

 4. Generate a grid for a three-dimensional plot where −3 ≤ x ≤ 2 and −5 ≤ y ≤ 5. 
Use an increment of 0.1. Do the same if −5 ≤ x ≤ 5 and −5 ≤ y ≤ 5 with an 
increment of 0.2 in both cases.

 5. Plot the curve x = e−t cos t, y = e−t sin t, z = t using the plot3 function. Don’t 
label the axes, but turn on the grid.



CHAPTER 4

Statistics and

 an Introduction

 to Programming

 in MATLAB

The ease of use available with MATLAB makes it well suited for handling 
probability and statistics. In this chapter we will see how to use MATLAB to do 
basic statistics on data, calculate probabilities, and present results. To introduce 
MATLAB’s programming facilities, we will develop some examples that solve 
problems using coding and compare them to solutions based on built-in MATLAB 
functions.

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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Generating Histograms

At the most basic level, statistics involves a discrete set of data that can be 
characterized by a mean, variance, and standard deviation. The data might be 
plotted in a bar chart. We will see how to accomplish these basic tasks in MATLAB 
in the context of a simple example.

Imagine a ninth grade algebra classroom that has 36 students. The scores received 
by the students on the midterm exam and the number of students that obtained each 
score are:

One student scored 100

Two students scored 96

Four students scored 90

Two students scored 88

Three students scored 85

One student scored 84

Two students scored 82

Seven students scored 78

Four students scored 75

Six students scored 70

One student scored 69

Two students scored 63

One student scored 55

The fi rst thing we can do in MATLAB is enter the data and generate a bar chart 
or histogram from it. First, we enter the scores (x) and the number of students 
receiving each score(y):

>> x = [55, 63,69,70,75,78,82,84,85,88,90,96,100];
>> y = [1,2,1,6,4,7,2,1,3,2,4,2,1];

We can generate a bar chart with a simple call to the bar command. It works just 
like plot, we just pass the x data and the y data in two arrays with the call bar (x, y). 
For instance, we can quickly generate a histogram with the data we’ve got:

>> bar(x,y)

This generates the bar chart shown in Figure 4-1. But this isn’t really satisfying. 
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If you’re the teacher what you really probably want to know is how many students 
got As, Bs, Cs, and so on. One way to do this is to manually collect the data into the 
following ranges:

One student scored 50–59

Three students scored 60–69

Seventeen students scored 70–79

Eight students scored 80–89

Seven students scored 90–100

So we would generate two arrays as follows. First we give MATLAB the midpoint 
of each range we want to include on the bar chart. The midpoints in our case are:

>> a = [54.5,64.5,74.5,84.5,94.5];

Next we enter the number of students that fall in each range:

>> b = [1,3,17,8,7];

Figure 4-1 Our fi rst stab at generating a bar chart of exam scores
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Now we call bar(x, y) again, adding axis labels and a title:

>> bar(a,b),xlabel('Score'),ylabel('Number of Students'),
title('Algebra Midterm Exam')

The result, shown in Figure 4-2, is that we have produced a more professional 
looking bar chart of the data.

While MATLAB has a built-in histogram function called hist, you may fi nd it 
producing useful charts on a part-time basis. Your best bet is to manually generate 
a bar chart the way we have done here. Before moving on we note some variations 
on bar charts you can use to present data. For example, we can use the barh command 
to present a horizontal bar chart:

>> barh(a,b),xlabel('Number of Students'),ylabel('Exam 
Score')

The result is shown in Figure 4-3.
You might also try a fancy three-dimensional approach by calling bar3 or bar3h. 

This can be done with the following command and is illustrated in Figure 4-4:

>> bar3(a,b),xlabel('Exam Score'),ylabel('Number of Students')
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Figure 4-2 Making a nicer bar chart by binning the data
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Figure 4-3 Presenting the exam data using a horizontal bar chart
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EXAMPLE 4-1

Three algebra classes at Central High taught by Garcia, Simpson, and Smith take 
their midterm exams with scores:

Score Range Garcia Simpson Smith

90–100 10 5 8

80–89 13 10 17

70–79 18 20 15

60–69 3 5 2

50–59 0 3 1

Generate grouped and stacked histograms of the data.

SOLUTION 4-1

Bar charts created in MATLAB with multiple data sets can be grouped or stacked 
together. To generate a grouped bar chart of x, y data, we write bar(x, y, grouped′). 
The default option is grouped, so bar(x, y) will produce exactly the same result. To 
generate a stacked bar chart, we write bar(x, y, stacked′). The data is entered by 
creating a multiple column array, with one column representing the scores for 
Garcia’s class, the next column representing the scores for Simpson’s class, and the 
fi nal column representing the scores for Smith’s class. First we create the x array of 
data, which contains the midpoint of the score ranges:

>> x = [54.5,64.5,74.5,84.5,94.5];

Now let’s enter the scores in three column vectors:

>> garcia = [0; 3; 18; 13; 10]; simpson = [3; 5; 20; 10; 5]; 
smith = [1; 2; 15; 17; 8]

The next step that is required is to put all the data in a single array. We can create 
a single array that has columns corresponding to the garcia, simpson, and smith 
arrays with this command:

>> y = [garcia simpson smith];

Now we can generate a histogram:

>> bar(x,y),xlabel('Exam Score'),ylabel('Number of Students') 
,legend('Garcia','Simpson','Smith')

The result is shown in Figure 4-5. 
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Basic Statistics
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Figure 4-5 A grouped bar chart

MATLAB can tell us what the mean of a set of data is with a call to the mean 
function:

>> a = [11,12,16,23,24,29];
>> mean(a)

ans =

   19.1667

We can pass an array to mean and MATLAB will tell us the mean of each 
column:

>> A = [1 2 3; 4 4 2; 4 2 9]

A =
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     1     2     3
     4     4     2
     4     2     9

>> mean(A)

ans =
    3.0000    2.6667    4.6667

But this simple built-in function won’t work for when the data is weighted. We’ll 
need to calculate the mean manually. The mean of a set of data xj is given by:

x

x N x

N x

j

j j

j

N

j

j

N
= =

=

∑

∑

( )

( )

1

1

where N(xj) is the number of elements with value xj. Let’s clarify this with an 
example—we return to our original set of test scores.

To see how to do basic statistics on a set of data we return to our fi rst example. 
We have a set of test scores (x) and the number of students receiving each 
score(y):

>> x = [55, 63,69,70,75,78,82,84,85,88,90,96,100];
>> y = [1,2,1,6,4,7,2,1,3,2,4,2,1];

In this case the x array represents xj while the y array represents N(xj). To generate 
the sum: 

N x j

j

N

( )
=

∑
1

We simply sum up the elements in the y array:

>> N = sum(y)

N =

    36
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Now we need to generate the sum:

x N xj j

j

N

( )
=

∑
1

This is just the vector multiplication of the x and y arrays. Let’s denote this 
intermediate sum by s:

>> s = sum(x.*y)

s =

        2847

Then the average score is:

>> ave = s/N

ave =

   79.0833

With the data entered in two arrays, we can fi nd the probability of obtaining 
different results. The probability of obtaining result xj is:

P x
N x

Nj

j
( )

( )
=

For example, the probability that a student scored 78, which is the sixth element 
in our array is:

>> p = y(6)/N

p =

    0.1944

We can use this defi nition of probability to rewrite the average as:
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First let’s generate an array of probabilities:

>> p = y/N

p =

Columns 1 through 10 

    0.0278    0.0556    0.0278    0.1667    0.1111    0.1944    
0.0556    0.0278    0.0833    0.0556

Columns 11 through 13 

    0.1111    0.0556    0.0278

Then the average could be calculated using:

>> ave = sum(x.*p)

ave =

   79.0833

Writing Functions in MATLAB

Since we’re dealing with the calculation of some basic quantities using sums, this 
is a good place to introduce some basic MATLAB programming. Let’s write a 
routine (a function) that will compute the average of a set of weighted data. We’ll 
do this using the formula:
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To create a function that we can call in the command window, the fi rst step is to 
create a .m fi le. To open the fi le editor, we use these two steps:

 1. Click the File pull-down menu

 2. Select New ‡ m fi le
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This opens the fi le editor that you can use to type in your script fi le. Line numbers 
are provided on the left side of the window. On line 1, we need to type in the word 
function, along with the name of the variable we will use to return the data, the 
function name, and any arguments we will pass to it. Let’s call our function 
myaverage. The function will take two arguments:

• An array x of data values 

• An array N that contains the number at each data value N(x)

We’ll use a function variable called ave to return the data. The fi rst line of code 
looks like this:

function ave = myaverage(x,N)

To compute the average correctly, x and N must contain the same number of 
elements. We can use the size command to determine how many elements are in 
each array. We will store the results in two variables called sizex and sizeN:

sizex = size(x);
sizeN = size(N);

The variables sizex and sizeN are actually row vectors with two elements. For 
example if x has four data points then:

sizex =

     1     4

So to test the values to see if they are equal, we will have to check sizex(2) and 
sizeN(2). One way to test them with an if statement is to ask if sizex is greater than 
sizeN OR sizeN is greater than sizex. We indicate OR in MATLAB with a “pipe” 
character, i.e. |. So this would be a valid way to check this condition:

if (sizex(2) > sizeN(2)) | (sizex(2) <sizeN(2))

Another way is to simply ask if sizex and sizeN are not equal. We indicate not 
equal by preceding the equal sign with a tilde, in other words if sizex is NOT 
EQUAL to sizeN would be implemented by writing:

if sizex(2) ~= sizeN(2)

If the two sizes are not equal, then we want to terminate the function. If they are 
equal, we will go ahead and calculate the average. This can be implemented using 
an if –else statement. What we will do is use the disp command to print an error 
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message to the screen if the user has passed two arrays that are different sizes. The 
fi rst part of the if-else statement looks like this:

if sizex(2) ~= sizeN(2)
 disp('Error: Arrays must be same dimensions')

Notice that we have used the operator “~=” to represent not equal in MATLAB. 
In the else part of the statement, we add statements to calculate the average. First 
let’s sum up the number of sample points. This is:

N x j

j

N

( )
=

∑
1

We can do this in MATLAB by calling the sum command, passing N as the 
argument. So the next two lines in the function are:

else
    total = sum(N);

Now we add a line to compute the numerator in the average formula:

x N xj j

j

N

( )
=

∑
1

This is the line we need:

s = x.*N;  

Finally, we compute the average and assign it to the variable name we used in the 
function declaration:

ave = sum(s)/total;

An end statement is used to terminate the if-else block. The completed function 
looks like this:

function ave = myaverage(x,N)
sizex = size(x);
sizeN = size(N);
if sizex(2) ~= sizeN(2)
    disp('Error: Arrays must be same dimensions')
else
    total = sum(N);
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    s = x.*N;   
    ave = sum(s)/total;
end    

Once the function is written, we need to save it so that it can be used in the 
command window. MATLAB will save your .m fi les in the work folder. 

Let’s return to the command window and see how we can use the function. At an 
area law offi ce, there are employees with the following ages:

Age Number of Employees

20 2

25 3

38 4

43 2

55 3

Let’s create the age array, which corresponds to x in our function:

>> age = [20, 25, 38, 43, 55];

Next we create an array called num which corresponds to N in our function:

>> num = [2, 3, 4, 2, 3];

Calling the function, we fi nd the average age is:

ans =

    37

Before moving on let’s test our function to make sure it reports the error message 
when we pass two arrays that aren’t the same size. Let’s try:

>> a = [1,2,3];
>> b = [1,2,3,4,5,6];

When we call myaverage we get the error message:

>> myaverage(a,b)

Error: Arrays must be same dimensions
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Programming with For Loops

A For Loop is an instruction to MATLAB telling it to execute the enclosed statements 
a certain number of times. The syntax used in a For Loop is:

for index = start: increment : fi nish
   statements
end

We can illustrate this idea by writing a simple function that sums the elements in 
a row or column vector. If we leave the increment parameter out of the For Loop 
statement, MATLAB assumes that we want the increment to be one. 

The fi rst step in our function is to declare the function name and get the size of 
the array passed to our function:

function sumx = mysum(x)
%get number of elements
num = size(x);

We’ve added a new programming element here—we included a comment. A 
comment is an explanatory line for the reader that is ignored by MATLAB. We 
indicate comments by placing a % character in the fi rst column of the line. Now 
let’s create a variable to hold the sum and initialize it to zero:

%initialize total
sumx = 0;

Now we use a For Loop to step through the elements in the column vector 1 at a 
time:

for i = 1:num(2)
 sumx = sumx + x(i);
end

When writing functions, be sure to add a semicolon at the end of each statement—
unless you want the result to be displayed on screen. 

Calculating Standard Deviation and Median

Let’s return to using the basic statistical analysis tools in MATLAB to fi nd the 
standard deviation and median of a set of discrete data. We assume the data is given 
in terms of a frequency or number of data points. Once again, as a simple example 
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we consider a set of employees at an offi ce, and we are given the number of 
employees at each age. Suppose that there are:

Two employees aged 17

One employee aged 18

Three employees aged 21

One employee aged 24

One employee aged 26

Four employees aged 28

Two employees aged 31

One employee aged 33

Two employees aged 34

Three employees aged 37

One employee aged 39

Two employees aged 40

Three employees aged 43

The fi rst thing we will do is create an array of absolute frequency data. This is 
the array N( j) that we had been using in the previous sections. This time we will 
have an entry for each age, so we put a 0 if no employees are listed with the given 
age. Let’s call it f_abs for absolute frequency:

f_abs = [2, 1, 0, 0, 3, 0, 0, 1, 0, 1, 0, 4, 0, 0, 2, 0, 1, 
2, 0, 0, 3, 0, 1, 2, 0, 0, 3];

We are “binning” the data, so let’s defi ne a bin width. Since we are measuring 
this in one year increments, we set our bin width to one:

binwidth = 1;

Now we create an array that represents the ages ranged from 17 to 43 with a binwidth 
of one year:

bins = [17:bin width:43];

Now we collect the raw data. We use a For Loop to sweep through the data as 
follows:

raw = [];
for i = 1:length(f_abs)
if f_abs(i) > 0
  new = bins(i)*ones(1,f_abs(i));
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else
  new = [];
end
raw =[raw,new];
end

What this loop does is it creates an array with individual elements repeated by 
frequency:

raw =

Columns 1 through 18 

    17    17    18    21    21    21    24    26    28    28    
28    28    31    31    33    34    34    37

Columns 19 through 26 

    37    37    39    40    40    43    43    43

So we have replaced the approach we used in the last section of having two arrays, 
one with the given age and one with the frequency at that age, by a single array that 
has each age repeated the given number of times. We can use this raw data array 
with the built-in MATLAB functions to compute statistical information. For 
example, the mean or average age of the employees is:

>> ave = mean(raw)

ave =

   30.7308

We might also be interested in the median. This tells us the age for which half the 
employees are younger, and half are older:

>> md = median(raw)

md =

    31

The standard deviation is:

>> sigma = std(raw)

sigma =

    8.3836
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If the standard deviation is small, that means most of the data is near the mean 
value. If it is large, then the data is more scattered. Since our bin size is 1 year in 
this case, an 8.4 year standard deviation indicates the latter situation applies to this 
data. Let’s plot a scaled frequency bar chart to look at the shape of the data. The fi rst 
step is to calculate the “area” of the data:

area = binwidth*sum(f_abs);

Now we scale it:

scaled_data = f_abs/area;

And generate a plot:

bar(bins,scaled_data),xlabel('Age'),ylabel('Scaled Frequency')

The result is shown in Figure 4-6. 
As you can see from the plot, the data doesn’t fi t neatly around the mean, which 

is about 31 years. For a contrast let’s consider another offi ce with a nice distribution. 
Suppose that the employees range in age 17–34 with the following frequency 
distribution:

f_abs = [2, 1, 0, 0, 5, 4, 6, 7, 8, 6, 4, 3, 2, 2, 1, 0, 0, 1];
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Figure 4-6 Age data that has a large standard deviation
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If we go through the same process with this data, we get the scaled frequency bar 
chart shown in Figure 4-7.

The basic statistical data for this set of employees is:

>> mu = mean(raw)

mu =

   24.6538

>> med = median(raw)

med =

    25

>> sigma = std(raw)

sigma =

    3.3307

The standard deviation is much smaller—and we can see it in the scaled frequency 
plot. It is approaching the shape of a Gaussian or bell curve, which we show in 
Figure 4-8.
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Figure 4-7 A data set with a smaller standard deviation
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When the data fi ts a Gaussian distribution, the standard deviation can be used to 
characterize the data to determine the probability of it falling at a certain value. 
Let’s just treat the last data set as if this were the case. The standard deviation is 
denoted s while the mean is denoted by m. Then the percentage of the graph that 
lies in the ranges:

m  -  s  ≤  x  <  m  +  s ,  m  -  2s  ≤  x  <  m  +  2s ,  and  m  -  3s  ≤  x  ≤  m  +  3s

is 68%, 96%, and 99.7%, respectively. Using the previous set of age data, the 
standard deviation and mean were found to be:

sigma =

    3.3307

>> mu

mu =

   24.6538
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Figure 4-8 A bell curve with a mean of 25 years
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About 68% of the ages will be in 1 standard deviation of the mean, that is, between 
mu – sigma = 21.3232 years and mu + sigma = 27.9845 years. Going further, 96% 
of the ages will be between mu – 2*sigma = 17.9925 years and mu + 2* 
sigma = 31.3152 years. The correspondence is not exact, because our data set is not 
exactly a bell curve, but we are illustrating the idea and how you could use MATLAB 
to analyze data that is close to a bell curve.

More MATLAB Programming Tips

Earlier we wrote a script fi le (.m) to implement a function which could be written 
up like computer code. Let’s digress a bit and round out the chapter looking at a few 
more programming structures. First let’s see how to get data from the user or from 
yourself in real time at a computer prompt. This is done using the input function. To 
use input, you set a variable you want to use to store the input data equal to the 
command, which takes a quote-delimited string as argument. When the statement is 
executed MATLAB prints your string to the command window and waits for data 
to be typed in. When the return key is hit, it assigns whatever data the user typed to 
the appropriate variable. 

Let’s concoct a simple example to see how this works. Suppose that we want to 
get the number of square feet of a house, and given that the price of homes in 
Podunk, Maine is $10 per square foot, we output the total asking price of the house. 
We can ask for and get the data using the following commands.

First, since we are working with fi nancial data here, we tell MATLAB to display 
results with the bank format. Then we set our rate per square foot.

>> format bank
>> rate = 10;

Now let’s ask the user to enter the square footage of the house by politely asking 
for it with the input command:

>> sqft = input('Enter total sqft of house: ')

MATLAB responds thus:

Enter total sqft of house:

If you enter these statements, MATLAB will be waiting patiently with a blinking 
cursor just to the right of this statement. Let’s say we enter 1740. The result is:

sqft =

       1740.00
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Since we have selected format bank, MATLAB is using two decimal places in 
its calculation. Unfortunately, it does not appear polite enough to print a dollar 
sign for us.

Now let’s do our calculation:

>> price = rate*sqft

price =

      17400.00

Now real estate is very cheap in Podunk, Maine, but that is not our concern. How 
do we get this info back out to the world? We do it using the disp command. Let’s 
tell the user what we are spitting out and then print our result:

>> disp('The total price is $'), disp(price)
The total price is $:
      17400.00

Alright at this point we have learned two important things—how to get data from 
the user and how to return answers to the user. Now let’s see how to start controlling 
program fl ow.

Here is another example. We write a function to ask the user for the radius of a 
sphere. We use it to calculate the volume of the sphere, and output the result to the 
user:

function volume
%ask the user for radius
r = input('Enter Radius')
vol = (4/3)*pi*r^3;
disp('Volume is:')
disp(vol)

THE WHILE STATEMENT

Anyone who has taken computer science courses has come across the vaunted while 

statement. In MATLAB, we enter while statements by typing:

while condition
    statements
end
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Let’s say that we wanted to compute the value of the sum for some given value 
of n that the user is going to input.

 We can do this with a while loop, after getting the cutoff point from the user. 
First we ask the user how many terms to sum:

n = input('Enter number of terms in sum: ')

Then we initialize some variables:

i = 1;
sum = 0;

Now here is the while loop:

while i <= n;
sum = sum + 1/I;
i = i + 1;
end

We can report the answer to the user this way:

disp('Total:')
Total:
disp(sum)

One item of business to take note of if you’re not a programmer—be sure to 
increment your counter inside the while loop. This was done with the i = i + 1 
statement. Otherwise MATLAB will get stuck in an infi nite loop. 

If we run the code for n = 5, then MATLAB tells us the sum is 2.2833.

SWITCH STATEMENTS

Another way to control which statements get executed based on conditions at the 
time the program is running is to resort to the switch statement. The syntax is:
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switch expression

   case 1
       do these statements
   case 2
       do these statements
   case n 
       do these statements
end

The case examined can be any type of variable, such as a string or a real number. 
If multiple cases lead to the same statements being executed, they can be combined 
into a single case statement by enclosing them on a single comma-delimited line 
enclosed by parentheses. 

Let’s cook up a silly example to see how this could work. We work at a government 
bureaucracy where pay grades are:

1, 2, 3, 4

With corresponding salaries:

$40,000, $65,000, $65,000, and $85,000

We can assign salary based on pay grade with a switch statement:

switch grade
  case 1
    pay = 40000
  case ( 2,3 )
    pay = 65000
  case 4
    pay = 85000
end
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Quiz

 1. The weights in pounds of a set of male students are described as follows:

Weight Frequency

130 2

138 1

145 3

150 6

152 1

155 3

160 1

164 1

165 3

167 4

170 3

172 2

175 1

  Use MATLAB to fi nd the average weight, median weight, and standard 
deviation.

 2. Use MATLAB to write a routine to calculate the probability of drawing 
a given result from a set of frequency weighted data. Using the data in 
problem 1, what is the probability that a student weighs 150 pounds?

 3. Generate a scaled frequency bar chart of the data. From your chart, read off 
the scaled frequency for 130 pounds.

 4. Write a MATLAB routine to ask the user for the radius and height of a 
cylinder and return the volume.

 5. Write a while loop that computes the sum 1 + x + x2 + … + xn.

 6. Write a For Loop that computes the sum 1
1 1 1
2 3

+ + + +
x x xr

L .



CHAPTER 5

Solving Algebraic 

Equations and Other 

Symbolic Tools
In this chapter we will begin to look at using MATLAB to solve equations. We start 
with simple algebraic equations considering solutions for single variables and 
solving systems of equations. Then we will look at working with transcendental, 
trig, and hyperbolic functions. Finally we will see how MATLAB handles complex 
numbers. In the next chapter we will take a look at using MATLAB to solve 
differential equations.

Solving Basic Algebraic Equations

To solve an algebraic equation in MATLAB we can call upon the solve command. 
At its most basic all we have to do is type in the equation we want to solve enclosed 
in quotes and hit return. Let’s start by looking at a trivial example. Suppose that we 
wanted to use MATLAB to fi nd the value of x that solves:

x + 3 = 0

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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Now the suspense is building—but many clever readers will deduce the answer 
is x = −3 and wonder why we’re bothering with this. Well the reason is that it will 
make seeing how to use MATLAB for symbolic computing a snap. We can fi nd the 
solution in one step. All we do is create a variable and assign it the value returned 
by solve in the following way:

>> x = solve('x + 3 = 0')

x =

–3

Now it isn’t necessary to include the right-hand side of the equation. As you can 
see from the following example, MATLAB assumes that when you pass x + 8 to 
solve that you mean x + 8 = 0. To verify this, we run this command line:

>> x = solve('x+8')

x =

–8

So enter the equations whichever way you want. I prefer to be as clear as possible 
with my intentions, so would rather use x + 8 = 0 as the argument. 

It is possible to include multiple symbols in the equation you pass to solve. For 
instance, we might want to have a constant included in an equation like this:

ax + 5 = 0

If we enter the equation in MATLAB, it seems to just assume that we want to 
solve for x:

>> solve('a*x+5')

ans =

–5/a

However, there is a second way to call solve. We can tell it what symbol we want 
it to solve for. This is done using the following syntax:

solve(equation, variable)
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Like the equation that you pass to solve, the variable must be enclosed in single 
quotes. Returning to the equation ax + 5 = 0, let’s tell MATLAB to fi nd a instead. 
We do this by typing:

>> solve('a*x + 5','a')

MATLAB responds with the output:

ans =

–5/x

Solving Quadratic Equations

The solve command can be used to solve higher order equations, to the delight of 
algebra students everywhere. For those of us who have moved beyond algebra 
MATLAB offers us a way to check results when quadratic or cubic equations pop 
up or to save us from the tedium of solving the equations.

The procedure used is basically the same as we’ve used so far, we just use a caret 
character (^) to indicate exponentiation. Let’s consider the equation:

x2 − 6x − 12 = 0

We could solve it by hand. You can complete the square or just apply the quadratic 
formula. To solve it using MATLAB, we write:

>> s = solve('x^2 –6*x –12 = 0')

MATLAB responds with the two roots of the equation:

s =

 3+21^(1/2)
 3–21^(1/2)

Now, how do you work with the results returned by solve? We can extract them and 
use them just like any other MATLAB variable. In the case of two roots like this 
one, the roots are stored as s(1) and s(2). So we can use one of the roots to defi ne a 
new quantity:

>> y = 3 + s(1)

y =

6+21^(1/2)
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Here is another example where we refer to both roots returned by solve:

>> s(1) + s(2)

ans =

6

When using solve to return a single variable, the array syntax is not necessary. 
For example, we use x to store the solution of the following equation:

>> x = solve('3*u + 9 = 8')

MATLAB dutifully tells us that:

x =

–1/3

Now we can use the result in another equation:

>> z = x + 1

z =

2/3

It is possible to assign an equation to a variable and then pass the variable to 
solve. For instance, let’s create an equation (generated at random on the spot) and 
assign it to a variable with the meaningless name d:

>> d = 'x^2 + 9*x –7 = 0';

Now we call solve this way:

>> solve(d)

MATLAB correctly tells us the two roots of the equation:

ans =

 –9/2+1/2*109^(1/2)

 –9/2–1/2*109^(1/2)
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Plotting Symbolic Equations

Let’s take a little detour from solving equations, to see how we can plot symbolically 
entered material. OK while I argued that writing ‘x^2 – 6 * x – 12 = 0’ was better 
than ‘x^2 – 6*x – 12’ it turns out there is a good reason why you might choose the 
latter method. The reason is that MATLAB allows us to generate plots of symbolic 
equations we’ve entered. This can be done using the ezplot command. Let’s do that 
for this example. 

First let’s create the string to represent the equation:

>> d = 'x^2 –6*x – 12';

Now we call ezplot:

>> ezplot(d)

MATLAB responds with the graph shown in Figure 5-1. 
A couple of things to notice are:

• ezplot has conveniently generated a title for the plot shown at the top, 
without us having to do any work.

• It has labeled the x axis for us.
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Figure 5-1 A plot of a symbolic function generated using ezplot
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The function also picked what values to use for the domain and range in the plot. 
Of course we may not like what it picked. We can specify what we want by 
specifying the domain with the following syntax:

ezplot(f, [x
1
, x

2
])

This plots f for x
1
 < x < x

2
. Returning to the previous example, let’s say we 

wanted to plot it for −2 < x < 8. We can do that using the following command:

>> d = 'x^2 –6*x – 12';
>> ezplot(d,[–2,8])

The plot generated this time is shown in Figure 5-2.
Before we go any further, let’s get back to the “ = 0” issue. Suppose we tried to 

plot:

>> ezplot('x+3=0')

MATLAB doesn’t like this at all. It spits out a series of meaningless error 
messages:

??? Error using ==> inlineeval
Error in inline expression ==> x+3=0
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Figure 5-2 Using ezplot while specifying the domain
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??? Error: The expression to the left of the equals sign is 
not a valid target for an assignment.

Error in ==> inline.feval at 34
        INLINE_OUT_ = inlineeval(INLINE_INPUTS_, INLINE_OBJ_
.inputExpr, INLINE_OBJ_.expr);

Error in ==> specgraph\private\ezplotfeval at 54
    z = feval(f,x(1));

Error in ==> ezplot>ezplot1 at 448
[y,f,loopfl ag] = ezplotfeval(f,x);

Error in ==> ezplot at 148
    [hp,cax] = ezplot1(cax,f{1},vars,labels,args{:});

Now, if we instead type:

>> ezplot('x+3')

It happily generates the straight line shown in Figure 5-3.
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Figure 5-3 Using ezplot(‘x + 3’) works, but ezplot(‘x + 3 = 0’) will generate an error
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Now we just mentioned a while ago that we could tell ezplot how to specify the 
domain to include in the plot. Naturally it also allows us to specify the range. Just 
for giggles, let’s say we wanted to plot:

x + 3 = 0
−4 < x < 4, −2 < y < 2

We can do this by typing:

>> ezplot('x+3',[–4,4,–2,2])

The plot generated is shown in Figure 5-4. So, to specify you want the plot to be 
over x

1
 < x < x

2
 and y

1
 < y < y

2
 include [x

1
, x

2
, y

1
, y

1
] in your call to ezplot.

EXAMPLE 5-1

Find the roots of x x2 2 0+ − =  and plot the function. Determine the numerical 
value of the roots.
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Figure 5-4 Using ezplot with the call ezplot(‘x + 3’, [–4, 4, –2, 2])
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SOLUTION 5-1

First let’s create a string to represent the equation. First as an aside, note that you 
can include predefi ned MATLAB expressions in your equation. So it would be 
perfectly OK to enter the equation as:

>> eq = 'x^2 + x – sqrt(2)';

Or if you like, you could write:

>> eq = 'x^2 + x – 2^(1/2)';

Next we call solve to fi nd the roots:

>> s = solve(eq)

s =
 –1/2+1/2*(1+4*2^(1/2))^(1/2)
 –1/2–1/2*(1+4*2^(1/2))^(1/2)

To determine the numerical value of the roots, we need to extract them from the 
array and convert them into type double. This is done by simply passing them to the 
double(.) command. For example, we get the fi rst root out by writing:

>> x = double(s(1))

x =

    0.7900

And the second root:

>> y = double(s(2))

y =

   –1.7900

To plot the function, we use a call to ezplot:

>> ezplot(eq)

The result is shown in Figure 5-5.
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Solving Higher Order Equations

Of course we can use MATLAB to solve higher order equations. Let’s try a cubic. 
Suppose we are told that:

(x + 1)
2
 (x − 2) = 0

Solving an equation like this is no different than what we’ve done so far. We fi nd 
that the roots are:

>> s = solve(eq)

s =

  2
 –1
 –1
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Figure 5-5 A plot of the quadratic equation solved in Example 5-1
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EXAMPLE 5-2

Find the roots of the fourth order equation

x4 − 5x3 + 4x2 − 5x + 6 = 0

and plot the function for −10 < x < 10.

SOLUTION 5-2

First we defi ne the function by creating a character string to represent it:

>> eq1 = 'x^4–5*x^3+4*x^2–5*x+6';

Then we call solve to fi nd the roots:

>> s = solve(eq1);

Now let’s defi ne some variables to extract the roots from s. If you list them 
symbolically, you will get a big mess. We show part of the fi rst root here:

>> a = s(1)

a =

5/4+1/12*3^(1/2)*((43*(8900+12*549093^(1/2))^(1/3)+2*(8900+
12*549093^(1/2))^(2/3)+104)….

Try it and you will see this term goes on a long way. So let’s use double to get a 
numerical result:

>> a = double(s(1))

a =

    4.2588

Now that is much nicer. We get the rest of the roots. Since it’s a fourth order 
equation, well there are four roots:

>> b = double(s(2))

b =

    1.1164
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>> c = double(s(3))

c =

  –0.1876 + 1.1076i

>> d = double(s(4))

d =

  –0.1876 – 1.1076i

Notice two of the roots are complex numbers. Now let’s plot the function over 
the domain indicated:

>> ezplot(eq1,[–10 10])

The result is shown in Figure 5-6.
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Figure 5-6 Plot of the function x4 − 5x3 + 4x2 − 5x + 6



CHAPTER 5 Algebraic Equations/Symbolic Tools 133

EXAMPLE 5-3

Find the roots of x3 + 3x2 − 2x − 6 and plot the function for −8 < x < 8, −8 < y < 8. 
Generate the plot with a grid.

SOLUTION 5-3

Again we follow the usual steps. First defi ne the function as a character string:

>> f = 'x^3+3*x^2–2*x–6';

Calling solve, we fi nd that the roots are − ±3 2and :

>> s = solve(f)

s =

       –3
  2^(1/2)
 –2^(1/2)

Now we call ezplot to generate a plot of the function, with the specifi cation that 
−8 < x < 8, −8 < y < 8, and we add the command grid on:

>> ezplot(f,[–8,8,–8,8]), grid on

The result is shown in Figure 5-7.
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Figure 5-7 A plot of x3 + 3x2 − 2x − 6
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Systems of Equations

While appearing useful already, it turns out the solve command is more versatile 
than we have seen so far. It turns out that solve can be used to generate solutions of 
systems of equations. To show how this is done and how to get the solutions out, 
it’s best to proceed with another simple example. Suppose that you were presented 
with the following system of equations:

5x + 4y = 3
x − 6y = 2

To use solve to fi nd x and y, we call it by passing two arguments—each one a 
string representing one of the equations. In this case we type:

>> s = solve('5*x + 4*y = 3','x – 6*y = 2');

Notice that each equation is enclosed in single quote marks and that we use a 
comma to delimit the equations. We can get the values of x and y by using a “dot” 
notation as follows. First let’s get x:

>> x = s.x

x =

13/17

MATLAB has generated a nice fraction for us that we can write in on our 
homework solutions—the professor will never suspect a thing. Next we get y:

>> y = s.y

y =

–7/34

This method can be used with larger linear systems. Consider:

w + x + 4y + 3z = 5
2w + 3x + y − 2z = 1
w + 2x − 5y + 4z = 3

w − 3z = 9
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We can enter the system as a set of character strings:

>> eq1 = 'w + x + 4*y + 3*z = 5';
>> eq2 = '2*w +3*x+y–2*z = 1';
>> eq3 = 'w + 2*x–5*y+4*z = 3';
>> eq4 = 'w – 3*z = 9';

Now we call solve, passing the equations as a comma-delimited list:

>> s = solve(eq1,eq2,eq3,eq4);

We can then extract the value of each variable which solves the system of 
equations:

>> w = s.w

w =

1404/127

>> x = s.x

x =

–818/127

>> y = s.y

y =

–53/127

>> z = s.z

z =

87/127

Expanding and Collecting Equations

In elementary school we learned how to expand equations. For instance:

(x + 2) (x − 3) = x2 − x − 6



 136 MATLAB Demystifi ed

We can use MATLAB to accomplish this sort of task by calling the expand 
command.  Using expand is relatively easy. For example:

>> expand((x–1)*(x+4))

When this command is executed, we get:

ans = x^2 +3*x – 4

The expand function can be applied in other ways. For example, we can apply it 
to trig functions, generating some famous trig identities:

>> expand(cos(x+y))

This gives us:

ans =

cos(x)*cos(y)–sin(x)*sin(y)

Or:

>> expand(sin(x–y))

ans =

sin(x)*cos(y)–cos(x)*sin(y)

To work with many symbolic functions, you must tell MATLAB that your 
variable is symbolic. For example, if we type:

>> expand((y–2)*(y+8))

MATLAB returns:

??? Undefi ned function or variable 'y

To get around this, fi rst enter:

>> syms y

Then we get:

>> expand((y–2)*(y+8))

ans =

y^2+6*y–16
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MATLAB also lets us go the other way, collecting and simplifying equations. 
First let’s see how to use the collect command. One way you can use it is for 
distribution of multiplication. Consider:

x(x2 − 2) = x3 − 2x

To do this in MATLAB, we just write:

>> collect(x*(x^2–2))

ans =

x^3–2*x

Another example (with a new symbolic variable t):

>> syms t
>> collect((t+3)*sin(t))

ans =

sin(t)*t+3*sin(t)

Another algebraic task we can do symbolically is factoring. To show that:

x2 − y2 = (x + y)(x − y)

Using MATLAB, we type:

>> factor(x^2–y^2)

ans =

(x–y)*(x+y)

We can factor multiple equations with a single command:

>> factor([x^2–y^2, x^3+y^3])

Finally, we can use the simplify command. This command can be used to divide 
polynomials. For instance, we can show that (x2 + 9)(x2 − 9) = x4 − 81 by writing:

>> simplify((x^4–81)/(x^2–9))

ans =

x^2+9
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Here is another example. Consider that:

e2log3x = elog9x2 = 9x2

We could have found this out with the MATLAB command:

>> simplify(exp(2*log(3*x)))

ans =

9*x^2

The simplify command is useful for obtaining trig identities. Examples:

>> simplify(cos(x)^2–sin(x)^2)

ans =

2*cos(x)^2–1

>> simplify(cos(x)^2+sin(x)^2)

ans =

1

Solving with Exponential and Log Functions

So far for the most part we have only looked at polynomials. The symbolic solver 
can also be used with exponential and logarithmic functions. First let’s consider and 
equation with logarithms.

EXAMPLE 5-4

Find a value of x that satisfi es:

log
10

 (x) − log
10

 (x − 3) = 1

SOLUTION 5-4

Base ten logarithms can be calculated by or represented by the log10 function in 
MATLAB. So we can enter the equation thus:

>> eq = 'log10(x)–log10(x–3) = 1';
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Then we call solve:

>> s = solve(eq);

In this case, MATLAB only returns one solution:

>> s(1)

ans =

10/3

Now let’s consider some equations involving variables as exponents. Suppose 
we are asked to solve the system:

y = 3
2x

y = 5
x
 + 1

We can call solve to fi nd the solution:

>> s = solve('y = 3^2*x','y = 5^x+1')

MATLAB returns:

s = 

    x: [2x1 sym]
    y: [2x1 sym]

So it appears there are two values of each variable that solve the equation. We can 
get the values of x out by typing:

>> s.x(1)

ans =

1/9*exp(–lambertw(–1/9*log(5)*5^(1/9))+1/9*log(5))+1/9

>> s.x(2)

ans =

1/9*exp(–lambertw(–1,–1/9*log(5)*5^(1/9))+1/9*log(5))+1/9
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These might not be too useful to the average man or woman. So let’s convert 
them to numerical values:

>> a = double(s.x(1))

a =

    0.2876

>> b = double(s.x(2))

b =

    1.6214

We can also extract the y values:

>> c = double(s.y(1))

c =

    2.5887

>> d = double(s.y(2))

d =

   14.5924

Do the results make sense? We check. The idea is to see if s.x(1) satisfi es the fi rst 
equation giving s.y(1) and ditto for the second array elements. We fi nd:

>> 3^2*a

ans =

    2.5887

This agrees with s.y(1), so far so good. Now:

>> 5^b+1

ans =

   14.5924

Hence, s.y(2) is consistent with s.x(2) and we have the solution.
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We can also enter and solve equations involving the exponential function. For 
example:

>> eq = 'exp(x)+ x';
>> s = solve(eq)

s =

–lambertw(1)

If you’re not familiar with Lambert’s w function, you can evaluate numerically:

>> double(s)

ans =

   –0.5671

We can plot the function using ezplot:

>> double(s)

The result is shown in Figure 5-8.
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Figure 5-8 A plot of ex + x
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Series Representations of Functions

We close out the chapter with a look at how MATLAB can be used to obtain the 
series representation of a function, given symbolically. The taylor function returns 
the Taylor series expansion of a function. The simplest way is to call taylor directly. 
For example, we can get the Taylor series expansion of sin(x):

>> syms x
>> s = taylor(sin(x))

s =

x–1/6*x^3+1/120*x^5

MATLAB has returned the fi rst three terms of the expansion. In fact what 
MATLAB returns is:

f

n
x

n

n

n
( )( )

!
0

0

5

=
∑

In the case of sin, these are the only nonzero terms. Let’s plot it:

>> ezplot(s)

The plot is shown in Figure 5-9.
This might be an accurate representation of the function for small values, but it 

clearly doesn’t look much like sin(x) over a very large domain. To get MATLAB to 
return more terms, say we want to approximate the function by m terms:

f

n
x

n

n

m

n
( )( )

!
0

0=
∑

We can make the call by writing taylor(f, m). For the present example, let’s try 
20 terms:

> s = taylor(sin(x),20)

s =

x–1/6*x^3+1/120*x^5–1/5040*x^7+1/362880*x^9–1/
39916800*x^11+1/6227020800*x^13–1/1307674368000*x^15+1/
355687428096000*x^17–1/121645100408832000*x^19

The representation this time is far more accurate, as the plot in Figure 5-10 shows.
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Figure 5-9 Plot of the Taylor series expansion of sin(x)
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Quiz

 1. Use MATLAB to enter 7 2 5 60 5 8− +  as a string, then fi nd the 
numerical value.

 2. Use MATLAB to solve 3x2 + 2x = 7.

 3. Find x such that x x2 5 0+ − =π .

 4. Find the solution of 2 4 1x − =  and symbolically plot the function for 2 < 
x < 4, 0 < y < 1.

 5. Use solve to symbolically fi nd the roots of 2t3 − t2 + 4t − 6 = 0, then convert 
the answer into numerical values.

 6. Find a solution of the system:

  x − 3y − 2z = 6
2x − 4y − 3z = 8

−3x + 6y + 8z = −5

 7. Does the equation ex − x2 = 0 have a real root?

 8. Use MATLAB to fi nd tan2x − sec2x.

 9. Find the tenth order Taylor expansion of tan(x).

 10. Find the tenth order Taylor series expansion of 
4

5 − cos x
. Does your result 

agree with the plot shown in Figure 5-11?
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Figure 5-11 A plot of an approximation to 
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5 − cos x



CHAPTER 6

Basic Symbolic

 Calculus and 

Differential Equations

In this chapter we will learn how to use MATLAB to do symbolic calculus. 
Specifically, we will start by examining limits and derivatives, and then see how to 
solve differential equations. We will cover integration in the next chapter.

Calculating Limits

MATLAB can be used to calculate limits by making a call to the limit command. 
The most basic way to use this command is to type in the expression you want to 
use. MATLAB will then find the limit of the expression as the independent variable 

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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goes to zero. For example, if you enter a function f (x), MATLAB will then find 
lim ( )
x

f x
→0

. Here is an example:

>> syms x
>> limit((x^3 + 1)/(x^4 + 2))

ans =

1/2

Remember, the limit command falls in the realm of symbolic computing, so be sure 
to use the syms command to tell MATLAB which symbolic variables you are using. 

To compute lim ( )
x a

f x
→

, the limit command is called using the syntax limit(f, a). For 
example:

>> limit(x + 5,3)

ans =

8

EXAMPLE 6-1

Let f x
x

x
( ) = +

−
2 1

2
 and g(x) = x2 + 1. Compute the limit as x → 3 of both functions and 

verify the basic properties of limits using these two functions and MATLAB.

SOLUTION 6-1

First we tell MATLAB what symbolic variables we will use and define the functions:

>> syms x
>> f = (2*x + 1)/(x–2);
>> g = x^2 + 1;

Now let’s find the limit of each function, and store the result in a variable we can 
use later:

>> F1 = limit(f,3)

F1 =

7

>> F2 = limit(g,3)

F2 =

10
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The first property of limits we wish to verify is:

lim( ( ) ( )) lim ( ) lim ( )
x a x a x a

f x g x f x g x
→ → →

+ = +

From our calculations so far we see that:

lim ( ) lim ( )
x x

f x g x
→ →

+ = + =
3 3

7 10 17

Now let’s verify the relation by calculating the left-hand side:

>> limit(f+g,3)

ans =

17

Next we can verify:

lim ( ) lim ( )
x a x a

k f x k f x
→ →

=

for any constant k. Let’s let k = 3 for which we should find:

lim ( ) lim ( ) ( )( )
x a x a

k f x k f x
→ →

= = =3 7 21:

>> k=3;
>> limit(k*f,3)

ans =

21

Now let’s check the fact that the limit of the product of two functions is the 
product of their limits, that is:

lim ( ) ( ) lim ( ) lim ( )
x a x a x a

f x g x f x g x
→ → →

=

The product of the limits is:

>> F1*F2

ans =

70
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And we find the limit of the product to be:

>> limit(f*g,3)

ans =

70

Finally, let’s verify that:

lim ( ) lim ( )( )
lim ( )

x a

g x

x a

g x

f x f x
x a

→ →
= ( ) →

We can create f (x)g(x) in MATLAB:

>> h = f^g

h =

((2*x+1)/(x–2))^(x^2+1)

Computing the limit:

>> limit(h,3)

ans =

282475249

Checking the right side of the relation, we find that they are equal:

>> A = F1^F2

A =

282475249

As an aside, we can check if two quantities in MATLAB are equal by calling the 
isequal command. If two quantities are not equal, isequal returns 0. Recall that 
earlier we defined a constant k = 3. Here is what MATLAB returns if we compare 
it to A = F1^F2:

>> isequal(A,k)

ans =

     0
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On the other hand:

>> isequal(A,limit(h,3))

ans =

     1

Computing lim ( )
x

f x
→∞

.
We can calculate limits of the form lim ( )

x
f x

→∞
by using the syntax:

limit(f,inf)

Let’s use MATLAB to show that lim
x

x x x
→∞

+ −( ) =2 1

2
:

>> limit(sqrt(x^2+x)–x,inf)

ans =

1/2

We can also calculate lim ( )
x

f x
→−∞

. For example:

>> limit((5*x^3 + 2*x)/(x^10 + x + 7),–inf)

ans =

0

MATLAB will also tell us if the result of a limit is ∞. For example, we verify 
that lim

| |x x→
= ∞

0

1 :

>> limit(1/abs(x))

ans =

Inf

LEFT- AND RIGHT-SIDED LIMITS

When a function has a discontinuity, the limit does not exist at that point. To handle 
limits in the case of a discontinuity at x = a, we define the notion of left-handed and 
right-handed limits. A left-handed limit is defined as the limit as x → a from the 
left, that is x approaches a for values of x < a. In calculus we write:

lim ( )
x a

f x
→ −
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For a right-handed limit, where x → a from the right, we consider the case when 
x approaches a for values of x > a. The notation used for right-handed limits is:

lim ( )
x a

f x
→ +

If these limits are equal, then lim ( )
x a

f x
→

 exists. In MATLAB, we can compute left- 
and right-handed limits by passing the character strings ‘left’ and ‘right’ to the limit 
command as the last argument. We must also tell MATLAB the variable we are 
using to compute the limit in this case. Let’s illustrate with an example.

EXAMPLE 6-2

Show that lim
| |x

x

x→

−
−3

3
3

 does not exist.

SOLUTION 6-2

First let’s define the function in MATLAB:

>> f = (x – 3)/abs(x–3);

If we plot the function, the discontinuity at x = 3 is apparent, as shown in Figure 6-1. 
Note that we have to give MATLAB the domain over which we want to plot in order 
to get it to show us the discontinuity:

>> ezplot(f,[–1,5])

Figure 6-1 A plot showing the discontinuity in (x – 3)/|x – 3|
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Now let’s compute the left-handed limit. To do this, we must pass the function, 
the variable we are using to take the limit, and the string ‘left’ as a comma-delimited 
list:

>> a = limit(f,x,3,'left')

a =

–1

Now let’s take the right-handed limit:

>> b = limit(f,x,3,'right')

b =

1

Since these two terms are not equal, we have shown that lim
| |x

x

x→

−
−3

3
3

 does not 
exist.

FINDING ASYMPTOTES

The limit command can be used to find the asymptotes of a function. Let’s see how 
we can find the asymptotes and generate a plot showing the function together with 
its asymptotes. 

For our example, let’s consider the function:

y
x x

=
−

1

1( )

We choose this example because it’s pretty clear where the asymptotes are—the 
function is going to blow up when x = a and x = 1. Let’s generate a quick plot of the 
function:

>> f = 1/(x*(x–1));
>> ezplot(f)

The result is shown in Figure 6-2, and you can see the function veering off to 
infinity at the appropriate points. Now let’s develop a formal process to find out 
what those points are (we are pretending we don’t know) and then show them on 
the graph.
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The first step is to find the points where the function blows up. This can be done 
by finding the roots of the denominator. Let’s create a function to represent the 
denominator and then find the roots. Thinking back to the last chapter, we can use 
the solve command:

>> g = x*(x–1);
>> s = solve(g)

s =

 0
 1

With the roots in hand, we know where the asymptotes are. We will draw them 
as dashed lines. First we plot the function again, and then use the hold on command 
to tell MATLAB we are going to add more material to the plot:

>> ezplot(1/g)
>> hold on

Since we stored the roots in a variable called s, remember that we access each of 
them by writing s(1) and s(2). We can plot the first asymptote using the following 
command:

>> plot(double(s(1))*[1 1], [–1 2],'--')

Figure 6-2 A plot of a function that blows up at two points
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The range [–1 2] gives the range of the y axis over which we want to draw the 
line. Try playing around with different values to see how it works. Now let’s draw 
a dashed line for the second asymptote:

>> plot(double(s(2))*[1 1], [–1 2],'--')
>> hold off

We call the hold off command to free MATLAB from having to continue plotting 
to the same graph. The result is shown in Figure 6-3.

Figure 6-3 A plot of the function shown in Figure 6-2 together with its asymptotes
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Computing Derivatives

We can compute symbolic derivatives using MATLAB with a call to the diff 

command. Simply pass the function you want to differentiate to diff as this example 
shows:

>> syms x t
>> f = x^2;
>> g = sin(10*t);
>> diff(f)
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ans =

2*x

>> diff(g)

ans =

10*cos(10*t)

To take higher derivatives of a function f, we use the syntax diff(f,n). Let’s find 
the second derivative of t exp (–3t):

>> f = t*exp(–3*t);
>> diff(f,2)

ans =

–6*exp(–3*t)+9*t*exp(–3*t)

As you can see, diff returns the result of calculating the derivative—so we can 
assign the result to another variable that can be used later. 

EXAMPLE 6-3

Show that f (x) = x2 satisfies − + =
df

dx
x2 0.

SOLUTION 6-3

We start by making some definitions:

>> syms x
>> f = x^2; g = 2*x;

Now let’s compute the required derivative:

>> h = diff(f);

Finally, verify that the relation is satisfied:

>> –h+g

ans =

0
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EXAMPLE 6-4

Does y (t) = 3 sin t + 7 cos 5t solve y'' + y = –5 cos 2t?

SOLUTION 6-4

Define our function:

>> y = 3*sin(t)+7*cos(5*t);

Now let’s create a variable to hold the required result:

>> f = –5*cos(2*t);

To enter the left-hand side of the differential equation, we create another 
variable:

>> a = diff(y,2)+y;

We use isequal to check whether the equation is satisfied:

>> isequal(a,f)

ans =

     0

Since 0 is returned, y (t) = 3 sin t + 7 cos 5t does not solve y'' + y = –5 cos 2t.

EXAMPLE 6-5

Find the minima and maxima of the function f (x) = x3 – 3x2 + 3x in the interval 
[0, 2].

SOLUTION 6-5

First let’s enter the function and plot it over the given interval:

>> syms x
>> f = x^3–3*x^2+3*x;
>> ezplot(f, [0 2])

The plot is shown in Figure 6-4. To find local maxima and minima, we will 
compute the derivative and find the points at which it vanishes.

The derivative is:

>> g = diff(f)

g =

3*x^2–6*x+3
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As a quick aside, we can use the pretty command to make our expressions look 
nicer:

>> pretty(g)

                                   2
                                3 x  – 6 x + 3

Well slightly nicer, anyway. Returning to the problem, let’s set the derivative 
equal to zero and find the roots:

>> s = solve(g)

s =

 1
 1

We see that there is only one critical point, since the derivative has a double root. 
We can see from the plot that the maximum occurs at the endpoint, but let’s prove 
this by evaluating the function at the critical points x = 0, 1, 2. 

We can substitute a value in a symbolic function by using the subs command. 
With a single variable this is pretty simple. If we want to set x = c, we make the call 

Figure 6-4 A plot of f (x) = x3 – 3x2 + 3x
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subs(f,c). So let’s check f for x = 0, 1, 2. We can check all three on a single line and 
have MATLAB report the output by passing a comma-delimited list:

>> subs(f,0), subs(f,1), subs(f,2)

ans =

     0

ans =

     1

ans =

     2

Since f (2) returns the largest value, we conclude that the maximum occurs at 
x = 0. For fun, let’s evaluate the derivative at these three points and plot it:

>> subs(g,0),subs(g,1),subs(g,2)

ans =

     3

ans =

     0

ans =

     3

Where are the critical points of the derivative? We take the second derivative and 
set equal to zero:

>> h = diff(g)

h =
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6*x–6

>> solve(h)

ans =

1

The next derivative is:

>> y = diff(h)

y =

6

Since g″ > 0 we can conclude that the critical point x = 1 is a local minimum. 
A plot of g(x) is shown in Figure 6-5.

Figure 6-5 A plot of g(x) showing the minimum we found in Example 6-5
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EXAMPLE 6-6

Plot the function f (x) = x4 –2x3 and show any local minima and maxima.

SOLUTION 6-6

First we define the function and plot it:

>> clear
>> syms x
>> f = x^4–2*x^3;
>> ezplot(f,[–2 3])
>> hold on

Now compute the first derivative:

>> g = diff(f)

g =

4*x^3–6*x^2

We find the critical numbers by setting the first derivative equal to zero and 
solving:

>> s = solve(g)

s =

 3/2
   0
   0

Next we compute the second derivative:

>> h = diff(g)

h =

12*x^2–12*x

Evaluating at the first critical number which is x = 3/2 we find:

>> a = subs(h,s(1))

a =

9
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Since f″ (3/2) = 9 > 0, the point x = 3/2 is a local minimum. Now let’s check the 
other critical number:

>> b = subs(h,s(2))

b =

0

In this case, f″ (0) = 0, which means that we cannot get any information about the 
point using the second derivative test. It can be shown easily that the point is neither 
a minimum nor a maximum. Now let’s fix up the plot to show the local minimum. 
We add the point (c, f (c)) where c = s(1) to the plot using the following command:

>> plot(double(s(1)),double(subs(f,s(1))),'ro

This puts a small red circle at the point (3/2, f (3/2)) on the plot. We told MATLAB 
to make the circle red by entering ‘ro’ instead of ‘o’, which would have added a black 
circle. Now let’s label the point as a local minimum. This can be done using the text 
command. When you call text, you pass it the x-y coordinates where you want the text 
to start printing, and then pass the text string you want to appear on the plot:

>> text(0.8,3.2,'Local minimum')
>> hold off

The result is shown in Figure 6-6.

Figure 6-6 A plot of f (x) = x4 – 2x3 identifying the local minimum found in Example 6-6
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The dsolve Command

We can solve differential equations symbolically in MATLAB using the dsolve 

command. The syntax for calling dsolve to find the solution to a single equation is 
dsolve(‘eqn’) where eqn is a text string used to enter the equation. This will return 
a symbolic solution with a set of arbitrary constants that MATLAB labels C1, C2, 
and so on. We can also specify initial and boundary conditions for the problem. 
Conditions are specified as a comma-delimited list following the equation as 
dsolve(‘eqn’,‘cond1’, ‘cond2’,…) as required. 

When using dsolve, derivatives are indicated with a D. Hence we enter the 
equation:

df

dt
f t= − +2 cos

By writing:

'Df = –2*f + cos(t)'

Higher derivatives are indicated by following D by the order of the derivative. 
So to enter the equation:

′′ + ′ =y y x2 5 7sin

we would write:

'D2y + 2Dy = 5*sin(7*x)'

Solving ODE’s

Let’s begin by considering some trivial differential equations just to get a feel for 
using MATLAB to deal with ODE’s. At the most basic level, we can call dsolve and 
just pass the equation to it. Here we are with the most basic ODE of all:

>>s = dsolve('Dy = a*y')

s =

C1*exp(a*t)
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Suppose we want to plot the equation for different values of C1 and a. We can do 
this by specifying values for these variables and then assigning them to a new label 
using the subs command:

>> C1 = 2; a = 4;
>> f = subs(s)

f =

2*exp(4*t)

Initial conditions are entered in quotes after the equation. For example, suppose 
that:

dy

dt

t

t
y t y=

−
=

5
0 2( ), ( )

The call to dsolve in this case is:

>> dsolve('Dy = y*t/(t–5)','y(0) = 2')

ans =

–2/3125*exp(t)*(t–5)^5

Second and higher order equations work analogously. For example:

d y

dt
y y y

2

2
0 0 1 0 2− = = − ′ =, ( ) , ( )

can be entered into MATLAB by writing:

>> dsolve('D2y – y = 0','y(0) = –1','Dy(0) = 2')

ans =

1/2*exp(t) –3/2*exp(–t)

EXAMPLE 6-7

Find a solution to the initial value problem

dy

dt
t y= + =3 0 7, ( )

and plot the result for 0 ≤ t ≤ 10.
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SOLUTION 6-7

The equation is solved easily with a single call to dsolve:

>> s = dsolve('Dy = t + 3','y(0) = 7')

s =

1/2*t^2+3*t+7

Now we add a call to ezplot to generate the plot:

>> ezplot(s,[0 10])

The result is shown in Figure 6-7.

EXAMPLE 6-8

Find the solution of:

dy

dt
y y= =2 0 1, ( )

Plot the result showing any asymptotes.

Figure 6-7 A plot of the solution of the IVP 
dy

dt
t y= + =3 0 7, ( )
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SOLUTION 6-8

Using MATLAB dsolve will do the dirty work for us. We find the solution is:

>> s = dsolve('Dy = y^2','y(0) = 1')

s =

–1/(t–1)

The asymptote is located at:

>> d = –1/s

d =

t–1

>> roots = solve(d)

roots =

1

Now let’s plot and hold it:

>> ezplot(s)
>> hold on

Now we plot the asymptote:

>> plot(double(roots)*[1 1], [–2 2],'--')
>> hold off

The result is shown in Figure 6-8. 

EXAMPLE 6-9

Solve the BVP given by:

d f

dx

x

x x

x

x
f f

2

2 2 2
1

2 2
0 0 2− −⎛

⎝⎜
⎞
⎠⎟

− = = ′
sin cos

, ( ) , (( ) .0 0=

Plot the solution for –50 < x < 50.
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SOLUTION 6-9

By default, dsolve uses t as the independent variable. We can tell it to use something 
else by tacking the independent variable on at the end of the command. The call to 
dsolve is:

>> g = dsolve('D2f – sin(x)/x–2*cos(x)/x^2+2*sin(x)/x^3 = 
0','f(0)=2','Df(0)=0','x')

Our declaration of the independent variable is specified at the end following the 
boundary conditions. The solution returned is:

g =

–sin(x)/x+3

We can plot the function as shown in Figure 6-9.

EXAMPLE 6-10

Find the general solution of:

dy

dt

y

t
= −

−1 2

and plot over –1 < t < 1 for the constant C1 = 0, 10, 20, 30 on the same graph.

Figure 6-8 Plot of the solution of 
dy

dt
y y= =2 0 1, ( )  with asymptote
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SOLUTION 6-10

We readily obtain the solution using dsolve:

>> s = dsolve('Dy = –y/sqrt(1–t^2)')

s =

C1*exp(–asin(t))

We can generate multiple curves for different values of C1 on the same graph 
using a for loop. We create a loop index i and have it assume the values 0, 10, 20, 30. 
Then we use the subs command to substitute the current value of i and plot the 
result. The for loop looks like this:

>> for i=0:10:30
f = subs(s,'C1',i);
ezplot(f,[–1,1])
hold on
end

Figure 6-9 A plot of the solution to 
d f

dx

x

x x

x

x
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The first line sets our loop variable to i = 0, 10, 20, 30 using the syntax i=start:
increment:finish. Next we use subs to tell MATLAB to replace C1 by the current 
value of the loop variable:

f = subs(s,'C1',i);

Then we use ezplot to put the curve on the graph. By adding the statement hold 
on, we tell MATLAB to plot to the same figure each time through the loop. So we 
end up plotting the functions

0, 10*exp(–asin(t)), 20*exp(–asin(t)), 30*exp(–asin(t))

The end statement marks the end of the for loop. Next we call hold off so that we 
close plotting to the current figure and give the plot a title:

>> hold off
>> title('IVP Solutions')

The result is shown in Figure 6-10.

Figure 6-10 Plot generated using for loop to place multiple curves on a single figure
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EXAMPLE 6-11

Find a solution of

dy

dt
t y= −2 2

Plot the solution for different initial values, letting y(0) = 0.2,...,2.0 in increments 
of 0.2.

SOLUTION 6-11

First we solve the equation:

>> f = dsolve('Dy=–2*t*y^2','y(0)=y0')

f =

1/(t^2+1/y0)

We have told MATLAB to set the initial value to a symbol we denoted y0. Now 
we can write a for loop to substitute the values y(0) = 0.2,. . .,2.0. First we define our 
for loop and loop variable, specifying the start, increment, and end point:

for i = 0.2:0.2:2

Now we tell MATLAB to substitute i for y0 in the solution:

temp = subs(f,'y0',i);

Next we plot it:

ezplot(temp)

Finally, we close out the loop by telling MATLAB to hold on so we can add a 
curve to the same figure each time through the loop, then we end it:

hold on
end

After the loop runs, we can use the axis command to set the range over each axis 
to a desired value:

>> axis([–4 4 0 2.5])
>> hold off

Don’t forget to call hold off so that MATLAB will stop sending data to the same 
figure. The result of all this is show in Figure 6-11.
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Systems of Equations and Phase Plane Plots

Figure 6-11 A plot of the solution to 
dy

dt
t y= −2 2

 with initial conditions given by 

y(0) = 0.2, . . . , 2.0 in increments of 0.2
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In this section we will consider the equation for a mass spring system and see how 
to generate a phase plane plot for the solution. First, how can we use MATLAB to 
generate a solution to a system of differential equations? The answer is we pass 
each equation to dsolve.

Consider the simple system:

dX

dt
Y

dY

dt
X

X Y

= = −

= − =

,

( ) , ( )0 1 0 2

The command to enter the system and solve it is:

>> s = dsolve('DX = Y','DY = –X','X(0)= –1','Y(0)=2');

The solution is returned as a vector. We can extract the solutions by writing:

>> s.X
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ans =

–cos(t)+2*sin(t)

>> s.Y

ans =

sin(t)+2*cos(t)

We can show both solutions on one plot:

>> ezplot(s.X)
>> hold on
>> ezplot(s.Y)
>> hold off

The result is shown in Figure 6-12. This isn’t too useful since we can’t determine 
which curve is which.

Let’s add some additional commands to clarify the curves in the plot. Suppose 
that we wanted to plot the solution X (t) using a solid red line and the solution Y (t) 
using a dashed blue line. How can we do it using ezplot?

Figure 6-12 Our first plot of a solution to a system of equations

−6 −4 −2 0 2 4 6

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

sin(t) + 2cos(t)



CHAPTER 6 Symbolic Calculus⁄Differential Eqs 171

The first step is easy. We can use set to tell MATLAB to draw the first curve with 
a red line. We can tell MATLAB to find the lines in the plot by calling findobj. Then 
we tell set we want to color the line red:

>> ezplot(s.X),set(fi ndobj('Type','line'),'Color','r')

If you try this, you will see a red curve generated nicely on the screen. The problem 
with this command is that it tells MATLAB to color all lines red, if there are multiple 
lines on the screen. So to leave this line red and make the second one dashed, we will 
have to try something different. First we tell MATLAB that we are going to plot 
another curve on the same figure:

>> hold on

Now we add the second plot:

>> ezplot(s.Y)

This will add the curve as a blue line. We need to get a reference to the second 
curve so that we can ask MATLAB to change it. Next we call get which will return 
a handle to the current graphics object:

>> h=get(gca,'children');

Now we can change it using the following command:

>> set(h(1),'linestyle','--')

The result is displayed in Figure 6-13.
Now let’s consider a mass-spring system and see how to obtain solutions to the 

position and momentum of the mass and generate a phase portrait.

EXAMPLE 6-12

Let x (t) be the position of a mass in a mass-spring system and p (t) be the momentum. 
Consider the case where the system is governed by a damped oscillator equation:

2 8 0

8

0 2 0 0 0

′′ + ′ + =

= − −

= = ′ =

x x x

dp

dt
p x

x p x

,

( ) , ( ) ( )

Find the solutions x (t) and p (t) and generate a phase portrait for the system.
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SOLUTION 6-12

First we call dsolve to generate a solution for the system:

>> s = dsolve('2*D2x+Dx+8*x = 0','Dp = –p – 17*x','x(0)=4','
Dx(0)=0','p(0)=0')

MATLAB gives a result of the form:

s =

    p: [1x1 sym]
    x: [1x1 sym]

We can access the solutions by typing s.x and s.p. Let’s see what the position is 
as a function of time for this system:

>> s.x

ans =

exp(–1/4*t)*(4/21*sin(3/4*7^(1/2)*t)*7^(1/2)+4*cos(3/4*7^
(1/2)*t))

Figure 6-13 Using ezplot and telling it to use different colors and styles for each curve
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For the momentum, we find:

>> s.p

ans =

–68/9*cos(3/4*7^(1/2)*t)*exp(–1/4*t)–748/63*7^(1/2)*exp(–
1/4*t)*sin(3/4*7^(1/2)*t)+68/9*exp(–t)

Now let’s plot the position as a function of time. We use:

>> ezplot(s.x,[0 10])
>> title('Position of Mass')

As can be seen in Figure 6-14, the position of the mass is described by an 
oscillator that decays exponentially, as expected for a damped system. 

Now let’s plot the momentum over the same time range:

>> ezplot(s.p,[0 10])
>> title('Momentum')

As shown in Figure 6-15, the momentum is also a decaying oscillator, but the 
amplitude is much larger.

Figure 6-14 The decaying oscillator described by 2x″ + x′ + 8x = 0
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A phase plot is a plot of p versus x. We can try this using ezplot in the following 
way. We call it passing both functions at the same time:

>> ezplot(s.x,s.p,[–5 5])

We fix up the axes a little bit and generate a title:

>> axis([–8 8 –25 20])
>> title('parametric plot')

The result is displayed in Figure 6-16.
You might think the plot looks a bit funny, so let’s try something else. We can 

also generate a parametric plot numerically. First we define a numerically generated 
time interval:

>> tvalues = (0:0.1:10);

Now we use subs to generate numerical representations of the position and 
momentum functions over this time interval:

>> xval = subs(s.x,'t',tvalues);
>> pval = subs(s.p,'t',tvalues);

Figure 6-15 The momentum of the system with 2x″ + x′ + 8x = 0
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Now let’s generate the phase portrait by calling plot in this way:

>> plot(xval,pval),xlabel('x'),ylabel('p'),title
('phase portrait for mass-spring')

The result, which is much nicer, is shown in Figure 6-17.

EXAMPLE 6-13

Generate a solution of the critically damped system:

d x

dt

dx

dt
x

dp

dt
p x

x p

2

2

1

4
0

1

2

1

4

0 4 0

+ + = = − −

= =

,

( ) , ( ) 00

SOLUTION 6-13

We enter the equations and solve:

>> s = dsolve('D2x + Dx + (1/4)*x = 0','Dp + (1/2)*p + 
(1/4)*x = 0','x(0) = 4','Dx(0)=0','p(0)=0');

Figure 6-16 A phase plot generated using the ezplot function
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The results are:

>> s.x

ans =

exp(–1/2*t)*(4+2*t)

>> s.p

ans =

–1/8*(8*t+2*t^2)*exp(–1/2*t)

Let’s plot the position as a function of time, which is shown in Figure 6-18:

>> ezplot(s.x,[0 15])
>> axis([0 15 0 4])
>> title('Position')

Now let’s generate a plot of the momentum:

>> ezplot(s.p,[0 15])
>> title('Momentum')

Figure 6-17 A numerically generated phase portrait
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The momentum plot is shown in Figure 6-19. Notice that the momentum and 
position of the mass quickly damp out with no oscillations, as expected for a 
critically damped case.

Figure 6-18 Position as a function of time for a critically damped oscillator
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Figure 6-19 The momentum for a critically damped oscillator
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Quiz

 1. Calculate lim
sin

x

x

x→ 0

4
.

 2. Find lim
x

x

x→

−
−2

2

2
. Does it exist?

 3. Find the asymptotes of
x

x x
2 3−

and plot them as dashed lines with the 
function.

 4. Compute lim
cos

sin/θ π

θ
θ→ +21

.

 5. Consider the function f x
x

( ) =
+

1

3 12
.

 a) What are the fi rst and second derivatives?

 b) What are the critical points for this function?

 c) What is f″ evaluated at these critical points?

 d) Are there any local minima or maxima? Plot the function and show 
them on the graph.

 6. Use MATLAB to show that y = 2 sin t –3 cos t does not satisfy 
y″ – 11y = –4 cos 6t.

 7. Find a solution of dx/dt = –2x + 8 and plot for constants C1 = 1, 2,...5 on the 
same graph.

 8. Find a solution of y″ – y′ –2y = 2t, y(0) = 0, y′ (0) = 0.

 9. Solve the system x″ + x = 0, p′ + p + x = 0, x (0) = 4, x′ (0) = p(0) = 0.

 10. Solve the system x″ + 2x′ + x = 0, p′ = x, x (0) = 1, x′ (0) = p(0) = 0 and 
generate a phase portrait.



CHAPTER 7

Numerical Solution 

of ODEs

In the last chapter we learned how to solve symbolic ordinary differential equations. 
In this chapter we will learn how to use MATLAB to generate numerical solutions 
of ODEs. MATLAB has several solvers that can be used to solve differential 
equations as we will see in the following text.

Solving First Order Equations
 with ODE23 and ODE45

To solve an ODE numerically, fi rst defi ne a function that can be used to represent 
the equation. For our fi rst example, we will consider the equation:

dy

dt
t= cos( )

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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We can readily integrate the equation giving y(t) = sin(t) + C, so it will be easy 
for us to check the solution we obtain numerically. First let’s defi ne our function. 
We do this by creating a .m fi le and typing the following input:

function ydot = eq1(t,y)
ydot = cos(t);

To solve the ODE, we make a call to the function ODE23. This function works 
by integrating the differential equations using second and third order Runge-Kutta 
method. The syntax used is:

[t,y] = ode23('func_name', [start_time, end_time], y(0))

Our function is called eq1. Let’s solve it over the time interval 0 ≤ t ≤ 2π and 
suppose that y(0) = 2. The call would then look like this:

>> [t,y] = ode23('eq1',[0 2*pi],2);

Since this is a simple equation that can be solved readily, MATLAB soon returns 
with the answer. Since we are doing numerical work, to see what the solution is we 
need to plot it. First let’s generate a data set representing the analytical solution so 
we can compare:

>> f = 2 + sin(t);

Now we use the following command to generate the plot:

>> plot(t,y,'o',t,f),xlabel('t'),ylabel('y(t)'),axis([0 2*pi 0 4])

The plot is shown in Figure 7-1. The circles mark the solution returned by ode23, 
while the solid line represents the analytical solution. It looks like the solution 
returned by ode23 is pretty close.

How close is the solution? We can check it by calculating the relative error. If f(t) 
represents the analytical solution and y(t) represents the numerical solution, then 
the relative error is given by:

f t y t

f t

( ) ( )
( )
−

We will call our error function err. First let’s allocate memory for an array to 
store the error at each point. We do this by creating an array of zeros:

>> err = zeros(size(y));
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Now we calculate the relative error at each point by using a for loop to move 
through the data:

>> for i = 1:1:size(y)
err(i) = abs((f(i)–y(i))/f(i));
end

Let’s look at the result:

>> err

err =

  1.0e–003 *

         0
    0.0001
    0.0091
    0.0301
    0.0743
    0.2115
    0.2876
    0.3780
    0.4659
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Figure 7-1 Plot showing numerical and analytical solutions of 
dy

dt
t= cos( )
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    0.5597
    0.6480
    0.6907
    0.6050
    0.4533
    0.3164
    0.2414
    0.2129

The errors are quite small in this case. The largest error is:

>> emax = max(err)

emax =

  6.9075e–004

Let’s look at the data points returned by the ode23 solver:

y =

    2.0000
    2.1593
    2.5110
    2.8080
    2.9848
    2.9169
    2.6344
    2.2123
    1.7999
    1.4512
    1.1892
    1.0323
    1.0115
    1.1536
    1.4337
    1.7689
    1.9996

With the precision used to present these numbers, since the relative error is much 
smaller, we can be satisfi ed with the results.

The ode45 function uses higher order Runge-Kutta formulas. Let’s see how it 
works differently in the case we are currently working with. The call is similar:

>> [t,w] = ode45('eq1',[0 2*pi],2);
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However, the solution is evaluated over a larger number of points. So we need to 
regenerate the analytical solution, then let’s plot them both:

>> f = 2 + sin(t);

>> plot(t,w,'o',t,f),xlabel('t'),ylabel('y(t)'),axis([0 2*pi 0 4])

The result is shown in Figure 7-2. You can see that the density of points from the 
numerical solution is higher than what we got with ode23. 

Let’s compare the sizes of the solutions:

>> size(w),size(y)

ans =

    45     1

ans =

1

The ode45 solver has returned 45 data points while the ode23 solver returned 
17 data points. Whether this is important or not will depend on your application. 
Let’s create another array of zeros and calculate the relative error:

>> err = zeros(size(w));
>> for i = 1:1:size(w) 
err(i) = abs((f(i)–w(i))/f(i));
end

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

t

y
(t

)

Figure 7-2 Solving the equation again with ode45
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Let’s fi nd the maximum relative error this time:

>> wmax = max(err)

wmax =

  4.9182e–006

If you recall, the maximum error we found with the ode23 solver was:

>> emax

emax =

  6.9075e–004

This is quite a bit larger than the maximum relative error obtained with ode45. In 
fact it’s almost 141 times as big:

>> emax/wmax

ans =

  140.4473

Hence it may be wise to use ode45, if the error differences are important. Let’s 
consider another example.

EXAMPLE 7-1

Consider the ordinary differential equation with forcing:

dy

dt
F t y= −5( ( ) )

The forcing function is:

F(t) = te−t/tc cos(w t)

Find and plot the numerical solution for the following values of the time constant 
tc and frequency ω shown in Table 7-1.
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SOLUTION 7-1

To facilitate the ability to use several different values of the time constant and 
frequency, we will declare these as global values. First let’s write a function to 
implement the equation:

function ydot = eq2(t,y)
global tc w
F = t*exp(-t/tc)*cos(w*t);
ydot = 5*F;

Following the procedure we used in the text, we code this function up in a .m fi le 
and save it. First we defi ne our global variables (the time constant and frequency) 
in MATLAB:

>> global tc w

Now let’s assign the fi rst values in the table:

>> tc = 0.01; w = 628;

Now let’s set the end time of the interval we will evaluate together with the 
initial condition:

>> fi nal_time = 0.1; y0 = 0;

Next we call ode45 and generate the fi rst solution:

>> [t,y] = ode45('eq2',[0 fi nal_time],y0);

Let’s plot the solution in Figure 7-3.
Let’s compare it with the forcing function:

>> plot(t,y,t,F,'--'),xlabel('t')

The forcing function is the dashed line. As you can see in Figure 7-4, it is quite 
a bit larger than the response—but it has a similar functional form. In both cases we 
see an exponentially decaying oscillator.

Time Constant Frequency

0.01 s 628 rad/s

0.1 s 6.28 rad/s

Table 7-1 Time constant and frequency values for Example 7-1.
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Figure 7-3 Numerical solution for tc = 0.01 and w = 628
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Figure 7-4 A comparison of the forcing function to the response. 
In this case, the forcing seems to continue far longer than the response
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Now let’s try the next set of values. 

>> tc = 0.1; w = 6.28;

Since the time constant is much larger, let’s increase our time interval:

>> fi nal_time = 1.0;

Now we call solver:

>> [t,y] = ode45('eq2',[0 fi nal_time],y0);

>> plot(t,y),xlabel('t'),ylabel('y(t)'),axis([0 0.7 0 0.015])

The plot in this case is shown in Figure 7-5.
Let’s plot the forcing function and response together on the same plot. In this 

case, you can see the response clearly lagging the forcing function. This is shown in 
Figure 7-6. The command to plot showing the forcing function as a dashed line is:

>> plot(t,y,t,F,'--'),xlabel('t'),ylabel('y(t)'),axis([0 0.7 0 0.05])
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0
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Figure 7-5 The response for 
dy

dt
F t y= −5( ( ) )  when w = 6.28 and tc = 0.1
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Solving Second Order Equations

Now let’s see how to solve second order equations numerically. The trick used here 
is to break the equation down into a system of two equations. So fi rst, let’s see how 
to solve a system of equations. 

EXAMPLE 7-2

Solve the system 

dx

dt
x y

dy

dt
x xy= − + = − −2 ,

with initial conditions x(0) = 0, y(0) = 1. Plot both functions and generate a phase 
plot.

SOLUTION 7-2

First we create a function like before that will implement the right-hand side of the 
differential equation. This time, of course, we have a system so need a 2 × 1 column 
vector. The function looks like this:

function xdot = eqx(t,x);
%allocate array to store data
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0
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t
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Figure 7-6 In the second case examined in Example 7-1, we get a nice plot showing the 
response lagging the forcing function, with both functions having the same general shape
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xdot = zeros(2,1);
xdot(1) = -x(1)^2 + x(2);
xdot(2) = -x(1) - x(1)* x(2);

So far so good, pretty simple. Now let’s use ode45 to generate a solution with the 
given initial conditions:

>> [t,x] = ode45('eqx',[0 10],[0,1]);

Now let’s generate a plot. We access the fi rst function with x(:,1) and the second 
by writing x(:,2). The plot command is:

>> plot(t,x(:,1),t,x(:,2),'--'),xlabel('t'), axis([0 10 –1.12 1.12])

The plot of the two functions is shown in Figure 7-7.
Now let’s generate the phase plot. The command is:

>> plot(x(:,1),x(:,2))

The phase plot is shown in Figure 7-8.
Now that we know how to solve a system, we can use ode45 to solve a second 

order equation.
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Figure 7-7 The functions x (solid line) and y (dashed line) 
that solve the system in Example 7-2
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EXAMPLE 7-3

Find a solution of y′′ + 16y = sin(4.3t) when y(0) = y′(0) = 0.

SOLUTION 7-3

We can change this into a system of fi rst order equations. First we set:

x
1
 = y

x
2
 = y′

Hence:

x
1
′ = y′ = x

2

x
2
′ = y′′ = sin(4.3t) − 16x

1

Now we create a function to implement this system:

function xdot = eqx2(t,x);
%allocate array to store data
xdot = zeros(2,1);
xdot(1) = x(2);
xdot(2) = sin(4.3*t)–16*x(1);

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
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x
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Figure 7-8 The phase portrait for the system solved in Example 7-2
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Let’s call ode45 to get a solution. Since the forcing function is sinusoidal, we 
choose a time interval 0 ≤ t ≤ 2π:

>> [t,x] = ode45('eqx2',[0 2*pi],[0,0]);

Now let’s plot the functions that are returned.

>> plot(t,x(:,1),t,x(:,2),'--'),xlabel('t'), axis([0 2*pi –3 3])

The plot is shown in Figure 7-9. 
Notice that the amplitudes of the solutions are growing with time. They are also 

out of phase and the second solution has a much larger amplitude than the fi rst. 
Let’s generate a phase plot for the system:

>> plot(x(:,1),x(:,2)),xlabel('x1'),ylabel('x2')

The result is shown in Figure 7-10.
For comparison, let’s consider the case where the initial conditions are given by 

y(0) = y′(0) = 1. Let’s redo the solution and plot it:

>> [t,x] = ode45('eqx2',[0 2*pi],[1,1]);

>> plot(t,x(:,1),t,x(:,2),'--'),xlabel('t'), axis([0 2*pi –4 4])

The plot is shown in Figure 7-11. 
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Figure 7-9 The system solved in Example 7-2. Notice it exhibits beats
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Notice that by changing the initial conditions, we have increased the amplitude 
of the oscillations by a large fraction—the functions get bigger earlier. The behavior 
appears more regular for x

1
. Let’s take a closer look at this and compare x

1
 with 

cos(4.3t) in a single plot, shown in Figure 7-12.
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Figure 7-10 A phase portrait for the system in Example 7-2 
with initial conditions given by y(0) = y′(0) = 0
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Figure 7-11 Reworking Example 7-2 by setting the initial condition to y(0) = y′(0) = 1
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The two functions start off pretty close, but diverge as time goes on. But compare 
this to the fi rst case, when y(0) = y′(0) = 0. In that case the solution had little 
resemblance to something we know well as shown in Figure 7-13.

Let’s take a look at the beating phenomenon by solving over a larger time 
interval:

>> [t,x] = ode45('eqx2',[4*pi 20*pi],[0,0]);
>> plot(t,x(:,1)),xlabel('t')

The result is shown in Figure 7-14, where you can see the familiar form of a 
system with beats.

Let’s return to the case where y(0) = y′(0) = 1. In Figure 7-15, we show the plot of 
the solution over the same time interval shown in Figure 7-14. Look closely and you 
will notice that in Figure 7-14 which shows the plot for the case of y(0) = y′(0) = 0, 
there is a phase reversal each time the system goes down near zero oscillation and 
starts to build up again. This feature is not present when y(0) = y′(0) = 1.

Finally, we generate the phase plot for the case of y(0) = y′(0) = 1. This is shown 
in Figure 7-12. Notice the difference as compared to Figure 7-10. What does that 
tell you about the solutions?
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Figure 7-12 Comparing the solution x
1
 with cos(4.3t) when y(0) = y′(0) = 1
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Figure 7-14 Beats of the solution for the case of y(0) = y′(0) = 0
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Figure 7-13 The solid line represents the solution when y(0) = y′(0) = 0. 
It bears little resemblance to the forcing trig function or its derivative
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Figure 7-15 When y(0) = y′(0) = 1, the amplitude of the solution 
shrinks and then gets larger again—but there is no phase reversal
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Figure 7-16 Phase portrait for the system in Example 7-2, with y(0) = y′(0) = 1
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Quiz

 1. Find a solution of the system:

x
1
′ = 2x

1
x

2

x
2
′ = −x

1
2

x
1
(0) = x

2
(0) = 0

 2. Find a solution of the system:

x
1
′ = x

2

x
2
′ = −x

1

x
1
(0) = x

2
(0) = 1

 3. Solve:

y′ = −2.3y, y(0) = 0

 4. Use ode23 and ode45 to solve:

y′ = y, y(0) = 1

  How many points are returned by ode23 and ode 45?

 5. Solve y′ = −ty + 1, y(0) = 1.

 6. Solve y′ = t2y = 0, y(0) = 1 for 0 ≤ t ≤ 2.

 7. What numerical technique is used by ode23 and ode45?

 8. Solve 
dy

dt t
t y=

−
− < < =

2

1
1 1 0 1

2
, , ( ) .

 9. Solve y′′ −2y′ + y = exp(−t), y(0) = 2, y′(0) = 0. 

 10. Generate a phase portrait for the system in problem 9.



CHAPTER 8

Integration

This chapter covers methods that can be used to compute integrals. We will begin 
with integration of symbolic expressions and then consider numerical integration.

The Int Command

Let f be a symbolic expression in MATLAB. We can derive an expression giving 
the indefinite integral of f by writing:

int(f)

The expression f can be entered by creating a variable or reference first or by 
directly passing a quote-delimited string to int. For example, we can show that:

x dx x∫ =
1
2

2

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 



 198 MATLAB Demystifi ed

(leaving out the constant of integration) by writing:

>> int('x')

MATLAB returns:

ans =

1/2*x^2

MATLAB can generate integrals that are entirely symbolic. That is, instead of:

>> int('x^2')

ans =

1/3*x^3

Consider:

>> int('x^n')

ans =

x^(n+1)/(n+1)

If we don’t tell it anything, int will make assumptions about what variable to 
integrate. For example, we can define a trig function:

>> g = 'sin(n*t)';

If we just pass this function to int, it assumes that t is the integration variable:

>> int(g)

ans =

–1/n*cos(n*t)

However we can call int using the syntax int(  f, v) where f is the function to 
integrate and v is the integration variable. Using g again we could write:

>> syms n
>> int(g,n)

ans =

–1/t*cos(n*t) 
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For readers taking calculus, don’t forget to add the constant of integration to 
your answer. When creating symbolic expressions, it’s not always necessary to 
enter them in quotes—remember to use the syms command. If we type:

>> g = b^t;

MATLAB complains, saying:

??? Undefined function or variable 't'.

We can get around this in the following way. First we call syms and tell MATLAB 
what we want to use for symbolic variables, and then we can define our functions 
without enclosing them in quotes:

>> syms a t
>> g = a*cos(pi*t)

g =

a*cos(pi*t)

>> int(g)

ans =

a/pi*sin(pi*t)

EXAMPLE 8-1

What is the integral of f(x) = bx? Evaluate the resulting expression for b = 2, x = 4.

SOLUTION 8-1

We start by defining our symbolic variables:

>> syms b x

Now we define the function and integrate:

>> f = b^x;
>> F = int(f)

F =

1/log(b)*b^x
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We can obtain a numerical value for the expression with the given values by 
calling subs. To substitute numerical values for multiple symbolic variables in one 
command, enclose the variable list and substitution list in curly braces {}. In this 
case we write:

>> subs(F,{b,x},{2,4})

ans =

   23.0831

EXAMPLE 8-2

Compute x x dx5 9cos( )∫ .

SOLUTION 8-2

Doing this integral by hand would require integration by parts and a great deal of 
pain. With MATLAB, we can generate the answer on a single line:

>> F = int(x^5*cos(x))

F =

x^5*sin(x)+5*x^4*cos(x)–20*x^3*sin(x)–60*x^2*cos(x)+120*cos(x)+120*x*sin(x)

We can use the command “pretty” to have MATLAB display the answer in a 
more pleasing format:

>> pretty(F)

x5 sin(x) + 5x4 cos(x) − 20x2 − 60x cos(x) + 120 cos(x) + 120x sin(x)

EXAMPLE 8-3

Find 3y x dysec( )∫ .

SOLUTION 8-3

The integrand contains two variables, so we tell MATLAB that we want to integrate 
with respect to y:

>> int('3*y^2*sec(x)',y)

ans =

y^3*sec(x)
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Had we wanted to integrate with respect to x instead we would have written:

>> int('3*y^2*sec(x)',x)

ans =

3*y^2*log(sec(x)+tan(x))

Definite Integration

The int command can be used for definite integration by passing the limits over 
which you want to calculate the integral. If we enter int(  f, a, b) then MATLAB 
integrates over the default independent variable and returns:

f x dx F b F a
a

b

( ) ( ) ( )∫ = −

For example:

x dx x
2

3
2

2
31

2
1
2

9 4
5
2∫ = = − =( )

would be calculated in MATLAB by writing:

>> int('x',2,3)

ans =

5/2

Equivalently, if we wanted MATLAB to generate the intermediate expression 
1

2
x2, we could write:

>> F = int('x')

F =

1/2*x^2
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>> a = subs(F,x,3)–subs(F,x,2)

a =

    2.5000

EXAMPLE 8-4

What is the area under the curve f(x) = x2 cos x for −6 ≤ x ≤ 6?

SOLUTION 8-4

The curve is shown in Figure 8-1. To find the area under the curve, we compute:

x x dx2

6

6

−∫ cos

Let’s define the function:

>> f = x^2*cos(x);

−6 −4 −2 0 2 4 6

−10

0
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20

30

40

x

x2 cos(x)

Figure 8-1 A plot of f(x) = x2 cos x for −6 ≤ x ≤ 6
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Now we integrate:

>> a = int(f,–6,6)

a =

68*sin(6)+24*cos(6)

To get a numerical result, we cast it with double:

>> double(a)

ans =

    4.0438

EXAMPLE 8-5

Calculate e x dxx−
∞

∫ 2

0
sin .

SOLUTION 8-5

We tell MATLAB that we want to evaluate the result at infinity by using inf as the 
upper limit:

>> a = int(exp(–x^2)*sin(x),0,inf)

a =

–1/2*i*pi^(1/2)*erf(1/2*i)*exp(–1/4)

Now we numerically evaluate the result:

>> double(a)

ans =

    0.4244

EXAMPLE 8-6

Find the volume of the solid of revolution obtained by rotating the curve e−x about 
the x axis where 1 ≤ x ≤ 2.
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SOLUTION 8-6

The curve is shown in Figure 8-2. The volume of a solid generated by rotating a 
curve f(x) about the x axis is given by:

π[ ( )]f x dx
a

b

∫
2

The integrand in this case is:

p(e−x)
2
 = pe−2x

The volume of the solid is then:

>> int(pi*exp(–2*x),1,2)

ans =

–1/2*pi*exp(–4)+1/2*pi*exp(–2)

Numerically we find this value is 0.1838.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.15

0.2

0.25

0.3

0.35

x

exp(−x)

Figure 8-2 In Example 8-6 we find the volume of the solid 
of revolution generated by rotating the curve e−x about the x axis
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EXAMPLE 8-7

The sinc function, which is useful in signal processing for band-limited signals, is 
defined as:

f x
x

x
( )

sin( )
=

Find the integral of the sinc function and sinc squared over the ranges −20 ≤ x ≤ 
20, −∞ < x < ∞.

SOLUTION 8-7

Let’s define both functions:

>> sinc = sin(x)/x;

>> sinc_squared = sinc^2;

The sinc-squared function has application for the description of the intensity of 
a light beam that has passed through a circular or square lens. First let’s plot both 
functions, the sinc function first:

>> ezplot(sinc,[–20 20])
>> axis([–20 20 –0.5 1.2])

A plot of the sinc function is shown in Figure 8-3. 
Now let’s plot its square:

>> ezplot(sinc_squared,[–10 10])
>> axis([–10 10 –0.1 1.2])

A plot of the sinc-squared function is shown in Figure 8-4. 
Now let’s calculate the integrals for −20 ≤ x ≤ 20. For the sinc function we find:

>> a = int(sinc,–20,20)

a =

2*sinint(20)

We can cast this as a double to get a numerical result:

> double(a)

ans =

    3.0965
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Figure 8-3 A plot of the sinc function
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Figure 8-4 The sinc-squared function
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Now we integrate sinc squared:

>> b = int(sinc_squared,–20,20)

b =

–1/20+1/20*cos(40)+2*sinint(40)

The numerical result is:

>> double(b)

ans =

    3.0906

Both results are very close. The integrals for −∞ < x < ∞ are:

>> a = int(sinc,–inf,inf)

a =

pi

>> b = int(sinc_squared,–inf,inf)

b =

pi

In fact what we find that as a gets bigger integrating over −a ≤ x ≤ a both functions 
approach p. Sinc squared does so a little bit faster because the side lobes of the sinc 
function alternate between positive and negative and cancel out each other a little bit:

>> a = double(int(sinc,–50,50))

a =

    3.1032

>> b = double(int(sinc_squared,–50,50))

b =

    3.1217
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Over the entire real line, this effect washes out and the functions both cover the 
same area.

Multidimensional Integration

We can compute multidimensional integrals in MATLAB by using nested int 
statements. Suppose that we wanted to compute the indefinite integral:

x y z dx dy dz2 5∫∫∫

This can be done with:

>> syms x y z
>> int(int(int(x*y^2*z^5,x),y),z)

ans =

1/36*x^2*y^3*z^6

Definite integration proceeds analogously. We can calculate:

x y dx dy2

2

4

1

2

∫∫

With the commands:

>> f = x^2*y;
>> int(int(f,x,2,4),y,1,2)

ans =

28

When computing multidimensional integrals in cylindrical and spherical 
coordinates, be sure to enter the correct area and volume elements—MATLAB will 
not do this automatically.

EXAMPLE 8-8

Find the volume of a cylinder of height h and radius a. What is the volume of a 
cylinder with radius a = 3.5 inches and height h = 5 inches?
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SOLUTION 8-8

We will integrate using cylindrical coordinates with:

0 ≤ r ≤ a, 0 ≤ q ≤ 2p, 0 ≤ z ≤ h

The volume element in cylindrical coordinates is:

dV = r dr dqdz

So the volume of a cylinder of height h and radius a is:

V r dr d dz
ah

= ∫∫∫ θ
π

00

2

0

The commands to implement this in MATLAB are:

>> syms r theta z h a

>> V = int(int(int(r,r,0,a),theta,0,2*pi),z,0,h)

V =

a^2*pi*h

The volume of a cylinder with radius a = 3.5 inches and height h = 5 inches is:

>> subs(V,{a,h},{3.5,5})

ans =

  192.4226 

The answer is expressed in cubic inches.

Numerical Integration

MATLAB can be used to perform trapezoidal integration by calling the trapz(x, y) 
function. Here x and y are two arrays, x containing the domain over which the integration 
takes place and y containing the function values at those points. Multiple functions can 
be integrated simultaneously (over the same domain x) by passing a multiple column 
argument y where each column contains the values of each function.
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From calculus you are probably familiar with the trapezoidal method, which 
divides the region under a curve into a set of rectangles or panels. It then adds up 
the areas of the individual panels to get the integral.

EXAMPLE 8-9

Compute

x dx2

0

2

∫

using 10 and 20 evenly spaced panels, and compute the relative error in each case.

SOLUTION 8-9

First let’s do the problem analytically to get the exact answer:

x dx x2

0

2
31

3
2
0

8
3

2 667∫ = = = .

Now let’s create a uniformly spaced line of ten panels:

>> x = linspace(0,2,10);

And define the function:

>> y = x.^2;

Integrating we find:

>> a = trapz(x,y)

a =

    2.6831

The relative error is:

>> 100*abs((8/3–a)/(8/3))

ans =

    0.6173
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Now let’s repeat the process with 20 uniformly spaced panels to see how we can 
reduce the error:

>> x = linspace(0,2,20);
>> y = x.^2;
>> a = trapz(x,y)

a =

    2.6704

>> 100*abs((8/3–a)/(8/3))

ans =

    0.1385

By doubling the number of panels, we have reduced the error by nearly a factor 
of 5.

EXAMPLE 8-10

Numerically estimate the following integrals of the Gaussian function:

e dx e dxx x−
−

−
−∞

∞

∫ ∫2 2

2

2
and

and compute the relative error. Use 200 uniformly spaced panels in the first case.

SOLUTION 8-10

Let’s display our results using long format:

>> format long

In the first case we find:

>> x = linspace(–2,2,200);
>> gauss = exp(–x.^2);
>> in = trapz(x,gauss)

in =

   1.76415784847621
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The actual result of this integral is

e dxx−
−∫

2

2

2
= Erf(2)π

where Erf(2) is the error function. MATLAB evaluates this result to:

>> ac = sqrt(pi)*erf(2)

ac =

   1.76416278152484

We see that the results agree to four decimal places. The relative error, as a 
percentage, is:

>> d = ac – in;
>> err = abs(d/ac)*100

err =

    2.796254794950795e–004

For the second integral, the analytical result is:

e dxx−
−∞

∞

∫ =2 π

Let’s plot the Gaussian to think about how to do the integral numerically. It is 
shown in Figure 8-5.

Generally, a Gaussian can be written in the form:

ϕ
µ

σ
( ) exp

( )
x

x
= −

−⎛
⎝⎜

⎞
⎠⎟

2

22

where m is the mean and s is the standard deviation. It turns out that about 99.73% 
of the area under a Gaussian curve falls within the range of three standard deviations. 
In our case we have exp(−x2). The Gaussian is centered at the origin (so m = 0) 
and:

1

2
1

1

22σ
σ= ⇒ =,
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This means that in our case, 99.73% of the area under the curve lies within the 
limits

x = ± ≈ ±
3

2
2 213.

So we can try doing this integral numerically by integrating over −2.2 ≤ x ≤ 2.2. 
Let’s use 200 evenly spaced points over this range:

>> x = linspace(–2.2,2.2,200);
>> gauss = exp(–x.^2);

Integrating we obtain:

>> est = trapz(x,gauss)

est =

   1.76914920736586
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Figure 8-5 A Gaussian centered at the origin
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The actual, analytic answer is:

>> ac = sqrt(pi)

ac =

   1.77245385090552

Our relative error is:

>> d = ac – est;
>> err = abs(d/ac)*100

err =

   0.18644454624112

Now 0.18% isn’t a bad error considering the analytic result is found by integrating 
over the entire real line. Let’s try extending our integration to −3 ≤ x ≤ 3:

>> x = linspace(–3,3,200);
>> gauss = exp(–x.^2);
>> est = trapz(x,gauss)

est =

   1.77241458438211

You can see that there has been an improvement in accuracy. Now the relative 
error is:

>> d = ac – est;
>> err = abs(d/ac)*100

err =

   0.00221537634854

At 0.002 % this estimate is quite a bit more accurate. 

EXAMPLE 8-11

The velocity of a rocket sled on a track is measured once a second for 10 seconds. 
The velocity in ft/s is found to be:

t 1 2 3 4 5 6 7 8 9 10

v(t) 65 95 110 150 170 210 240 260 265 272

Find the total distance covered by the sled.
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SOLUTION 8-11

Velocity is related to position by:

v
dx

dt
=

Hence we can find the position from the velocity by integrating:

x t v t dt
a

b

( ) ( )= ∫

To do this numerically, first let’s put the data into two arrays:

>> t = [1:1:10];
>> v = [65 95 110 150 170 210 240 260 265 272]

We can calculate the value of each element from:

x t v t dt x tk
t

t

k
k

k

( ) ( ) ( )+ = ++

∫1

1

We initialize the first element to zero: 

>> x(1) = 0;

Now we do the integration using a for loop:

>> for k = [1:9]
x(k+1) = trapz(t(k:k+1),v(k:k+1))+x(k);
end

The result is:

Time Position (in 1,000 feet)

  1 0

  2 0.08000000000000

  3 0.18250000000000

  4 0.31250000000000

  5 0.47250000000000

  6 0.66250000000000

  7 0.88750000000000

  8 1.13750000000000

  9 1.40000000000000

10 1.66850000000000
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So the sled has traveled 1668.50 feet. This technique gives us the position at each 
second. If we just wanted the position at the end, the trapz function can give us that 
in one call:

>> trapz(t,v)

ans =

    1.668500000000000e+003

Quadrature Integration

MATLAB has two commands called quad and quad1 that can be used to perform 
quadrature integration. This type of method is based on the idea that you can 
approximate the area under a curve better using quadratic functions instead of 
rectangles (even more accuracy can be obtained by using higher order polynomials). 
Simpson’s rule does this by dividing the range of integration up into an even number 
of sections, approximating the area under each pair of adjacent sections by a 
different quadratic function. The quad function uses an adaptive Simpson’s rule 
approaches to do numerical integration. To use quad, you pass the function to be 
integrated along with the limits of integration.

The quadl function uses Lobatto integration. This is a more sophisticated type of 
adaptive quadrature integration, see the MATLAB help for more information.

The downside of the quad and quadl functions is that they cannot integrate a set 
of points.

EXAMPLE 8-12

Use quadrature integration to compute

e dxx−∫ 2

0

1 8/

SOLUTION 8-12

The analytical answer to four decimal places is:

1
2

1

2
0 1106

1 4
− ≈

e /
.
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The quad function returns:

> quad('exp(–2*x)',0,1/8)

ans =

    0.1106

In fact if we carry the answer to 14 decimal places we still find excellent 
agreement:

>> format long

>> ac = 1/2 – 1/(2*exp(1/4))

ac =

   0.11059960846430

>> quad('exp(–2*x)',0,1/8)

ans =

   0.11059960846436

Using the trapz function we find a good answer but it differs in the seventh 
decimal place:

> x = linspace(0,1/8,100);
>> y = exp(–2*x);
>> r = trapz(x,y)

r =

   0.11059966723785

Quiz

 1. Compute x e dxax−∫ .

 2. Compute 
dx

x bx c2 + +∫ .

 3. Compute x x dxtan∫ .
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 4. Find sin ( )2∫ yx dy .

 5. Compute e x dxx−
∞

∫ 3

0
cos .

 6. Find the volume of the solid of revolution obtained by rotating the region 
between the curves x xand 2  for 0 ≤ x ≤ 1.

 7. Use MATLAB to generate the formulas for the surface area and volume of 
a sphere of radius a. What is the volume of a sphere with a = 2 m?

 8. Numerically calculate cos( )π
π

x dx
0∫  using trapezoidal integration. Use 50 

evenly spaced panels and determine the relative error.

 9. Numerically integrate the Gaussian over −2.2 ≤ x ≤ 2.2, using 1000 evenly 
spaced panels. Does this reduce the relative error by a significant amount?

 10. Numerically compute:

J x dx10

10
( )∫

  where J
1
(x) is the Bessel function of the first kind using trapezoidal and 

quadrature methods.



CHAPTER 9

Transforms

Transforms, such as the Laplace, z, and Fourier transforms, are used throughout 
science and engineering. Besides simplifying the analysis, transforms allow us to 
see data in a new light. For example, the Fourier transform allows you to view a 
signal that was represented as a function of time as one that is a function of frequency. 
In this chapter we will introduce the reader to the basics of using MATLAB to work 
with transforms. In this chapter we will introduce the laplace, fourier, and fft 
commands.

The Laplace Transform

The Laplace transform of a function of time f(t) is given by the following integral:

l{ ( )} ( )f t f t e dtst=
∞

−∫0

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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We often denote the Laplace transform of f(t) by F(s). The advantage of the 
Laplace transform is that it turns differential equations into algebraic ones. In 
principle, an algebraic equation should be much easier to solve, but this doesn’t 
always work out in practice. But with MATLAB at our disposal the situation is 
greatly simplified.

To compute a Laplace transform in MATLAB, we make a call to laplace(f(t)). 
This is done using symbolic computation. Let’s use this function to build up a list 
of Laplace transforms that you can find in any differential equations or electrical 
engineering book. 

We will start with the easiest example, computing the Laplace transform of the 
constant function f(t) = a. First we define our symbolic variables:

>> syms s t

First watch what happens if we try to compute the Laplace transform of the 
number 1:

>> laplace(1)
??? Function 'laplace' is not defined for values of class 'double'.

Hence we need to define a symbolic constant first:

>> syms a

Now we can find the Laplace transform of a constant:

>> laplace(a)

ans =

1/s^2

Here are the Laplace transforms of some higher powers of t:

>> laplace(t^2)

ans =

2/s^3

>> laplace(t^7)

ans =

5040/s^8
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>> laplace(t^5)

ans =

120/s^6

From this we deduce the well-known formula:

l{ }
!

t
n

s
n

n
= +1

Now let’s look at the Laplace transform of some common functions seen in 
science and engineering. First consider the decaying exponential:

>> laplace(exp(–b*t))

ans =

1/(s+b)

The Laplace transforms of the sin and cos functions are:

>> laplace(cos(w*t))

ans =

s/(s^2+w^2)

>> laplace(sin(w*t))

ans =

w/(s^2+w^2)

We can also calculate the Laplace transform of the hyperbolic cosine function:

>> laplace(cosh(b*t))

ans =

s/(s^2–b^2)

The Laplace transform is linear. That is:

l l l{ ( ) ( )} { ( )} { ( )}af t bg t a f t b g t+ = +
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Let’s verify this with MATLAB. Let

>> f = 5 + exp(–2*t)

We find that the Laplace transform is:

>> laplace(f)

ans =

5/s+1/(s+2)

The Inverse Laplace Transform

Computing inverse Laplace transforms is something sure to generate a lot of 
headaches among readers who are taking say a circuits analysis class. This process 
is often very tedious and filled with lots of difficult algebra. But with MATLAB our 
problems are solved. We can compute the inverse Laplace transform by typing 
ilaplace, saving us from having to do partial fraction decompositions and other 
nasty tricks. First let’s get familiar with computing inverse Laplace transforms by 
looking at some simple examples. First consider a simple power function:

>> ilaplace(1/s^3)

ans =

1/2*t^2

Or with this one we get an exponential:

>> ilaplace(2/(w+s))

ans =

2*exp(–w*t)

And finally an example involving a trig function:

>> ilaplace(s/(s^2+4))

ans =

cos(2*t)
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Of course most problems you come across in applications don’t result in inverse 
Laplace transforms where you can just spot the answer like in these examples. This 
is where MATLAB is really useful. For instance, what is the inverse Laplace 
transform of:

F s
s

s
( ) =

−
+

5 3
2 5

Let’s enter it into MATLAB:

>> F = (5–3*s)/(2+5*s);

Computing the inverse Laplace transform, we find a Dirac delta function (or unit 

impulse function for engineers):

>> ilaplace(F)

ans =

–3/5*dirac(t)+31/25*exp(–2/5*t)

Here is a more complicated example. What do you think the inverse Laplace 
transform of:

F s
s s

s s
( ) =

− − +
+ +

2

2

9 4

2

happens to be? Well, you can start involving yourself in tedious algebra to get it into 
a form that is immediately recognizable or you can enter it in MATLAB:

>> F = (–s^2 – 9*s + 4)/(s^2 + s + 2);

Here is the result:

>> ilaplace(F)

ans =

–dirac(t) –8*exp(–1/2*t)*cos(1/2*7^(1/2)*t)+20/7*7^(1/2)*
exp(–1/2*t)*sin(1/2*7^(1/2)*t)
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Kind of messy—but at least we have the answer! Let’s try some examples you 
are likely to come across involving partial fractions. For instance:

>> F = 1/(s*(s+1)*(s+2));
>> ilaplace(F)

ans =

–exp(–t)+1/2*exp(–2*t)+1/2

EXAMPLE 9-1

What function of time corresponds to:

F s
s

( )
( )

=
+
1

7 2

Plot the function.

SOLUTION 9-1

The inverse laplace command gives:

>> f = ilaplace(1/(s+7)^2)

f =

t*exp(–7*t)

Remember, we are using symbolic computing here. So we can plot it using 
ezplot:

>> ezplot(f)

The result is shown in Figure 9-1. In an application, we are probably only 
interested in the behavior of the function for t ≥ 0.

So let’s try looking at it for positive values. First let’s try looking at the function 
for the first 5 seconds. We do this by typing:

>> ezplot(f,[0,5])

This plot is shown in Figure 9-2. It seems the function quickly goes to zero and 
all the action is prior to 1 second, so this plot is also unsatisfying. So we try once 
more, looking only at 0 ≤ t ≤ 1:

>> ezplot(f,[0,1])
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Figure 9-1 A plot of te−7t
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Figure 9-2 Looking at te−7t for 0 ≤ t ≤ 5 seconds
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The result this time, shown in Figure 9-3, gives a nice view of the function.

EXAMPLE 9-2

Find and plot the function of time that corresponds to:

2 3

1 32 2

s

s s

+
+ +( ) ( )

SOLUTION 9-2

Calling ilaplace we find:

>> f = ilaplace((2*s+3)/((s+1)^2*(s+3)^2))

f =

exp(–2*t)*(–1/2*t*cosh(t)+(1/2+t)*sinh(t))

In this case, we find that plotting over a range of 7 seconds produces a nice 
plot:

>> ezplot(f,[0,7])

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.01

0.02

0.03

0.04

0.05

t

t exp(−7t)

Figure 9-3 A plot of the function with a more suitable range of time
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The important idea is to generate a plot that brings out the important features of 
the function for t < 0. The plot is shown in Figure 9-4. Notice that the function has 
the same shape that we saw in the previous example—but that the response has 
been stretched out over a much longer time interval.

0 1 2 3 4 5 6 7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t

exp(−2t)(−1/2t cosh(t) + (1/2 + t) sinh(t))

Figure 9-4 A plot of the function used in Example 9-2

Solving Differential Equations

The Laplace transform simplifies differential equations, turning them into algebraic 
ones. The Laplace transform of the first derivative of a function is:

l
df

dt
sF s f

⎧
⎨
⎩

⎫
⎬
⎭

= −( ) ( )0

And the Laplace transform of the second derivative of a function is:

l
d f

dt
s F s sf f

2

2
2 0 0

⎧
⎨
⎩

⎫
⎬
⎭

= − −( ) ( ) ( )
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Unfortunately MATLAB doesn’t work quite the way I would like. Consider the 
fact that you enter a derivative for the DSOLVE command by placing a D in front 
of the variable. For example we can find the solution to a first order ODE:

>> dsolve('Dx = a*x')

ans =

C1*exp(a*t)

It would be nice if you could have Laplace generate the results stated above for 
derivatives, but it can’t. For example, if we type:

>> laplace(Dx –a*x)

We get an error message:

??? Undefined function or variable 'Dx'.

Don’t try entering it as a character string:

>> laplace('Dx –a*x')
??? Function 'laplace' is not defined for values of class 'char'.

So we can’t use Laplace to work directly on derivatives. To solve a differential 
equation with MATLAB using Laplace transform methods, you will have to 
compute the Laplace transform yourself and enter the result in MATLAB, and then 
use ilaplace to come up with a solution. We illustrate with an example.

EXAMPLE 9-3

Consider two mass-spring systems where m = 1 kg that are described by the 
following differential equation:

mx t x t x y t y t&& & &( ) . ( ) ( ) ( )+ + = +1 2 α

Find a solution of the equation X(s)in the s domain and invert to find x(t). Plot 
for the three values of the constant a = 0, 2, 5. Let x(0) = x

.
(0) = y(0). Suppose that  

y(t)is given by the unit step or Heaviside function.

SOLUTION 9-3

Using the rule for the Laplace transform of the first and second derivatives, and 
setting m = 1, we arrive at the following equation in s:

s2X(s) + 1.2sX(s) + X(s) = Y(s) + sY(s)
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Some rearrangement gives:

( . ) ( ) ( ) ( )

( )
.

s s X s s Y s

X s
s

s s

2

2

1 2 1 1

1

1 2

+ + = +

⇒ =
+

+

α

α
++1

Y s( )

In the problem statement we are told that y(t) is the unit step or Heaviside 
function. For readers not familiar with this function, it is defined as:

y t
t

t
( ) =

<
≥

⎧
⎨
⎩

0 0
1 1

We can plot it in MATLAB with the following command:

>> ezplot(Heaviside(t),[–2,2])

The result is shown in Figure 9-5. Essentially we have a system with a constant 
forcing function turned on at t = 0.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

t

Heaviside(t)

Figure 9-5 A plot of the Heaviside or unit step function
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To solve the problem, we need to know the Laplace transform of the Heaviside 
function. It is:

>> laplace(heaviside(t))

ans =

1/s

Hence the function x(t) can be found by inverting:

X s
s

s s s
( )

.
=

+
+ +

⎛
⎝⎜

⎞
⎠⎟

1

1 2 1

1
2

α

Let’s label our three cases by a = a, b, c where a = 0, b = 2, c = 5:

>> a = 0; b = 2; c = 5;

Now we enter our function in the s domain, with the three cases. First, to simplify 
typing, let’s enter the denominator that is the same in all three cases:

>> d = s^2 + (1.2)*s + 1;

We can then define three functions of s for each of the constants:

>> Xa = ((1+ a*s)/d)*(1/s);
>> Xb = ((1+ b*s)/d)*(1/s);
>> Xc = ((1+ c*s)/d)*(1/s);

Now we invert:

>> xa = ilaplace(Xa)

xa =

–exp(–3/5*t)*cos(4/5*t)–3/4*exp(–3/5*t)*sin(4/5*t)+1

>> xb = ilaplace(Xb)

xb =

1–exp(–3/5*t)*cos(4/5*t)+7/4*exp(–3/5*t)*sin(4/5*t)

>> xc = ilaplace(Xc)

xc =

1–exp(–3/5*t)*cos(4/5*t)+11/2*exp(–3/5*t)*sin(4/5*t)
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The cases a = 2, a = 5 are similar, so let’s just plot the a = 2 case side by side 
with a  =  0. We can do this using the subplot command. First let’s tell it that we will 
have 1 row with 2 panes, and that we are putting our first plot in pane 1:

>> subplot(1,2,1)

We plot the first function for 0 ≤ t ≤ 10:

>> ezplot(xa,[0 10])

Now we tell MATLAB where to put the next plot:

>> subplot(1,2,2)

And we plot the second function for 0 ≤ t ≤ 10:

>> ezplot(xb,[0 10])

The results are shown in Figure 9-6.
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Figure 9-6 Plotting solutions of the differential equation in Example 9-3
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Computing Fourier Transforms

The Fourier transform of a function f(t) is defined as:

F f t e dti t( ) ( )ω ω=
−∞

∞
−∫

We can calculate the Fourier transform of a function in MATLAB by typing the 
command fourier. A Fourier transform allows you to convert a function of time or 
space into a function of frequency. For example, we can verify that the Fourier 
transform of the sin function is given by two Dirac deltas:

>> fourier(sin(x))

ans =

i*pi*(–dirac(w–1)+dirac(w+1))

Here we find the Fourier transform of a Gaussian. First let’s define the function 
and plot it in the “spatial” domain:

>> f = exp(–2*x^2);

>> ezplot(f,[–2,2])

The plot is shown in Figure 9-7.
We compute the Fourier transform:

>> FT = fourier(f)

FT =

1/2*2^(1/2)*pi^(1/2)*exp(–1/8*w^2)

We have found the famous result that the Fourier transform of a Gaussian is 
another Gaussian—albeit with some scaling parameters. Let’s look at the plot 
that shows some nice features of Fourier transforms. The function is wider in 
frequency and has a higher peak, as can be seen when comparing Figure 9-8 with 
Figure 9-7.
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Figure 9-8 The Fourier transform of a Gaussian is another 
Gaussian with a different height and width

Figure 9-7 A plot of our function in the spatial domain
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Here is another nice example. Consider the function:

f x e
e x

e x
x

x

x
( ) = =

<
>

⎧
⎨
⎩

−
−

0

0

We can define it in MATLAB by typing:

>> f = exp(–abs(x));

Let’s plot it. The result is shown in Figure 9-9.
Now we compute the Fourier transform:

>> FT = fourier(f)

FT =

2/(w^2+1)

A plot of this function of frequency is shown in Figure 9-10.
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Figure 9-9 A plot of e−|x|
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Inverse Fourier Transforms
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Figure 9-10 A plot of the Fourier transform of e−|x|

To compute the inverse Fourier transform of a function, you can use the ifourier 

command. For example, we can see the duality relationship of the Fourier transform 
by typing:

>> f = ifourier(–2*exp(–abs(w)))

The result is:

f =

–2/(x^2+1)/pi

This function is shown in Figure 9-11.
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Fast Fourier Transforms

The MATLAB function fft can be used to compute numerical fast fourier transforms 
of vectors of numbers. 

EXAMPLE 9-4

Suppose that a signal x(t) = 3cos(pt) + 2cos(3pt) + cos(6pt). Develop a model to 
describe this signal corrupted by noise, and compute the FFT to examine the 
frequency content of the signal. Consider a time interval of 10 seconds.

SOLUTION 9-4

First let’s define our interval:

>> t = 0:0.01:10;

Now let’s define the signal:

>> x = 3*cos(pi*t) + 2*cos(3*pi*t) + cos(6*pi*t);

−4 −3 −2 −1 0 1 2 3 4

−0.6
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0

x

−2/(x2 + 1)/π

Figure 9-11 Plot of the function obtained by computing 
the inverse Fourier transform of f(w) = −2e−|w|



CHAPTER 9 Transforms 237

To model noise, we will generate some random numbers and add them into the 
signal. This can be done with a call to randn:

>> x_noisy = x + randn(size(t));

Let’s plot the two functions to see the effect of the noise. In Figure 9-12, we 
show the original uncorrupted signal over the first 1000 milliseconds. The command 
used to plot is:

>> plot(1000*t(1:100),x(1:100)), xlabel('time (ms)'), 
title('Original Signal') 

Now let’s plot the noisy signal over the same interval. The command is:

>> plot(1000*t(1:100),x_noisy(1:100)),xlabel('time(ms)'),
title('Noisy Signal')

The result is shown in Figure 9-13.
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Figure 9-12 The original signal
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The noisy signal looks hopeless. We can glean some useful information about 
the original signal by computing the Fourier transform. We can compute an n-point 
fast Fourier transform of a function f  by typing fft(f, n). Following an example 
given in the MATLAB help, we compute the 512-point Fourier transform of our 
function:

>> FT = fft(x_noisy,512);

The power in the signal can be found by taking the product of the Fourier 
transform with its complex conjugate, and dividing by the total number of points:

>> P = FT.*conj(FT)/512;

When we plot the function, the frequency content of the signal is apparent. In 
Figure 9-14 we see three peaks, corresponding to the three frequencies in x(t) = 
3cos(pt) + 2cos(3pt) + cos(6pt). Notice how the amplitudes in the original signal 
are reflected in the power spectrum of Figure 9-14.
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Figure 9-13 The noisy version of our signal
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Quiz

 1. Find the Laplace transform of g(t) = te−3t.

 2. Find the Laplace transform of f(t) = 8sin 5t − e−tcos 2t.

 3. What is the inverse Laplace transform of 
1 2 3

9

2

2s

s

s
−

+
+

.

 4. Find the inverse Laplace transform of 
s

s s2 249

3

9−
−

−
.

 5. Solve the differential equation:

dy

dt
y U t+ = 2 ( )

  where U(t) is the Heaviside function. Let all initial conditions be zero. 
What is the forced response?
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Figure 9-14 By taking the discrete Fourier transform of 
the noisy signal, we are able to extract some frequency 

information about it. The three peaks and their relative strengths 
are reflective of the frequency content of the signal 

x(t) = 3cos(pt) + 2cos(3pt) + cos(6pt)
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 6. Find the Fourier transform of x2.

 7. Find the Fourier transform of x cos x.

 8. Find the inverse Fourier transform of 
1

1+ iω
.

 9. What is the fast Fourier transform of a = [2,4, –1,2] ?

 10. Let x(t) = sin(pt) + 2sin(4pt). Add some noise to the signal using x + 

randn(size(t)). What is the highest power content of the signal and at what 
frequency?
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Curve Fitting

MATLAB can be used to find an appropriate function that best fits a set of data. In 
this chapter we will examine some simple techniques that can be used for this 
purpose.

Fitting to a Linear Function

The simplest case we can imagine is a data set which is best described by a linear 
function. That is if our data is of the form y = f(x) we are considering the case where 
f(x) is such that:

y = mx + b

To find the values of m and b, we can apply a MATLAB function called 
polyfit(x,y,n) where n is the degree of the polynomial we want MATLAB to find. 
For an equation of the form y = mx + b, we set n equal to unity and the call would 

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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be polyfit(x, y, 1). The polyfit function works by using least squares. Let’s see how 
to apply it with some simple examples.

EXAMPLE 10-1

Among a set of golfers, a relationship between handicap and average score is noted 
as follows:

Handicap 6 8 10 12 14 16 18 20 22 24

Average 3.94 3.8 4.1 3.87 4.45 4.33 4.12 4.43 4.6 4.5

Find a curve that fits the data and gives an estimate of the goodness of the fit.

SOLUTION 10-1

An understanding of golf isn’t necessary for this example, all you need to know is 
we are assuming a linear relationship between handicap and average, and we want 
to derive an equation to describe it. Once you have the equation y = mx + b, you can 
predict values of y for values of x you don’t yet have. First let’s enter our data in two 
arrays:

>> handicap = [6:2:24]

handicap =

     6     8    10    12    14    16    18    20    22    24

>> Ave = [3.94, 3.8, 4.1, 3.87, 4.45, 4.33, 4.12, 4.43, 4.6, 4.5];

Next we call polyfit to have MATLAB generate the coefficients for a polynomial 
to fit the data. To have MATLAB generate a first order polynomial of the form y = 
mx + b, first we need to determine what is x (the independent variable) and what is 
y (the dependent variable). In this case the independent variable which plays the 
role of x is the Handicap, and the dependent variable which plays the role of y is 
the Average. Since we want to generate a first degree polynomial, we call polyfit in 
the following way:

>> p = polyfit(handicap,Ave,1);

Next we need to extract the coefficients that MATLAB finds. In general, polyfit 
will generate the coefficients for the polynomial in the following way:

p(x) = p
1
xn + p

2
xn−1 + … + p

n−1
x2 + p

n
x + p

n+1
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If we make a call p = polyfit(x, y, n) the j th coefficient is referenced by writing 
p( j). In our case, polyfit returns coefficients for an equation of the form p(1)*x + 
p(2). Therefore we can extract the coefficients this way:

> m = p(1)

m =

    0.0392

>> b = p(2)

b =

    3.6267

Now let’s generate a function to draw the line y = mx + b. First we need to 
represent the x axis:

x = [6:0.1:24];

Now we create the function to draw the line:

>> y = m*x + b;

Let’s plot the line along with the actual data, which will be shown as individual 
points. We can represent the actual data with circles using the following 
commands:

>> subplot(2,1,2);

>> plot(handicap,Ave,'o',x,y),xlabel('Handicap'),ylabel('Average')

The result is shown in Figure 10-1. The fit is not perfect, many of the data points 
are scattered quite a bit off the line we generated. Let’s see what the fit generated in 
this case predicts for the specific handicap values for which we have real data. This 
can be done by executing the following command:

>> w = m*handicap + b

w =

    3.8616    3.9399    4.0182    4.0965    4.1748    4.2532    
4.3315    4.4098    4.4881    4.5664
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Looking back at the original table of data, we can see that this is a pretty good 
approximation. Since this data is generated using the smooth line y = mx + b 
generated to fit the data, the data stored in w is often called smoothed data. 

In many cases observational data is plagued with errors, and the equation y = mx + 
b may be taken to be a better representation of the actual relationship between the 
dependent and independent variables than the collected data is. 

Now let’s take a look at some ways to characterize how good the fit really is. 
This can be done by getting an estimate of the error of the fit. The first item we can 
use to look at how good the fit is are the residuals. Suppose that we are fitting a 
function f(x) to a set of collected data t

i
. The sum of the squares of the residuals is 

given by:

A f x ti i

i

N

= −
=
∑[ ( ) ]

1

2

Now let the collected data have a mean or average value given by t−. The sum of 
the squares of the deviation of the collected data from the mean is:

S t ti

i

N

= −
=
∑ ( )

1

2

The r-squared value is then:
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Figure 10-1 A plot of the data along with the least squares 
fit generated in Example 10-1
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If r2 = 1, then the function would be a perfect fit to the data. Hence the closer r2 
is to 1, the better the fit. In MATLAB, we can implement these formulas pretty 
easily. First let’s get the mean of our collected data. There are ten data points, 
hence:

>> N = 10;
>> MEAN = sum(Ave)/N

MEAN =

    4.2140

We can also calculate the mean of a set of data stored in an array using the built-
in function:

>> mean(Ave)

ans =

    4.2140

Then:

>> S = sum((Ave–MEAN).^2)

S =

    0.7332

(Don’t be confused by the use of Ave, which is the array containing the average 
golf scores). Now we compute A. To do this, we need the values of our fit at the 
relevant data points—we did this by creating the array w. So:

>> A = sum((w–Ave).^2)

A =

    0.2274

Now we compute r2:

>> r2 = 1 – A/S

r2 =

    0.6899
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The r-squared value is not so close to 1, so this isn’t a great fit. But it’s not too 
bad since it’s far closer to 1 than it is to zero.

Let’s try another example that is even more problematic. 

EXAMPLE 10-2

The following table lists homes by square feet and the corresponding average 
selling price in Happy Valley, Maine. Find a linear function that fits this data.

SQFT 1200 1500 1750 2000 2250 2500 2750 3000 3500 4000

Average Price 

(thousands)

$135 $142 $156 $165 $170 $220 $225 $275 $300 $450

SOLUTION 10-2

First we enter the data in two arrays:

>> sqft = [1200,1500,1750,2000,2250,2500,2750,3000,3500,4000];
>> price = [135,142,156,165,170,220,225,275,300,450];

Now let’s generate a plot of the data:

>> plot(sqft,price,'o'),xlabel('Home SQFT'),
ylabel('Average Selling Price'),...
Title('Average Selling Price by Home SQFT in Happy Valley'),
axis([1200 4000 135 450])

The plot is shown in Figure 10-2.
While the price of a 4000 square foot home looks a bit out of the norm, most of 

the data appears to be roughly on a straight line. Let’s try to find out what line best 
fits this data. The SQFT of the house plays the role of x while average selling price 
plays the role of y in our attempt to find y = mx + b. To use polyfit to find the 
coefficients we need, we simply pass the data and tell it we are looking for a 
polynomial of degree one. The call is:

 >> p = polyfit(sqft,price,1);

The function polyfit returns two elements in this case. They are p(1) = m and 
p(2) = b. Let’s retrieve those values:

>> m = p(1)

m =

    0.1032



CHAPTER 10 Curve Fitting 247

>> b = p(2)

b =

  –28.4909

Next we can plot the fitted line that MATLAB has come up with and compare it 
with the actual data points. First we generate data for the x axis:

>> x = [1200:10:4000];

Now we use the coefficients we found above to generate y:

>> y = m*x + b;

Finally, we call subplot and then show both curves together on the same graph:

>> subplot(2,1,2);

EDU>> plot(x,y,sqft,price,'o'),xlabel('Home SQFT'),
ylabel('Average Selling Price'),...

Title('Average Selling Price by Home SQFT in Happy Valley'),
axis([1200 4000 135 450])
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Figure 10-2 The data set used in Example 10-1
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The data together with the line MATLAB has come up with to fit it is shown in 
Figure 10-3. While most of the home prices are somewhat close to the fitted line, 
the homes with the lowest and highest square footage do not. In fact this isn’t that 
great a fit. The polyfit routine has determined that the function that best describes 
the data is:

y = (0.1032)x − 28.4909

where x is the square footage of the house and y is the price of the house in thousands. 
The model would predict that a 1600 sqft house would sell for:

y = (0.1032)(1600) − 28.4909 = 136.63

or about $136,000. Looking at the data table we can see this is a bit off. Another 
way we can characterize the goodness of the fit is by calculating a quantity called 
the root mean square (RMS) error. To do this we evaluate the fitted polynomial at 
the actual data points. This can be done with the following command:

>> w = m*sqft + b

The data generated are shown here with the original data:

SQFT 1200 1500 1750 2000 2250 2500 2750 3000 3500 4000

Average Price 

(thousands)

$135 $142 $156 $165 $170 $220 $225 $275 $300 $450

Predicted $95 $126 $152 $178 $204 $230 $255 $281 $333 $384

A
v
er

ag
e 

se
ll

in
g
 p

ri
ce

Home SQFT

1500 2000 2500 3000 3500 4000

Average selling price by home SQFT in happy valley

200

300

400

Figure 10-3 Plot showing line MATLAB generated to fit data used in Example 10-2
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You can see that in some cases, the error is not that significant. For instance, with 
a 2500 SQFT house the difference between the predicted and actual sale price as a 
percentage is:

$ $

$
. %

230 220

230
0 0455 4

−
= ≈

While for a 1500 SQFT house:

$ $

$
. %

142 126

142
0 1127 11

−
= ≈

A realtor probably doesn’t demand scientific precision, so a 4% error in an 
estimate of a sale price might be acceptable with the model, but the 11% error is 
probably unacceptable. Now let’s look at the RMS error to get an overall 
characterization of the model.

To calculate RMS error, we apply the following formula:

RMS error =
−⎡

⎣
⎢

⎤

⎦
⎥

=
∑

( )
/

T A

N
i i

i

N 2

0

1 2

where T
i
 are the exact values, A

i
 are the predictions or approximations of the model, 

and N is the total number of data points. First let’s generate the differences:

>> d = price – w;

The model has a total of N = 10 data points:

>> N = 10;

To find the RMS error, we need the squares of the differences. We can square 
each element of the array of differences by writing:

>> d2 = d.^2;

Now we find the RMS error:

>> RMS = sqrt((1/N)*sum(d2))

RMS =

   30.9322
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A very large error indeed! The RMS error should be less than one. How can we 
improve the situation? We can try by fitting to a higher order polynomial. Let’s try 
a polynomial of degree two. We can do this with the following steps:

>> p = polyfit(sqft,price,2);

This time there are three coefficients generated. The function polyfit with the 
third argument set to two gives us the coefficients for the polynomial:

y = p
1
x2 + p

2
x + p

3

Let’s extract these into variables and plot:

>> a = p(1);
>> b = p(2);
>> c = p(3);
>> x = [1200:10:4000];
>> y = a*x.^2+ b*x + c;
>> plot(x,y,sqft,price,'o'),xlabel('Home SQFT'),
ylabel('Average Selling Price'),...plot(x,y,sqft,price,'o'),
xlabel('Home SQFT'),ylabel('Average Selling Price'),...
title('Average Selling Price by Home SQFT in Happy Valley'),
axis([1200 4000 135 450])

The plot is shown in Figure 10-4. As can be seen, this model is a better fit of the 
data, although as we’ll see it’s still far from ideal.

Now let’s find the RMS:

>> d1 = (w–price).^2;
EDU>> w

w =

  139.5689  142.8071  150.6661  163.2164  180.4581  202.3912  
229.0156  260.3314  337.0371  432.5081

>> RMS2 = sqrt((1/N)*sum(d1))

RMS2 =

   15.4324

The RMS has been cut in half, a big improvement. Notice by checking the 
elements in the array w that the predicted prices are much closer to the real values. 
Let’s check the r-squared value. 
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> M1 = mean(price)

M1 =

  223.8000

>> S = sum((price – M1).^2)

S =

  8.5136e+004

>> w = a*sqft.^2 + b*sqft + c;
>> A = sum((w–price).^2)

A =

  2.3816e+003

>> r2=1–A/S

r2 =

    0.9720
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Figure 10-4 Improving our fit by trying a second order polynomial
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The r-squared value in this case, with the second order polynomial fit, is pretty 
close to one. So we can take this as a decent model to use.

EXAMPLE 10-3

A block of metal is heated to a temperature of 300 degrees F, and allowed to cool 
over a period of 7 hours as shown here:

Time (hours) Temperature (F)

0 300

0.5 281

1.0 261

1.5 244

2.0 228

2.5 214

3.0 202

3.5 191

4.0 181

5.0 164

6.0 151

6.1 149

7.0 141

Try a third order polynomial fit to the data and estimate how good the fit is.

SOLUTION 10-3

We enter the data in MATLAB:

>> time = [0,0.5,1.0,1.5,2,2.5,3,3.5,4,5,6,6.1,7];
>>temp = [300,281,261,244,228,214,202,191,181,164,151,149,141];

Let’s plot the data, which is shown in Figure 10-5.
Now we call polyfit to generate the coefficients for a third order polynomial:

>> p = polyfit(time,temp,3);

Since the polynomial is third order, our fit function will be of the form:

y = p
1
x3 + p

2
x2 + p

3
x + p

4

Now we extract the coefficients:

>> a = p(1); b = p(2); c = p(3); d = p(4);
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Let’s create data for the time axis:

>> t = linspace(0,7);

Next define the fit function:

>> y = a*t.^3 + b*t.^2 + c*t + d;

We will also need an array of data evaluated at the exact time points where the 
temperature data was collected:

>> w = a*time.^3 + b*time.^2 + c*time + d;

Let’s plot the collected data and the fit curve on the same graph:

>> plot(time,temp,'o',t,y),xlabel('time(h)'),ylabel
('temp(F)'),title('Third Order fit for cooling metal block')

The result is shown in Figure 10-6. It looks like the third order polynomial has 
generated a good fit.

Let’s compute r2. First we find the mean of the collected data and calculate S:

>> M1 = mean(temp)

M1 =

  208.2308

>> S = sum((temp – M1).^2)

S =

  3.2542e+004
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Figure 10-5 A plot of temperatures for a cooling metal block
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Now let’s find A:

>> A = sum((w–temp).^2)

A =

   2.79327677455582

We find r2 to be:

>> r2 = 1 – A/S

r2 =

    1.0000

It looks like we have a perfect fit to the data. However this is misleading and in 
fact the real function describing this data is:

T = 100 + 202.59e−0.23t − 2.59e−18.0t

Let’s have MATLAB print the r-squared value in long format:

>> format long
>> r2

r2 =

0.99991416476050   

Third order fit for cooling metal block
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Figure 10-6 Plot of a third order polynomial fit
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Well, the fit is extremely accurate as you can see from the plot. Let’s compute the 
RMS.

>> RMS = sqrt(sum((1/N)*(w–temp).^2))

RMS =

   0.46353796413735

The RMS is less than one, so we can take it to be a good approximation. Now 
that we have a function y(t), we can estimate the temperature at various times for 
which we have no data. For instance, the data is collected out to a time of 7 hours. 
Let’s build the function out to longer times. First we extend the time line:

>> t = [0:0.1:15];

Regenerate the fit polynomial:

>> y = a*t.^3 + b*t.^2 + c*t + d;

We can use the find command to ask questions about the data. For instance, 
when is the temperature less than 80 degrees, so maybe we can risk picking up the 
metal block?

>> find(y < 80)

ans =

   148   149   150   151

The command find has returned the array indices for temperatures that satisfy 
this requirement. We can reference these locations in the array t that contains the 
times and the array y that contains the temperatures. First we extract the times, 
adding a quote mark at the end to transpose the data into a column vector:

>> A = t(148:151)'

A =

   14.7000
   14.8000
   14.9000
   15.0000
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Now let’s get the corresponding temperatures:

>> B = y(148:151)'

B =

   78.5228
   77.0074
   75.4535
   73.8604

We can arrange the data into a two column table, with the left column containing 
the times and the right column the temperatures:

>> Table = [A B]

Table =

   14.7000   78.5228
   14.8000   77.0074
   14.9000   75.4535
   15.0000   73.8604

So for instance, we see that at 14.9 hours the block is estimated to be at about 
75 degrees. Now let’s generate a plot of the data from 10 hours to 15 hours. First we 
find the array index for the time at 10 hours. We had generated the time in increments 
of 0.1, so we can find it by searching for t > 9.9:

>> find(t >9.9)

ans =

  Columns 1 through 18 

   101   102   103   104   105   106   107   108   109   110   
111   112   113   114   115   116   117   118

  Columns 19 through 36 

   119   120   121   122   123   124   125   126   127   128   
129   130   131   132   133   134   135   136

  Columns 37 through 51 

   137   138   139   140   141   142   143   144   145   146   
147   148   149   150   151
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Next we create a new array containing these time values:

>> T1 = t(101:151);

Now let’s grab the temperatures over that range and store them:

>> TEMP2 = y(101:151);

Then we can plot them:

>> plot(T1,TEMP2),xlabel('time(h)'),ylabel('Temp(F)'),
axis([10 15 60 120])

The result is shown in Figure 10-7. The model predicts that over this 5 hour 
range the temperature of the metal block will drop more than 40 degrees.
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Figure 10-7 A plot of estimated temperatures in a time range 
well beyond that where the data was collected

Fitting to an Exponential Function

Other types of fits besides fitting to a polynomial are possible, we briefly mention 
one. In some cases it may be necessary to fit the data to an exponential function. 
The fit in this case is:

y = b(10)mx

where x is the independent variable and y is the dependent variable. Now we define 
the relations:

w = log
10

 y
z = x

and then fit the data to a line of the form:

w = p
1
z + p

2
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where the coefficients p
1
 and p

2
 are generated by a call to polyfit. The fit can be 

generated in MATLAB using the command:

p = polyfit(x, log10(y),1)

We can find m and b using:

m = p
1
,  b = 10

p
2

Quiz

Consider the following set of data. An Olympic weightlifting coach has collected 
data for maximum number of pounds lifted by the age of the lifter. He believes 
there is a functional relationship between the two.

Age Max Weight

15 330

17 370

18 405

19 420

24 550

30 580

35 600

37 580

 1. Use MATLAB to find the coefficients m and b for a first order fit to the data.

 2. Create an array of ages so that max weight could be estimated by age in 
1 year increments in the range of the current team members.

 3. Create a function y to implement the first order fit.

 4. What does the model predict as the maximum weight lifted by a 17 year old?

 5. What is the mean Weight actually lifted?

 6. What is the mean weight predicted by the model?

 7. To calculate r squared, find S and A.

 8. What is r squared for this model?

 9. Try a second order fit. What is the function?

 10. What is the r-squared value for the second order fit?



CHAPTER 11

Working with 

Special Functions

In many applications of mathematical physics and engineering the so-called special 
functions rear their ugly head. These are beasts like Bessel functions and the 
spherical harmonics. In this chapter we will discuss how to work with these types 
of functions using MATLAB.

Gamma Functions

The gamma function that is denoted by Γ(z) is defined by the following integral:

Γ( )n e t dtt n= − −
∞

∫ 1

0

We can see that Γ(1) = 1 by direct evaluation of the integral:

Γ( )1 11 1

0 00
= = = − =− −

∞
− −

∞∞

∫ ∫e t dt e dt et t t

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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Using integration by parts, you can show that the gamma function obeys a 
recursion relation:

Γ Γ( ) ( )n n n+ =1

When n is a positive integer, the gamma function turns out to be the factorial 
function:

Γ( ) ! , , ,n n n+ = =1 1 2 3 K

It can also be shown using the definition in terms of the integral that:

Γ
1
2

⎛
⎝⎜

⎞
⎠⎟

= π

When 0 < x < 1, the gamma function satisfies:

Γ Γ( ) ( )
sin

x x
x

1− =
π
π

When n is large, the factorial is approximately given by Stirling’s formula:

n n n en n! ~ 2π −

Finally, the gamma function can be used to define Euler’s constant, which is:

′ = = − =−
∞

∫Γ ( ) ln .1 0 577215
0

e t dtt γ K

THE GAMMA FUNCTION IN MATLAB

The gamma function of n can be accessed in MATLAB by writing:

x = gamma(n)

For example, Γ(6) = 5! = 120 Checking this in MATLAB:

>> gamma(6)

ans =

   120

So it’s easy to use the gamma function in MATLAB to determine factorial values. 
Let’s plot the gamma function. First we define an interval over which to calculate it. 
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We are going to plot the gamma function for all real values over the interval. The 
interval is defined as:

>> n = linspace(0,5);

We’ll use plot(x, y) to generate the plot:

>> plot(n,gamma(n)),xlabel('n'),ylabel('Gamma(n)'),grid on

The result is shown in Figure 11-1. It looks like Γ(n) blows up as n → 0, and that 
it grows very quickly when n > 5, as you know from calculating values of the 
factorial function.

Now let’s see how the gamma function behaves for negative values of n. First 
let’s try some integers:

>> y = gamma(–1)

y =

   Inf

>> y = gamma(–2)

y =

   Inf

Figure 11-1 A plot of the gamma function for positive values of n
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Not looking so good, it appears that the gamma function just blows up for 
negative argument. But if we try some other values, it looks like this is not always 
the case. In fact it appears to oscillate between positive and negative values:

>> y = gamma(–0.5)

y =

   –3.5449

EDU>> y = gamma(–1.2)

y =

    4.8510

>> y = gamma(–2.3)

y =

   –1.4471

Let’s try plotting it for negative values. What we find is that the negative integers 
define asymptotes where Γ(x) blows up. This is illustrated in Figure 11-2.

Figure 11-2 MATLAB’s plot of the gamma function for negative arguments
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Let’s tabulate a list of values for the gamma function. We will list values of Γ(x) 
for 1.00 ≤ x ≤ 2.00 in increments of 0.1. First we define our list of x values. To 
display the data in a table format, be sure to include the single quote as shown here 
(try this example without the tick mark to see how MATLAB displays the data):

>> x = (1:0.1:2)';

Now we define an array to hold values of the gamma function:

>> y = gamma(x);

We can generate a tabulated list of values by creating a matrix from these 
quantities:

>> A = [x y]

A =

    1.0000    1.0000
    1.1000    0.9514
    1.2000    0.9182
    1.3000    0.8975
    1.4000    0.8873
    1.5000    0.8862
    1.6000    0.8935
    1.7000    0.9086
    1.8000    0.9314
    1.9000    0.9618
    2.0000    1.0000

EXAMPLE 11-1

Use the gamma function to calculate the surface area of a sphere in an arbitrary 
number of dimensions. Let the radius of the sphere be r = 1 and consider the cases 
of n = 2, 3, 11 dimensions.

SOLUTION 11-1

Let the distance measured from the origin or radius of an arbitrary sphere be r. The 
surface area of a sphere in n dimensions is given by:

S r
nn

n
n

=
⎛
⎝⎜

⎞
⎠⎟

−1
22

2

π /

Γ
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We can create an inline function in MATLAB to calculate the surface of a sphere:

>> surface = @(n,r) r^(n–1)*2*(pi^(n/2))/gamma(n/2)

Let’s do some quick hand calculations so that we can assure ourselves that the 
formula works. In two dimensions, a “sphere” is a circle and the surface area is the 
circumference of the circle:

S r r r2
2 1

2 22

2
2

2
1

2=
⎛
⎝⎜

⎞
⎠⎟

= =− π π
π

/

( )
Γ

Γ

since Γ(1) = 1. If we let r = 1, the surface area is:

S2 2 6 2832= =π .

Calling our function:

>> surface(2,1)

ans =

    6.2832

Now we move to three dimensions. The surface area of a sphere is:

S r r3
3 1

3 2
2

3 22

3
2

2

1
2

1
2

4
=

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

=− π π π/ /

Γ Γ

33 2 2
24

/ r
r

π
π=

If r = 1, then the surface area is 4p  = 12.5664. Checking our function:

>> surface(3,1)

ans =

   12.5664

Finally, so that string theorists can satisfy their fantasies, we check n = 11:

S r
r

11
11 1

11 2 11 2 102

11
2

2

945
32

=
⎛
⎝⎜

⎞
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=
⎛
⎝⎜

− π π/ /

Γ ⎞⎞
⎠⎟

⎛
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⎞
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=
⎛
⎝⎜

⎞
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=
Γ

1
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2
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945
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1π

π
π

/ r 11 10r
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Our function says this is:

>> surface(11,1)

ans =

   20.7251

QUANTITIES RELATED TO THE GAMMA FUNCTION

MATLAB allows you to calculate the incomplete gamma function that is defined 
by:

p x n
n

e t dtt n
x

( , )
( )

= − −∫
1 1

0Γ

The MATLAB command to evaluate this function is:

y = gammainc(x,n)

When x  1, and n  1, the incomplete gamma function satisfies P(x, n) ≈ xn. 
We can check this with a few calculations:

>> x = 0.2;
>> n = 0.3;
>> y = x^n

y =

    0.6170

>> z = gammainc(x,n)

z =

    0.6575

The approximation is closer for smaller values:

>> x = 0.002; n = 0.003; y = x^n

y =

    0.9815
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>> z = gammainc(x,n)

z =

    0.9832

Bessel Functions

Bessel’s differential equation arises in many scientific and engineering applications. 
The equation has the form:

x y xy x n y2 2 2 0′′ + ′ + − =( )

Solutions of this equation are:

y x A J x A Y xn n( ) ( ) ( )= +1 2

where A
1
 and A

2
 are constants determined by the boundary conditions. The functions 

in the solution are J
n
(x) which is a Bessel function of the first kind and Y

n
(x) which 

is a Bessel function of the second kind or a Neumann function. 

The Bessel functions of the first kind are defined by the following infinite series, 
which includes the gamma function as part of the definition:

J x
x

k n kn

k n k

k

( )
( ) ( / )

! ( )
=

−
+ +

+

=

∞

∑ 1 2
1

2

0
Γ

In MATLAB, the Bessel function of the first kind is implemented by besselj. The 
call is of the form:

y = besselj(n,x)

To get a feel for the behavior of the Bessel function of the first kind, let’s generate 
a few plots. We can generate a plot of J

1
(x) with the following commands:

>> x = [0:0.1:50]; y = besselj(1,x);
>> plot(x,y),xlabel('x'),ylabel('BesselJ(1,x)')

The result is shown in Figure 11-3. Notice that as x → 0, J
1
(x) is finite, going 

to 0. We also see that the function has decaying oscillatory behavior.
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These characteristics apply in general to Bessel functions of the first kind. Let’s 
generate a plot that compares J

0
(x), J

1
(x), and J

2
(x):

>> x = [0:0.1:20]; u = besselj(0,x); v = besselj(1,x); w = besselj(2,x);
>> plot(x,u,x,v,'--',x,w,'-.'),xlabel('x'),ylabel('BesselJ(n,x)'),...
grid on, legend('bessel0(x)','bessel1(x)','bessel2(x)')

Looking at the plot, shown in Figure 11-4, it appears that the oscillations become 
smaller as n gets larger. 

Bessel functions of the first kind can also be defined for negative integers. They 
are related to Bessel functions of the first kind for positive integers via:

J x J xn
n

n− = −( ) ( ) ( )1

Let’s do some symbolic computation to find the derivative of a Bessel function:

>> syms n x y
>> diff(besselj(n,x))

ans =

–besselj(n+1,x)+n/x*besselj(n,x)

Figure 11-3 A plot of J
1
(x)
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MATLAB has calculated the relation:

′ = − +J x
n

x
J x J xn n n( ) ( ) ( )1

When integrals involving Bessel functions are encountered, MATLAB can also 
be used. For example:

>> int(x^n*besselj(n–1,x))

ans =

x^n*besselj(n,x)

That is, modulo a constant of integration:

x J x dx x J xn
n

n
n− =∫ 1( ) ( )

Figure 11-4 A plot of J0
(x), J

1
(x), and J

2
(x)
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Let’s compute the first five terms of the Taylor series expansions of J
0
(x) and 

J
1
(x):

 >> taylor(besselj(0,x),5)

ans =

1–1/4*x^2+1/64*x^4

>> taylor(besselj(1,x),5)

ans =

1/2*x–1/16*x^3

MATLAB also has the other Bessel functions built in. Bessel functions of the 
second kind are implemented with bessely(n, x). In Figure 11-5, we show a plot of 
the first three Bessel functions of the second kind generated with MATLAB.

We can also implement another type of Bessel function in MATLAB, the Hankel 
function. These can be utilized by calling besselh(nu, k, z). There are two types of 
Hankel functions (first kind and second kind), where the kind is denoted by k in 
MATLAB. If we leave the k out of the argument and call besselh(nu, z) MATLAB 
defaults to the Hankel function of the first kind.

Figure 11-5 Plotting Bessel functions of the second kind
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EXAMPLE 11-2

A cylindrical traveling wave can be shown to be described by:

Ψ( , ) ( )( )r t H kr e i t= −
0
1 ω

where we take the real part. Implement the real part of this function in MATLAB 
and plot as a function of r (in meters) for t = 0, p /2w, 3p /4w. Assume that k = 
500 cm−1 over 0 ≤ r ≤ 10 m.

SOLUTION 11-2

First we convert k into the proper units:

k = ⎛
⎝⎜

⎞
⎠⎟

=− −500
100

500001 1cm
cm

m
m

Let’s generate some plots to see how k impacts the behavior of the real part of 
the Hankel function. First we generate an array for the range of values over which 
we want to plot:

>> r = linspace(0,10);

Let’s suppose that k were unity. In this case we could define the Hankel function 
as:

>> u = besselh(0,r);

You can evaluate the Hankel function at different points to see that it’s complex. 
For example:

>> besselh(0,2)

ans =

   0.2239 + 0.5104i

This indicates that for the function in question to be physical, we have to take the 
real part, a common practice when studying traveling electromagnetic waves, for 
example. So we plot the real part of this function:

>> plot(r,real(u)),xlabel('r'),ylabel('Hankel(0,r)')
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The result, shown in Figure 11-6, indicates that this function is a decaying 
oscillatory function. Not surprising since this is a type of Bessel function and we 
have already seen that Bessel functions are decaying oscillatory functions!

Now let’s add in the wave number k. The code above becomes:

>> r = linspace(0,10);
>> k = 50000;
>> w = besselh(0,k*r);
>> plot(r,real(w)),xlabel('r'),ylabel('Hankel(0,kr)')

Two items are immediately apparent by looking at the graph, shown in Figure 11-7. 
The first is that the function appears to oscillate quite a bit more rapidly over the 
distance r. Secondly, we notice that the amplitude is much smaller in this case. 

Now let’s take a look at the function at different times. First considering t = 0, we 
have:

ψ(r H kr, ) ( )( )0 0
1=

This is what we have in Figure 11-7. Now let’s let t = p/2w:

ψ(r H kr e H kr ei i, / ) ( ) ( )( ) ( / ) ( )π ω ω π ω π2 0
1 2

0
1= =− − // ( )( )2

0
1= −iH kr

Figure 11-6 A plot of the real part of H
0
(1)(r) for 0 ≤ r ≤ 10
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To obtain this result we used Euler’s formula:

e iiθ θ θ= +cos sin

In Figure 11-8, we show a plot of the real part of this function (dashed line) on 
the same graph with the function at t = 0.

There doesn’t seem to be much difference here. The waveform is a bit displaced. 
The function then describes a decaying wave as r gets larger. 

For the final time, we create the function:

>> s = besselh(0,k*r)*(cos(3*pi/4)–i*sin(3*pi/4));

The plot is shown in Figure 11-9.
A check of the Hankel function shows it cannot be evaluated at zero:

>> besselh(0,0)

ans =

      NaN +    NaNi

MATLAB uses NaN to represent “not a number.” 

Figure 11-7 Plot of the Hankel function with k = 50,000
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Figure 11-8 A plot of the function at t = 0 and t = p/2w

Figure 11-9 A plot showing the real part of Ψ(r, t) = H
0
(1)(kr)e-iwt at t = 3p /4w
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The Beta Function

The Beta function takes two arguments and is defined in terms of the following 
integral:

B m n x x dxm n( , ) ( )= −− −∫ 1 1

0

1
1

This integral converges if m, n > 0. To evaluate the Beta function in MATLAB, 
we use:

x = beta(m,n)

We can use MATLAB to generate tables of values for the Beta function. If m = 1, 
we find that the first ten values of beta(1, n) are:

>> x = (1:1:10)'; y = beta(1,x); A = [x y]

A =

    1.0000    1.0000
    2.0000    0.5000
    3.0000    0.3333
    4.0000    0.2500
    5.0000    0.2000
    6.0000    0.1667
    7.0000    0.1429
    8.0000    0.1250
    9.0000    0.1111
   10.0000    0.1000

What good is the Beta function? It turns out that the Beta function can be used to 
evaluate integrals involving products of sin q  and cos q.

EXAMPLE 11-3

Determine the value of

sin cos
/

5 3

0

2
θ θ θ

π
d∫



CHAPTER 11 Working with Special Functions 275

SOLUTION 11-3

To do this integral we could try to dig out some tricks from a calculus book or leave 
on an endless journey of integration by parts. Instead we can use the relation:

sin cos ( , )
/

2 1 2 1

0

2 1
2

m n d B m n− −∫ =θ θ θ
π

Hence:

sin cos ( , )
/

5 3

0

2 1
2

3 2θ θ θ
π

∫ =d B

Calling on MATLAB for the answer:

>> (0.5)*beta(3,2)

ans =

    0.0417

⇒ =∫ sin cos .
/

5 3

0

2
0 0417θ θ θ

π
d

EXAMPLE 11-4

Find 

sin
/

19

0

2
θ θ

π

∫ d

SOLUTION 11-4

This time m = 10, n = 1/2 and so the integral is given by:

>> (1/2)*beta(10,1/2)

ans =

    0.2838
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EXAMPLE 11-5

Evaluate

tan
/

θ θ
π

d
0

2

∫

SOLUTION 11-5

Some minor manipulation will turn this into the form that can be evaluated using 
the Beta function:

tan
sin
cos

sin cos
/ /

/ /θ θ
θ
θ θ θ θ

π π
d d

0

2

0

2
1 2 1 2∫ ∫= = −

00

2π
θ

/

∫ d

So we have:

2m - 1 = 1/2,  ⇒ m = 3/4
2n - 1 = -1/2,  ⇒ n = 1/4

So the integral evaluates to 1/2B(3/4, 1/4) which is:

>> 0.5*beta(3/4,1/4)

ans =

    2.2214

This happens to be π/ 2 .

Special Integrals

There are many “special integrals” in mathematical physics. In this section, we will 
mention a few of them and see how to calculate with them in MATLAB. The first 
we consider is the exponential integral:

E x
e

u
dui

u

x
( ) =

−∞

∫

This function is implemented in MATLAB with the following syntax:

y = expint(x)
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Here we generate a tabulated list of values. Note that expint(0) = inf.

>> x = (0.1:0.1:2)'; y = expint(x); A = [x y]

A =

    0.1000    1.8229
    0.2000    1.2227
    0.3000    0.9057
    0.4000    0.7024
    0.5000    0.5598
    0.6000    0.4544
    0.7000    0.3738
    0.8000    0.3106
    0.9000    0.2602
    1.0000    0.2194
    1.1000    0.1860
    1.2000    0.1584
    1.3000    0.1355
    1.4000    0.1162
    1.5000    0.1000
    1.6000    0.0863
    1.7000    0.0747
    1.8000    0.0647
    1.9000    0.0562
    2.0000    0.0489

Many other special functions can be numerically evaluated using the mfun 
command. Calling on MATLAB help, we see a listing of functions that can be 
numerically evaluated using this command:

>> help mfunlist

mfunlist special functions for mfun.
The following special functions are listed in alphabetical order according to the 

third column. n denotes an integer argument, x denotes a real argument, and 
z denotes a complex argument. For more detailed descriptions of the functions, 
including any argument restrictions, see the Reference Manual, or use MHELP.

 bernoulli n Bernoulli numbers
 bernoulli n,z Bernoulli polynomials
 BesselI x1,x Bessel function of the first kind
 BesselJ x1,x Bessel function of the first kind
 BesselK x1,x Bessel function of the second kind
 BesselY x1,x Bessel function of the second kind
 Beta z1,z2 Beta function
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 binomial x1,x2 Binomial coefficients
 EllipticF - z,k Incomplete elliptic integral, first kind
 EllipticK - k Complete elliptic integral, first kind
 EllipticCK k Complementary complete integral, first kind
 EllipticE - k Complete elliptic integrals, second kind
 EllipticE - z,k Incomplete elliptic integrals, second kind
 EllipticCE k Complementary complete elliptic integral, second kind
 EllipticPi - nu,k Complete elliptic integrals, third kind
 EllipticPi - z,nu,k Incomplete elliptic integrals, third kind
 EllipticCPi nu,k Complementary complete elliptic integral, third kind
 erfc z Complementary error function
 erfc n,z Complementary error function's iterated integrals
 Ci z Cosine integral
 dawson x Dawson's integral
 Psi z Digamma function
 dilog x Dilogarithm integral
 erf z Error function 
 euler n Euler numbers
 euler n,z Euler polynomials
 Ei x Exponential integral
 Ei n,z Exponential integral
 FresnelC x Fresnel cosine integral 
 FresnelS x Fresnel sine integral 
 GAMM z Gamma function 
 harmonic n Harmonic function
 Chi z Hyperbolic cosine integral
 Shi z Hyperbolic sine integral
 GAMMA z1,z2 Incomplete gamma function
 W z Lambert's w function
 W n,z Lambert's w function
 lnGAMMA z Logarithm of the gamma function
 Li x Logarithmic integral
 Psi n,z Polygamma function
 Ssi z Shifted sine integral
 Si z Sine integral
 Zeta z (Riemann) zeta function
 Zeta n,z (Riemann) zeta function
 Zeta n,z,x (Riemann) zeta function
   Orthogonal Polynomials (Extended Symbolic Math Toolbox only)
 T n,x Chebyshev of the first kind
 U n,x Chebyshev of the second kind
 G n,x1,x Gegenbauer
 H n,x Hermite
 P n,x1, Jacobi
 x2,x
 L n,x Laguerre
 L n,x1,x Generalized laguerre
 P n,x Legendre

See also mfun, mhelp.
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To see how to use this function, we consider the Riemann zeta function. It is 
given by the series:

ζ ( )z
nz

n

=
=

∞

∑ 1

1

The argument z is a complex number such that Re(z) > 1. The evaluation of the 
Zeta function at real integers produces some interesting results, as we see from the 
first few values. For z = 1, we obtain the harmonic series, which blows up:

ζ ( )1 1
1
2

1
3

1
4

= + + + + = ∞L

Moving along, we get some interesting relations:

ζ
π

ζ

( ) .

( )

2 1
1

2

1

3 6
1 645

3 1
1

2

1

3

2 2

2

3 3

= + + + = =

= + + + =

L

L 11 202.

In fact whenever the argument is even, say m is an even number, then the Zeta 
function is proportional to:

z(m) µ pm

To evaluate the Riemann Zeta function in MATLAB, we write w = mfun(‘Zeta’, 
z). For example, we can estimate the value of p by calculating z(2):

w = mfun('Zeta',2)

w =

    1.6449

>> my_pi = sqrt(6*w)

my_pi =

    3.1416
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Let’s plot the Zeta function for real positive argument x. First we define our 
interval:

>> x = linspace(0,10);

Next, we define the Zeta function and plot:

>> w = mfun('Zeta',x);

>> plot(x,w),xlabel('x'),title('Zeta(x)'),axis([0 10 –10 10])

The plot is shown in Figure 11-10. As we saw earlier, the Zeta function blows up 
at x = 1, and this is indicated in the plot. For x > 1 it quickly decays. We can verify 
that it converges to one by checking a few values:

>> w = mfun('Zeta',1000)

w =

     1

>> w = mfun('Zeta',1000000)

w =

     1

Figure 11-10 A plot of the Riemann zeta function for real argument
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Legendre Functions

Legendre’s differential equation is given by:

( ) ( )1 2 1 02− ′′ − ′ + + =x y xy n n y

where n is a nonnegative integer. The solution of this equation can be written as:

y = a
1
P

n
(x) + a

2
Q

n
(x)

The P
n
(x) are polynomials called Legendre polynomials. They can be derived 

using Rodrigue’s formula:

P x
n

d

dx
xn n

n

n
n( )

!
( )= −

1

2
12

Legendre’s associated differential equation is given by:

( ) ( )1 2 1
1

02
2

2
− ′′ − ′ + + −

−
⎡

⎣
⎢

⎤

⎦
⎥ =x y xy n n

m

x
y

Here m is also a nonnegative integer. Solutions of this equation have the form:

y a P x a Q xn
m

n
m= +1 2( ) ( )

Here Pn

m(x) are the associated Legendre functions of the first kind, and Qn

m(x) are 
the associated Legendre functions of the second kind. Pn

m(x) = 0 if m > n. The 
associated Legendre function Pn

m(x) can be evaluated in MATLAB using the 
following command:

p = legendre(n,x)

The associated Legendre function is valid only for −1 ≤ x ≤ 1. The function 
legendre(n, x) calculates the associated l Legendre functions Pn

0(x), Pn

1(x),…, Pn

n(x). 
This can be used for numerical evaluation of the associated Legendre functions. 
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For example, suppose that we want to evaluate the case n = 1. This tells us that m = 
0 or m = 1. First let’s pick some regularly spaced points over −1 ≤ x ≤ 1:

>> x = (–1:0.5:1)

x =

   –1.0000   –0.5000         0    0.5000    1.0000

Now we evaluate the function for n = 1

>> p = legendre(1,x)

The data is presented in the following way:

p =

   –1.0000   –0.5000         0    0.5000    1.0000

         0   –0.8660   –1.0000   –0.8660         0

The value of m labels the rows, while the value of x labels the columns. We will 
put this in a formal table so that you can understand how this works:

m x = –1.0000 –0.5000 0 0.5000 1.0000

0 –1.0000 –0.5000 0 0.5000 1.000

1 0 –0.8660 –1.0000 –0.8660 0

Hence P1
0(−1) = −1, P1

1(−0.5) = −0.866, for example. Plotting these functions 
gives some interesting results. In Figure 11-11, we show a plot of legendre(1, x) . 
This includes curves for m = 0 and m = 1. The straight line is P1

0(x) and the curved 
line is P1

1(x). The code used to generate the plot is as follows. First we define the 
interval:

>> x = linspace(–1,1);

Next we build some associated Legendre functions:

>> p1 = legendre(1,x); p2 = legendre(2,x); p3 = legendre(3,x); 
p4 = legendre(4,x);

To plot the first one, we type:

>> plot(x,p1),xlabel('x'),ylabel('p1')
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Now let’s generate plots for legendre(2, x). In this case n = 2 which means that 
m = 0, 1, 2. The result is shown in Figure 11-12. First, let’s see how to extract each 
of the functions. This is done using standard MATLAB array addressing. As we 
saw earlier, each row of legendre(n, x) represents the function for a value of m. In 
the case of legendre(2, x), row 1 is P2

0(x), row 2 is P2
1(x), and row 3 is P2

2(x). Now 
let’s extract the data into separate arrays. By typing b = A(i, :) we tell MATLAB to 
take the ith row with all columns (indicated by the : ) and place the data into the 
array b. In this case we write: 

>> f = p2(1,:);
>> g = p2(2,:);
>> h = p2(3,:);

Now we can plot all three functions on the same graph, identifying each individual 
curve:

>> plot(x,f,x,g,'--',x,h,':'),xlabel('x'),ylabel('p2'),
legend('p(2,0)','p(2,1)','p(2,2)')

Figure 11-11 A plot of P1
0(x) and P1

1(x)
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Airy Functions

Airy functions are solutions to a differential equation of the form:

d

dx
x

2

2
0

Ψ
Ψ− =

In physics, Airy functions arise in the study of quantum mechanics. We denote 
Airy functions by Ai(z). When the argument of the Airy function is real, it can be 
written as:

Ai x
t

xt dt( ) cos= +
⎛
⎝⎜

⎞
⎠⎟

∞

∫
1

30π

3

Figure 11-12 Plot of the three functions associated with Legendre(2, x)
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In MATLAB, w = airy(z) can be used to evaluate Ai(z). For real argument, at x = 0 
the Airy function can be written in terms of the gamma function in the following way:

Ai( )
( / )/

0
1

3 2 32 3
=

Γ

As x → ∞, the Airy function assumes the asymptotic form:

Ai x
e

x

x

( )
/

/

/
1

2

2 3

1 4

3 2

π

−

As x → −∞, we have:

Ai x

x

x
( )

sin /

/

1

2
3 4

3 2

1 4π

π
−⎛

⎝⎜
⎞
⎠⎟

Let’s use MATLAB to plot the Airy function. First we choose an interval that 
will bring out the main features of the function:

>> x = linspace(–10,5);

Now we construct an array of data evaluated for the Airy function:

>> y = airy(x);

and plot it:

>> plot(x,y),xlabel('x'),ylabel('Ai(x)'),grid on

CAUTION CAUTION Imaginary parts of complex X and/or Y arguments ignored.

The result is shown in Figure 11-13. You can see the oscillatory behavior for 
negative x, and the exponential decay for positive x, which is consistent with the 
asymptotic formulas listed earlier. 
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Quiz

 1. Use the gamma function to calculate 17.

 2. Use the gamma function in MATLAB to evaluate 5 2

0

2−
∞

∫ z dz  (use 
substitution techniques to rewrite the integral in terms of the gamma 
function).

 3. Create a tabulated list of values of the gamma function for 1 ≤ x ≤ 2 in 
increments of 0.1.

 4. Using MATLAB, find x J x J x dxn n( ) ( )2
0

1

∫ .

 5. The volume of a sphere in n dimensions is:

V r
nn

n
n

= +
π /

( / )

2

1 2Γ

  Write a MATLAB function to implement this calculation and determine the 
volume of a sphere with a radius of 3 m in five dimensions.

Figure 11-13 A plot of the Airy function
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 6. Calculate the following integral:

sin cos
/

13 15

0

2
θ θ θ

π

∫ d

 7. Plot the associated Legendre polynomial P3
2(x).

 8. Calculate the integral:

cos
/

17

0

2
θ θ

π
d∫

 9. Create a table of values of the Airy function for 0 ≤ x ≤ 5 with an increment 
of 0.5.

 10. Check the relation between the Airy function and the gamma function at 
x = 0.
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Use MATLAB to compute the following quantities.

 1. 4
7
8

2 3 43 3− + ( )

 2. 5(123/4 − 2)

 3. 360.78

 4. Using MATLAB, find:

d

dx
x x( cos( ))2 π

 5. Find the first derivative of f x
x

x
( ) =

−
2

92
.

 6. Find the second derivative of x sin(x).

 7. Using MATLAB, find the binomial expansion of (1 + x)4.

 8. What are the critical points of f(x) = 2x3 − 3x2?

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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 9. Find the limit: lim
x

x

x→

−
−1

3

2

1

1
.

 10. Find the limit: lim /

x

x

→0

13 .

 11. Find the limit: lim /

x

x

→ +0

13 .

 12. Find the limit lim /

x

x

→ −0

13 .

 13. Calculate the derivative of x4  and evaluate at x = 67.

 14. Substitute x = 1.1 and x = 2.7 into the function x2 − 12x + 4.

 15. What is the third derivative of x +( )2
99

.

 16. What MATLAB function can be used to find the roots of an equation?

 17. We use MATLAB to solve an equation 2x + 3 = 0. What is the correct 
function to call and what is the syntax:

 (a) find(‘2 * x + 3’)

 (b) roots(‘2 * x + 3’)

 (c) solve(‘2 * x + 3’)

 (d) solve(‘2 * x + 3’, 0)

 18. We use MATLAB to solve an equation 2x + 3 = 1. What is the correct 
function to call and what is the syntax:

 (a) roots(‘2 * x + 3 = 1’)

 (b) solve(‘2 * x + 3 = 1’)

 (c) solve(‘2 * x + 3’, 1)

 (d) roots(‘2 * x + 3’, 1)

 19. Find the roots of x2 − 5x + 9 = 0.

 20. Use MATLAB to factor x 3 − 64.

 21. To calculate the limit lim
x

x

x→ +

+
−2

3
4

 the correct MATLAB call is:

 (a) limit((x + 3)/(x – 4), 2, +)

 (b) limit((x + 3)/(x – 4)), 2,+

 (c) limit((x + 3)/(x – 4), 2, ‘right’)

 (d) limit((x + 3)/(x – 4), 2), right

For questions 22–24, let f(x) = x2 over [1, 3].

 22. What is the minimum?

 23. What is the maximum?
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 24. Find the average value of the function.

 25. If MATLAB prints a function f as

  f =

  x ^ 3 – 3 * x ^ 2 – 4 * x + 2

  What function can we use to have it display as x3 − 3x2 − 4x + 2?

 26. To generate a set of uniformly spaced points for 0 ≤ x ≤ 10 you can write:

 (a) x = linspace(0:10);

 (b) x = linspace(0:0.1:10);

 (c) x = linspace(0, 10, ‘u’);

 (d) x = linspace(0, 10);

 27. You want to plot two curves y1 and y2 against x. To plot y1 as a red line 
and y2 as a blue line, the correct command is:

 (a) plot(x, y1, ‘r’, x, y2, ‘b’)

 (b) plot(x, y1, ‘r’, y2, ‘b’)

 (c) plot(x, y1, “r”, y2, “b”)

 (d) plot(x, y1, x, y2), color(‘r’, ‘b’)

 28. You want to plot a curve as a dashed blue line. The correct command is:

 (a) plot(x, y, ‘b–’)

 (b) plot(x, y, ‘b–’)

 (c) plot(x, y, ‘b’, ‘–’)

 29. To add a title to a graph, the correct command is:

 (a) plot(x, y, ‘title–>‘Plot of Sin(x)’)

 (b) plot(x, y, ‘Plot of Sin(x)’)

 (c) plot(x, y), title(‘Plot of Sin(x)’)

 (d) plot(x, y), Title(‘Plot of Sin(x)’)

 30. To plot a curve as a red dotted line, the correct command is:

 (a) plot(x, y, ‘r’, ‘:’)

 (b) plot(x, y, ‘r:’)

 (c) plot(x, y, ‘r.’)
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 31. To create a symbolic function f(t) = sin(t) the best command to use is:

 (a) syms t; f = sin(t);

 (b) syms t; f = sin(‘t’);

 (c) syms t; f = ‘sin(t)’;

 (d) a or c

 32. To plot a symbolic function f you call:

 (a) quickplot(  f  )

 (b) symplot(  f  )

 (c) ezplot(  f  )

 (d) plot(  f, ‘symbolic’)

 33. You want to use ezplot to generate a graph of a function f and its second 
derivative on the same graph. The correct command is:

 (a) ezplot(  f, diff(  f, 2))

 (b) subplot(1, 2, 1); ezplot(  f  ) subplot(1, 2, 2); ezplot(diff(  f, 2))

 (c) ezplot(  f  ); hold on ezplot(diff(  f, 2))

 (d) ezplot(  f  ); hold; ezplot(diff(  f, 2));

 34. You want to use ezplot to generate a graph of a function f and its second 
derivative in side-by-side plots. The correct command is:

 (a) subplot(1, 2, 1); ezplot(  f  ) subplot(1, 2, 2); ezplot(diff(  f, 2))

 (b) ezplot(subplot(1, f  ), subplot(2, diff(  f, 2))

 (c) ezplot(  f  ); hold on ezplot(diff(  f, 2))

 35. You have created a symbolic function f. To display its third derivative, you 
can write:

 (a)  f’’’’

 (b)  f’’’’ or diff(  f, 3)

 (c) derivative(  f, 3)

 (d) diff(  f, 3)

 36. The polyfit(x, y, n) function returns

 (a) A symbolic polynomial function that fits to a set of data passed as 
an array.

 (b) The coefficients of a fitting polynomial of degree n in order of 
decreasing powers.
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 (c) The coefficients of a fitting polynomial of degree n in order of 
increasing powers.

 (d) An array of data points which evaluate the fitted polynomial at the 
points specified by the array x.

 37. The subplot command

 (a) Allows you to generate several plots contained in the same figure.

 (b) Allows you to plot multiple curves on the same graph.

 (c) MATLAB does not have a subplot command.

 38. Calling subplot(m, n, p)

 (a) Divides a figure into an array of plots with m rows and n columns, 
putting the current plot at pane p.

 (b) Plots curve n against m in pane p.

 (c) Plots curve p at location (row, column) = (m, n)

 (d) MATLAB does not have a subplot command.

 39. When writing MATLAB code, to indicate the logical possibility of a NOT 
EQUAL b in an If statement you write:

 (a) a != b

 (b) a.NE.b

 (c) a <> b

 (d) a ~= b

 40. The OR operator in MATLAB code is represented by

 (a) The .OR. keyword

 (b) Typing & between variables

 (c) Typing ~ between variables

 (d) The “pipe” character |

 41. If A is a column vector, we can create the transpose or row vector B by 
writing:

 (a) B = transpose(A)

 (b) B = A’

 (c) B = t(A)

 (d) B = trans(A)
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 42. Suppose that x = 7 and y = –3. The statement x ~= y in MATLAB will 
generate:

 (a) ans = 1

 (b) ans = 0

 (c) ans  = –1

 (d) An error

 43. To enter the elements 1 –2 3 7 in a column vector, we type:

 (a) [1: –2:3:7]

 (b) [1, –2,3,7]

 (c) [ 1; –2; 3; 7]

 (d) [1 –2 3 7]

 44. To compute the square of a vector f of data, write:

 (a) sqr(  f  )

 (b) f. ^ 2

 (c) f ^ 2

 (d) square(  f  )

 45. To generate the fourth order Taylor expansion of a function f about the 
origin, use:

 (a) Taylor(  f, 4)

 (b) taylor(  f, 4)

 (c) taylor(  f  ), terms(‘4’)

 (d) taylor, f, 4

 46. The command used to print a string of text s to the screen is:

 (a) disp(s)

 (b) display(s)

 (c) display, s

 (d) Disp(s)

 47. A function is defined as f = a * x ^ 2 – 2. The command solve(  f, a) yields:

 (a) 2/a

 (b) 2/x

 (c) –2/x

 (d) An error: rhs must be specified.



Final Exam 297

 48. The MATLAB ode23 and ode45 solvers:

 (a) Are based on the Runge-Kutta method

 (b) Are based on the Euler method

 (c) Use the method of Lagrange multipliers

 (d) Are relaxation based.

 49. A function of time is given by y = y(t) and it satisfies a differential equation. 
Using ode23 to find the solution generates:

 (a) An array of the form [t y].

 (b) The symbolic solution y = y(t).

 (c) An error, MATLAB does not have an ode23 solver.

 (d) An array of the form [y t].

 50. The average of the elements contained in a vector v is obtained by typing:

 (a) Ave(v)

 (b) ave(v)

 (c) mean(v)

 (d) average(v)

 51. The pinv command

 (a) Is the proper inverse of a matrix

 (b) Generates the pseudo inverse of a matrix

 (c) Can only be called with symbolic data.

 52. Use MATLAB to find 

d

dt
e tt

10

10
0 1 2( cos ).−

 53. A variable called y has one row and 11 columns. If we type size(y) 
MATLAB returns:

 (a) 11

 (b) 1 11

 (c) 11 1

 (d) (1, 11)
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 54. To implement a for loop which ranges over 1 ≤ x ≤ 5 in increments of 0.5 
the best command is:

 (a) for i = 1, 5, 0.5

 (b) for i = 1:0.5:5

 (c) for loop i = 1, 5, 0.5

 (d) loop i = 1:0.5:5 do

 55. A function y = e−2x is defined numerically for some data range x. It can be 
entered using:

 (a) y = exp(–x) * exp(–x)

 (b) y = sqr(exp(–x))

 (c) y = exp(–x). * exp(–x)

 (d) y = sqrt(exp(–x))

 56. To find the largest value in a column vector x, type:

 (a) max(x)

 (b) maximum(x)

 (c) largest(x)

 57. The labels used by MATLAB on an x–y plot are specified with:

 (a) The labels command.

 (b) The xlabel and ylabel command.

 (c) The label command

 (d) The text command

 58. If we make the call y = polyval(n, x), then polyval returns:

 (a) There is no polyval command. 

 (b) A polynomial of degree n evaluated at point x.

 (c) The coefficients of a degree n polynomial.

 59. To specify the domain and range used in an x–y plot where a ≤ x ≤ b, 
c ≤ y ≤ d

 (a) axis([a b c d ])

 (b) axis(a b c d )

 (c) axis([a, b, c, d ])

 (d) axis a, b, c, d



Final Exam 299

 60. To plot a log-log plot, the correct command is:

 (a) plot(x, y, ‘log-log’)

 (b) loglog(x, y)

 (c) log(x, y)

 (d) logplot(x, y)

In problems 61–70, use MATLAB to calculate the following integrals.

 61. 
dx

x x1 2+∫
 62. (sin )x x dx2 2∫

 63. e x dxx5 4∫

 64. 
cos(ln( ))x

x
dx∫

 65. ln x dx2∫  ln x dx2∫

 66. x dx3

0

2

∫

 67. xe dxx−
∞

∫ 2

0

 68. xe dxx−
−∞

∞

∫ 2

 69. sinh( )x dx
b

0∫

 70. sin sint t dt2

2

3
4

π

π

∫
 71. Find the area enclosed between the two curves y = x2 and y = e−x for 

0 ≤ x ≤ 1.

 72. Find the area between y = x2 and y = −3/2x for 0 ≤ x ≤ 2.

 73. Use MATLAB to compute

x e zdxdydzxy2 2

0

2

1

1

0

1
−

− ∫∫∫

 74. Use MATLAB to integrate f(r, q, f) = r sin 2q cos f over the volume of a 
sphere of radius 2.
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 75. When solving a differential equation using MATLAB, the dsolve command 
expects the user to indicate a second derivative of y = f(x) by typing:

 (a) y’’

 (b) diff(y, 2)

 (c) D ^ 2y

 (d) D2y

 (e) D(Dy)

 76. To find a solution of

dy

dt
y+ =2 0

  The best syntax to use in MATLAB is:

 (a) diff(‘y’ + 2 * y = 0’)

 (b) dsolve(‘Dy + 2 * y’)

 (c) dsolve(‘Dy + 2 * y = 0’)

 (d) diff(Dy + 2y)

In problems 77–81, fi nd a symbolic solution of the given differential equation 
using MATLAB.

 77. 
dy

dt
y+ =2 0

 78. 
dy

dt
y+ = −2 1

 79. 
d y

dx
y

2

2
4 2 0+ − =

 80. 
d y

dx
y

3

3
0+ =

 81. 
d f

dt
f t

2

2
2 4 3+ = cos

In problems 82–90, fi nd the solution to the IVP and BVP indicated. Then plot the 
solution.

 82. 
dy

dt
y y− = =3 0 0 1, ( ) .

 83. 
dy

dt
y y− = = −3 2 0 1, ( ) .
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 84. 
dy

dt
y t y+ = =cos , ( )0 2.

 85. 
d y

dt
y y y

2

2
3 1 0 0 0 0 1− + = = ′ =, ( ) , ( ) .

 86. 
d y

dt
y y y

2

2
0 1 0 2 1+ = = ′ = −, ( ) , ( ) .

 87. 
d y

dt
y y y

2

2
4 0 0 1 0 1+ + = = ′ =, ( ) , ( ) .

 88. 
d y

dt
y A y y

2

2
4 0 1 0 1+ + = = ′ =, ( ) , ( ) . 

 89. 
d y

dt
y e y yt

2

2
4 2 0 1 0 0+ + = = ′ =− , ( ) , ( ) .

 90. 
d y

dt
y t y y

2

2
4 5 0 0 0 1+ + = = ′ =sin( ), ( ) , ( ) .

 91. Use MATLAB to solve the system of equations:

dx

dt
x y

dy

dt
x y

= −

= +

2

2

 92. Solve the same set of equations if x(0) = 0, y(0) = 1.

 93. Find the inverse of the matrix:

A = ⎛
⎝⎜

⎞
⎠⎟

1 2
2 1

 94. By calculating the matrix inverse of the coefficient matrix, solve the 
system:

x + 2y = 4
3x − 4y = 7

 95. Find the rank of the matrix:

B =
−

−
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 2 4
3 2 5
1 2 8
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 96. Find the inverse of the matrix in the previous problem.

 97. Find the LU decomposition of the matrix B in problem 95.

 98. Find the eigenvalues of the matrix B in problem 95.

 99. Numerically integrate the function f with data points f = [1, 2, 5, 11, 8]; 
where 0 ≤ t ≤ 5.

 100. Numerically integrate cos(x2) over 0 ≤ x ≤ 1.



Answers to Quiz and 

Exam Questions

Chapter 1: The MATLAB Environment

 1. 3.9286

 2. 2.2 × 103

 3. 15.5885

 4. False

 5. 150.7964 cubic centimeters

 6. 1170/1351

 7. % File to calculate sin of numbers
x = [pi/4,pi/3,pi/2];
format rat
y = sin(x)

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 



 304 MATLAB Demystifi ed

Chapter 2: Vectors and Matrices

 1. > > x = [0:0.1:1];
>> y = tan(x);
>> plot(x,y),xlabel('x'),ylabel('tan(x)')

 2. >> z = sin(x);
>> plot(x,y,x,z),xlabel('x'),ylabel('y')

 3. x = [–pi: 0.2: pi], x = linspace(–pi, pi), x = linspace(–pi, pi, 50)

 4. [x, y] = meshgrid(–3:0.1:2, –5:0.1:5). [x, y] = meshgrid(–5:0.2:5)

 5. >> t = [0: pi/40:10*pi]
>> plot3(exp(–t).*cos(t), exp(–t).*sin(t),t), grid on

Chapter 3: Plotting and Graphics

 1. 7.94

 2. >> A = [–1+i 7*i 3 –2–2*i];
      >> sqrt(dot(A,A))

      ans =   8.246

 3. A = [1; 2; 3]; B = [1 2 3] or B = [1, 2, 3]

 4. [ 4; 10 ; 18]

 5. eye(5)

 6. Array product = 

16 7 22
6 30 4

0 4 16
− −

−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,  matrix product = 

31 72 66
5 34 30
18 4 8− − −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 7. Enter the following commands:

  >> A = [1 2 3; 4 5 6; 7 8 9]

  A =

       1     2     3
       4     5     6
       7     8     9

  >> B = A([3,3,2],:)

  B =

       7     8     9
       7     8     9
       4     5     6
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 8. ans =

     –1.2424
      2.3939
      2.8182

  det(A) = –198

 9. det(A) = –30

  >> inv(A)*b

  ans =

      0.7333
      0.1667
      0.2000

 10. x =

      9.4216
     –0.8039
     –0.9118

Chapter 4: Statistics and an Introduction 
to Programming in MATLAB

 1. mean = 156.9677 pounds, median = 155 pounds, standard deviation = 
12.2651 pounds.

 2. The probability a student weighs 150 pounds is 0.4615.

 3. Approximately 0.07.

 4. The code is:

  function cylinder_volume
  %ask the user for radius
  r = input('Enter Radius')
  %get the height
  h = input('Enter height')
  vol = pi*r^2*h;
  disp('Volume is:')
  disp(vol)
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 5. x = input('enter x')
      n = input('enter highest power')
      i = 0
      sum = 0;
      while i < = n
        sum = sum + x^i;
        i = i 1;
      end

 6. for r = 1:n
         sum = sum + 1/x^r
       end

Chapter 5: Solving Algebraic Equations and Other Symbolic Tools

 1. –14.6882

 2. 
− ±1 22

3

 3. 
− ± +1 5 4

2
π

 4. x = 5/2, ezplot(‘sqrt(2 * x – 4) –1’, [2, 4, 0, 1])

 5. The roots are 1.1162, –0.3081 + 1.6102i, and –0.3081 – 1.6102i.

 6. x = 1, y = −3, z = 2

 7. One real root, x = –0.7035.

 8. –1

 9. x + 1/3 * x ^ 3 + 2/15 * x ^ 5 + 17/315 * x ^ 7 + 62/2835 * x ^ 9

 10. 1 – 1/8 * x ^ 2 + 5/192 * x ^ 4 – 113/23040 * x ^ 6 + 241/258048 * x ^ 8

Chapter 6: Basic Symbolic Calculus and Differential Equations

 1. 4

 2. The limit does not exist. Calculate the left- and right-hand limits that are –1 
and + 1.

 3. The asymptotes are at 0, 3.

 4. 0

 5. (a) –6/(3 * x ^ 2 + 1) ^ 2 * x, 72/(3 * x ^ 2 + 1) ^ 3 * x ^ 2 
   – 6/(3 * x ^ 2 + 1) ^ 2

 (b) x = 0
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 (c) f"(0) = −6

 (d) x = 0 is a local max since f"(0) < 0.

 6. diff(y, 2) – 11 * y = –24 * sin(t) + 36 * cos(t) ≠ −4 cos 6t

 7. 4 + exp(–2 * t) * C1

 8. –2/3 * exp(–t) + 1/6 * exp(2 * t) + 1/2 – t

 9. x = 4 * cos(t), p = –2 * cos(t) – 2 * sin(t) + 2 * exp(–t).

 10. x = exp(–t) * (1 + t), p = – 2 * exp(–t) – exp(–t) * t + 2

Chapter 7: Numerical Solution of ODE’s

 1. 0

 2. x
1
 = cos t + sin t, x

2
 = −sin t + cos t

 3. A plot of the solution is shown in Figure 7-1.

 4. 12 points and 41 points.

 5. The solution is plotted in Figure 7-2.

 6. The solution is shown in Figure 7-3.

 7. Runge-Kutta

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1.2

1

1.4

1.6

1.8

2

Figure 7-1 Solution to the system in Chapter 7, quiz problem 3
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Figure 7-2 Solution for Chapter 7, quiz problem 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7-3 Solution to Chapter 7, quiz problem 6
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 8. Solution is shown in Figure 7-4.

 9. The solution is shown in Figure 7-5.

 10. The plot is shown in Figure 7-6.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7-4 Plot of the solution of 
dy

dt t
t y=

−
− < < =

2

1
1 1 0 1

2
, , ( )

0 1 2 3 4 5 6 7 8 9 10
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
×105

Figure 7-5 Solution of y" − 2y' + y = exp(−t), y(0) = 2, y'(0) = 0
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Chapter 8: Integration

 1. 1/a ^ 2 * (–a * x * exp(–a * x) – exp(–a * x))

 2. log(1/2 * b + x + (x ^ 2 + b * x + c) ^ (1/2))

 3. 1/2 * i * x ^ 2 – x * log(1 + exp(2 * i * x)) 
+ 1/2 * i * polylog(2, –exp(2 * i * x))

 4. 1/2 * y – 1/4 * sin(2 * x * y)/x

 5. 3/10

 6. 0.9425

 7. V = int(int(int(r ^ 2 * sin(theta), r, 0, a), theta, 0, pi), phi, 0, 2 * pi), 
>> subs(V, a, 2) = 33.5103 cubic meters.

 8. trapz = –0.1365, relative error 0.34%.

 9. The relative error is 0.18629097599734, virtually unchanged.

 10. Quadrature integration returns 1.2459.

–3 –2.5 –2 –1.5 –1 –0.5 0 0.5

×105

–3.5

–3

–2.5

–2

–1.5

–1

–0.5

0
×105

Figure 7-6 Phase portrait for y" − 2y' + y = exp(−t), y(0) = 2, y'(0) = 0
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Chapter 9: Transforms

 1. 1/(s + 3) ^ 2

 2. 40/(s ^ 2 + 25) – 1/4 * (s + 1) / (1/4 * (s + 1) ^ 2 + 1)

 3. 1 – 2 * dirac(t) + 5 * sin(3 * t) (1 is the Heaviside function)

 4. cosh(7 * t) – sinh(3 * t)

 5. 4 * exp(–1/2 * t) * sinh(1/2 * t)

 6. –2 * pi * dirac(2, w)

 7. i * pi * (dirac(1, w – 1) + dirac(1, w + 1))

 8. exp(–x) * heaviside(x)

 9. [7.0000, 3.0000 – 2.0000i, –5.0000, 3.0000 + 2.0000i]

 10. 447.7874 at about 40 Hz.

Chapter 10: Curve Fitting

 1. m = 11.8088, b = 191.5350.

 2. age_range = [15:1:37];

 3. >> y = m * age_range + b;

 4. 392.2850 pounds

 5. 479.3750 pounds

 6. 479.3750 pounds

 7. S = 8.3122e + 004, A = 1.1184e + 004.

 8. r2 = 0.8655.

 9. y = −0.8870x2 + 58.0577x − 351.6032

 10. 0.9896

Chapter 11: Working with Special Functions

 1. 3.5569e + 014

 2. 0.494
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 3. >> x = (1:0.1:2)'; y = gamma(x); A = [x y]

  A =

      1.0000    1.0000
      1.1000    0.9514
      1.2000    0.9182
      1.3000    0.8975
      1.4000    0.8873
      1.5000    0.8862
      1.6000    0.8935
      1.7000    0.9086
      1.8000    0.9314
      1.9000    0.9618
      2.0000    1.0000

 4. 0

 5. vol = @ (n, r) r ^ n * pi ^ (n/2)/gamma(1 + n/2), 1.2791e + 003

 6. 1.9175e–009

 7. The plot is shown in Figure 11-7.

 8. 0.2995

Figure 11-7 A plot of P x3
2 ( )
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 9. The table is:

  A =

           0    0.3550
      0.5000    0.2317
      1.0000    0.1353
      1.5000    0.0717
      2.0000    0.0349
      2.5000    0.0157
      3.0000    0.0066
      3.5000    0.0026
      4.0000    0.0010
      4.5000    0.0003
      5.0000    0.0001

 10. 
1

3 2 3
0 3550

2 3/ ( / )
.

Γ
=

Final Exam

 1. 187.5

 2. 2150

 3. 16.35

 4. 2 * x * cos(pi * x) – x ^ 2 * sin(pi * x) * pi

 5. 2/(x ^ 2 – 9) – 4 * x ^ 2/(x ^ 2 – 9) ^ 2

 6. 2 * cos(x) – x * sin(x)

 7. Use the expand command to get 1 + 4 * x + 6 * x ^ 2 + 4 * x ^ 3 + x ^ 4.

 8. x = 0, x = 1

 9. 1

 10. Limit does not exist.

 11. infi nity

 12. 0

 13. 0.0107

 14. –7.99, –21.11

 15. 470547/4 * (x ^ (1/2) + 2) ^ 96/x ^ (3/2) – 14553/4 * (x ^ (1/2) + 2) ^ 97/x 

^ 2 + 297/8 * (x ^ (1/2) + 2) ^ 98/x ^ (5/2)
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 16. solve

 17. c

 18. b

 19. 
5 11

2
± i

 20. (x – 4) * (x ^ 2 + 4 * x + 16)

 21. c

 22. 1

 23. 9

 24. 4.333

 25. pretty( f )

 26. d

 27. a

 28. b

 29. c

 30. b

 31. d

 32. c

 33. c

 34. a

 35. d

 36. b

 37. a

 38. a

 39. d

 40. d

 41. b

 42. a

 43. c

 44. b

 45. b

 46. a
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 47. b

 48. a

 49. a

 50. c

 51. b

 52.  The tenth derivative is:

  –9101406417999/10000000000 * exp(–1/10 * t) * cos(2 * t) + 
24836027201/50000000 * exp(–1/10 * t) * sin(2 * t)

 53. b

 54. b

 55. c

 56. a

 57. b

 58. b

 59. a

 60. b

 61. –atanh(1/(1 + x ^ 2) ^ (1/2))

 62. –cos(x ^ 2)

 63. 1/5 * exp(x ^ 5)

 64. sin(log(x))

 65. log(x ^ 2) * x – 2 * x

 66. 4

 67. ¼

 68. –inf

 69. cosh(b)–1

 70. 64/63

 71. –2/3 + exp(–1)

 72. 17/3

 73. 5/16 * exp(–4) + 3/16 * exp(4)

 74. 0

 75. d

 76. c
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 77. C1 * exp(–2 * t)

 78. –1/2 + C1 * exp(–2 * t)

 79. sin(2 * t) * C2 + cos(2 * t) * C1 + 1/2

 80. C1 * exp(–t) + C2 * exp(1/2 * t) * sin(1/2 * 3 ^ (1/2) * t) + 
C3 * exp(1/2 * t) * cos(1/2 * 3 ^ (1/2) * t)

 81. sin(2 ^ (1/2) * t) * C2 + cos(2 ^ (1/2) * t) * C1 – 4/7 * cos(3 * t)

 82. exp(t)

 83. –2 + exp(t)

 84. 1/2 * cos(t) + 1/2 * sin(t) + 1/2 * exp(–t)

 85. exp(3 ^ (1/2) * t) * (–1/6 + 1/6 * 3 ^ (1/2)) + exp(–3 ^ (1/2) * t) * 
(–1/6 – 1/6 * 3 ^ (1/2)) + 1/3

 86. –sin(t) – sin(1) * cos(1)/(sin(1) ^ 2 – 1) * cos(t)

 87. sin(t) + 5 * cos(t) – 4

 88. sin(t) + (5 – A) * cos(t) – 4 + A

 89. 4/5 * sin(t) + 23/5 * cos(t) – 4 * exp(–2 * t) * exp(2 * t) + 2/5 * exp(–2 * t)

 90. 4/5 * sin(t) + 23/5 * cos(t) – 4 * exp(–2 * t) * exp(2 * t) + 2/5 * exp(–2 * t)

 91. The solutions are:

                x =  exp(t) * (C1 * cos(2 * t) – C2 * sin(2 * t))

                y = exp(t) * (C1 * sin(2 * t) + C2 * cos(2 * t))

 92. x = –exp(t) * sin(2 * t), y = exp(t) * cos(2 * t)

 93. The inverse is:

A− =
−

−
⎛
⎝⎜

⎞
⎠⎟

1 1 3 2 3
2 3 1 3

/ /
/ /

 94. x = 3, y = ½

 95. 3

 96. The inverse is:

              0.2600    0.2400    0.0200
             –0.2900    0.0400    0.1700
              0.0400   –0.0400    0.0800
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 97. The LU decomposition is:

  L =

      0.3333    1.0000         0
      1.0000         0         0
      0.3333   –0.5000    1.0000

  U =

      3.0000    2.0000   –5.0000
           0   –2.6667    5.6667
           0         0   12.5000

 98. The eigenvalues are:

    1.6177 + 3.2034i
    1.6177 – 3.2034i
    7.7647  

 99. 31

 100. 0.9045
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AA
abs command, 24
Absolute frequency data, 111
Absolute value (vectors), 24
Adding:

matrices, 27
vectors, 17

Airy functions, 284–286
Algebraic equations, 

121–123, 220
differential equations and, 

220, 227
solving, 220

ans (query), 3
Appending:

column vectors, 18
row vectors, 18
vectors, 18

Archimedes spiral, 74
Area, data, 113
Arithmetic:

in Command Window, 3–5
output of, 4

Array(s):
creating, 13
defi ned, 13
division for, 31
gamma functions and, 263
left division for, 31
of probability, 106
right division for, 31
scalar, 30

squaring, 31, 66
vector, 30
of zeros, 180, 181

Array multiplication:
matrix multiplication vs., 

28–30
for vector dot product, 21–22

Arraywise power notation, 65
Assignment(s):

ellipses for, 8
long, 8
multiple, 7
suppressing, 6

Assignment operator (equal sign), 
5–9

interpretations of, 5–6
for naming ranges, 50
variables and, 6–8

Asymptotes:
limits and, 151–153
roots and, 152

Augmented matrix, 37–38
concatenation for, 38–39
rank of, 37–38

Average, computing, 107, 108
Axis auto, 58
Axis commands:

limits on, 58
for plotting, 57–58
for range, 64, 168

Axis equal, 57
Axis scales, 64–67
Axis square, 57

BB
Bar charts, 98

generating, 98–99
horizontal, 100, 101
three dimensional, 100, 101

bar command, 80–82, 98
barh command, 100
Base ten logarithms, 10, 138–139
Basic algebraic equations, 

121–123
Basic arithmetic (see Arithmetic)
Basic operations (see Operations)
Basic statistics, 103–106
Bessel functions, 266–273

built-in, 269
decaying oscillators and, 

271
derivative of, 267–268
of fi rst kind, 266, 267
Hankel function and, 269, 

270, 272
of second kind, 266
symbolic computation for, 

267–268
Bessel’s differential equation, 266
Beta functions, 274–276
“Binning,” 111, 112
Binwidth, 111
Built-in Bessel functions, 269

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use. 
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CC
Caret (^), 123
Charts:

bar, 98–101
three dimensional, 100, 101

clear command, 7–8
Coeffi cient(s), 242–243
Coeffi cient matrix:

determinant of, 34–35
multiplying, 42

collect command, 137
Collecting equations, 135–138
Colon (:), 25–26
Colors, plot, 60, 62–64

for line types, 60, 171
specifi ers for, 63
surface height and, 92
in three dimensional plots, 

92, 93
Column(s):

linearly independent, 35
mean of, 103–104

Column vectors, 15
appending, 18
basic operations on, 16
creating, 15, 16
as matrix, 27
row vectors transposing to, 

16, 17
scalar multiplication of, 16
scalar variables for, 16

Command(s):
abs, 24
axis, 57–58, 64, 168
bar, 80–82, 98, 100
clear, 7–8
collect, 137
conj, 23
diff, 153
disp, 107–108, 117
dsolve, 161, 165, 169, 228
expand, 136
ezplot, 125–126, 128, 133
fi nd, 255
format, 8, 9, 117
hist, 100
ifourier, 235
int, 197–201
isequal, 148
legend, 61
length, 20–21

limit, 145
magic, 44
max, 21
mesh, 85, 90
min, 21
“pretty,” 200
quad, 216
simplify, 137–138
solve, 121, 123–124, 134
stem, 83
subplot, 67
subs, 156, 200
sum, 108
surf, 91–93
syms, 146, 199
title, 54
who and whos, 7

Command Window, 3–5
arithmetic in, 3–5
basic arithmetic in, 3–5
functions in, 106

Comments, 13, 110
Complex conjugate transpose, 

22–23
Complex elements, matrices 

with, 28
Complex numbers, 11–12, 22, 25
Component multiplication, 29
Concatenation, for augmented 

matrix, 38–39
conj command, 23
Conjugate computation, 28
Constants, 122
Contour plots, 85–90
Cosine function, hyperbolic, 

62, 221
Cross product, 25
Cubic equations, 130
Curve fi tting, 241–258

to exponential functions, 
257–258

to linear functions, 241–257
Cylindrical coordinates, 208
Cylindrical plots, 3D, 94

DD
Damped oscillator equations, 171
Data:

absolute frequency, 111
area of, 113
“binning,” 111, 112
creating, 13

discrete, 79–85
For Loops for, 111–112
raw, 111–112
smoothed, 244
storing, 13
weighted, 104

Decaying oscillators, 173
Bessel functions and, 271
exponentially, 185

Decompositions:
LU, 44–46
of matrices, 45–47
QR, 44
SVD, 44

Defi nite integration, 201–208
Derivatives:

of Bessel functions, 267–268
critical point of, 157–158
dsolve command and, 228
Laplace transform for, 

227–228
symbolic calculus for, 

153–161
Desktop, 2, 3
Determinants:

of coeffi cient matrix, 34–35
defi ned, 34
for inverse, 39, 40
for linear algebra problems, 

34–35
of matrices, 34–35
nonzero, 35

diff command, 153
Differences, squares of, 249
Differential equations:

algebraic equations and, 
220, 227

Bessel’s, 266
dsolve command for, 161
Laplace transform for, 

227–231
ordinary, 161–169
phase plane plots and, 

169–177
symbolic calculus for, 

161–177
systems of, 169–177

Dirac delta function (unit impulse 
function), 223

Directory selection, 3
Discrete data, plotting, 79–85
disp command, 107–108, 117
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Distribution of multiplication, 137
Division:

for arrays, 31
of polynomials, 137–138
precedence over, 4
(See also specifi c types, 

e.g.: Left division)
“Dot” notations, 134
Dot product:

array multiplication for, 
21–22

vectors, 21, 24–25
Dotted line type, 60
dsolve command:

derivatives and, 228
for differential equations, 

161
independent variable in, 

165
for phase plane plots, 169

EE
Editor:

opening, 12, 106–107
for script fi les, 107

Elimination, Gauss-Jordan, 44–45
Ellipses, 8
Equal sign (assignment operator), 

5–9
Equal values, 107, 108, 148
Equality testing, 107
Equations:

algebraic, 121–123, 
220, 227

basic algebraic, 121–123
collecting, 135–138
cubic, 130
damped oscillator, 171
differential, 220, 227–231
expanding, 135–138
exponential functions for, 

139–141
fi rst order, 179–180
fourth order, 131–132
higher order, 130–134
log functions for, 138–139
quadratic, 123–124
readability of, 4
second order, 188–195
solving, 121–141
spaces in, 4

symbolic, 125–130
systems of, 134–135

Error(s):
ezplot, 126–127
with inverses, 41
plotting, 50, 51
relative, 180, 182, 184, 

210–214
root mean square, 

248–250, 255
rounding, 41
squaring, 20
for testing, 107–108
typographical, 12, 55
vertcat, 80

Error function, 212
expand command, 136
Expand function, 136
Expanding equations, 135–138
Exponential functions:

curve fi tting to, 257–258
for equations, 139–141
referencing, 10
for solving equations, 

139–141
Exponential integral, 276–277
Exponential notations, 9
Exponentiation:

caret for, 123
precedence of, 4

Exponents, variables as, 139
Expressions:

numerical, 3
saving, 12

ezplot command, 125–128, 133

FF
Faceted shading, 94, 95
Factoring:

gamma function for, 260
symbolically, 137

Fast Fourier transforms, 236–239
Fft functions, 236, 238
Files, 12–13
fi nd command, 255
First order equations, 179–180
Fitting, curve (see Curve fi tting)
For Loops, 110

multiple curves with, 
166–167

for raw data, 111–112

Forcing function, 184–187
format bank command, 8, 117
format command, 8
format long command, 8, 9
format rat command, 9
format short command, 8, 9
Fourier transforms, 219, 232–239

fast, 236–239
features of, 232–234
of a Gaussian, 232
inverse, 235–236

Fourth order equations, 131–132
Fplot function, 54
Frequency response, 76
Function(s):

Airy, 284–286
Bessel, 266–273
Beta, 274–276
built-in, 269
for Command Window, 106
cosine, 62, 221
Dirac delta function, 223
for equations, 138–141
Error function, 212
Expand function, 136
exponential, 10, 139–141, 

257–258
fft, 236, 238
forcing, 184–187
fplot, 54
gamma, 259–266
Hankel, 269, 270, 272
Heaviside, 228, 230
hyperbolic cosine, 62, 221
hyperbolic sine, 62
incomplete gamma, 

265–266
input, 116
Lambert’s w function, 141
Legendre, 281–284
linear, 241–257
log, 138–139
mean, 103, 112
mfun, 277, 279
multiple, 59
multiple function plots, 

58–60
Neumann, 266
period for, 55, 69
plotting, 49–50
polyfi t, 241–243, 246, 248
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Function(s): (continued)
quotes for, 199
Riemann zeta, 279–280
rref, 44
semicolons and, 50, 51, 110
series representations of, 

142–143
sin, 65, 142
sinc, 205–206
sinc-squared, 205–207
sine, 62
special, 259–286
symbolic, 156–157
Taylor, 142
trapz, 209
trig, 10–11, 136, 198
unit impulse function, 223
variables and, 107
w function, 141
xlabel, 52
ylabel, 52
zeta, 279–280
(See also specifi c types, 

e.g.: Log functions)
Function fi les, 12
Function string, fplot, 54
Function writing, 106–110

GG
Gamma functions, 259–266

arrays and, 263
defi ned, 259
for factoring, 260
Hankel, 269, 270, 272
Heaviside, 228
incomplete, 265–266
in MATLAB, 260–265
plotting, 260–262
quantities related to, 

265–266
Gaussian distribution, 212

Fourier transforms of, 232
integral estimation for, 

211–214
standard deviation in, 115, 

212, 213
Gauss-Jordan elimination, 44–45
Global variables, 185
Graphics (see Plots and plotting)
Grid, for plots, 56
“Grid on,” 56

HH
Hankel function, 269, 270, 272
Harmonics, spherical, 263–265
Heaviside function, 228, 230
Higher order equations, 130–134
hist command, 100
Histograms, 98–103
Horizontal bar chart, 100, 101
Hyperbolic cosine function, 62, 

221
Hyperbolic sine function, 62

II
Identity matrix, 31
If–else statements, 107–109
ifourier command, 235
Ilaplace, 222–224
Incomplete gamma function, 

265–266
Increments, for plotting, 50–52
Infi nity, 203
Input function, 116
int command, 197–201
Integers:

in Bessel function of the 
fi rst kind, 267

negative, 267
positive, 267

Integrals:
Beta function for, 274
evaluating, 274–276
exponential, 276–277
special, 276–284

Integration, 197–218
constant of, 199
in cylindrical coordinates, 

208
defi nite, 201–208
estimation of, 211–214
Gaussian distribution, 

211–214
int command, 197–201
Lobatto, 216
multidimensional, 208–209
numerical, 209–216
quadrature, 216–217
in spherical coordinates, 

208

symbolic expressions, 
197–209

trig functions for, 198
Integration by parts, 260
Interpolated shading, 94, 95
Inverse(s):

determinants for, 39, 40
errors with, 41
existence of, 39
of matrices, 39–42
verifying, 40–41

Inverse Fourier transforms, 
235–236

Inverse Laplace transforms, 
222–227

isequal command, 148

LL
Labels, for plots, 54, 55
Lambert’s w function, 141
Laplace transforms, 76

advantage of, 220
for derivatives, 227–228
for differential equations, 

227–231
of function of time, 

219–220
with Heaviside function, 

228, 230
of hyperbolic cosine 

function, 221
inverse, 222–227
symbolic calculation 

for, 220
Left division:

for arrays, 31
defi ned, 4
for determinants in 

matrices, 35
precedence over, 4

Left-handed limits, 149–150
Left-sided limits, 149–150
Legend(s), 60–61
legend command, 61
Legendre functions, 281–284
length command, 20–21
Limit(s), 145–153

asymptotes and, 151–153
on axis commands, 58
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left-sided, 149–150
right-sided, 149, 151
symbolic calculus for, 

145–153
verifying, 147–148

limit command, 145
Line numbers, 107
Line types, 59, 60, 84

colors for, 60, 171
dotted, 60
solid, 59, 60

Linear algebra problems, 15–47
determinants for, 34–35
matrices for, 26–47
solving, 34–35
vectors for, 15–26

Linear functions, curve fi tting to, 
241–257

Linearly independent, 35
Linspace, 20, 71–73
Lobatto integration, 216
Log functions, 138–139
Log10 function, 138–139
Logarithmic plots, 75–79
Logarithms:

base ten, 10, 138–139
natural log, 10

Log-log plot, 75–78
Loops, For, 110
LU decompositions, 44–36

MM
.M fi les, 12, 13, 109
magic command, 44
Magic matrix, 44
Magnitude:

of row vectors, 22
of vectors, 21, 25

Markers, in plots, 84
.MAT fi les, 12
Mathematical defi nitions, 9–11
MATLAB (7.1), 2

desktop of, 2, 3
directory selection, 3
ending, 13
opening, 2, 12
options for, 2
prompt of, 3
saving, 13
in Windows, 2

Matrices, 26–47
adding, 27
augmented, 37–39
basic operations with, 

26–31
coeffi cient, 34–35, 42
column vectors as, 27
with complex elements, 28
conjugate computation 

and, 28
creating, 33, 263
decompositions of, 45–47
defi ned, 26
determinants of, 34–35
identity matrix, 31
inverse of, 39–42
for linear algebra problems, 

26–47
magic, 44
multiplication of, 29–30
name of, 27
of one’s, 32
pseudoinverse of, 42–43
rank of, 35–39
reduced echelon, 44–45
referencing elements of, 

32––33
referencing name of, 27
row echelon form of, 44
singular, 39
square, 20, 34, 65
subtracting, 27
transpose of, 27–28
transpose operation for, 

27–28
types of, 31–32
of zeros, 32

Matrix (see Matrices)
Matrix multiplication, 28
max command, 21
Mean (columns), 103–104
Mean function, 103, 112
Median, 110–116
mesh command, 90
Mesh lines, 93
meshgrid command, 85
Mfun function, 277
min command, 21
Momentum, 171–177
Moore-Penrose pseudoinverse, 43

Multidimensional integration, 
208–209

Multiple function plots, 58–60
Multiplication:

array, 21–22, 28, 1530
of coeffi cient matrix, 42
of column vectors, 16
component, 29
distribution of, 137
of matrices, 29–30
matrix, 28, 1530
precedence over, 4
scalar, 16
symbolically, 137
vector, 28, 105

NN
Names, variable, 3
NaN (“not a number”), 272
Natural log, 10
Negative integers, in Bessel 

function, 267
Neumann function, 266
Noise, modeling, 237–238
Nonzero determinants, 35
“Not a number” (NaN), 272
“Not equal” values, 107, 108
Numbers:

complex, 11–12, 22, 25
of panes, 68

Numerical expressions, value of, 3
Numerical integration, 209–216
Numerical solution of ODEs, 

179–196
fi rst order equations, 

179–180
with ODE23, 180–182, 184
with ODE45, 182–188
second order equations, 

188–195
Numerical values, 3, 128–130

OO
ODE(s) (see Ordinary differential 

equations)
ODE23, 180–184
ODE45, 182–190
Opening:

editor, 12, 106–107
MATLAB, 12
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Operations:
on column vectors, 16
with matrices, 26–31

Operator assignment, 5–9
Ordinary differential equations 

(ODEs), 161–169
ODE23, 180–184
ODE45, 182–190
symbolic, 161–177

Oscillators:
behavior of, 192
damped oscillator 

equations, 171
decaying, 173, 185, 271
exponentially decaying, 185

Output:
of basic arithmetic, 4
from solve command, 

123–124
Overlaying plots, 71–73

PP
Panes, numbering, 68
Parametric plots, 174
Parentheses, 4–5
Parts, integration by, 260
Period (.), 55, 69
Phase plane plots:

differential equations and, 
169–177

dsolve command for, 169
Pi (π), 9–10
Plots and plotting, 49–96

for Airy function, 285
axis commands for, 57–58
axis equal for, 57
axis scales for, 64–67
axis square for, 57
colors for, 60, 61–64
contour, 85–90
defi ned, 49
differential equations and, 

169–177
of discrete data, 79–85
errors and, 50, 51
of functions, 49–50
of gamma functions, 

260–262
graphical options for, 84
grids for, 56

increments for, 50–52
labels for, 54, 55
for Legendre functions, 

282–284
legends for, 60–61
line types for, 59, 60
linspace for, 20, 71–73
logarithmic, 75–79
log-log, 75–78
markers for, 84
multiple function, 58–60
for multiple functions, 59
of negative values, 262–263
options for, 84
overlaying, 71–73
parametric, 174
phase plane, 169–177
polar, 74–75
range specifi cations for, 50
shading for, 93–94
stem plots, 80, 83–84
subplots, 67–70
three dimensional, 90–95
title for, 54
two dimensional, 49–57
typos in, 55
with uniformly spaced 

elements, 20
Polar plots, 74–75
Polyfi t function, 241–243, 246, 

248
Polynomials:

coeffi cients for, 242–243
dividing, 137–138

Positive integers, in Bessel 
function, 267

Precedence, 4–5
“Pretty” command, 200
Probability, 105, 106
Programming, 106–110, 116–119

function writing, 106–110
with For Loops, 110
with switch statement, 

118–119
tips for, 116–119
with while statement, 

117–118
Prompt, MATLAB, 3
Pseudoinverse:

of matrices, 42–43
Moore-Penrose, 43

QQ
QR decompositions, 44
quad command, 216
quad1 command, 216
Quadratic equations, 123–124
Quadratic formula, 123
Quadrature integration, 216–217
Quantities, gamma functions and, 

265–266
Quotations, in functions, 199

RR
Range:

assignment operator and, 50
axis commands for, 64, 168
naming, 50
for plots, 50
variable name assignment 

to, 50
in vectors, 26

Rank:
of augmented matrix, 37–38
defi ned, 35
of matrices, 35–39

Readability, 4
Recursive type assignment, 6
Reduced echelon matrices, 44–45
Referencing elements:

of exponential functions, 10
of matrices, 32––33
of submatrices, 33
of vectors, 25–26

Relative errors, 180, 182, 184, 
210–214

Riemann zeta function, 279–280
Right division, 4

for arrays, 31
precedence over, 4

Right-handed limits, 149, 151
Right-sided limits, 149, 151
RMS error (see Root mean square 

error)
Rodrigue’s formula, 281
Root mean square (RMS) error, 

248–250, 255
Roots:

asymptotes and, 152
of fourth order equations, 

131–132
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numerical value of, 
128–130

(See also Square roots)
Rounding, 8, 41
Routines (see Function(s))
Row echelon form (matrix), 44
Row vectors, 15

appending, 18
column vectors transposing 

to, 16, 17
creating, 16
magnitude of, 22
transposing, 16–17

Rows, linearly independent, 35
Rref function, 44
Runge-Kutta method, 180, 182

SS
Saving, 12, 13

expressions, 12
.M fi les, 109

Scalar array, 30
Scalar multiplication, 16

of column vectors, 16
for referencing name of 

matrix, 27
Scalar variables, 16
Script fi les, 12, 107
Second order equations, 188–195
Semicolon (;), 50, 51, 110
Semilogx, 78
Semilogy, 78
Series representations of 

functions, symbolic, 142–143
Shading:

faceted, 94, 95
interpolated, 94, 95
plots and plotting, 93–94

simplify command, 137–138
Simpson’s rule, 216
Sinc function, 205–206
Sinc-squared function, 205–207
Sine function:

hyperbolic, 62
squaring, 65
Taylor series expansion, 

142
Singular matrices, 39
Smoothed data, 244

Solid line type, 59, 60
solve command, 121, 123

passing variables to, 124
results returned by, 123–124
for single variable, 124
for systems of 

equations, 134
Spaces (character), 4
Special functions, 259–286

airy functions, 284–286
Bessel functions, 266–273
Beta functions, 274–276
gamma functions, 259–266
Legendre functions, 

281–284
list of, 277–278
Riemann zeta function and, 

279
special integrals, 276–280
spherical harmonics, 

263–265
Special integrals, 276–281

exponential integral, 
276–277

list of, 277–278
Riemann zeta function and, 

279–280
Spherical coordinates, 208
Spherical harmonics, 263–265
Spirals, 74
Square matrices, 20, 34, 65
Square matrix, determinant of, 34
Square roots, 10
Squaring:

arrays, 31, 66
of differences, 249
errors, 20
sin function, 65
vectors, 20

Standard deviation, 110–116
calculating, 110–116
in Gaussian distribution, 

115, 212, 213
median and, 110–116

Starting MATLAB (see Opening, 
MATLAB)

Statements:
if–else, 108–109
switch, 118–119

while, 117–118
Statistics, 97–106, 110–116

basic, 103–106
histogram generation for, 

98–103
median, 110–116
standard deviation, 110–116

stem command, 83
Stem plot, 80, 83–84
Storage, data, 13
Submatrices, 33
Subplot(s), 67–70

characteristics of, 67–68
defi ned, 67

subplot command, 67
subs command, 156, 200
Subtraction:

of matrices, 27
of vectors, 17

sum command, 108
surf command, 91
surfc command, 91, 92
surfl  command, 93
SVD decompositions, 44
Switch statement, 118–119
Symbolic calculus, 125–130

for Bessel functions, 
267–268

derivatives, 153–161
differential equations, 

161–177
factoring, 137
integration and, 197–209
for Laplace transforms, 220
limits, 145–153
multiplication, 137
plotting, 125–130
quotes for, 199
with trig functions, 136
values in, 156–157

Symbolic expressions, 197–209
Symbolic functions, 156–157
Symbolic variables, 136, 146, 199
syms command, 146, 199
Systems:

of differential equations, 
169–177

of equations, 134–135
undetermined, 42
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TT
Taylor function, 142
Taylor series of expansion of a 

function, 142
Testing:

equality, 107
errors and, 107–108

Three dimensional bar charts, 
100, 101

Three dimensional plots, 90–95
colors in, 92, 93
contour plot, 88–90
cylindrical plot, 94
without mesh lines, 93

title command, 54
Titles, plot, 54
Transform(s), 219–239

Fourier, 219, 232–239
Laplace, 76, 219–231

Transform, Laplace, 76
Transpose operation:

in matrices, 27–28
for vectors, 28

Transposing:
complex conjugate, 22–23
matrices, 27–28
row vectors, 16–17

Trapezoidal method, 210
Trapz function, 209
Trig functions, 10–11

expand function for, 136
integrals to, 198
symbolically, 136

Two dimensional plots, 49–57
Typographical errors (typos), 

12, 55

UU
Undetermined systems, 42
Uniformly spaced elements:

plotting with, 20
vectors with, 18–20

Unit impulse function (Dirac delta 
function), 223

User interface, 2–3

VV
Values:

absolute, 24
assigning, 5
equal, 107, 108, 148
negative, 262–263
“not equal,” 107, 108
numerical, 3, 128–130
plotting, 262–263
of roots, 128–130
substituting, in symbolic 

functions, 156–157
symbolic, 156–157
of vectors, 24

Variables:
assignment operator and, 

6–8
clear command for, 7–8
defi ned, 3
displaying all, 7
as exponents, 139
functions and, 107
global, 185
names of, 3
recursive type assignment 

to, 6
scalar, 16
to solve command, 124
symbolic, 136, 146, 199
who for, 7
whos for, 7

Vector(s), 15–26
absolute value of, 24
adding, 17
appending, 18
characterizing, 20–24
column, 15–16, 18, 27
complex conjugate 

transpose of, 22–23
with complex numbers, 

22, 25
creating, 15–20
cross product of, 25
defi ned, 15
dot product of, 21, 24–25

from existing variables, 18
large elements in, 21
larger, 18
for linear algebra problems, 

15–26
magnitude of, 21, 25
multiplying, 28
range in, 26
referencing components 

of, 25–26
row, 15–18, 22
small elements in, 21
squaring, 20
subtracting, 17
transpose operation for, 28
with uniformly spaced 

elements, 18–20
Vector arrays, 30
Vector multiplication, 105
Verifying:

inverses, 40–41
limits, 147–148

Vertcat error, 80

WW
Weighted data, 104
While statement, 117–118
who command, 7
Whos command, 7
Windows (OS), 2

XX
Xend, 54
Xlabel function, 52
Xstart, 54

YY
Ylabel function, 52

ZZ
Zeros:

array of, 180, 181
matrices of, 32

Zeta function, Riemann, 279–280
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