Introduction to ASIC Design

Outline

- 1. The wonderful world of Silicon
- 2. Application Specific Integrated Circuits (ASICs)
 - Typical applications, types, decision making
- 3. ASIC Design Flow
- 4. Trends

The Wonderful World of Silicon

"Moores Law"

- About every eighteen months, the number of transistors on a CMOS silicon chip doubles and the clock speed doubles
 - Transistors/Chip increasing by 50% per year (by 4× in 3.5 years)
 - Gate Delay decreasing by 13% per year (by ½ in 5 years)
- This rate of improvement will continue until about 2018 at least.

Technology Drivers

- Decreasing lithographic feature size, e.g. measured by the transistor gate length:
 - 0.13 μm, 0.090 μm, 0.065 μm, ... 0.01 μm(?)
- Increasing wafer size:
 - 8 inch diameter..... 12 in.
- Increasing number of metal interconnect layers:
 - 6 8 9

Cost Scaling

- Cost per transistor scales down:
 - Approximately constant cost per wafer to manufacture:
 - About \$2,000 \$4,000 per wafer
 - Increasing IC yields for 'large' (> 1 sq. cm.chips): 60% 90%
- But cost to first chip scales up!
 - Design cost increases with transistor count
 - Mask cost increases with each new family

Semiconductor Roadmap

Projections for 'leading edge' ASIC/MPU: (www.itrs.net)

Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013
DRAM ½ Pitch (nm) (contacted)	80	70	65	57	50	45	40	36	32
MPU/ASIC Metal 1 (M1) ½ Pitch (nm) (f)	90	78	68	59	52	45	40	36	32
MPU Physical Gate Length (nm)	32	28	25	23	20	18	16	14	13
2.1 C									
ASIC									
ASIC usable Mtransistors/cm ² (auto layout)	225	283	357	449	566	714	899	1,133	1,427
ASIC max chip size at production (mm ²) (maximum lithographic field size)	858	858	858	858	858	858	858	858	858
ASIC maximum functions per chip at production (Mtransistors/chip) (fit in maximum lithographic field size)	1,928	2,430	3,061	3,857	4,859	6,122	7,713	9,718	12,244
Cost-performance MPU (microcents/transistor) (including on-chip SRAM) at introduction §§	44.0	31.1	22.0	15.6	11.0	7.8	5.5	3.9	2.8
		i	1	i	i	1	1	1	1
Chip Frequency (MHz)									
On-chip local clock [1]	5,204	6,783	9,285	10,972	12,369	15,079	17,658	20,065	22,980
Chip-to-board (off-chip) speed (high-performance, for peripheral buses)[2]	3,125	3,906	4,883	6,103	7,629	9,536	11,920	14,900	18,625
Maximum number wiring levels—maximum [3]	15	15	15	16	16	16	16	16	17
Maximum number wiring levels—minimum [3]	11	11	11	12	12	12	12	12	13

Table 1i High-Performance MPU and ASIC Product Generations and Chip Size Model—Near-term Years

SYNOPSYS°

Synopsys University Courseware 2008 Synopsys, Inc. Lecture - 1 Developed By: Paul D. Franzon

NC STATE UNIVERSITY

Other Scaling Trends

The impact of the wiring increases with each generation

ASICs vs. What?

Application Specific Integrated Circuit

- A chip designed to perform a particular operation as opposed to General Purpose integrated circuits
- An ASIC is generally NOT software programmable to perform a wide variety of different tasks

An ASIC will often have an embedded CPU to manage suitable tasks

An ASIC may be implemented as an FPGA (see later)

• Sometimes considered a separate category

ASICs vs. What? (contd.)

General Purpose Integrated Circuits:

Examples:

- Programmable microprocessors (e.g. Intel Pentium Series, Motorola HC-11)
 - Used in PCs to washing machines
 - Programmable Digital Signal Processors (e.g. TI TMS 320 Series)
- Used in many multimedia, sensor processing and communications applications
 - Memory (dRAM, SRAM, etc.)

Examples of ASICs

- Video processor to decode or encode MPEG-2 digital TV signals
- Low power dedicated DSP/controller /convergence device for mobile phones
- Encryption processor for security
- Many examples of graphics chips
- Network processor for managing packets, traffic flow, etc.

ASIC Styles

Full Custom ASICs

- Every transistor is designed and drawn by Hand
- Typically only way to design analog portions of ASICs
- Gives the highest performance but the longest design time
- Full set of masks required for fabrication

ASIC Styles (Contd.)

Standard-Cell-Based ASICs

- or 'Cell Based IC' (CBIC) or 'semi-custom'
- Standard Cells are custom designed and then inserted into a library
- These cells are then used in the design by being placed in rows and wired together using 'place and route' CAD tools
- Some standard cells, such as RAM and ROM cells, and some datapath cells (e.g. a multiplier) are tiled together to create macrocells

NOR gate:

D-flip-flop:

Standard Cell ASICs (cont'd)

Sample ASIC floorplan:

- Standard Cell designs are usually synthesized from an RTL (Register Transfer Language) description of the design
- Full set of masks (22+) still required

Cell based ASICs (cont'd)

Fabless semiconductor company model

- Company does design only. Fab performed by another company (e.g. TSMC, UMC, IBM, Philips, LSI).
- Back-end (place and route, etc.) might be performed at that company or with their assistance

ASIC Styles (cont'd)

Gate-Array Based ASICs

- In a gate array, the transistors level masks are fully defined and the designer can not change them
- The design instead programs the wiring and vias to implement the desired function
- Gate array designs are slower than cell-based designs but the implementation time is faster as less time must be spent in the factory
- RTL-based methods and synthesis, together with other CAD tools, are often used for gate arrays.

Gate Array (cont'd)

Examples:

Chip Express

- Wafers built with sea of macros + 4 metal layers
- 2 metal layers customized for application
- Only 4 masks!

Triad Semiconductor

- Analog and Digital Macros
- 1 metal layer for customization (2 week turnaround)

ASIC Styles (cont'd)

Programmable Logic Devices (PLDs and FPGAs)

- FPGA= Field Programmable Gate Array
- Are off-the-shelf ICs that can be programmed by the user to capture the logic
- There are no custom mask layers so final design implementation is a few hours instead of a few weeks
- Simple PLDs are used for simple functions.
- FPGAs are increasingly displacing standard cell designs.
- Capable of capturing 100,000+ designed gates
- High power consumption
- High per-unit cost

FPGA (cont'd)

Sample internal architecture:

- Store logic in look-up table (RAM)
- Programmable interconnect

Programmable Interconnect Array:

Configurable Logic Block (CLB):

FPGA (cont'd)

	uProc or DSP	FPGA	Gate Array	Standard Cell
Positives:	Lowest NRE cost Fast Time to Market	Low NRE Fast Time to Market	Reasonable NRE & time to market Moderate Performance (~1M gates @ 200 MHz) Good pricing	Highest Performance (10 M gates @ 500+ MHz) Lowest volume cost. Low power
			(<\$10)	consumption
Negatives:	Lowest Performance Highest Power Consumption	Low Performance (10k – 1M ==gates @ 10 –100 MHz) High power consumption High recurring cost (\$1 - \$1,000)		High Design and Mask costs (\$10M+). Long time to market.
Comments		Gaining market share	Often used for FPGA transition	Losing market share

Example

Total cost calculation:

Comments

Market currently dominated by standard cell ASICs and FPGAs

- Ideally standard cell designs would be used for higher volume applications that justify the NRE
- Many consider FPGAs separate from ASICs. Why?
- Different level of design skills required, especially in "back end" (place and route or physical design)
- Reduced level of verification required before "sending to factory"
- Again reduces sophistication required of team
- Low-cost (barrier) of entry
- Often different, lower cost Design Automation (CAD) tools
- Lower performance

However, front-end design (RTL coding) is virtually identical for each implementation style

Sometimes FPGA done first and standard cell ASIC done later

ASIC Design Flow

Major Steps:

- 1. High Level Design
 - Specification Capture
 - Design Capture in C, C++, SystemC or SystemVerilog (etc.)
 - HW/SW partitioning
 - IP selection (choose from pre-existing designs or "Intellectual Property")
- 2. RTL Design
 - Major topic of this course
- 3. System, Timing and Logic Verification
 - Is the logic working correctly?

ASIC Design Flow

- 4. Physical Design
 - Floorplanning, Place and Route, Clock insertion
- 5. Performance and Manufacturability Verification
 - Extraction of Physical View
 - Verification of timing and signal integrity
 - Design Rule Checking

ASIC Design Methodology

Most ASICs are designed using a RTL/Synthesis based methodology

Design details captured in a simulatable description of the hardware

- Captured as Register Transfer Language (RTL)
- Simulations done to verify design

Automatic synthesis is used to turn the RTL into a gatelevel description

• ie. AND, OR gates, etc.

Chip-test features are usually inserted at this point
 Gate level design verified for correctness
 Output of synthesis is a "net-list"

 i.e. List of logic gates and their implied connections NOR2 U36 (.Y(n107), .A0(n109), .A1(\value[2]));
 NAND2 U37 (.Y(n109), .A0(n105), .A1(n103));
 NAND2 U38 (.Y(n114), .A0(\value[1]), .A1(\value[0]));
 NOR2 U39 (.Y(n115), .A0(\value[3]), .A1(\value[2]));

Physical Design tools used to turn the gate-level design into a set of chip masks (for photolithography) or a configuration file for downloading to an FPGA

Floorplanning

Positioning of major functions

Placement

Gates arranged in rows

	FINAL	
the Lat two Average from 1	foote lager with	-
A ARK NO	Y LINE M AN A	

Clock and buffer Insertion

 Distribute clocks to cells and locate buffers for use as amplifiers in long wires

Routing

Logic Cells wired together

Subflow example:

Timing Closure:

- "Front end" of design process
 - E = Design capture, simulation and synthesis
 - Assumes abstract information about impact of wires
- "Back end" of design process
 - Place and route
 - Requires accurate wiring models

Future Issues

Increased cost of custom fab

- First chip run will cost over \$2M for 90 nm
- Multiproject wafers
- Increased cost of design
- Must be addressing > \$1B market to justify a new chip run
 Globalization
- Time-to-market and other competitive issues

Future Issues (cont'd)

Trends

- Increased use of FPGA and Gate Arrays
- Increased use of 'platform' solutions
 - Multi-core embedded CPU + ASIC accelerators
 - Configurable systems
 - Existing designs ('IP')
- Increased use of SystemVerilog, SystemC and other system modeling tools
- Complexity shifting from design to logical and performance verification
 - Logical verification = function; Performance = speed
- Cost to first silicon getting so high that the total addressable market must be very large and product risk low

Design Cost

Synopsys University Courseware 2008 Synopsys, Inc. Lecture - 1 Developed By: Paul D. Franzon

NC STATE UNIVERSITY

Questions

- What basic technological trend drives the Semiconductor Industry?
- What is the key difference between a standard cell ASIC and an FPGA?
- What will be important challenges to future design houses?
- What is a "fabless semiconductor vendor"?

Summary

Over the next ten years, product growth will be driven by:

- Underlying technology push
- High demand for graphics, multimedia and wireless connectivity
- Insidious insertion of electronics and computers into our everyday lives

Many of the resulting products will require specialized silicon chips to meet performance (speed/size/weight/power/cost) demands – ASICs

ASIC design methodology includes logic, timing, and physical design

Unfortunately, design productivity is not keeping up with chip performance growth

Summary (cont'd)

To match this product need, the capability of a silicon CMOS chip will continue doubling every 2-3 years until after 2015.

- To sell a product at \$300-\$1,000, it can only include one high value chip
 - Thus product performance is determined by the performance of that one chip
- AND talk about planned obsolescence!!

ASIC styles include full custom (for analog) and RTLbased design: Cell based (semi-custom), Gate Array or FPGA implementation

