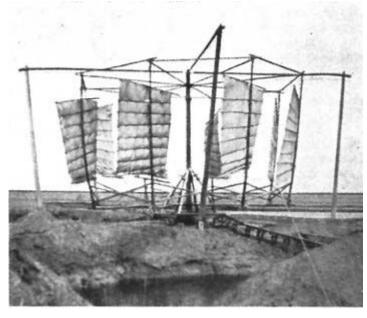


Generación de Energía Eléctrica con Fuentes Renovables EL-6000

Modulo Energía Eólica

Semestre Primavera 2010 Ing. Keith Watt Arnaud

Objetivos

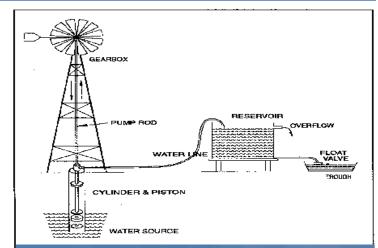

Al final de esta unidad el estudiante deberá:

- 1. Identificar las principales variables del recurso viento.
- 2. Cuantificar y dimensionar los principales aspectos de un proyecto de generación eólica.
- 3. Entender las ventajas y desventajas de un parque generador

1. Desarrollo Histórico de la Generación Eólica

El Viento y las Antiguas Civilizaciones

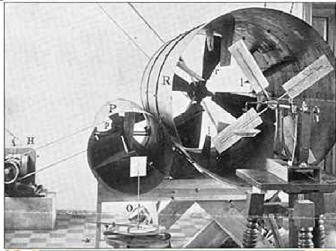
- Según Historiadores los Primeros Molinos de Viento provienen del Oriente
 - Mesopotamia 1700 A.C.
 - » Eje Vertical
 - » Uso en Riego
 - China 1000 A.C.
 - » Eje Vertical
 - » Multi-direccionalidad
 - Sri Lanka 300 A.C.
 - » Usado para generar Calor
 - » Temperaturas hasta los 1000 °C


Los Comienzos en Europa

- Los Molinos de Eje Horizontal
 - Fueron Desarrollados en Europa
 - Primeros fueron los Ingleses & Franceses
 - » 1100 D.C
 - » Uso para la Molienda
 - Luego fue desarrollado por el Resto de Europa
 - » 1200 D.C Holanda y Alemania
 - » 1300 D.C Polonia y Rusia
 - » 1300 D.C Sur de Europa

Estados Unidos y las Turbinas de Bombeo

- Estados Unidos Desarrolla las primeras Turbinas Metálicas en el siglo 19.
 - Usados para la extracción de Agua profunda
 - Permitieron el desarrollo e irrigación del centro de Estados Unidos
 - Creándola en una Potencia agrícola


El Pionero de la Generación Eléctrica con Viento

- 1887-1888
 - Charles Brush Construye la primera turbina eólica completamente automatizada
 - Dinamo Eficiente
 - 12 kW
 - 144 Aspas de madera de Cedro
 - Diámetro de 17 m
 - Vida útil de 20 años
 - Usado para cargar las baterías de su mansión

El Viento y la Generación Eléctrica

- Primer Desarrollo Masivo para Generación de Electricidad.
 - Principio del Siglo 20
 - El Danés Poul La Cour
 - Máquinas de Corriente Continua
 - Almacenamiento en Baterías
 - Usado para crear hidrogeno y oxigeno.
 - Creo los primeros Túneles de Viento
 - Grandes Avances en Aerodinámica
 - Descubrió que para Generar Electricidad
 - Menos aspas -> Mayor Eficiencia

El Viento y la Generación Eléctrica

- 1919 Albert Betz determina límite teórico de la potencia eólica
 - 59 % de máxima extracción
- Desarrollo de la Generación
 Eléctrica se estanca hasta segunda
 Guerra Mundial
 - Bajos precios del petróleo
- 1956-57 Johannes Juul crea primera turbina Eólica de Corriente Alterna
 - 200 kW
 - Generador de Inducción

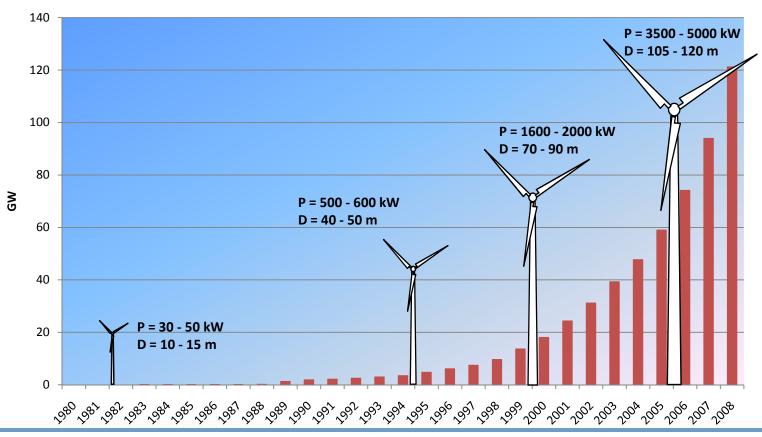
El Viento y la Generación Eléctrica

- Crisis del petróleo de 1973 y 79
 Promueve el desarrollo mundial de energías renovables en el mundo
- 1980 Carpintero Danés C. Riisager Construye turbina de 22 kW
 - Impulsando la industria Danesa de turbina Eólicas.
- 1986 Primer Parque marítimo en Ebeltoft, Dinamarca (11x55 kW)

Comienzos de la Industria Eólica

Dinamarca

- Es el primer país en desarrollar turbinas eólicas en serie de 33 a 55 kW. (radios de 10 a 15 m)
 - Subsidio fiscal promueve e incentiva el desarrollo.


Alemania

- Desarrollo lento durante los 80
- 1991 el EFL (Electricity Feed law) el gran incentivo
 - Garantizaba acceso a Red
 - Tarifa fija de generación
- En 2000, REL (Renewable Energy Act)
 - Fomenta desarrollo de parques inland
 - Crea marco legal para instalaciones offshore

Crecimiento de la Energía Eólica

 Gran Crecimiento Mundial especialmente durante los 90

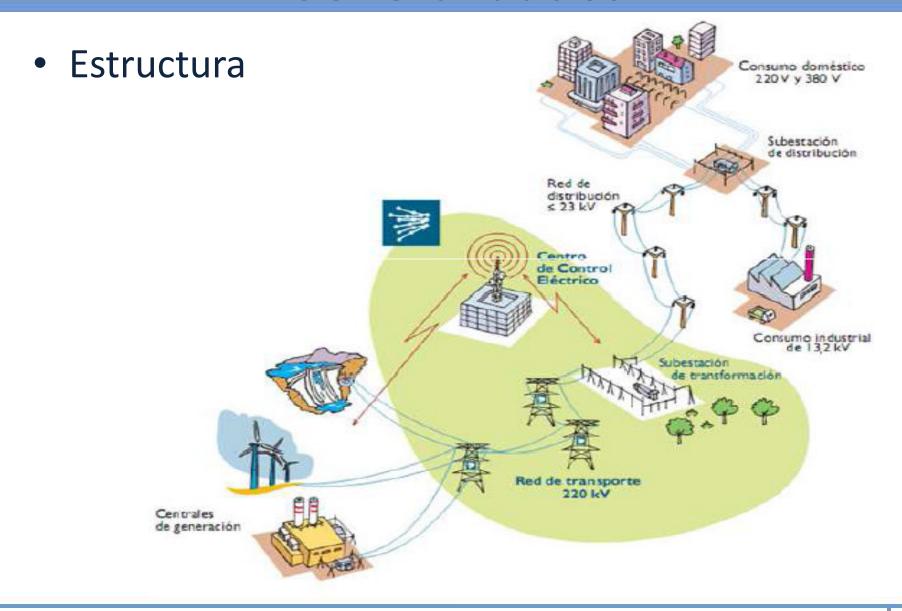
Capacidad Eólica Mundial Instalada

Crecimiento de la Energía Eólica

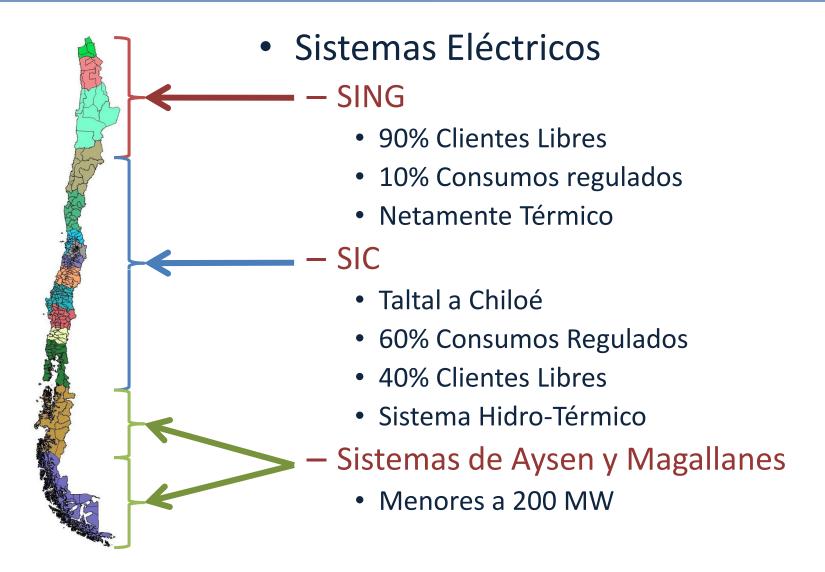
 Uso de subsidios y tarifas especiales incentivó la instalación de Centrales de Energía Eólica y otras ERNC.

- Dos Tipos de Esquemas de Subsidio
 - Sistema Feed in Tariff
 - Sistema de Cuota

Crecimiento de la Energía Eólica


- Sistema Feed in Tariff
 - El Gobierno paga un Precio Fijo por cada MWh generado
 - Precio se define tal de que pague la inversión en un cierto plazo
 - Países Como Dinamarca, Alemania y España lo aplicaron
 - Estos Países poseen los mayores niveles de penetración
- Sistema de Cuota
 - El Gobierno fija una cantidad de MWh que deben generarse a base de ERNC por Ley.
 - Se crea un mercado de certificado de Generación ERNC
 - Inglaterra, Italia y Suecia algunos de los países que lo Implementaron
 - Básicamente la Multa fija el Precio de Incentivo para generar en ERNC

2. Desarrollo en Chile


Generalidades, La Ley y el Mercado Eléctrico

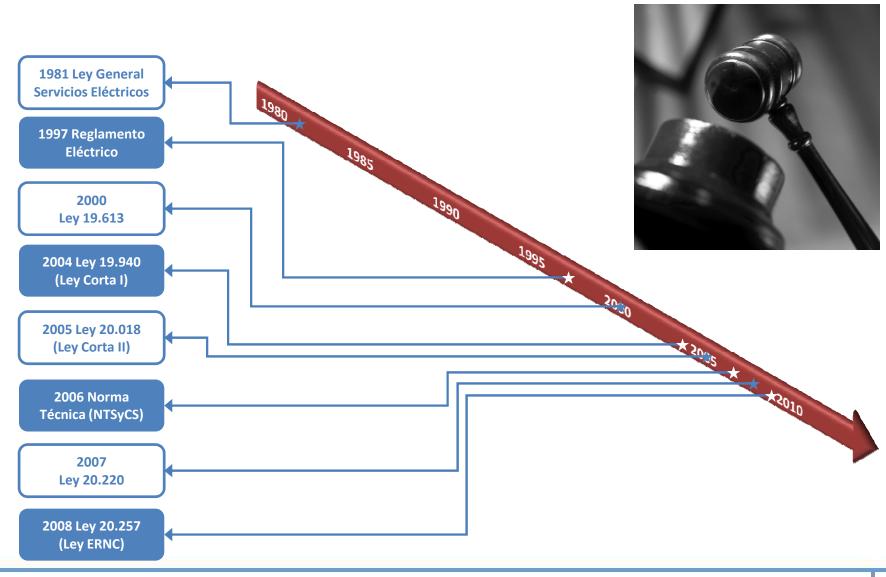
Nociones Básicas

Generalidades

Generalidades

Generalidades

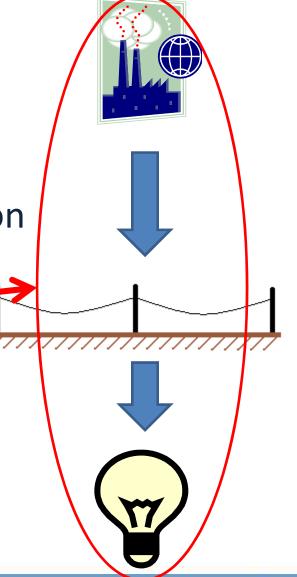
- Demanda Eléctrica
 - Estacionalidad (variación meses de Invierno y Verano)
 - Característica Cíclica (Comportamiento periódico diario)


La Legislación

 Chile ha tenido grandes cambios normativos y regulatorios a su Legislación de Servicios Eléctricos.

 Primer País Mundial en Privatizar el Sistema Eléctrico

La Ley Eléctrica y sus Grandes Cambios


Ley General de Servicio (LGSE)

 Privatización del Sector Eléctrico Chileno

 Desintegración Vertical de segmentos Generación, Transmisión y Distribución

No puede haber un solo dueño

 Introducción de Competencia en Segmento Generación

Ley General de Servicio (LGSE)

 Permite Contratos de Suministro entre Generadores y Consumidores

Contratos Financieros

- Operación a Mínimo Costo Global
- Creación del CDEC-SIC
 - Centro de Despacho
 - Empresa que determina la operación del sistema velando por:
 - La seguridad
 - La Calidad
 - Al menor costo operacional posible

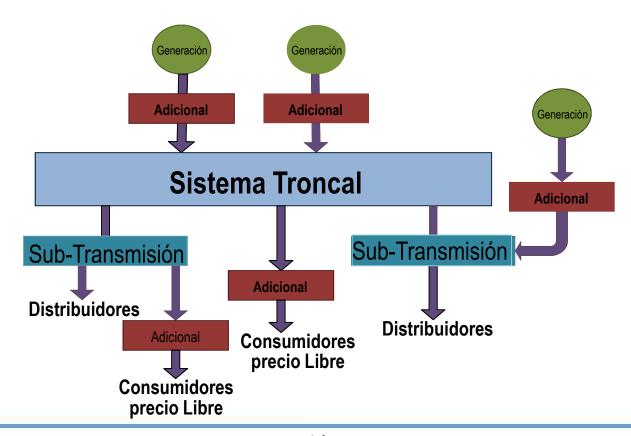
Reglamento Eléctrico (DS N°327)

- Establece las condiciones Legales, Técnicas y Comerciales, para:
 - Concesiones de Servidumbre
 - Tarificación
 - Conexión al sistema
 - Operación
 - Etc.

"El manual del Buen Comportar Eléctrico"

Ley 19.613 (99 bis)

- Decreto de Racionamiento
 - Racionamientos por
 - Falla de Centrales
 - Hidrologías Secas

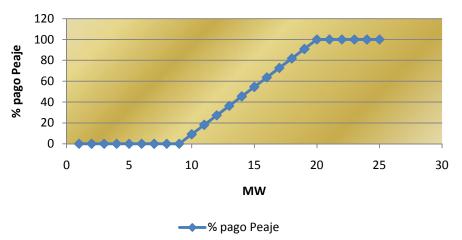


Ya no se Declaran Fortuitos o de Fuerza Mayor

 Los generadores deberán pagar a los clientes regulados los cargos por desabastecimiento de Energía

Ley 19.940 (Ley Corta I)

- Define el Sistema de Transporte de Energía Eléctrica
 - Establece Marco Regulatorio para su Operación
 - División Sistemas Troncal, Adicional y Subtransmisión


Ley 19.940 (Ley Corta I)

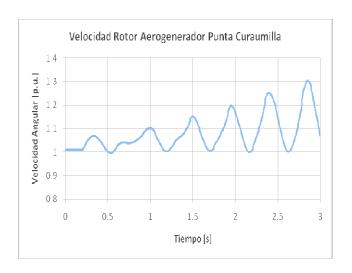
- Establece Nuevo régimen de tarifas Peajes
 - AVI + COMA
- Establece el Panel de Expertos
- Tarificación Sistemas Medianos (1.5 a 200 MW)
- Servicios Complementarios (Art. 91 bis)
 - Importante para ERNC
 - Aun no se preparan los reglamentos
- Operación, Peajes y acceso de pequeñas centrales

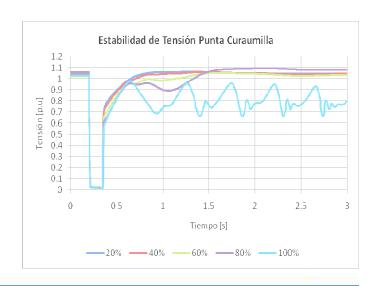
Ley 19.940 (Ley Corta I)

- Pequeñas Centrales <u>No convencionales</u>
 - Centrales conectadas a Subtransmisión < 20 MW
 - Exentas de pagar peajes del Sist. Troncal
 - Proporcionalmente para > 9 MW

Excención de Pago de Peaje

- Centrales Conectadas a Distribución
 - Acceso permitido centrales < 9 MW
 - Obras necesarias para evacuar energía
 - Las paga el generador


Ley 20.018 (Ley Corta II)


- Regula el Tema de la Licitaciones de Contratos de Suministro para empresas de Distribución
 - Crea el marco legal para las Licitaciones

Establece las restricciones para la licitaciones

Norma Técnica Seguridad y Calidad de Servicio

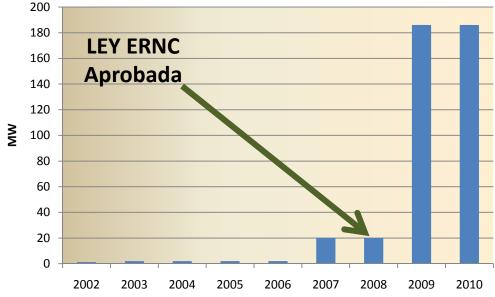
- Reemplaza varias Definiciones del DS 327
 - Establece Restricciones mínima de operación del sistema referente ala Seguridad y Calidad:
 - Frecuencia
 - Tensión
 - Factor de Potencia
 - Recuperación Dinámica
 - Márgenes de Estabilidad
 - Exigencias Mínimas de Diseños de Instalaciones

Ley 20.220

- La Ley Tokman
 - Mejora el Marco Legal
 - Resguardar el suministro a Clientes Regulados en caso que Generadores se vayan a Quiebra.
 - Seguir asegurando el suministro de los clientes

Ley ERNC 20.257

- Modifica LGSE con respecto a ERNC
 - Definiciones de energías ERNC
 - Solar
 - Eólica
 - Hidráulica de Pasada < 20 MW
 - Etc.
- Requerimientos de Generación Mínima por Fuentes ERNC
 - 5% en 2010 hasta 2014
 - Incremento de 0,5% cada año 2015 hasta 2024
 - 10% en 2024 en adelante
- Multa
- 0,4 UTM por MWh primeros años
- 3 años de Incumplimiento es 0,6 UTM por MWh



Crecimiento Energía Eólica Chile

- Capacidad Eólica Instalada en Chile
 - Alto Bahuales (Sistema Aysen)
 - Centrales Zona Los Vilos SIC

Año	MW
2002	1.3
2003	2.0
2004	2.0
2005	2.0
2006	2.0
2007	20.1
2008	20.1
2009	186.1
2010	186.1

Capacidad Eólica Chilena Instalada

