
EL 653 1© Victor Grimblatt H.

EL 653

Integrated Circuit Design Introduction

EL 653 2© Victor Grimblatt H.

Design Process

Design: specify and enter the

design intent

Implement: refine the design

through all phases

Verify: verify the correctness of

design and implementation

EL 653 3© Victor Grimblatt H.

Bottom – up / Top – down

 Bottom – up

 Start from simple modules

 Goes to complex modules

 Suitable to create small parts that will be reused

 Top – down

 Start from complex modules

 Goes to simple modules

 Suitable for big systems

EL 653 4© Victor Grimblatt H.

Bottom – up / Top – down

Complex system

Module (one function)

Register and gates

Transistors

Top – down
Bottom – up

EL 653 5© Victor Grimblatt H.

Front End

Architecture

Functional
Verification

RTL
Design/Logic

Synthesis

Physical Design
Design

Integrity

process begin
wait until not

CLOCK'stable
and CLOCK=1;

if(ENABLE='1') then
TOGGLE<= not

TOGGLE;
end if;

end process;

IC Design . . . A Simplified Explanation

Back End

Fabrication

EL 653 6© Victor Grimblatt H.

The Front End

 Architecture:
 Key Algorithms (filtering, for example)

 Amount of on-chip Memories, sizes?

 How many Integer Proc Units?

 RTL: Register Transfer Language
 Verilog (1988), VHDL, SystemVerilog: an executable spec for

the chip, amounting to over a million lines of code

 Lots of simulations to verify the spec (literally billions of cycles)

 Timing constraints, clock definitions, etc

EL 653 7© Victor Grimblatt H.

The Front End

 Logic Design: convert the RTL to logic gates (NAND-
NORs, NOTs, Registers)
 A manual process in the past, still mostly manual for Analog

 Logic Synthesis (1989): automate the process

 Many discrete optimization techniques used here: boolean
minimization, static timing analysis, state equivalence, etc, etc.

 End point is a “netlist”, meaning a set of logic gates and their
connections. A large netlist is in the 10s of millions of gates

 Can be simulated or “formally verified” versus the RTL.

 Key technique: how do you prove that two logic equations are
equivalent?

EL 653 8© Victor Grimblatt H.

The Back End
 Floorplanning

 Where do we place the large blocks? Where do we place the “random” logic
and “structured blocks”? A combination of manual and automated
approaches is used

 Need to keep connections short to meet timing, but also cannot “congest”
the design too much or we cannot complete the connections

 Note that connections do have R and C (to substrate and coupling between
wires) so they introduce delay! Meeting timing can be very difficult!

 The Power and Ground lines usually get decided here

 Placement:
 Now we need to complete the exact details of where each block and gate

will be

 Automation has been a key for many years (1980). A block may contain
hundreds of thousands of cells, so it is very hard problem: minimize area,
be routable and meet timing

 Note may have to add logic: repeaters to restore signals a key example

EL 653 9© Victor Grimblatt H.

The Back End

 Routing

 Complete all the connections!

 But, need to meet timing and keep signal integrity. This also involve

separating some wires, for example, to avoid bad couplings

 Automation is the norm here (1980)

 Verification:

 Spacing and sizing rules are checked for all polygons (1980)

 Parasitics are extracted, netlists back annotated and time analyzed

using static techniques (1990)

 Manufacturing requires complicated rules, such as wire density

been “uniform”

EL 653 10© Victor Grimblatt H.

Design Goes to Fabrication

Sounds simple, but have a host of

very hard problems to solve!

EL 653 11© Victor Grimblatt H.

Fabrication

 Mask fabrication

 Wafer fabrication

 Wafer testing

 Assembly and packaging

 IC test

EL 653 12© Victor Grimblatt H.

…the steps you take to design a chip!
What’s a design flow?

Technology

Process

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Gate-level

netlist

Testbench

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Specification

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Scripts

Initial constraints

System

Analysis
System Studio

Logic Modeling

Select

Architecture

Module Compiler

Models / IP
Library Compiler

DesignWare Library

VERA

RTL Verification

VCS-MX

ATPG

TetraMAX

Synthesis

Design Compiler

Power Compiler

DFT Compiler

Gate-level

verification

VCS-MX

Magellan

Formality

PrimeTime

PrimePower

Place & Route

Physical Compiler

Astro

Links-to-

LayoutDesign Planning

PrimeTime

NanoSim

HSPICE

Post-Route

Verification

Physical Data

Creation

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back
GDSII

Physical Compiler

JupiterXT

Proteus

Physical Design

Checks
STAR-RCXT

Hercules

RTL Gates

Design

Constraints

Mask Writer

CATS

EL 653 13© Victor Grimblatt H.

Technology

Process

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Gate-level

netlist

Testbench

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Specification

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Scripts

Initial constraints

System

Analysis
System Studio

Logic Modeling

Select

Architecture

Module Compiler

Models / IP
Library Compiler

DesignWare Library

VERA

RTL Verification

VCS-MX

ATPG

TetraMAX

Synthesis

Design Compiler

Power Compiler

DFT Compiler

Gate-level

verification

VCS-MX

Magellan

Formality

PrimeTime

PrimePower

Place & Route

Physical Compiler

Astro

Links-to-

LayoutDesign Planning

PrimeTime

NanoSim

HSPICE

Post-Route

Verification

Physical Data

Creation

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back

Blah blah blah

yada yada

Blah blah blah

yidie yadie

So on and so forth

on and on

Jibber jabber jibber

just jawing

Yackety yack

Ya'll com back
GDSII

Physical Compiler

JupiterXT

Proteus

Physical Design

Checks
STAR-RCXT

Hercules

RTL Gates

Design

Constraints

Mask Writer

CATS

Design Implementation

Design for Manufacturing

Verification

EL 653 14© Victor Grimblatt H.

A simple design flow – step by step

1. “Spec” your chip

2. Generate the gates

3. Create a test

4. Ensure the gates will work

5. “Blueprint” your chip

6. Double-check your blueprint

7. Turn your design into sand

Design

Implementation

Design for

Manufacturing

Verification

EL 653 15© Victor Grimblatt H.

1. “Spec” your chip

 Describe what you want your chip to do

 Write a “spec” - use a language like Verilog or VHDL

 A spec for a cell phone ringer might look like this:

 if incoming_call AND line_is_available then RING;

 Today’s complex chip designs

 can have a million lines of specification,

 created by a team of 100 people,

 working for 6 months!

 You can buy a ready-made spec

 example: DesignWare Library

 Give the spec to the computer to begin automation

 example: (V)HDL Compiler

EL 653 16© Victor Grimblatt H.

2. Generate the gates

 Figure out the detailed logic gates

 Today’s chip designs have hundreds

of thousands of gates in each one!

 Can’t figure out all these logic gates

with pencil and paper

 Use a computer program! An EDA tool!

 Synthesis

 example: Design Compiler, Physical Compiler, IC Compiler

 Save the logic gates to use in a future design

 example: DesignWare Library

EL 653 17© Victor Grimblatt H.

3. Create a test

 For manufacturer to throw out defective chips

 Need millions of combinations of electrical stimuli

 Crazy to attempt this with a pencil and paper

 Use EDA tools! Test Synthesis & Automatic Test

Program Generation

 example: DFT Compiler, TetraMAX

apply electricity

+

expected response

measure response

+

check against expectations

EL 653 18© Victor Grimblatt H.

4. Ensure the gates will work

 Verify that the logic gates will do what you want, when

you want them to

 Simulation, Timing Analysis, Testbench Generation

 example: VCS-MX, PrimeTime, VERA 0

1

0

1

1

EL 653 19© Victor Grimblatt H.

4. Ensure the gates will work

 Put statements in the design description

 Assertion-based verification = “Smart Verification”

assert property (@(posedge clk) $rose(req)|-> ##[1:3] $rose(ack));
Assertion

always @(posedge req)

begin

repeat (1) @(posedge clk);

fork: pos_pos

begin

@(posedge ack)

$display("Assertion Success",$time);

disable pos_pos;

end

begin

repeat (2) @(posedge clk);

$display("Assertion Failure",$time);

disable pos_pos;

end

join

end // always

Old way

req

ack

0 1 2 3 4 5

Intended behavior

EL 653 20© Victor Grimblatt H.

4. Ensure the modifications will work

 Tweak the whole thing to make it better

 Faster (speed), smaller (area), less battery (power)

 No way to figure it out with pencil and paper

 Use EDA tools! Optimization

 example: Design Compiler, Power Compiler, Physical Compiler

 Make sure it’s still the same design - Formal

Verification

 example: Formality

EL 653 21© Victor Grimblatt H.

Floorplan

5. “Blueprint” your chip

 Design planning: create a “floorplan” so the gates will go

where you want
 Place the gates on a “blueprint” and Route

them together (also called “layout ”)

• Show where the gates will be connected with

wires

 example: Jupiter-XT, Physical Compiler, IC Compiler, Astro

EL 653 22© Victor Grimblatt H.

6. Double-check your blueprint

 Length of the connecting wires will change how fast the

chip will run

 Simulate it again - Post-route (post-layout) verification

 example: VCS, VCS-MX, NanoSim, HSPICE

EL 653 23© Victor Grimblatt H.

6. Double-check your blueprint

 Make sure "what you see is what you get"

 Compare what you designed to what's in your layout

 Layout versus Schematic (LVS)

 Follow the manufacturer’s rules

• Perform Design Rule Checks (DRC)

 example: Star-RCXT, Hercules

EL 653 24© Victor Grimblatt H.

7. Turn your design into sand

 Produce the layout data: GDSII

 example: Astro

EL 653 25© Victor Grimblatt H.

GDSII - text view
STRNAME EXAMPLE

BOUNDARY

LAYER

1

DATATYPE

0

XY

-10000

10000

20000

10000

20000

-10000

-10000

-10000

-10000

10000

ENDEL

ENDSTR

02000200 60000201 1C000300 02000600`.... 000000

01000E00 02000200 60002500 01000E00%.`........ 000010

42494C45 4C504D41 58450602 12002500 .%....EXAMPLELIB 000020

413E0503 14000300 02220600 59524152 RARY..".......>A 000030

1C00545A 9BA02FB8 4439EFA7 C64B3789 .7K...9D./..ZT.. 00004

60000000 01000E00 02000200 60000205 ...`...........` 000050

58450606 0C001100 01000E00 02000200EX 000060

0100020D 06000008 04000045 4C504D41 AMPLE........... 000070

0000F0D8 FFFF0310 2C000000 020E0600,........ 000080

FFFF204E 00001027 0000204E 00001027 '...N ..'...N .. 000090

0000F0D8 FFFFF0D8 FFFFF0D8 FFFFF0D8 0000A0

00000004 04000007 04000011 04001027 '............... 0000B0

00000000 00000000 00000000 00000000 0000C0

OR,

Files are usually 20 to 30 gigabytes in size,
but after you correct the image, the size can
reach a 150 gigabytes - that’s 150 billion
bytes or over a trillion bits!

EL 653 26© Victor Grimblatt H.

7. Turn your design into sand

 Correct the image

 example: Proteus, Progen, IC Workbench, SiVL/LRC, iN-Phase,

CATS

EL 653 27© Victor Grimblatt H.

7. Turn your design into sand

 Your favorite semiconductor

vendor will:

 Rerun your design through the

tools

 Generate a huge database for

manufacturing

 Perform the photolithography

process

 Put your chip into a package

 Run your test program

 Deliver your finished chips

Take a deep breath and “Sign Off”!!

