Principios de Comunicaciones Conceptos de Probabilidad y Procesos Aleatorios

Patricio Parada

Departamento de Ingeniería Eléctrica Universidad de Chile

Contenidos (1)

Conceptos de Probabilidad y Procesos Aleatorios

Definiciones Básicas

Variables Aleatorias

Variables Aleatorias Importantes

Momentos de una Variable Aleatoria

Vectores Aleatorios

Sumas de Variables Aleatorias

Procesos Aleatorios

Conceptos Básicos

2 of 99

Contenidos (2)

Procesos Estacionarios

Independencia entre Procesos Aleatorios

Procesos Aleatorios y Sistemas Lineales

Densidad Espectral de Potencia

Procesos Gaussianos y Blancos

Procesos Gaussianos

Procesos Blancos

Procesos Pasabanda

Motivación

- La inherente naturaleza de un sistema de comunicaciones se debe a dos razones fundamentales:
 - o La naturaleza aleatoria de las fuentes de información
 - Las alteraciones y perturbaciones introducidas por el medio de comunicación.

Espacio Muestral, Eventos y Probabilidad

Concepto fundamental: Experimiento Aleatorio.
 Es un experimento cuyo resultado no se puede predecir con certeza.

Espacio Muestral, Eventos y Probabilidad

- Espacio Muestral: es el conjunto de todos los resultados posibles de un experimento. Lo denotaremos por Ω .
- Un espacio muestral puede ser
 - **discreto**: si el número de elementos en Ω es finito.
 - o **infinito numerable**: si el número de elementos en Ω es infinito, pero existe una biyección entre Ω y los números naturales \mathbb{N} .
 - o no discreto: el resto de los casos.
- Ejemplos:
 - 1. $\Omega = \{Cara, Sello\}$: lanzamiento de una moneda.
 - 2. $\Omega = \{1, 2, 3, 4, 5, 6\}$: lanzamiento de un dado.
 - 3. $[0, \infty[$: vida útil de una ampolleta.

Espacio Muestral, Eventos y Probabilidad (1)

- Evento: corresponde a un subconjunto del espacio muestral, es decir, a un conjunto de posibles resultados.
- Ejemplos:
 - 1. $E = \{ el \text{ resultado de tirar un dado es un número par} \}.$
 - 2. $E = \{ \text{la vida útil de una ampolleta es mayor a 3 meses} \}.$
- Probabilidad P: es una función que asigna valores no negativos a todos los eventos E de forma tal que:
 - (a) $0 \le P(E) \le 1$ para todos los eventos.
 - (b) $P(\Omega) = 1$.

Espacio Muestral, Eventos y Probabilidad (2)

(c) Si E_1, E_2, \ldots son disjuntos, es decir,

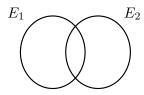
$$E_i \cap E_j = \emptyset \text{ si } i \neq j,$$

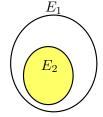
entonces,

$$P\Big(\bigcup_{i=1}^{\infty}\Big) = \sum_{i=1}^{\infty} P(E_i). \tag{1}$$

Propiedades Importantes

- 1. $P(E^c) = 1 P(E)$, donde E^c denota el complemento de E.
- **2**. $P(\emptyset) = 0$.
- 3. $P(E_1 \cup E_2) = P(E_1) + P(E_2) P(E_1 \cap E_2)$.
- 4. Si $E_1 \subset E_2$ entonces $P(E_1) \leq P(E_2)$.





Probabilidad Condicional (1)

- P: Cómo incluimos nuestro conocimiento de un fenómeno para calcular su probabilidad de ocurrencia?
- R: Mediante el concepto de Probabilidad Condicional
- Si las probabilidades asociadas a dos eventos E_1 y E_2 son $P(E_1)$ y $P(E_2)$ respectivamente, y un observador sabe que E_2 ha ocurrido, cambia la probabilidad que ocurra E_1 ?
- Si hay alguna relación entre los eventos, entonces la ocurrencia de E_2 puede cambiar $P(E_1)$. Si no la hay, entonces $P(E_1)$ debe mantenerse inalterado.

Probabilidad Condicional (2)

Ambas situaciones quedan resumidas en la siguiente fórmula:

$$P(E_1|E_2) = \begin{cases} \frac{P(E_1 \cap E_2)}{P(E_2)} & P(E_2) \neq \emptyset \\ 0 & \text{en otro caso.} \end{cases}$$
 (2)

• Si la ocurrencia de E_2 no afecta E_1 , decimos que los eventos son independientes.

Probabilidades Totales

- Partición: una partición de un conjunto Ω es una conjunto de subconjuntos de Ω tal que
 - (i) $E_i \cap E_j = \emptyset$ para todo $i \neq j$.
 - (ii) $\bigcup_{i=1}^{n} E_i = \Omega$.
- Teorema (Probabilidades Totales): Sea $A\subset\Omega$ un evento cualquiera, y asuma las probabilidades condicionales

$$\left\{ P(A|E_i) \right\}_{i=1}^n$$

conocidas, donde los $\{E_i\}_{i=1}^n$ forman una partición sobre Ω .

Entonces

$$P(A) = \sum_{i=1}^{n} P(E_i) P(A|E_i).$$
 (3)

Regla de Bayes

 Las fórmula de probabilidades totales puede ser utilizada para calcular

$$P(E_i|A)$$

• Corolario (Regla de Bayes): Sea $A\subset\Omega$ un evento cualquiera, y asuma que las condiciones para el teorema anterior se mantienen.

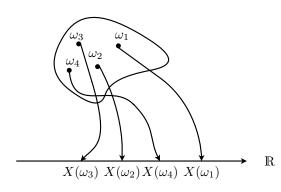
Entonces

$$P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{j=1}^{n} P(E_j)P(A|E_j)}.$$
 (4)

Variables Aleatorias (1)

- Definición: Una variable aleatoria (v.a.) es una función medible desde el espacio muestral Ω al conjunto de los números reales.
- Las variables aleatorias se denotan con mayúsculas X, mientras que los valores que ellas toman (realizaciones) con minúsculas x.

Variables Aleatorias (2)



Distribución de Probabilidad (1)

 Definición: La función distribución de probabilidad acumulativa de una v.a. X es

$$F_X(x) = P\{\omega \in \Omega : \ X(\omega) \le x\}$$

$$= P(X \le x).$$
(5)

- Propiedades:
 - 1. $0 \le F_X(x) \le 1$.
 - 2. $F_X(x)$ es no decreciente.
 - 3. $\lim_{x \to -\infty} F_X(x) = 0$ y $\lim_{x \to +\infty} F_X(x) = 1$.

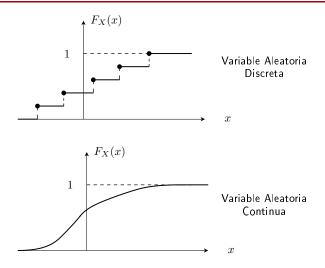
Distribución de Probabilidad (2)

4. $F_X(x)$ es continua por la derecha, es decir

$$\lim_{\epsilon \to 0} F(x + \epsilon) = F(x).$$

- 5. $P(a < X \le b) = F_X(b) F_X(a)$.
- 6. $P(X = a) = F_X(a) F_X(a^-)$.

Distribución de Probabilidad



Densidades de Probabilidad (1)

Definición: La función de densidad de probabilidad de una variable aleatoria continua X es la derivada de $F_X(x)$:

$$f_X(x) = \frac{d}{dx} F_X(x). \tag{6}$$

- Propiedades:

 - 1. $f_X(x) \ge 0$. 2. $\int_{-\infty}^{\infty} f_X(x) dx = 1$. 3. $\int_{a}^{b} f_X(x) dx = P(a < X \le b)$.

Densidades de Probabilidad (2)

4. en general

$$P(X \in A) = \int_{x \in A} f_X(x) dx$$

5.
$$F_X(x) = \int_{-\infty}^x f_X(u) du$$
.

Función de Masa de Probabilidad (1)

- Definición: La función de masa de probabilidad (f.m.p) de una variable aleatoria discreta X, corresponde al equivalente a las densidades de probabilidad del caso continuo.
- La f.m.p. queda definida como

$$p_i = P(X = x_i). (7)$$

- Propiedades:
 - 1. $p_i \geq 0$.
 - $\sum_{i} p_{i} = 1.$

Función de Masa de Probabilidad (2)

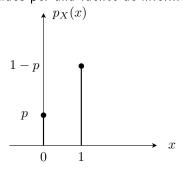
- 3. $P(a < X \le b) = \sum_{i:a < x \le b} p_i$.
- 4. en general

$$P(X \in A) = \sum_{i \in A} p_i$$

5.
$$F_X(x) = \sum_{i \le x} p_i$$
.

V.A. Bernoulli (p)

• Bernoulli (p). Una v.a. Bernoulli (p) es una v.a. que toma sólo dos valores, como por ejemplo, 0 y 1 con probabilidad p y 1-p. Aplicación: modela los errores introducidos por un canal binario, o los símbolos emitidos por una fuente de información binaria.



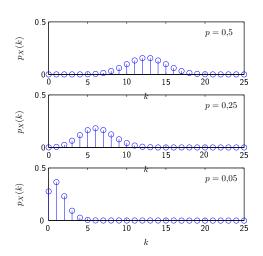
VA Binomial (p, n)

 Binomial (p, n). Una v.a. binomial (p, n) es una v.a. que representa n repeticiones de una v.a. Bernoulli (p).
 La f.m.p. corresponde a

$$P(X=k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & 0 \le k \le n \\ 0 & \text{en otro caso} \end{cases}.$$

Aplicación: Esta v.a. modela el número de bits erróneos recibidos en una transmisión, en un canal binario que comete errores con probabilidad p.

V.A. Binomial (p,n)



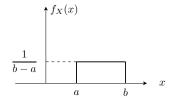
V.A. Uniforme [a, b]

• Uniforme [a,b]. Es una v.a. continua que toma valores no nulos en el intervalo $[a,b],\ a,b\in\mathbb{R}.$

Su f.d.p. es

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{en otro caso} \end{cases}.$$

Aplicación: Esta v.a. sirve para modelar parámetros sobre lo único que se sabe es que pertenecen a un rango dado.



V.A. Gaussiana $\mathcal{N}[\mu, \sigma]$

• Gaussiana $\mathcal{N}[\mu,\sigma]$. Es una variable cuya f.d.p. es

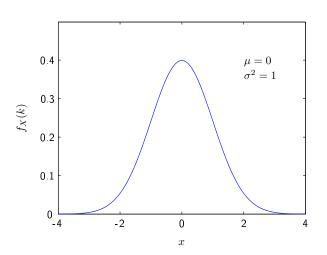
$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \ x \in \mathbb{R}.$$

La v.a. Gaussiana tiene dos parámetros:

- \circ μ : valor medio de X.
- o σ : desviación estándar de X respecto de la media μ .

La v.a. Gaussiana $\mathcal{N}(0,1)$ recibe el nombre de normal estándar.

V.A. Gaussiana $\mathcal{N}[\mu,\sigma]$



V.A. Gaussiana $\mathcal{N}[\mu,\sigma]$

- Aparece frecuentemente en problemas de comunicaciones.
- Modela el ruido termal introducido por los equipos de comunicaciones en el canal.
- La función acumulativa de probabilidad de una $\mathcal{N}(0,1)$ se puede expresar de dos formas:
 - \circ La función de error erf(x), que corresponde a

$$\operatorname{erf}(x) \triangleq \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du = F_X(x).$$

 \circ La función Q(x) definida como

$$Q(x) \triangleq \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du = 1 - F_X(x).$$

• La función Q(x) representa el área en la cola de la distribución.

Propiedades de la Función Q(x)

•
$$Q(-x) = 1 - Q(x)$$
.

•
$$Q(0) = \frac{1}{2}$$
.

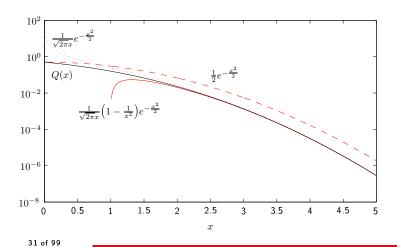
•
$$Q(\infty) = 0$$
.

•

$$\frac{1}{\sqrt{2\pi x}} \left(1 - \frac{1}{x^2} \right) \exp\left(-\frac{x^2}{2} \right) < Q(x) < \frac{1}{\sqrt{2\pi x}} \exp\left(-\frac{x^2}{2} \right) \tag{8}$$

para todo x > 0.

Cotas para la Función Q(x)



Función de una Variable Aleatoria

- Una función Y=g(X) puede ser una variable aleatoria también.
- Si la función es continua o al menos tiene un número finito de discontinuidades, podremos asegurar que Y es una variable aleatoria también.
- ullet La distribución de Y la podemos obtener utilizando la definición

$$F_Y(y) = P\{\omega \in \Omega : g(X(\omega)) \le y\}. \tag{9}$$

Ejemplo

Sea X una v.a. Gaussiana con media $\mu=0$ y desviación estándar $\sigma=1$. Determine la función densidad de probabilidad de Y=aX+b, con $a,b\in\mathbb{R},\ a\neq 0$.

SOLUCIÓN

En este caso y=g(x)=ax+b. Por lo tanto, $x=\frac{y-b}{a}.$ Por lo tanto,

$$P\{\omega \in \Omega : g(X(\omega)) \le y\} = P\{\omega \in \Omega : aX(\omega) + b \le y\}$$
$$= P\{\omega \in \Omega : X(\omega) \le \frac{y - b}{a}\}$$
$$= F_X\left(\frac{y - b}{a}\right).$$

Ejemplo (1)

Por lo tanto,

$$f_Y(y) = \frac{dF_Y}{dy}(y)$$

$$= \frac{dF_Y}{dy} \left(\frac{y-b}{a}\right)$$

$$= \frac{d}{dx} F_X(x) \times \frac{dx}{dy}.$$

$$= f_X(x) \times \frac{1}{dy/dx}.$$

Ejemplo (2)

En este caso entonces tenemos:

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$
$$\frac{dy}{dx} = g'(x) = a.$$

Ejemplo

Por lo tanto,

$$f_Y(y) = \frac{1}{\sqrt{2\pi a}} \exp\left(-\frac{(x-b)^2}{2a^2}\right).$$

Es decir, si X es una variable aleatoria Gaussiana, Y=aX+b también lo es. En efecto, si X es $\mathcal{N}(0,1)$, entonces Y es $\mathcal{N}(b,a^2)$.

Momentos de una Variable Aleatoria

Definición

El n-ésimo momento de una variable aleatoria X gueda definido por

$$m_X^{(n)} \triangleq = \begin{cases} \int_{\mathbb{R}} x^n f_X(y) dx & \text{si } X \text{ es una v.a. continua} \\ \sum_{x \in \mathbb{Z}} x^n p_x & \text{si } X \text{ es una v.a. discreta} \end{cases} . \tag{10}$$

También se utiliza la notación $E[X^n]$.

• El momento de order 0 nos entrega la condición de normalización:

$$m_X^{(0)} = \int_{\mathbb{R}} f_X(y) dx = 1.$$

Momentos de una Variable Aleatoria (1)

 El momento de orden 1 es llamado la media, valor esperado o simplemente esperanza de la v.a. X.

$$m_X^{(1)} = \int_{\mathbb{R}} x f_X(y) dx = \mu.$$

El valor esperado de una variable aleatoria es denotado como ${\cal E}[X].$

• El momento de orden 2 de una variable aleatoria permite saber cuan amplia es la variación de una v.a. en torno a su valor esperado.

Momentos de una Variable Aleatoria (2)

- Esto es, se puede interpretar como el grado de impredictibilidad de una v.a.
- ullet La varianza de una v.a., denotada por σ_X^2 se define por

$$VAR[X] = E[X^2] - (E[X])^2.$$

La desviación estándar de la v.a. X se define como

$$\sigma_X = \sqrt{\mathsf{VAR}[X]}.$$

Momentos de una Variable Aleatoria

 El valor esperado de la función de una variable aleatoria se puede calcular generalizando la definición anterior.

$$E[g(X)] = \int_{x \in \mathbb{R}} g(x) f_X(x) dx.$$

• Se cumplen las siguientes propiedades:

f(X)	E[X]	VAR[X]
cX	cE[X]	$c^2VAR[X]$
c	c	0
X + c	E[X] + c	VAR[X]

donde X es una v.a. a valores reales, y $c\in\mathbb{R}$ es una constante.

Vectores Aleatorios (1)

- En diversos casos nos interesará estudiar el comportamiento estadístico de conjuntos de variables aleatorios.
- El caso más elemental corresponde al de un par de variables aleatorias (X, Y).
- Las definiciones vistas generalizan como siguen:

Vectores Aleatorios (2)

o Definimos la función distribución de probabilidad conjunta $F_{XY}(x,y)$ como sigue:

$$F_{X,Y}(x,y) = P\{\omega \in \Omega : X(\omega) \le x; Y(\omega) \le y\}.$$

o simplemente

$$= P\{X \le x; \ Y \le y\}.$$

o La función densidad de probabilidad conjunta $f_{X,Y}(x,y)$ se define como

$$f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y).$$

Vectores Aleatorios

La función densidad marginal se calcula como

$$f_X(x) = \int_{y \in \mathbb{R}} f_{X,Y}(x,y) dy$$
$$f_Y(y) = \int_{x \in \mathbb{R}} f_{X,Y}(x,y) dx$$

 \circ La función densidad condicional de una variable Y dado que el valor de la v.a. X es igual a x es

$$f_{Y|X}(y|x) = \begin{cases} \frac{f_{X,Y}(x,y)}{f_X(x)} & f_X(x) \neq 0\\ 0 & \text{en otro caso} \end{cases}.$$

Vectores Aleatorios

• Otras propiedades importantes son las siguientes:

$$\circ F_X(x) = F_{X,Y}(x,\infty)
\circ F_Y(y) = F_{X,Y}(\infty,y)
\circ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1.
\circ P((X,Y) \in A) = \iint_{(x,y)\in A} f_{X,Y}(x,y) dx dy$$

• El valor esperado de la v.a. g(X,Y) es

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy.$$

Covarianza COV(X, Y) (1)

- La covarianza de (X, Y) es una medida del grado de relación o dependencia que existe entre dos variables aleatorias cualquiera.
- La definimos como

$$COV(X,Y) = E[XY] - E[X]E[Y].$$
(11)

• Si $\mathsf{COV}(X,Y) = 0$ entonces E[XY] = E[X]E[Y] y decimos que X e Y no son correlacionadas.

Covarianza COV(X, Y) (2)

• Definimos el coeficiente de correlación $\rho_{X,Y}$ como

$$\rho_{X,Y} = \frac{\mathsf{COV}(X,Y)}{\sigma_X \sigma_Y}.$$

- En general, si dos v.a.'s son independientes entonces no están correlacionadas. Sin embargo, le falta de correlación no es suficiente para implicar independencia.
- El único caso donde tenemos la doble implicancia es cuando (X,Y) es un par binormal.

Algunas Propiedades Importante Asociadas a Vectores Aleatorios (1)

Sea X_1, X_2, \ldots una secuencia de variables aleatorias, $c_i \in \mathbb{R}$ constantes. Entonces

- $E[\sum_{i} c_i X_i] = \sum_{i} c_i E[X_i]$
- $VAR[\sum_i c_i X_i] = \sum_i c_i^2 VAR[X_i] + \sum_i \sum_{j \neq i} c_i c_j COV(X_i, X_j).$
- VAR $[\sum\limits_i c_i X_i] = \sum\limits_i c_i^2 {\sf VAR}[X_i]$, si X_i y X_j no están correlacionados para $i \neq j$.

Algunas Propiedades Importante Asociadas a Vectores Aleatorios (2)

Un caso especial lo constituyen un vector aleatorio multinormal. Es una generalización de la v.a. Gaussiana al caso n dimensional. En el caso de dos variables tenemos la función densidad binormal

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)}\right\} \times \left[\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)^2}{\sigma_2^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}\right]$$
(12)

Sumas de Variables Aleatorias

- Existen varias formas de estudiar las propiedades de sumas de variables aleatorias.
- En el caso de considerar X_1, \ldots, X_n , independientes e igualmente distribuidas tenemos que

$$f \sum_{i=1}^{n} X_i(x) = (f * f \dots * f)(x).$$

 Existen dos resultados más generales que nos indican el comportamiento de sumas de grandes cantidades de variables aleatorias: ellas son la Ley de los Grandes Números y el Teorema Central del Límite.

La Ley de los Grandes Números (Versión Débil)

• LGN: Sea $X_1, \ldots X_n$ una secuencia de v.a.'s con el mismo valor esperado μ_x y varianza $\sigma_x^2 < \infty$, entonces

$$\lim_{n \to \infty} P(\left| \frac{1}{n} \sum_{i=1}^{n} -\mu_X \right| > \epsilon) = 0 \tag{13}$$

para cualquier $\epsilon > 0$.

• Esto quiere decir que el promedio de variables aleatorias converge en probabilidad al valor esperado μ_X .

Teorema Central del Límite

- Este resultado nos da una idea del tipo de distribución que tiene el promedio de variables aleatorias.
- Sean X_1, X_2, \ldots variables aleatorias i.i.d. (independiente e idénticamente distribuidas) con valor esperado μ y varianza σ^2 . Entonces

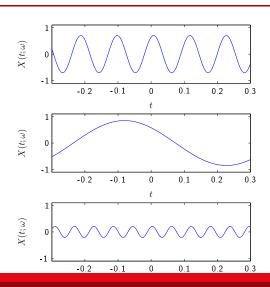
$$\operatorname{dist}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)\to\mathcal{N}(\mu,\sigma^{2}).\tag{14}$$

Esto es, la suma de v.a's converge a una variable aleatoria
 Gaussiana con el mismo valor esperado y la misma varianza que las variables originales.

- Un proceso aleatorio (también llamado proceso estocástico) es la generalización natural del concepto de variable aleatoria al caso de señales.
- En cualquier sistema de comunicaciones uno debe manejar señales dependientes del tiempo.
- En cursos básicos de señales y sistemas ellas son tratadas como determinísticas.
- Por qué entonces cambiar al enfoque aleatorio?
 - Naturaleza física de la señal es aleatoria. Esto corresponde al ruido térmico en electrónica o al caso del comportamiento de las reflexiones en la ionósfera para el caso de radio.

52 º P99 La inc<u>erteza propia de las fuentes de información.</u>

- Definición: Un proceso aleatorio o señal aleatoria corresponde a un mapeo entre un espacio de eventos Ω y el conjunto de realizaciones posibles de una señal. Asociado a ella encontramos un medida o ley de probabilidad similar a las que encontramos en v.a.'s.
- Un proceso aleatorio es una variable aleatoria generalizada, en el sentido que toma como valores funciones en lugar de números.
- Ejemplos
 - 1. Sea $\Theta \in [0,2\pi]$ es una variable aleatoria uniforme. Definimos el proceso aleatorio $X(t) = A\cos(2\pi f_0 t + \Theta)$, donde A y f_0 son constantes reales.
 - 2. Sea X(t)=X una v.a. uniformemente distribuida en [-1,1].



- Vemos que para cada ω_i ∈ Ω existe una señal X(t; ω_i) que es determinística. Esta función recibe el nombre de camino muestral o realización del proceso.
- Para un instante t_0 fijo, $X(t_0;\omega)$ es una variable aleatoria.
- Por lo tanto, en cualquier instante, el valor de una proceso aleatorio es una variable aleatoria.
- Si definimos (t_0, t_1, \dots, t_N) instantes entonces, $(X(t_0; \omega), \dots, X(t_N; \omega))$ define un vector aleatorio.
- Podemos hablar entonces de densidades, valores esperados, varianzas, etc. de procesos aleatorios.

Promedios Estadísticos

• Definición: La media o esperanza de un proceso aleatorio X(t) es una función determinística denotada por $\mu_X(t)$ que en cada instante de tiempo t es igual a la esperanza de X(t). Esto es

$$\mu_X(t) = E[X(t)] \ \forall t.$$

• Ejemplo: Determinemos el valor esperado de $X(t) = A\cos(2\pi f_0 t + \Theta)$, donde

$$f_{\Theta}(\theta) = \frac{1}{2\pi} \mathbf{1}_{[0,2\pi]}(\theta).$$

Entonces,

$$E[X(t)] = \int_{-2\pi}^{2\pi} A\cos(2\pi f_0 t + \theta) \frac{1}{2\pi} d\theta = 0.$$

Promedios Estadísticos

• Definición: La función de autocorrelación de un proceso aleatorio X(t) y que denotaremos por $R_X(t_1,t_2)$ es una función definida como

$$R_X(t_1, t_2) = E[X(t_1)X(t_2)].$$
 (15)

• Si el p.a. es continuo, entonces

$$R_X(t_1, t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f_{X(t_1), X(t_2)}(x_1, x_2) dx_1 dx_2.$$

• Ejemplo: consideremos nuevamente $X(t)=A\cos(2\pi f_0t+\Theta)$, con Θ uniforme en $[0,2\pi]$. Entonces

$$\begin{split} R_X(t_1,t_2) &= E[A\cos(2\pi f_0 t_1 + \Theta)A\cos(2\pi f_0 t_2 + \Theta)] \\ &= A^2 E[\frac{1}{2}\cos(2\pi f_0 (t_1 - t_2))] + A^2 E[\frac{1}{2}\cos(2\pi f_0 (t_1 + t_2) + 2\Theta)] \\ &= \frac{A^2}{2}\cos(2\pi f_0 (t_1 - t_2)). \end{split}$$

Procesos Estacionarios en Sentido Amplio

- Nos interesa introducir una noción de estabilidad o equilibrio para el caso de procesos estocásticos.
- Esta idea de estabilidad debería manifestarse como la mantención de alguna propiedad en forma independiente del instante en que se haga la medición.
- Dependiendo de qué propiedad es independiente del tiempo hablaremos de distintos tipos de estacionariedad.
- Un proceso estacionario en sentido amplio (wide-sense stationary process) es aquel cuyo valor esperado y función de autocorrelación es independiente del instante en que se haga la medición.

Procesos Estacionarios en Sentido Amplio (1)

Definición

Un proceso X(t) es estacionario en sentido amplio (WSS) si se satisfacen las siguientes condiciones:

- (i) $\mu_X(t) = E[X(t)]$ es independiente de t.
- (ii) $R_X(t_1,t_2)$ depende sólo de la diferencia $au=t_1-t_2$ y no de t_1 y t_2 en particular.
- En general, si sólo decimos que el proceso es estacionario estaremos diciendo implícitamente que el proceso es WSS.

Procesos Estacionarios en Sentido Amplio (2)

- En este caso, $\mu_X(t)=\mu_X$ y $R_X(t_1,t_2)=R_X(t_1-t_2)=R_X(\tau).$
- El proceso X(t) visto en los ejemplos anteriores es WSS.

Procesos Aleatorios Múltiples (1)

- En general, un proceso aleatorio no es un ente aislado.
- Si consideramos un sistema lineal descrito por la respuesta al impulso h(t), cabe preguntarse cuál es la dependencia que existen entre la salida del sistema $Y(t;\omega)$ y su entrada $X(t;\omega)$.
- Definición: Dos procesos X(t) e Y(t) son **independientes** si para cualquier $m,n\in\mathbb{N}$, instantes $t_1,t_2,\ldots,t_n\in\mathbb{R}$ y $\tau_1,\ldots,\tau_m\in\mathbb{R}$ los vectores $(X(t_1),\ldots,X(t_n))$ e $(Y(\tau_1),\ldots,Y(\tau_m))$ son independientes.

Procesos Aleatorios Múltiples (2)

• Definición: Dos procesos X(t) e Y(t) son **no correlacionados** si para cualquier $m,n\in\mathbb{N}$, instantes $t_1,t_2,\ldots,t_n\in\mathbb{R}$ y $\tau_1,\ldots,\tau_m\in\mathbb{R}$ los vectores $(X(t_1),\ldots,X(t_n))$ e $(Y(\tau_1),\ldots,Y(\tau_m))$ son no correlacionados.

Procesos Aleatorios Múltiples

• La correlación cruzada entre dos procesos aleatorios X(t) e Y(t) queda definida por

$$R_{X,Y}(t_1, t_2) = E[X(t_1)Y(t_2)] = R_{Y,X}(t_2, t_1).$$

• Dos procesos X(t) e Y(t) son conjuntamente estacionarios en sentido amplio (JWSS), o simplemente, conjuntamente estacionarios, si cada uno es WSS por separado y la correlación cruzada depende sólo de la diferencia entre t_1 y t_2 , esto es,

$$R_{X,Y}(t_1, t_2) = R_{X,Y}(t_1 - t_2) = R_{X,Y}(\tau).$$

La Autocorrelación de la Suma de dos Procesos

- Considere dos procesos conjuntamente estacionarios X(t) e Y(t). Determine la autocorrelación del proceso Z(t) = X(t) + Y(t).
- Solución:

$$R_{Z}(t+\tau,\tau) = E[Z(t+\tau)Z(\tau)]$$

$$= E[(X(t+\tau) + Y(t+\tau))(X(\tau) + Y(\tau))]$$

$$= E[X(t+\tau)X(\tau)] + E[X(t+\tau)Y(\tau)]$$

$$+ E[X(\tau)Y(t+\tau)] + E[Y(t+\tau)Y(\tau)]$$

$$= R_{X}(\tau) + R_{X,Y}(\tau) + R_{X,Y}(-\tau) + R_{Y}(\tau).$$

Procesos Aleatorios y Sistemas Lineales

Queremos estudiar las propiedades del proceso aleatorio

$$Y(t) = h * X(t)$$

en términos de las propiedades del proceso aleatorio de entrada X(t) y la respuesta al impulso de un sistema LTI (Linear-time invariant) dada por h(t).

- Nos interesa conocer las respuestas a las siguientes preguntas:
 - Bajo qué condiciones el proceso Y(t) es estacionario?
 - Bajo qué condiciones los procesos X(t) e Y(t) serán conjuntamente estacionarios?
 - o Cuál es el valor esperado y la autocorrelación de Y(t) y cuál es la correlación cruzada entre X(t) e Y(t)?

E[Y(t)]

Sea X(t) un proceso estacionario en el sentido amplio, con media μ_X conocida y sea h(t) la respuesta al impulso de una sistema lineal invariante en el tiempo.

Por definición

$$\begin{split} \mu_Y(t) &= E[Y(t)] = E[h*X(t)] \\ &= E[\int\limits_{-\infty}^{\infty} h(t-\tau)X(\tau)d\tau] \\ &= \int\limits_{-\infty}^{\infty} h(t-\tau)E[X(\tau)]d\tau \\ &= \int\limits_{-\infty}^{\infty} h(t-\tau)\mu_X d\tau \\ &= \mu_X\int\limits_{-\infty}^{\infty} h(\tau)d\tau. \end{split}$$

Par lo tanto, μ_Y es independiente del tiempo.

$R_{X,Y}(t_1,t_2)$

$$\begin{split} R_{X,Y}(t_1,t_2) &= E[X(t_1)Y(t_2)] \\ &= E[X(t_1)\int\limits_{-\infty}^{\infty}h(t_2-s)X(s)ds] \\ &= \int\limits_{-\infty}^{\infty}h(t_2-s)E[X(t_1)X(s)]ds \\ &= \int\limits_{-\infty}^{\infty}h(t_2-s)R_X(t_1-s)ds \\ &= \int\limits_{-\infty}^{\infty}h(-u)R_X(\tau-u)du \\ &= h(-\tau)*R_X(\tau). \end{split}$$

$$R_Y(t_1, t_2) = E[Y(t_1)Y(t_2)]$$

$$= E[Y(t_1) \int_{-\infty}^{\infty} h(t_2 - s)X(s)ds]$$

$$= \int_{-\infty}^{\infty} h(t_2 - s)E[Y(t_1)X(s)]ds$$

$$= \int_{-\infty}^{\infty} h(t_2 - s)R_{Y,X}(t_1 - s)ds$$

$$= \int_{-\infty}^{\infty} h(t_2 - s)R_{X,Y}(s - t_1)ds$$

$R_Y(t_1,t_2)$

$$R_Y(t_1, t_2) = \int_{-\infty}^{\infty} h(t_2 - t_1 - u) R_{X,Y}(u) du$$
$$= \int_{-\infty}^{\infty} h(\tau - u) R_{X,Y}(u) du$$
$$= R_{X,Y}(\tau) * h(\tau)$$
$$= R_X(\tau) * h(-\tau) * h(\tau).$$

Densidad Espectral de Potencia de Procesos Estacionarios (1)

- El contenido de energía de un proceso aleatorio puede ser calculado o estimado a partir de las características espectrales de los posibles valores que puede tomar.
- Si el proceso varía en forma lenta, la mayor parte de la energía estará concentrada en las frecuencias bajas.
- Si el proceso varía en forma rápida, la mayor parte de la energía estará concentrada en las frecuencias altas.

Densidad Espectral de Potencia de Procesos Estacionarios (2)

- Una función útil para describir el contenido de potencia de un proceso estocástico es la densidad espectral de potencia o, simplemente, el espectro de potencia de un proceso aleatorio.
- Notación: El espectro de potencia de un proceso aleatorio X(t) será denotado por $S_X(f)$ y será medido en Watts/Hz.

Teorema de Wiener Khinchin (1)

Teorema

Sea X(t) un proceso estacionario X(t). La densidad espectral de potencia es la transformada de Fourier de la función de autocorrelación, i.e.,

$$S_X(f) = \mathfrak{F}[R_X(\tau)]. \tag{16}$$

• Ejemplo: Considere el proceso $X(t) = A\cos(2\pi f_0 + \Theta)$ antes estudiado. Sabemos que es un proceso estacionario en el sentido amplio.

Teorema de Wiener Khinchin (2)

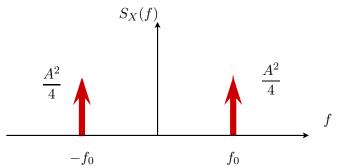
• Su función de autocorrelación está dada por

$$R_X(\tau) = \frac{A^2}{2}\cos(2\pi f_0 \tau).$$

Ejemplo

• Por lo tanto, su densidad espectral de potencia es

$$S_X(f) = \mathcal{F}\left[\frac{A^2}{2}\cos(2\pi f_0 \tau)\right] = \frac{A^2}{2}(\delta(f - f_0) + \delta(f + f_0)).$$



Potencia de un Proceso Estacionario (1)

- La potencia total de un proceso es la suma del contenido de potencia a lo largo de las distintas frecuencias.
- Si X(t) es un proceso aleatorio, la potencia del proceso, que denotaremos por ${\cal P}_X$ es

$$P_X = \int_{-\infty}^{\infty} S_X(f)df \tag{17}$$

Potencia de un Proceso Estacionario (2)

Si el proceso es estacionario en sentido amplio, entonces

$$R_X(\tau) = \int_{-\infty}^{\infty} S_X(f) e^{j2\pi f t} df$$

$$\Rightarrow R_X(0) = \int_{-\infty}^{\infty} S_X(f) df = P_X.$$

Espectro de Potencia en Sistemas LTI (1)

- Determinamos que en un sistema LTI μ_Y , $R_Y(\tau)$ y $R_{X,Y}(\tau)$ preservan las propiedades del proceso de entrada.
- En particular,

$$\mu_Y = \mu_X \int_{-\infty}^{\infty} h(t)dt = \mu_X H(0).$$

$$R_Y(\tau) = R_X(\tau) * h(-\tau) * h(\tau)$$

$$R_{X,Y}(\tau) = R_X(\tau) * h(-\tau)$$

Espectro de Potencia en Sistemas LTI (2)

Por lo tanto

$$S_Y(f) = S_X(f)|H(f)|^2.$$
 (18)

ullet El espectro cruzado de potencia $S_{X,Y}(f)$ se define como

$$S_{X,Y}(f) = \mathcal{F}[R_{X,Y}(\tau)]. \tag{19}$$

Espectro de Potencia en Sistemas LTI

• En el caso de un sistema LTI tenemos

$$S_{X,Y}(f) = S_X(f)H^*(f).$$
 (20)

• Como $R_{XY}(\tau) = R_{YX}(-\tau)$, entonces

$$S_{Y,X}(f) = S_{X,Y}^* = S_X(f)H(f).$$

Motivación Física

- ullet Considere una resistencia R.
- El movimiento de los electrones al interior de R será proporcional a la temperatura de la resistencia. Mientras mayor sea ésta, mayor será el movimiento de los electrones.
- La temperatura tiene un efecto directo en la corriente circulante.
- Cada electrón puede verse como una pequeña fuente cuyo comportamiento es independiente del resto de los electrones.
- La corriente total será la suma de las contribuciones de las corrientes generadas por todos los electrones.

Motivación Física

• Si modelamos la corriente de j-ésimo electrón como una variable aleatoria independiente e idénticamente distribuida I_j igual al resto, entonces la corriente media total será el promedio de las contribuciones de cada una ellas, esto es

$$\frac{1}{J} \sum_{i=0}^{J} I_j \stackrel{J \to \infty}{\to} \mathcal{N}(\mu_I, \sigma_I^2).$$

• Esto último proviene de aplicar el Teorema Central del Límite.

Procesos Gaussianos (1)

Definición

Un proceso aleatorio X(t) será un **proceso Gaussiano** si para todo n y (t_1,\ldots,t_n) las variables aleatorias $\{X(t_i)\}_{i=1}^n$ son conjuntamente Gaussianas.

Definición

Procesos Gaussianos (2)

Dos procesos aleatorios X(t) e Y(t) son **procesos conjuntamente** Gaussianos si para todo n,m y (t_1,t_2,\ldots,t_n) y $(\tau_1,\tau_2,\ldots,\tau_m)$, el vector aleatorio

$$(X(t_1),\ldots,X(t_n),Y(\tau_0),\ldots,Y(\tau_m))$$

se distribuye de acuerdo a una densidad Gaussiana n+m-dimensional.

Propiedades

- 1. Si un proceso Gaussiano X(t) pasa a través de un sistema LTI, su salida Y(t) es también Gaussiano, y aun más, los procesos X(t) e Y(t) son conjuntamente Gaussianos.
- 2. Si $X_1(t), X_2(t), \ldots, X_n(t)$ son conjuntamente Gaussianos, entonces $X_i(t)$ es independiente de $X_j(t)$ (para $i \neq j$) si y sólo si $X_i(t)$ es no correlacionado con $X_j(t)$.

Procesos Blancos

- Un proceso blanco es aquel en que todas las componentes de frecuencia aparecen con igual potencia, es decir, es aquel cuya densidad espectral de potencia es constante.
- Definición: Un proceso X(t) es llamado proceso blanco si su densidad espectral de potencia $S_X(f)$ es constante para todo f.
- Notemos que un proceso blanco tiene potencia total infinita:

$$P_X = \int_{-\infty}^{\infty} S_X(f)df = \int_{-\infty}^{\infty} S_0df = \infty.$$

 En la práctica, los sistemas tienen una potencia finita, por lo que un proceso blanco no tiene significado físico.

Proceso de Ruido Termal n(t)

• Sin embargo, el ruido termal tiene una potencia relativamente constante (entre 0 y 10^12 Hz) a temperatura ambiente.

$$S_n(f) = \frac{\hbar f}{2(\exp(\frac{\hbar f}{kT}) - 1)}.$$

• Para efectos prácticos, el ruido termal puede ser considerado un proceso blanco con espectro de potencia igual a $\frac{kT}{2}$, donde k es la constante de Boltzmann y T es la temperatura medida en ${}^{\circ}K$.

Procesos Blancos

- El valor kT se denota normalmente como N_0 .
- La función de autocorrelación de un proceso blanco es

$$R_n(\tau) = \mathcal{F}^{-1}[\frac{N_0}{2}] = \frac{N_0}{2}\delta(\tau).$$
 (21)

- Propiedades:
 - 1. El proceso de ruido termal es un proceso estacionario.
 - 2. Un proceso de ruido termal tiene media cero.
 - 3. Un proceso de ruido termal es Gaussiano.
 - 4. Un proceso de ruido termal es un proceso blanco con densidad espectral de potencia

$$S_n(f) = \frac{kT}{2}.$$

Filtrado de Procesos de Ruido

- El ruido puede ser filtrado por etapas intermedias de un sistema de comunicaciones o procesamiento de señales.
- Por lo tanto, es posible que el ruido se transforme en un proceso pasabandas, es decir, donde la densidad espectral de potencia está ubicada en torno a algún $f_c >> 0$.
- P: Cómo manipulamos un proceso aleatorio pasabanda?
- R: Los caminos muestrales de un proceso pasabanda también son señales pasabanda.

Filtrado de Procesos de Ruido (1)

- Sea X(t) un proceso aleatorio que es la salida de un filtro pasabanda, cuyo ancho de banda es W y se encuentra centrado en torno a una frecuencia central f_c.
- Por ejemplo

$$H(f) = \begin{cases} 1 & |f - f_c| \le W \\ 0 & \text{otro caso} \end{cases}$$
.

• El ruido térmico es blanco y Gaussiano, por lo tanto

$$S_X(f) = \frac{N_0}{2} |H(f)|^2 = \frac{N_0}{2} H(f)$$

Filtrado de Procesos de Ruido (2)

• Notemos que si H(f) tiene la expresión del ejemplo, entonces

$$S_X(f) = egin{cases} rac{N_0}{2} & |f - f_c| \leq W \ 0 & ext{otro caso} \end{cases}.$$

Procesos Pasabanda

- Toda señal pasabanda puede ser descrita en términos de componentes en fase $X_c(t)$ y en cuadratura $X_s(t)$.
- Esto es

$$X(t) = X_c(t)\cos(2\pi f_c t) - X_s(t)\sin(2\pi f_c t).$$

donde $X_c(t)$ y $X_s(t)$ son procesos pasabajos.

• Otra manera de expresar X(t) es en términos de un proceso envolvente A(t) y un proceso de fase aleatoria $\Theta(t)$.

$$X(t) = A(t)\cos(2\pi f_c t + \Theta(t)).$$

Ambos procesos A(t) y $\Theta(t)$ son pasabajos.

Propiedades de Procesos en Fase y Cuadratura

Consideremos una señal de ruido blanco Gaussiano. Si $X_c(t)$ y $X_s(t)$ denotan las componentes en fase y en cuadratura de un proceso pasabanda X(t), entonces

- 1. $X_c(t)$ y $X_s(t)$ son procesos de media cero, pasabajos, conjuntamente estacionarios, y conjuntamente Gaussianos.
- 2. Si la potencia del proceso X(t) es P_X , la potencia de cada una de las componentes satisface:

$$P_X = P_{X_c} = P_{X_s} = \int_{-\infty}^{\infty} S_x(f) df.$$

Propiedades de Procesos en Fase y Cuadratura

3. $X_c(t)$ y $X_s(t)$ tienen la misma densidad espectral de potencia, y es

$$S_{X_c}(f) = S_{X_s}(f) = S_X^+(f - f_c) + S_X^-(f + f_c).$$

- donde $S_X^+(f)$ es la parte positiva del espectro de X(t) y $S_X^-(f)$ es la parte negativa del espectro.
- 4. Si $+f_c$ y $-f_c$ son ejes de simetría de las frecuencias positivas y negativas en el espectro H(f), entonces $X_c(t)$ y $X_s(t)$ son independientes.

Ancho de Banda Equivalente del Ruido

- Cuando un proceso de ruido blanco Gaussiano pasa a través de un filtro, el proceso de salida sigue siendo Gaussiano, pero en general deja de ser blanco.
- El efecto del filtro altera el espectro de potencia de la salida de acuerdo a

$$S_Y(f) = S_X(f)|H(f)|^2 = \frac{N_0}{2}|H(f)|^2.$$

• El contenido de potencia del proceso de salida es

$$P_Y = \int_{-\infty}^{\infty} S_Y(f)df = \frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 df.$$

Ancho de Banda Equivalente del Ruido (1)

• Definimos el **ancho de banda equivalente** del ruido, denotado por B_{neq} como

$$B_{neq} = \frac{\int_{-\infty}^{\infty} |H(f)|^2 df}{2H_{\text{máx}}^2},$$

donde $H_{\text{máx}}^2$ denota el máximo de |H(f)|.

• Por lo tanto,

$$P_Y = N_0 B_{neq} H_{\text{máx}}^2. \tag{22}$$

Ancho de Banda Equivalente del Ruido (2)

