EL4005 Principios de Comunicaciones Clase No.25: Diseño Óptimo de Receptores Digitales

Patricio Parada

Departamento de Ingeniería Eléctrica Universidad de Chile

10 de Noviembre de 2010

Contenidos de la Clase (1)

Diseño Óptimo de Receptores

Correladores

Demodulador de Filtro Adaptado

Resumen y Lecturas

Motivación

- Medidas de desempeño nos permiten saber qué límite podemos lograr.
- Ahora nos preocuparemos de determinar la estructura que debe tener un receptor que se acerque a este límite.

Receptores óptimos para señales moduladas binarias en AWGN

• Consideremos el modelo de canal donde el mensaje

$$c(t) = \pm a$$

para los instantes de muestreo (t=lT), y el ruido aditivo es blanco y Gaussiano, con media cero y varianza $N_0/2$.

- Estudiaremos dos tipos de demoduladores:
 - (a) correladores (basados en cálculo de correlaciones).
 - (b) filtro adaptado (matched filter).

Demodulador tipo Correlador (1)

para Señalización Antipodal

 Consideremos primero un esquema de señalización antipodal del tipo

$$c(t) = \sum_{l=-\infty}^{\infty} a_l s(t - lT),$$

donde s(t) es un pulso cuadrado de energía unitaria, y $a_l \in \{-a, +a\}.$

Demodulador tipo Correlador (2)

para Señalización Antipodal

La señal recibida es

$$r(t) = \sum_{l=-\infty}^{\infty} a_l s(t - lT) + n(t).$$

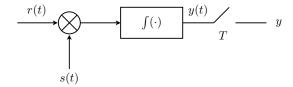
• Si sólo nos concentramos en el intervalo $0 \le t \le T$ tenemos

$$r(t) = \pm as(t) + n(t).$$

• En un correlador la señal recibida es multiplicada por la señal s(t) e integrada en el intervalo $\lceil 0,T \rceil$

Demodulador tipo Correlador (3)

para Señalización Antipodal



Demodulador tipo Correlador (4)

para Señalización Antipodal

La señal a la salida del correlador

$$y(t) = \int_0^t r(\tau)s(\tau)d\tau$$
$$= \int_0^t (\pm as(\tau) + n(\tau))s(\tau)d\tau$$
$$= \pm a \int_0^t s(t)s(\tau)d\tau + \int_0^t n(\tau)s(\tau)d\tau$$

Demodulador tipo Correlador (5)

para Señalización Antipodal

• Por lo tanto, en el instante t=T tendremos

$$y(T) = \pm a + n$$

donde n es una variable aleatoria Gaussiana definida por

$$n = \int_0^T n(t)s(\tau)d\tau$$

Demodulador tipo Correlador (6)

para Señalización Antipodal

• El valor esperado de n es:

$$\mathbb{E}[n] = \int_0^T \mathbb{E}[n(\tau)]s(\tau)d\tau = 0, \tag{1}$$

Demodulador tipo Correlador (7)

para Señalización Antipodal

y la varianza de n es

$$\begin{aligned} \operatorname{Var}[n] &= \mathbb{E}[n^2] \\ &= \mathbb{E}\Big[\int_0^T \int_0^T n(\tau) n(\tau') s(\tau) s(\tau') d\tau d\tau'\Big] \\ &= \int_0^T \int_0^T \mathbb{E}[n(\tau) n(\tau')] s(\tau) s(\tau') d\tau d\tau' \\ &= \int_0^T \mathbb{E}[n(\tau) n(\tau)] s(\tau) s(\tau) d\tau \\ &= \frac{N_0}{2} \int_0^T s^2(\tau) d\tau = \frac{N_0}{2} \end{aligned}$$

Demodulador tipo Correlador (8)

para Señalización Antipodal

- Por lo tanto, n es una variable aleatoria Gaussiana con media cero y varianza $N_0/2$.
- La densidad condicional en $\pm a$ es

$$f_{R|C}(r|\pm a) = \frac{1}{\sqrt{\pi N_0}} e^{-(r\mp a)^2/N_0}$$
 (2)

 La salida del correlador es entrega a un dispositivo que decide el símbolo detectado, tal como vimos en detección antipodal al comienzo de este capítulo.

Correlador para Señalización Binaria Ortogonal (1)

- Consideremos ahora el caso en que utilizamos dos señales ortogonales para hacer la modulación binaria.
- Esto es, utilizamos las señales

$$\mathbf{s}_1 = (s_{11}, s_{12}) = (a, 0)$$

$$\mathbf{s}_2 = (s_{21}, s_{22}) = (0, a)$$

Entonces, en el intervalo $0 \le t \le T$ tenemos

$$r(t) = s_m(t) + n(t), m = 1, 2.$$

Correlador para Señalización Binaria Ortogonal (2)

- La señal recibida es bidimensional dado que $s_m(t)$ es un vector de dimensión 2.
- Por lo tanto, debemos proyectar la señal recibida sobre las dos señales que forman la base que representa el espacio:

$$\varphi_1(t)$$
 y $\varphi_2(t)$.

Obtenemos

$$y_m(t) = \int_0^T r(\tau)\varphi_m(\tau)d\tau, \ m = 1, 2.$$
 (3)

Correlador para Señalización Binaria Ortogonal (3)

• Supongamos que la señal transmitida es

$$s_1(t) = s_{11}\varphi_1(t),$$

por lo tanto,

$$y_1 \equiv y_1(T) = \int_0^T [s_{11}\varphi_1(\tau) + n(\tau)]\varphi_1(\tau)d\tau$$
$$= s_{11} + n_1$$
$$= a + n_1$$

Correlador para Señalización Binaria Ortogonal (4)

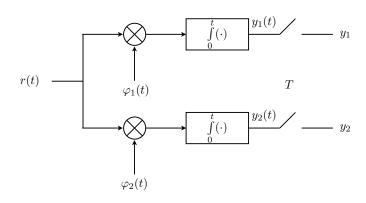
donde

$$n_1 = \int_0^T n(\tau)\varphi_1(\tau)d\tau$$

es una variable aleatoria Gaussiana (la deducción es la misma vista en la sección anterior).

• Por lo tanto, podemos utilizar la siguiente estructura de correlador:

Correlador para Señalización Binaria Ortogonal (5)



Correlador para Señalización Binaria Ortogonal (6)

• La salida del segundo correlador es

$$y_2 \equiv y_2(T) = \int_0^T [s_{11}\varphi_1(\tau) + n(\tau)]\varphi_2(\tau)d\tau$$

$$= s_{11} \int_0^T \varphi_1(\tau)\varphi_2(\tau)d\tau + \int_0^T \varphi_2(\tau)n(\tau)d\tau$$

$$= n_2$$

Correlador para Señalización Binaria Ortogonal (7)

• La salida del correlador es

$$\mathbf{y} = (a + n_1, n_2). \tag{4}$$

• Similarmente, si

$$s_2(t) = s_{22}\varphi_2(t),$$

tenemos que

$$\mathbf{y} = (n_1, a + n_2). \tag{5}$$

 La salida del correlador es la entrada de un detector binario con entrada vectorial.

Correlador para Señalización Binaria Ortogonal (8)

• Notemos que (n_1,n_2) define un vector Gaussiano multivariado con media

$$\mathbb{E}[(n_1, n_2)] = (0, 0)$$

y matriz de covarianzas

$$\sum = \begin{bmatrix} \mathbb{E}[n_1 n_1] & \mathbb{E}[n_1 n_2] \\ \mathbb{E}[n_2 n_1] & \mathbb{E}[n_2 n_2] \end{bmatrix} = \frac{N_0}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Como n_1 y n_2 no están correlacionadas, y (n_1, n_2) es Gaussiano, entonces n_1 y n_2 son independientes.

Correlador para Señalización Binaria Ortogonal (9)

• Por lo tanto, la densidad conjunta entre (y_1,y_2) condicional a la transmisión de \mathbf{s}_1 es

$$f_{\mathbf{y}|\mathbf{s}}(y_1, y_2|\mathbf{s}_1) = \left(\frac{1}{\sqrt{\pi N_0}}\right)^2 e^{-(y_1 - a)^2/N_0} e^{-y_2^2/N_0}.$$
 (6)

• Similarmente, la densidad conjunta entre (y_1,y_2) condicional a la transmisión de \mathbf{s}_2 es

$$f_{\mathbf{y}|\mathbf{s}}(y_1, y_2|\mathbf{s}_2) = \left(\frac{1}{\sqrt{\pi N_0}}\right)^2 e^{-y_1^2/N_0} e^{-(y_2 - a)^2/N_0}.$$
 (7)

Correlador para Señalización Binaria Ortogonal (10)

• Podemos observar que una consecuencia que n_1 y n_2 sean independientes es el hecho que

$$f_{\mathbf{y}|\mathbf{s}}(y_1, y_2|\mathbf{s}_m) = f_{y_1|\mathbf{s}}(y_1|\mathbf{s}_m) f_{y_2|\mathbf{s}}(y_2|\mathbf{s}_m)$$
 (8)

Demodulación via Filtro Adaptado (1)

en Señalización Antipodal

- Vamos a utilizar un filtro diferente para hacer la detección.
- Utilizaremos los principios de demodulación y detección considerando el caso binario antipodal y con señalización ortogonal.
- La señal recibida por el receptor es

$$r(t) = s_m \varphi(t) + n(t), \ 0 \le t \le T; \ m = 1, 2.$$
 (9)

donde $s_1 = +a$, y $s_2 = -a$.

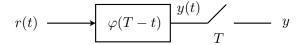
Demodulación via Filtro Adaptado (2)

en Señalización Antipodal

· Consideremos un filtro lineal cuya respuesta al impulso es

$$h(t) = \varphi(T - t) \ 0 \le t \le T, \tag{10}$$

es decir, igual a una versión en reversa de la señal $\varphi(t)$.



Demodulación via Filtro Adaptado (3)

en Señalización Antipodal

• La salida del filtro lineal es

$$y(t) = \int_{0}^{t} r(\tau)h(t-\tau)d\tau$$
$$= \int_{0}^{t} r(\tau)\varphi(T-t+\tau)d\tau$$

Demodulación via Filtro Adaptado (4)

en Señalización Antipodal

• Por lo tanto, en t=T

$$y \equiv y(T) = \int_{0}^{T} r(\tau)\varphi(\tau)d\tau$$
$$= \int_{0}^{T} [s_{m}\varphi(\tau) + n(\tau)]\varphi(\tau)d\tau$$
$$= s_{m} \int_{0}^{T} \varphi(\tau)\varphi(\tau)d\tau + \int_{0}^{T} n(\tau)\varphi(\tau)d\tau$$
$$= s_{m} + n$$

Demodulación via Filtro Adaptado (5)

en Señalización Antipodal

- Es decir, la salida del filtro ajustado es la misma que un correlador.
- Consideremos por ejemplo la señal

$$\varphi(t) = A \frac{t}{T}, \ 0 \le t \le T.$$

entonces.

$$h(t) = \varphi(T - t) = A\left(1 - \frac{t}{T}\right), \ 0 \le t \le T.$$

У

$$s(t) = \int_{0}^{t} \varphi(\tau)\varphi(T - t + \tau)d\tau$$

Demodulación via Filtro Adaptado (6)

en Señalización Antipodal

$$s(t) = \int_{0}^{t} \frac{A}{T} \tau \frac{A}{T} (T - t + \tau) \mathbf{1}_{[0,T]}(\tau) \mathbf{1}_{[t-T,t]}(\tau) d\tau$$

donde la función

$$\mathbf{1}_{[a,b]}(t) = egin{cases} 1 & a \leq t \leq b \ 0 & ext{en otro caso.} \end{cases}$$

recibe el nombre de función indicatriz o función característica del conjunto [a,b].

Demodulación via Filtro Adaptado (7)

en Señalización Antipodal

• La multiplicación de dos funciones características se puede escribir en términos de una sola, de la siguiente forma

$$\mathbf{1}_{[a,b]}(t)\mathbf{1}_{[c,d]}(t) = \mathbf{1}_{[a,b]\cap[c,d]}(t)$$

obviamente, si b < c, $\mathbf{1}_{[a,b]}(t)\mathbf{1}_{[c,d]}(t) = 0$.

• En general,

$$\mathbf{1}_{[a,b]\cap[c,d]}(t) = \mathbf{1}_{[\max(a,c),\min(b,d)]}(t).$$

con la suposición tácita que $máx(a, c) \leq min(b, d)$.

Demodulación via Filtro Adaptado (8)

en Señalización Antipodal

- Volviendo al problema original, tenemos que considerar 4 subcasos:
- Si t<0, la función $\mathbf{1}_{[0,T]}(\tau)=0$ en todo el intervalo de integración, y por lo tanto,

$$s(t) = 0.$$

si t < 0.

Demodulación via Filtro Adaptado (9)

en Señalización Antipodal

• Si 0 < t < T.

$$\begin{split} s(t) &= \frac{A^2}{T^2} \int_0^t \tau \times (T - t + \tau) \mathbf{1}_{[0,T]}(\tau) \mathbf{1}_{[t-T,t]}(\tau) d\tau \\ &= \frac{A^2}{T^2} \int_0^t \tau \times (T - t + \tau) \mathbf{1}_{[0,t]}(\tau) d\tau \\ &= \frac{A^2}{T^2} \int_0^t [\tau(T - t) + \tau^2) d\tau = \frac{A^2}{T^2} \left[\frac{t^2}{2} (T - t) + \frac{t^3}{3} \right]. \end{split}$$

Entonces, $s(T) = TA^2/3$.

Demodulación via Filtro Adaptado (10)

en Señalización Antipodal

• Si T < t < 2T

$$s(t) = \frac{A^2}{T^2} \int_0^t \tau \times (T - t + \tau) \mathbf{1}_{[0,T]}(\tau) \mathbf{1}_{[t-T,t]}(\tau) d\tau$$
$$= \frac{A^2}{T^2} \int_0^t \tau \times (T - t + \tau) \mathbf{1}_{[t-T,T]}(\tau) d\tau$$
$$= \frac{A^2}{T^2} \int_0^T [\tau(T - t) + \tau^2) d\tau$$

Demodulación via Filtro Adaptado (11)

en Señalización Antipodal

• Es decir,

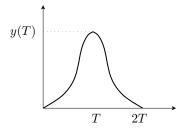
$$s(t) = \frac{A^2}{T^2} \left[\frac{T^2}{2} (T - t) - \frac{(t - T)^2}{2} (T - t) + \frac{T^3 - (t - T)^3}{3} \right].$$

y por lo tanto, $s(T) = TA^2/3$.

- Además, si t = 2T, s(2T) = 0.
- Para t>2T se tiene que s(t)=0 pues la función $[t-T,t]\cap [0,T]=\emptyset.$

Demodulación via Filtro Adaptado (12)

en Señalización Antipodal



• El valor máximo de la señal y(t) se alcanza en y(T) y corresponde a la energía de la señal $\varphi(t)$.

Señalización Binaria Ortogonal (1)

- En la sección de uso de correladores con señalización binaria ortogonal vimos que la demodulación de una señal modulada de esta forma requería del uso de dos correladores.
- En el caso del filtro adaptado, esto también es necesario.
- Consideremos los filtros con respuestas al impulso dados por

$$h_1(t) = \varphi_1(T-t), \ 0 \le t \le T,$$

$$h_2(t) = \varphi_2(T - t), \ 0 < t < T.$$

Señalización Binaria Ortogonal (2)

Definimos las salidas de cada filtro como

$$y_m(t) = \int_0^t r(\tau)h_m(t-\tau)d\tau, \ m = 1, 2.$$
 (11)

• Las muestras en t=T son

$$y_m = \int_0^t r(\tau)h_m(t-\tau)d\tau,$$

=
$$\int_0^t r(\tau)\varphi_m(\tau)d\tau, \ m = 1, 2.$$

Señalización Binaria Ortogonal (3)

 Las salidas de ambos filtros son idénticas a las del banco de correladores.

Resumen

Hemos revisado:

- Demodulador tipo correlador (para señalización antipodal y ortogonal)
- Demodulador tipo filtro adaptado (para señalización antipodal y ortogonal)