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RESUMEN
Se demuestra que la nueva fórmula de Nkemzi (2003) para la velocidad de las ondas de Rayleigh en un semiespacio

homogéneo se deriva de la fórmula de Malischewsky (2000a) por medio de una transformación algebraica simple. Una
transformación similar es también  llevada a cabo para las raíces complejas.

PALABRAS CLAVE: Velocidad  de fase de las ondas Rayleigh, parámetros materiales.

ABSTRACT
A new formula was proposed by Nkemzi (2003) for the Rayleigh-wave velocity in a homogeneous half-space.  This formula

may be derived from the earlier formula by Malischewsky (2000a) by a simple algebraic transformation. A similar transformation
may be carried out for the complex roots as well.

KEY WORDS: Phase velocity of Rayleigh waves, material parameters.

INTRODUCTION

The Rayleigh-wave velocity c is a fundamental quan-
tity which interests researchers in seismology and geophys-
ics, and in other fields of physics and the material sciences.
In the homogeneous halfspace, c does not depend on fre-
quency as it does in a layered half-space. It depends only on
the velocities α of longitudinal P waves and β of shear S
waves. For many purposes it is useful to have a simple for-
mula at hand, which expresses the dependence of c on the
material parameters.

The recent history of this development is as follows.
Setting x = (c/β)2 we may write the well-known Rayleigh
equation
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and ν  is Poisson's ratio. From the theory of functions Nkemzi
(1997) wrote the solution of (1) for Rayleigh waves in the
form of an integral representation:
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By applying the Wiener-Hopf technique Brock (1998)
obtained a similar integral representation for the Rayleigh-
wave root and derived additionally a more complicated one
for the Stoneley-wave root. Romeo (2001) confirmed the cor-
rectness of representation (3). However, Equation (3) is cum-
bersome for numerical applications, as is the formula de-
rived from it by Nkemzi (1997). The latter formula is incor-
rect as pointed out by Malischewsky (2000a). A more practi-
cal and correct version was provided by Malischewsky
(2000a, 2000b), which was comprehensively discussed and
confirmed by Pham and Ogden (2004). These authors pre-
sented also a new formula, which is not to be discussed here.
Recently, Nkemzi (2003) has shown that the useful and simple
formula
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may be derived from the above integral representation (3).
In this note we show that Equation (4) is essentially identical
with Malischewsky’s formula as it may be derived from it
by means of a simple transformation.

A DERIVATION OF RAYLEIGH-WAVE
VELOCITIES

Let us summarize the procedure in Malischewsky
(2000a, 2000b).  From the theory of cubic equations,
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where h1, h2, h3 and h4 are auxiliary functions and the square
root is taken as positive. Then the solution of the Rayleigh
equation may be written
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where the main values of the cubic roots are to be used. The
introduction of the sign function is necessary because of the
root of h2 (γ) at γ = 1/6.  Note that this solution has no irratio-
nal denominator as does equation (4).

Using the algebraic identities
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we find that
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so that the third term of (6) within the brackets becomes
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Thus we may write (6) as
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which is identical with Eq (4) after Nkemzi (2003). If we
compare the two versions (6) and (10), expression (10) has
the advantage of not containing the sign function; on the other
hand, expression (6) does not contain an irrational denomi-
nator. It should be noted that such simple closed formulas
cannot be obtained for Stoneley waves, because their secu-
lar equation is a more complicated irrational equation, whose
reduction to a polynom is not straightforward.

The complex roots xc of (1) as given by Malischewsky
(2000a, 2000b) may be transformed in the same manner, i.e.
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Here γ varies over the range 0 ≤ γ ≤ γ
0
, where γ

0
 =

0.3215... . These complex roots can become important when
calculating complete theoretical seismograms (e.g., Schröder
and Scott, 2001; Harris and Achenbach, 2002). The func-
tions x and xc were shown graphically in Malischewsky
(2000a).
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