Introduction to Design With Verilog

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Course “Mantras”

One clock, one edge, Flip-flops only
Design BEFORE coding

Behavior implies function

Clearly separate control and datapath

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Purpose of HDLS

* Purpose of Hardware Description Languages:
= Capture design in Register Transfer Language form
= |.e. All registers specified
= Use to simulate design so as to verify correctness

= Pass through Synthesis tool to obtain reasonably optimal gate-
level design that meets timing
= Design productivity
= Automatic synthesis
= Capture design as RTL instead of schematic
= Reduces time to create gate level design by an order of magnitude

« Synthesis

= Basically, a Boolean Combinational Logic optimizer that is timing
aware

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Basic Verilog Constructs

* Flip-Flop
= Behavior:
= For every positive edge of the clock Q changes to become equal to D

* Write behavior as “code”

« always@() — D OF—
= Triggers execution of following code block
= () called “sensitivity list” — clock
= Describes when execution triggered

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Mantra #3

» Behavior implies function
= Determine the behavior described by the Verilog code
= Choose the hardware with the matching behavior

always@(posedge clock)
Q <=D;

« Code behavior:
= Q re-evaluated every time there is a rising edge of the clock
= Q remains unchanged between rising edges

« This behavior describes the behavior of an edge-
triggered Flip-flop

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Verilog example

« What is the behavior and matching logic for this
code fragment?

always@(clock or D)
If (clock) Q <=D;

« Hint : always@((foo or bar) triggers execution
whenever foo or bar changes

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Flip-Flops

« Every variable assigned in a block starting with

alwaysQ@ (posedge clock) or —|P €
always@ (negedge clock)

— clock

becomes the output of an edge-triggered flip-flop
* This is the only way to build flip-flops

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Verilog Module for Flip-flop

module flipflop (D, clock, Q);

iInput D, clock;
output O: Module Name
| Connected Porfs
reg Q; Port Declarations
always@ (posedge clock) Local Variable
begin Declarations
Q <= D: Code Segmenfs
end endmodule
endmodule

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

VHDL model for Flip-flop

entity flipflop 1s

port (clock, D:in bit; Q: out bit);
end flipflop;
architecture test of flipflop 1is
begin process

begin
wait until clock' event and clock = "1’;

Q <= Dy

end process;

end test;

Synopsys University Courseware

SYNOPSYS o s NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Verilog vs. VHDL

* Verilog

= Based on C, originally Cadence proprietary, now an IEEE
Standard

= Quicker to learn, read and design in than VHDL
= Has more tools supporting its use than VHDL

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Verilog vs. VHDL

* VHDL

= VHSIC (Very High Speed Integrated Circuit) Hardware
Description Language

= Developed by the Department of Defense, based on ADA
= An IEEE Standard

= More formal than Verilog, e.g. Strong typing

= Has more features than Verilog

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Verilog vs. VHDL (cont’d)

 In practice, there is little difference
= How you design in an HDL is more important than how you code
= Can shift from one to another in a few days

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Verilog Combinational Logic

- Combinational Logic Example
« How would you describe the behavior of this function

In words?
b
c:£>_ foo
=] >—
 And in Code? a

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Behavior = Function

always@(a or b or) b D
: — WA C foo
If (a) foo = b”c;
else foo=b | c; A

 All logical inputs in sensitivity list
 If; else = Multiplexor

« Behavior = whenever input changes, foo = mux of
XOR or OR

- Same behavior as combinational logic

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Procedural Blocks

« Statement block starting with an “always@” statement
IS called a procedural block
 Why?
= Statements in block are generally executed in sequence (i.e.
procedurally)

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Alternative Coding Style for CL

* Verilog has a short hand way to capture combinational

logic .
—o—

foo

« (Called “continuous assignment”

assignfoo=a?b”c:b|c;

a

LHS re-evaluated whenever anything in RHS changes

f=a?d:e; same as “if (a) f=d else f=¢;

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Input Logic to Flip-Flops

« Can include some combinational logic in FF procedural
block

always@ (posedge clock)
if (a) foo< = c; b—
else foo <= b; —

« Behavior = function ”

= foo is re-evaluated on every clock edge = output of FF
= If;else & MUX

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

RTL Coding Styles

« That's it!

« Three coding styles
= always@(???edge clock) = FFs and input logic
= always@(*) = Combinational logic (CL)
= assign a = = Continuous Assignment CL

* The hard partis NOT coding but DESIGN

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Mantra #2

« The most important one for this course

"
Z

%/ ;
v / ".f/
O i

ALWAYS DESIGN BEFORE CODING

%

7
/, Grtali 4
/A
SO
g
SR

« Why?
= Must code at Register Transfer Level

= =» Registers and “transfer’ (combinational) logic must be
worked out before coding can start

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Design Before Coding

» Automatic synthesis does NOT relieve you of logic design

It does relieve you of:
= Logic optimization
= Timing calculations and control
* |n many cases, detailed logic design

 |f you don’t DESIGN BEFORE CODING, you are Ilkely to
end up with the following:
= A very slow clock (long critical path)
= Poor performance and large area
= Non-synthesizable Verilog
= Many HDL lint errors

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Avoid Temptation!

« Temptation #1.:

= “Verilog looks like C, so I'll write the algorithm in C and turn it into
Verilog with a few always@ statements”

 Usual results:

= Synthesis problems, unknown clock level timing, too many
registers

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Avoid Temptation! (cont’d)

« Temptation #2

= ‘| can’'t work out how to design it, so I'll code up something that
looks right and let Synthesis fix it”

 Usual result
= Synthesis DOES NOT fix it

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Avoid Temptation! (cont’d)

« Temptation #3

= “Look at these neat coding structures available in Verilog, I'll
write more elegant code and get better results”

« Usual result of temptation #3
= Neophytes : Synthesis problems

= Experts: Works fine but does not usually give a smaller or faster
design + makes code harder to read and maintain

« Better logic, not better code gives a better design

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Design Before Coding

Steps in Design

1. Work out the hardware algorithm and overall
strategy

2. ldentify and name all the registers (flip-flops)
= Determine system timing while doing this

3. ldentify the behavior of each “cloud” of combinational
logic

4. TRANSLATE design to RTL

. Verify Design

6. Synthesize Design

ol

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Design Example: Count Down Timer

« Specification:
= 4-bit counter
= count value loaded from "in’ on a positive clock edge when “latch’

IS high
= count value decremented by 1 on a positive clock edge when
“dec’ is high
= decrement stops at 0 |
= ‘zero’ flag active high whenever count value is 0 ., zero—
—dec
— clock

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

What NOT To Do

« Coding before design:
always@ (posedge clock)

for (value=in; value>=0;value--)
If (value==0) zero=1
else zero = 0;

 OR:
always@ (posedge clock)
for (value=in; value>=0;value--)
@ (posedge clock)

If (value==0) zero =1
else zero = 0;

Synopsys University Courseware

Syn [] PS‘/S® ZOOSL?(/:?&%S}/; , Inc.

Developed By: Paul D. Franzon

NC STATE UNIVERSITY

Strategy

1. Work out the hardware algorithm and overall strategy

« Strategy:
= Load ‘in’ into a register
= Decrement value of register while ‘dec’ high
= Monitor register values to determine when zero

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Design

2. ldentify and name all the registers (flip-flops)

valye
"4

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

‘ Design (cont’d)

3. ldentify the behavior of each “cloud” of combinational

logic
)
valye
n | — F-F A zero
latch — ¢ 4
dec A
clock

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

4. TRANSLATE design to RTL

module counter (clock, in, latch, dec, zero):;

input clock; /* clock */

input [3:0] in; /* starting count */

input latch; /* latch "in’ when high */

input dec; /* decrement count when dec high */
output ZEero; /* high when count down to zero */
reg [3:0] value; /* current count value */

wire Zero;

always@ (posedge clock)

begin
if (latch) wvalue <= 1in;
else 1f (dec && !zero) value <= value - 1’bl;
end
assign zero = (value == 4'b0);

endmodule /* counter */

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Features in Verilog Code

Note that it follows the hardware design, not the "C’ specification
Multibit variables:

reg [3:0] value; BIG
4-bit signal’ [MSB:LSB] i.e. value[3] value[2] ... value[0] ENDIAN

Specifying constant values:
1’b1; 4’b0;
size ‘base value : size = # bits, HERE: base = binary
NOTE: zero filled to left

Procedural Block:

always@() Executes whenever varia_bleg In sensitivity list ()
begin change value change as indicated

Usually statements execute in sequence, i.e. procedurally
end begin ... end only needed if more than one statement in block

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Design Example ... Verilog

= Continuous Assignment:
Assign Is used to implement combinational logic directly

Questions

1. When is the procedural block following the
always@ (posedge clock) executed?

When is ‘zero’ evaluated?

How Is a comment done?
What does 1’ b1 mean?

What does reg [3:0] wvalue; declare?

a B~ D

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Behavior = Function

— Z€eTr0

5
¥
clear o
: -3 s valye|(_ >
m | _LE F-F "1 =07?)
latch — T/ CH
dec D—% ,
clock O
always@ (posedge clock)
begin
if (latch) wvalue = in;
else 1f (dec && !zero) value = value - 1'bl;
end

assign zero =

~|value;

SYNOPSYS

Synopsys University Courseware
2008 Synopsys, Inc.
Lecture - 3
Developed By: Paul D. Franzon

NC STATE UNIVERSITY

‘ Misc. Alternative Coding

module counter (clock, in, latch, dec, zero);
[/l Simple down counter with zero flag

input clock; /* clock */

input [3:0] in; /* starting count */

input latch; /*latch "in” when high */

input dec; /* decrement count when dec high */
output zero; /* high when count down to zero */
reg [3:0] value; /* current count value */
reg zero;

wire [3:0 value_minusi;

reg 3.0 Mux_out;

/I Count _Flip-flops with input multiplexor
always@ (posedge clock)begin

q value <= mux_oult;
en

always @(*) begin
if(Igtch) g%ging _
mux_out <= in;

end .
else if(dec && !zero) begin
mux_out <= value_minusl,

end
else begin
mux_out <= value;
end
end

assign value_minusl = value - 1'b1;
/I combinational logic for zero flag
assign zero = ~|value;

endmodule /* counter */

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Alternative Coding

module counter (clock, in, latch, dec, zero);
/[Simple down counter with zero flag

input clock; /* clock */

input [3:0] in; /* starting count */

input latch; /* latch “in” when high */ _
input dec; /* decrement countwhen dec high */
output zero; /* high when count down to zero */
reg [3:0] value; /* current count value */

reg zero;

/I register ‘value’ and associated input logic
always@ (posedge clock) begin
if (latch) value <=in;
else if (dec && !zero) value <= value - 1'b1;
end
/I combinational logic to produce ‘zero’ flag
always@ (value) begin

if(value == 4'b0)

zero = 1'b1;
else
zero = 1'b0;

end
endmodule /* counter */

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Verilog 2001 Version

module counter (input clock, input [3:0] in, input latch, input dec, output reg zero);

[* current count value */
reg [3:0] value;

always@(posedge clock) begin
if (latch)

value <= in;
else if (dec && 'zero)

value <= value - 1"'b1;
end

always@(*) begin
if(value == 4'b0)
zero=1;
else
zero =0;
end
endmodule /* counter */

Synopsys University Courseware

Syn [] PS‘/S® ZOOSL?(/:?&%S}/;, Inc.

Developed By: Paul D. Franzon

NC STATE UNIVERSITY

Intrinsic Parallelism

* How Verilog models the intrinsic parallelism of hardware

o

always@(l:)osedge clock)

Clock |

A<=C & D: .
always@(A) ——— TInggers
G = A

assign F=EMA;

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Intrinsic Parallelism

 Algorithm for
always@(A) G = |A;
assign F=EMA;

when A changes:
In same time “step”:
nextG = |A;
nextF = E " A;
At end of time step:
G = nextG; F=nextF;

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Review

* How do you build a flip-flop in Verilog?

« How does Verilog handle the intrinsic parallelism of
hardware?

 What is a procedural block?

« What is continuous assignment?

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

5. Verify Design

* Achieved by designing a “test fixture” to exercise design

* Verilog in test fixture is not highly constrained
= See more Verilog features in test fixture than in RTL

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

‘ Test Fixture

“include “count.v” //Not needed for Modelsim simulation
module test_fixture;

reg
reg
reg
wire

clock100;

latch, dec;

[3:0] in;
ZEro;

initial //following block executed only once

begin

/l below commands save waves as vcd files. These are not needed if Modelsim used as the simulator

end

$dumpfile("count.ved"); // waveforms in this file
$dumpvars; // saves all waveforms

clock100 = 0;

latch = 0;

dec =0;

in =4’b0010;

#16 latch = 1; /[wait 16 ns
#10 latch = O; /[wait 10 ns
#10 dec = 1;

#100 $finish; /[finished with simulation

always #5 clock100 = ~clock100; // 10ns clock

/l instantiate modules -- call this counter ul
counter ul(.clock(clock100), .in(in), .latch(latch), .dec(dec), .zero(zero));
endmodule /*test_fixture*/

Synopsys University Courseware

Syn [] PS‘/S® 200833(/:?&%3}/; , Inc.

Developed By: Paul D. Franzon

NC STATE UNIVERSITY

Simple Test Fixture (cont’d)

always #5 clock100 = ~clock100; // 10ns clock

counter ul(.clock(clock100), .in(in), .latch(latch), .dec(dec),
.zero(zero));

endmodule /*test_fixture*/

Features
= ‘zero’ is type wire because its an output of the module instance u1

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Features In test fixture

‘include “count.v”
* |ncludes DUT design file
Initial
= Procedural Block
= Executed ONCE on simulation startup
= Not synthesizable

#16
= Wait 16 units (here ns — defined by ‘timescale
command)
$dumpfile ; $finish

= Verilog commands

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Features in test fixture (cont’d)

counter ul(.clock(clock100), .in(in), .latch(latch),

.dec(dec), .zero(zero));

= Builds one instance (called u1) of the module ‘counter’ in the
test fixture

.clock(clock100)

= Variable clock100 in test fixture connected to port clock in
counter module

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Features in test fixture (cont’d)

always #5 clock = ~clock;
= Inverts clock every 5 ns
Waveforms:

Clock]
Latch

Dec

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Verilog 2001 Test Fixture

‘include “count.v”
module test_fixture;

reg clock100=0;
reg latch = O;
reg dec =0;
reg [3:0] in = 4'b0010;

wire zero;
initial //following block executed only once
begin
$dumpfile("count.ved"); // waveforms in this file..
I Note Comments from previous example
$dumpvars; // saves all waveforms

#16 latch = 1; /I wait 16 ns

#10 latch = 0O; /[wait 10 ns

#10 dec =1;

#100 $finish; /[finished with simulation

end
always #5 clock100 = ~clock100; // 10ns clock

I/l instantiate modules -- call this counter ul
counter ul(.clock(clock100), .in(in), .latch(latch), .dec(dec), .zero(zero));

endmodule /*test_fixture*/

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Synthesis

Step 5. After verifying correctness, the design can be
synthesized to optimized logic with the Synopsys tool

Synthesis Script run in Synopsys (test_fixture is NOT
synthesized):(See attached script file). The result is a gate

level design (netlist):

o a1 e ©] - e =0 |
. i perweny Dougn Senenane Amiinss Trrg Tert Binaes s P

.Y(n36));

.B(n40), .C(n4l), .Y(nbl));
.B(latch), .Y(n41l));

.Y (n40));

.Y (n37));

.A(n38),
.A(n39),
A(in[3]),

.A(n37), .B(latch),
A(dec), .B(n42),

INVX1 U7 (
OAIZ21X1 U8 (
NAND2X1 U9 (
OR2X1 U1l0 (

AND2X1 U1l (

‘n39’, etc. are nets, i.e. wires that connect
the gates together.

SYNOPSYS’

Synop;)(/)% ;Jgiversity C?urseware
it 3 NC STATE UNIVERSITY

Lecture - 3
Developed By: Paul D. Franzon

Synthesis Script

setup name of the clock in your design.

Set all the different variables
set clkname clock

required for a given design synthesis
set variable "modname” to the name of topmost module in design run
set modname counter

set variable "RTL_DIR" to the HDL directory w.r.t synthesis directory
set RTL_DIR ./

set variable "type" to a name that distinguishes this synthesis run
set type lecture

#set the number of digits to be used for delay result display
set report_default_significant_digits 4

Read in Verilog file and map (synthesize)

onto a generic library.

MAKE SURE THAT YOU CORRECT ALL WARNINGS THAT APPEAR

during the execution of the read command are fixed Always stop at this point and
or understood to have no impact. look at reports generated

ALSO CHECK your latch/flip-flop list for unintended
latches

read_verilog $RTL_DIR/counter.v

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Synthesis Script

Our first Optimization ‘compile’ is intended to produce a design

that will meet hold-time

under worst-case conditions: Set current design for analysis
- slowest process corner

- highest operating temperature and lowest Vcc

- expected worst case clock skew

Hmmmm oo Point to DesignWare library for
Set the current design to the top level instance name compilation

to make sure that you are working on the right design

at the time of constraint setting and compilation

Ffommrmmmemmmeomseoosesssensoesoseossessseossesoeeoso Use worst case delays
;lf_r_f_e_f'_t:ﬂf’f_'_g_ff_r_']‘)d”ame ___________ to focus on setup timing

Set the synthetic library variable to enable use of DesignWare blocks

H e

set synthetic_library [list dw_foundation.sldb] You. can change the CI.OCI(
e period but not uncertainty

Specify the worst case (slowest) libraries and slowest temperature/Vcc
conditions. This would involve setting up the slow library as the target
and setting the link library to the concatenation of the target and the

synthetic library

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

‘ Synthesis Script

U Logic must be connected to

set target_library osu018_stdcells_slow.db something else. which will affect
set link_library [concat $target_library $synthetic_library] 9 '

e its timing. Here we specify what
Specify a 5000ps clock period with 50% duty cycle and a skew of 300ps the synthesize design is
e — connected to, and its timing.

set CLK_PER 5

set CLK_SKEW 0.3

create_clock -name $clkname -period $CLK_PER -waveform "0 [expr $CLK_PER / 2]" $clkname
set_clock_uncertainty $CLK_SKEW $clkname

Now set up the 'CONSTRAINTS' on the design:

1. How much of the clock period is lost in the modules connected to it?
2. What type of cells are driving the inputs?

3. What type of cells and how many (fanout) must it be able to drive?

ASSUME being driven by a slowest D-flip-flop. The DFF cell has a clock-Q
delay of 353 ps. Allow another 100 ps for wiring delay at the input to design
NOTE: THESE ARE INITIAL ASSUMPTIONS ONLY

set DFF_CKQ 0.353
set IP_DELAY [expr 0.1 + $DFF_CKQ)]
set_input_delay $IP_DELAY -clock $clkname [remove_from_collection [all_inputs] $cTkname]

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Synthesis Script

ASSUME this module is driving a D-flip-flip. The DFF cell has a set-up time of 919 ps
Allow another 100 ps for wiring delay. NOTE: THESE ARE INITIALASSUMPTIONS ONLY

e e 1

set DFF_SETUP 0.919

set OP_DELAY [expr 0.1 + $DFF_SETUP]

set_output_delay $OP_DELAY -clock $clkname [all_outputs] This

Hm oo B . u

ASSUME being driven by a D-flip-flop deszgn
R

set DR_CELL_NAME DFFPOSX1 < ry
set DR_CELL_PIN Q \ /
set_driving_cell -lib_cell "$DR_CELL_NAME" -pin "$DR_CELL_PIN"

[remove_from_collection [all_inputs] $clkname] Parts of other modules
.«

set PORT _LOAD_CELL osu018 stdcells_slow/DFFPOSX1/D

set WIRE_LOAD _EST 0.2

set FANOUT 4

set PORT_LOAD [expr $WIRE_LOAD_EST + $FANOUT * [load_of $PORT_LOAD_CELL]]
set_load $PORT_LOAD [all_outputs]

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

‘ Synthesis Script

e

Now set the GOALS for the compile. In most cases you want minimum area, so set the

goal for maximum area to be 0
H e e e e —————

T

set_max_area 0O

e This leads up to the

This command prevents feedthroughs from input to output and avoids assign statements first “compile” which

e does the actual logic
set_fix_multiple_port_nets -all [get_designs] optimization

M :

During the initial map (synthesis), Synopsys might have built parts (such as adders)

using its DesignWare(TM) library. In order to remap the design to our TSMCO025 library
AND to create scope for logic reduction, | want to 'flatten out' the DesignWare

components. i.e. Make one flat design 'replace_synthetic' is the cleanest way of

doing this

H

e e e e e e e e e ————

replace_synthetic
H e —————

s

check_design checks for consistency of design and issues # warnings and errors. An

error would imply the design is not compilable. Do “man check_design” for more info.
H

2

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Synthesis Script

check_design
H e ————————————————————

s

link performs check for presence of the design components instantiated within the design.
It makes sure that all the components (either library unit or other designs within the
hierarchy) are present in the search path and connects all of the disparate components

logically to the present design. Do “man link” or more information.
B e \ We need to run

link checks to make sure
Hommm oo errors (both in
Now resynthesize the design to meet constraints, and try to best achieve the goal, and design and in setup)

using the CMOSX parts. In large designs, compile can take a long time!

-map_effort specifies how much optimization effort there is, i.e. low, medium, or high. are absent before

Use high to squeeze out those last picoseconds. we compile.

-verify_effort specifies how much effort to spend making sure that the input and output

designs are equivalent logically. This argument is generally avoided.

H e ————————————————————

compile -map_effort medium Compile can take a
. while to run on a

Now trace the critical (slowest) path and see if large (or poor)

the timing works. design.

If the slack is NOT met, you HAVE A PROBLEM and
need to redesign or try some other minimization

tricks that Synopsys can do
H e e e e ——————————————————————

1

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Synthesis Script

report_timing >timing_max_slow_${type}.rpt
#report_timing -delay min -nworst 30 > timing_report_min_slow_30.rpt
#report_timing -delay max -nworst 30 > timing_report_max_slow_30.rpt

Always look at this report.

You can ask for timing of the next slowest paths as well (see commented code). This
can be used to decide if you want to try retiming and analyzing other paths as well. Run
“man report_timing” to see other useful options like “—from” “~to” “~through”

#H

This is your section to do different things to

improve timing or area - RTFM (Read The Manual) :)
H

2

Specify the fastest process corner and lowest temp and highest (fastest) Vcc
H

2

set target_library osu018 stdcells_fast.db
set link_library osu018_stdcells_slow.db

translate
H+

2

Since we have a 'new' library, we need to do this again
H

2

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Synthesis Script

R

s

Set the design rule to 'fix hold time violations'
Then compile the design again, telling Synopsys to
only change the design if there are hold time

violations.
e

s

Use best case delays
to focus on hold timing

is actually met.
FH e e e e e e e e e ———_——————————————————— —————

report_timing >timing_max_fast_${type}.rpt
report_timing -delay min >timing_min_fast_holdcheck_${type}.rpt
o

s

Write out the 'fastest’ (minimum) timing file
in Standard Delay Format. We might use this in

later verification.
B e e e e e e e e e et o o e e e o e e e e

™

write_sdf counter_min.sdf
S

™

Since Synopsys has to insert logic to meet hold violations, we might find that we have setup
violations now. So lets recheck with the slowest corner, etc.

YOU have problems if the slack is NOT MET. 'translate’ means 'translate to new library'
o N -

T

Use compile —incremental
after first compile

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

‘ Synthesis Script

set target_library osu018_stdcells_slow.db
set link_library osu018_stdcells_slow.db

translate

report_timing > timing_max_slow_holdfixed_${type}.rpt

report_timing -delay min > timing_min_slow_holdfixed_${type}.rpt Though it happens rare|y, the extra
#H . . .

4 Sanity checks Ioglc inserted to fix hold pr_o_blems,

might have affected the critical path.

set target_library osu018_stdcells_fast.db
set link_library osu018_stdcells_fast.db

translate Here we check for that by re-doing

report_timing > timing_max_fast_holdfixed_${type}.rpt the maximum delay analysis for the
report_timing -delay min > timing_min_fast_holdfixed_${type}.rpt slowest process corner

H

Write out area distribution for the final design

H

report_cell > cell_report_final.rpt])) o

Write out final netlist, area distribution
Write out the resulting netlist in Verliog format for use reports and timing information in sdf

by other tools in Encounter for Place and Route of the design format

#H

ke

change_names -rules verilog -hierarchy > fixed_names_init

write -hierarchy -f verilog -0 counter_final.v
H.

ke

Write out the 'slowest' (maximum) timing file in Standard

Delay Format. We could use this in later verification.
#H.

ke

write_sdf counter_max.sdf

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

‘ Detall of Design PostSynthesis

module counter (clock, in, latch, dec, zero);

input [3:0] in;

input clock, latch, dec;

output zero;

wire sub 42 A 0 ,sub 42 A 1 ,sub 42 A 2 ,sub 42 A 3 ,n33,n34,n35,
n36, n37, n38, n39, n40, n41, n42, n43, n44, n45, n46, n47, n48, n49,
n50, n51, n52, n53, n54, n55, n56, n57, n58;

DFFPOSX1 value_reg_0_ (.D(n58), .CLK(clock), .Q(sub_42_A 0));
DFFPOSX1 value_reg_1_ (.D(n57), .CLK(clock), .Q(sub_42 A 1));
DFFPOSX1 value_reg_3 (.D(n51), .CLK(clock), .Q(sub_42 A 3));
DFFPOSX1 value_reg_2_ (.D(n54), .CLK(clock), .Q(sub_42 A 2));
INVX1 U3 (.A(n33), .Y(zero));

OAI21X1 U4 (.A(latch), .B(n34), .C(n35), .Y(n50));

NAND2X1 U5 (.A(latch), .B(in[2]), .Y(n35));

AOI22X1 U6 (.A(sub_42_A_2), .B(n36), .C(n56), .D(n37), .Y(n34));
INVX1 U7 (.A(n38), .Y(n36));

OAI21X1 U8 (.A(n39), .B(n40), .C(n41), .Y(n51));

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Detall of Design PostSynthesis

NAND2X1 U9 (.A(in[3]), .B(latch), .Y(n41));

OR2X1 U10 (.A(n37), .B(latch), .Y(n40));

AND2X1 U1l (.A(dec), .B(n42), .Y(n37));

OAI21X1 U12 (.A(latch), .B(n43), .C(n44), .Y(n52));
NAND2X1 U13 (.A(in[1]), .B(latch), .Y(n44));

AOI21X1 U14 (.A(sub_42 A 1), .B(n45), .C(n38), .Y(n43));
NOR2X1 U15 (.A(n45), .B(sub_42 A 1),.Y(n38));

INVX1 U16 (.A(n46), .Y(n45));

OAI21X1 U17 (.A(latch), .B(n47), .C(n48), .Y(n53));
NAND2X1 U18 (.A(in[0]), .B(latch), .Y(n48));

AOI21X1 U19 (.A(sub_42_A 0), .B(n49), .C(n46), .Y(n47));
NOR2X1 U20 (.A(n49), .B(sub_42 A 0), .Y(n46));
NAND2X1 U21 (.A(dec), .B(n33), .Y(n49));

NAND2X1 U22 (.A(n42), .B(n39), .Y(n33));

INVX1 U23 (.A(n56), .Y(n39));

NOR3X1 U24 (.A(sub_42 A 1), .B(sub 42 A 2),.C(sub_42 A 0),.Y(n42));
BUFX4 U25 (.A(n50), .Y(n54));

INVX8 U26 (.A(sub_42 A 3),.Y(n55));

INVX1 U27 (.A(n55), .Y(n56));

BUFX2 U28 (.A(n52), .Y(n57));

BUFX2 U29 (.A(n53), .Y(n58));

endmodule

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Exercise: Three Timing Examples (from
Timing Notes)

- What do these look like in Verilog?

A E
s |Compare
C

Compare| *
D Compare €

always@ (A or B or C)

bggin Why not move E, F assignments
if (A>B) then E = A, else E = B; / down to here?
if (C>E) then F = E; else F =C,;

end
always@(posedge clock)
if (D>F) then G <= D; else G <=F;

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

... Three timing examples

* Produce a Verilog code fragment for ...
= Use continuous assignment

5 |Compare

Compare[| o |¢

p |Compare[¢

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

... Three Timing Examples

 And for this...

E

Compare/La W
~—Compare

cl A

Compare | |¢

NIDE Al

Note: Outputs of all flip-flops have to be named

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Sample Problem

« Accumulator:
= Design an 8-bit adder accumulator with the following properties:

= While ‘accumulate’ is high, adds the input, ‘in1’ to the current
accumulated total and add the result to the contents of register
with output ‘accum_out’.

= use absolute (not 2's complement) numbers

= When ‘clear’ is high (‘accumulate’ will be low) clear the contents
of the register with output ‘accum_out’

= The ‘overflow’ flag is high is the adder overflows

Hint:
8-bit adder produces a 9-bit result:
{carry_out, sum} = A+B;

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Sketch Design

1. Determine and name registers.
2. Determine combinational logic

Clear

accumulate | ‘

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Summary

 \What are our two “mantras” used here?

« What is built for all assignments after always@ (posedge
clock)?

« What is built after always@ (A or B)
« What is built with assign C =

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

Summary

* In Synthesis with Synopsys
= What is important after the “read” statement?
= Which timing library do we use for the first compile?
= What does “compile” do?

= What is important to do after every incremental
compile?

Synopsys University Courseware

SYNOPSYS o e NC STATE UNIVERSITY

Developed By: Paul D. Franzon

