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1 INTRODUCTION

The classical econcmically rational consumer will choose a resi-~
dential location by weighing the attributes of each available alterna-
tive — accessibility of workplace, shopping, and schools; quality of
neighborhood life and the availability of public services; costs, in-
cluding housing price, taxes, and travel costs; dwelling characteris-
tics, such as age, nurber of rooms, type of appliances; and so forth
— and picking the alternative which maximizes utility. Housing prices
and the supply of new dwelling units will adjust to reconcile consumer
tastes with the existing housing stock at each point in time. Theo-
retical models of urban location often posit a population of consumers
with identical tastes, and a housing market in which prices adjust

frictionlessly to an equilibrium in which the consumer is indifferent
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among all housing alternatives. Then, housing price is the carrier
of all information on consumer tastes for public services, accessibi-
lity, and dwelling characteristics. This observation can be taken
as the basis for empirical analysis of the housing attributes entex-
ing the determination of price; see, for example, Pollakowski (1974).

In reality, consumers vary substantially in their tastes for
housing, and may also display bounded ratiocnality, with the result
that a distribution of responses would result from presentation of the
same apparent alternatives to each consumer in a population. Further,
housing markets may be slow to adjust to equilibrium — the importance
of middle-men and speculators in the market is an indication that
disequilibria occur, making arbitrage a profitable activity. Then,
there is something to be learmed about consumer tastes and behavior
from the study of consumer housing location decisions.

This paper considers the problem of translating the theory of
econcamic choice behavior into concrete models suitable for the empi-
rical analysis of housing location. We are concerned particularly
with two problems in the modelling of individual, or disaggregate,
choice among residential locations. First, there may be a structure
of perceived similarities between alternatiwves which invalidates the
commonly used joint multinomial logit model of choice. We treat indi-
vidual dwelling units as the elemental alternatives among which
choice is made. Each dwelling unit will have a list of attributes,
observed and uncbserved, to which the individual is responsive. We
assume the space of attributes, including uncbserved attributes, is

sufficiently rich so that each physical dwelling unit is represented



by a unique point in attribute space. Of course, the individual may
perceive two dwellings which are similar in same attributes as quite
similar overall; it is the impact of such perceptions on choice that
we wish to model. Sections 3 to 6 introduce a family of probabilistic
choice models, of which the joint multinomial logit model is a special
case, with the property that dwelling units which are perceived as
similar are aggregated. The "weight" given to an aggregate of alterna-
tives in the choice process will depend on the degree of perceived
similarity. At one extreme, the elements of the aggregate will be per-
ceived as independent, and choice will be described by a multincmial
logit model with individual dwellings as alternatives. At the other
extreme, all dwellings with the same observed attributes will be per-
ceived as virtually the same, and choice will be described by a multi-
namial logit model with dwelling types, distinguished by observed
attributes, as the "alternatives." The family of models introduced
here permits empirical estimation of the degree of perceived similarity,
and tests of the two extreme cases mentioned above.

The second problem treated in this paper is that of estimation of
individual choice models when the number of elemental alternatives is
impractically large. Section 7 establishes that if choice among a set
of alternatives is described by a multinomial logit model, then the
model can be estimated by sampling from the full set of alternatives,
with appropriate adjustment in the estimation mechanism. Thus, esti-
mation can be carried out with limited data collection and computation.

The solutions given in this paper to the two problems above are

applied in Section 8 to empirical studies of housing location by



Quigley (1976) and Lerman (1977). The results are shown to permit a
reinterpretation of the empirical conclusions, and suggest ways of

generalizing the empirical analysis.

2 A THEORY OF HOUSING LOCATION CHOICE

Assume the classical model of the rational, utility-maximizing
consumer. Suppose the consumer faces a residential location decision,
with a choice of communities indexed ¢ = 1,...,C and dwellings in-
dexed n = l,,...,Nc in commnity ¢ . The consumer will have a
utility Ucn for alternative on which is a function of the attri-
butes of this altermative, including accessibility, guality of public
services, neighborhood and dwelling characteristics, etc., as well as
a function of the consumer's characteristics, such as age, family
size, incame, and so on. The consumer will choose the alternative
which maximizes his utility.

Not all attributes of alternatives of consumer characteristics
will be observed. The unobserved variables will have same probability
distribution in the population, conditioned on the value of the ob-
served variables. If the observer knows the form of the utility func-
tion and the probability distribution of unobserved variables, then
probabilitistic statements can be made about the expected distribution

of choices; namely,

(1) Pcn=Prob [Ucn>me for m # en] ,

where P, denotes the probability of choice cn and the right-hand-



side probability is defined with respect to the distribution of uncb-
served variables. Conversely, observed distributions of choices can
be used to draw inferences on the form of utility and the distribution
of unobserved variables. It should be noted that observations can be
inconsistent with the existence of any stochastic utility function
satisfying (1), and that if a stochastic utility function exists
satisfying (1), it is normally not unique [see McFadden and Richter
(1970); McFadden (1975b)]. The econametric approach to this problem
is to specify, as a maintained hypothesis, a class of utility forms
and distributions from which one member can be statistically identified.
Consider the decomposition Ucn = Vcn e of utility into a
term Ven which is a function, specified up to a finite vector of un-
known parameters, of observed variables, and a term Ecn sumarizing

the contribution of uncbserved variables. Hereafter, Vcn will be

called the strict utility of cn . Let £ denote the vector

(ell""'ElNl""'ECl""'ECNC) , and let F(%) denote the cumilatiwve

distribution function of £ - Then (1)} can be written
(2) P = J Fcn(<vcn te, - Vdm>)dEcn .
£

where F denotes the derivative of F with respect to its on arqu-
ment, and (y dm> denotes a vector with dm component equal to y am
An econametric model of choice is specified by choosing a parametric

form for Vv and a parametric distribution F .

dm
Although the class of models (2) was formulated starting from the

theory of the rational economic consumer, it should be noted that this



specification of choice probabilities is considerably more general.
In particular, unobserved random variables may enter the determination
of utility for each consuner, as well as between consumers; this is

known in psychology as the random utility model.

3 THE MULTINOMIAL LOGIT MODEL

An empirically important specialization of (2) is the multinomial

logit model,
\ c Moy
(3) p_=e®/ ] [ e™
b=1 =l

obtained by assuming the €on to be independently, identically distri-
buted with the extreme value distribution,

£

(4) Prob [e_, < €] = exp (- )

This model was proposed as a theory of psychological choice behavior
by Luce (1959). TIts econometric analysis has been investigated by
McFadden (1973, 1976) and Nerlove-Press (1973). A particular structural

feature of this model, termed by Luce independence from irrelevant

alternatives, is that the relative odds for any two alternatives are

independent of the attributes, or even the availability, of any other
alternative. This property is extremely useful in simplifying econo-
metric estimation and forecasting (see McFadden-Tye-Train (1977});
McFadden (1977)), but can be shown to be implausible for choice problems
where it is unreasonable to assume the €y € statistically indepen-

dent (see Debreu (1960); Domencich-McFadden (1975)).



For later analysis, it will be useful to re—write the joint choice

model (3) in terms of a conditional choice probability P

for
nlc

dwelling, given commumity, and a marginal choice probability Pc for
community. The strict utility V. can often be expressed in an addi-

tively separable, linear-in-parameters form

(5) V_=8'x_+uo'y

where X is a vector of cbserved attributes which vary with both
canmmnity and dwelling (e.g., workplace accessibility), Yo is a vector
of cbserved attributes which vary only with community {e.g., availability
of cammnity recreation facilities), and o and 8 are vectors of un-
known parameters. Hereafter, we assume the structure (5). Fraom (3)

and (5), one obtains the formulae:

N N
\Y c V B'x c B'x
(6) P, =e®P/ T eT=e T/ 7 e & |
n|c
m=1 m=1
N
c V C V. a’y c B'x cC o'y Nb B’
(7) pc=zem/zzem=e°ze°n/zebz
n=1 b=l =1 n=1 b=1 m=1

Define an inclusive value

e

N,
c Bxcn
(8) I =1log | } ] .

n=1

Then, (6) and (7) can be re-written



(9) P

' '
(10) B_= o YeTle / (Z: oMb

b=1

One method of estimating the joint model (3) is to first estimate the
parameters £ fram the conditional choice model (6), next define I,
using the log of the denominator of the estimated equation {6), and
finally estimate the parameters o from the marginal probabilitiy model
{10}, given Ic . This sequential approach to estimation economizes on
the number of alternatives and number of parameters considered at each
stage of estimation, with some loss of efficiency relative to direct

estimation of the joint model (3).

4 THE NESTED LOGIT MODEL

An empirical generalization of the multinomial logit model in the
form (9) — (10) is obtained by allowing the inclusive value Ic in
(10) to have a coefficient other than one; i.e.,

a'y +(1-0)I C o'y, +{l-0)
(11) P.=e ¢ €/ 1 e b Ib,
b=1
where (1 - o) is a parameter. The model represented by equations (9)

and {11), termed the nested logit model, was first used with the estima-

tion procedure described above, but with an unsatisfactory definition of
inclusive value, by Domencich and McFadden (1975). Ben-Akiva (1974)

suggested the correct definition (8) of inclusive value, and explored



the implications of fitting the joint model or various nested models.
Amemiya (1976) corrects an error in the formula used in the earlier
studies to compute the standard errors of estimates in the last stage
of the sequential estimation procedure.

The next section of this paper permits us to establish conditions
under which the nested logit model can be derived from a theory of
stochastic utility maximization, in a manner analoqoué to the argument

for the multinomial logit model.

5 THE GENERALIZED EXTREME VALUE MODEL

We introduce a family of choice models derived from stochastic
utility maximization which includes multinomial and nested logit.
This family allows a general pattern of dependence among the unobserved
attributes of alternatives and yields an analytically tractable closed
form for the choice probabilities. The following result characterizes

the family:

THEOREM 1. Suppose G(yl,. .. ,yJ) is a nonnegative, homogeneous—of-

degree-one function of (yl,...,yJ) >0 . Suppose lim G(yl,...,yJ) = 4
yi-H-m

for i=1,...,J . Suppose for any distinct (iy,...,i,) fram {1,...,3} ,

akG/ayi Byik is nonnegative if k is odd and non-positive if k
1

is even. Then,

(12) p,=e Gl Lo .e9/scet...e
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defines a probabilistic choice model from alternatives 1 = 1,...,J

which is consistent with utility maximization.

Proof. Consider the function

s “&7
F(el,...,eJ) =exp {-Gle ~,...,e “}} .

We shall first prove that this is a multivariate extreme value distri-

bution. If R then G » +~ , implying F>0. If (el,...,sJ) > 4o,
then G+ 0 , implying F -~ 1 . Define, recursively, Ql = Gl and

Q= Q1S - BQk_l/ayk . Then, Q  1is a sumof signed terms, with

each term a product of cross derivatives of G of various orders.

Suppose each signed term in Qk—l is nonnegative. Then Qk—le is non-
negative. Further, each term in an_l/Byk is non-positive, since one

of the derivatives within each term has increased in order, changing fram

even to odd or vice versa, with a hypothesized change in sign. Hence,

each term in Qk is nonnegative. By induction, Qk is nonnegative for

k=1,...,d.

-
Differentiating F , BF/Bcl = e lQlF . Suppose

- -
k-1 _ 1 k-1
*le/oe, ... 06 =e T ..oe g F . Then, VSN
~€ -€ -€ -
=e t ce. € k {Qk_leF - FBQk_l/ayk} =e 1 ve. EkaF . By induc-
J ! g
tion, 3 F/ael,...,aeJ = a he. € QUF >0 . Hence, F is a cumula-

-€,
tive distribution function. When £, = 4= for j#1i, F=exp {—aie 1,
where a; = G¢(0,...,0,1,0,...,0) . This is the univariate extreme value
i-th
place
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distribution, Hence, F is a multivariate extreme value distribution.
Suppose a population has utilities u, = Vi + ey v where (el,...,eJ)
is distributed F ., Then, the probability that the first alternative is

selected satisfies

o0

f Fl(s,,v1 - V2 + E:,...,Vl - VJ + g)de

S

40

f e"EGl (e—e-—Vl+V2“ ’e_e-vl+VJ) o {—G[eﬁ e_s—vl+vz,,_,,e-e—va‘j” N
S~

0

[ e_EGl(eVl,evz, ‘e ,eVJ) exp {-e" e“V G[evl,eV ,...,eVJ]} de

"

evl Gl (evl,evz, . ,eVJ) / G(evl, e ,eVJ) ,

where the third equality uses the homogeneity of degree one of G , and
consequent hamogeneity of degree zero of G1 . Since this argument can

be applied to any alternative, the theorem is proved. Q.E.D.

Corollary. Under the hypotheses of Theorem 1, expected maximm utility,

defined by
40
(13) U= J m:aL.x (Vi + ei)f(%)d,%
£=—00
n,

(with £ the density for F), satisfies
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v v
(14) T=1logGle 5oeve ) + v,

where Yy = .57721 56649... is Euler's constant, and

(15) Pi = BU/BVi .

€y , with a > 0

Proof. The extreme value distribution exp (-ae
a constant, has mean log a + vy . The integral (13) can be partiticned

into regions where each alternative has maximum utility, yielding

o0
(16) U= g J v, + ei)Fi(<Vi +gy - v5>)dsi
£, ==—00
1
Vi V3
et a=Gle ,...,2 } . Then,

-V.,~g.+V, -V.-¢

—E. 1V, —-E.
exp (6({e * T IMe e Tt e T

Fi(<Vi +ey - Vj))

-Vi—ei V. -ei
exp (-ae )Gi(<e ]))e

il

Making the transformation Vi + €, +w , {(16) beccomes

o0

V. \
U=7} J wexp (~ae ")e 1Gi(<e J))e W aw
1w
400
= J wae " exp (-ae_w)dw
W=—00
=loga+y ,

Vv, V. Vv,
where the second equality uses Euler's law, | e lGi(<e I = ce I
i
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It is immediate from (12) and (14) that P, = aﬁ/avi . 0Q.E.D.

J
The special case Glyy,...,y;)} = ¥ v; yields the MNL model.,
3=1

n example of a more general G function satisfying the hypotheses of

the theorem is

1 l_Um
Loag|d v ™
(17} Gly) = a Y. ’
m=1 m ieBm 1

M .
where Bmg{l,...,J} , ngl B = {1,...,3} , a > 0, and O;Om <1.

For the bivariate case with a single class m , (17) reduces to

1-o 1-o

1 1 l-g
noty

Gly) =

The bivariate extreme value distribution based on this form has been
studied by Oliveira (1958, 1961), who shows that o is the product-
moment correlation between the two variates. In the general case (17),
¢, can be interpreted as an index of the similarity of the uncbserved
attributes in BIrl . However, the relation between the o and
product-moment correlations between the alternatives is more camplex.

The choice probabilities for the function (17) satisfy

V. V. y=0 V., y1-o
1 ] m Kk n
l-cm l—om M l—-cn
(18) P,= ] e all e /1 a, ] e
m-ieB jeB n=1 keB
m m n

M
m£1 P(lIBm)P(Bm; ,
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where

' V.

L —
O l—cm
P(i|B) = e / 1 e if ieB_,
m . m
JjeB
m
0 if i ¢ BIn ;

with P(iIBm) denoting conditional probability, and

1-g 1-0
v, m Vk n
l-om M l-g
PB) =a { I e /1 a {1l e B
jeBm n=1 keBn

Functions of the form in (18} can also be nested to yield a wider

class satisfying the theorem hypotheses. For example, the function

( 1 1-6
l—om q
1 1-¢
Q l—chm !
(19) G= } a, ) D Y ,
ag=1 mqu JeBy

where B is defined as in (17) and Dq < {1,...,M} , satisfies the
hypotheses provided 1 > o 2 6q >0 for me Dq

Choice probabilities of the form (18) were apparently first derived,
for thé case of three alternatives and Bl = {1} , B, = {2,3} , by
Scott Cardell (1975). For the case of disjoint Bm , the form (18)

was treated, independently, by Daly and Zachary (1976}, Williams (1977),
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and Lerman and Ben-Akiva (1977). The demonstration by Daly and
Zachary that (18) is consistent with random utility maximization is
noteworthy in that it permits generalization of the GEV model and
provides a powerful tool for testing the consistency of choice models.
The corollary to Theorem 1 is adapted from their analysis.

Consider an example of (17),

1-o 1-o

1 1 1-o
Y2 + Y3 I

Clyrvpiyg) =¥y +

where alternative 1 represents a dwelling in one community, and
alternatives 2 and 3 represent dwellings of a similar type in a
second commmnity. ILet Vi be the strict utility of alternative 1 .

The choice probabilities when the three alternatives are offered are,

fram (18),

i,V |15, TS
(20) P(L{1,2,3) =e~ /{e~+ (e " +e ;

a2 V30, V2 Yl
(21) P(2(1,2,3) = 1-o [el_g + el_oJ VR T PR 1-0]

where P(i}A)}) denotes the probability that i is chosen from the
alternatives A . If only alternatives 1 and 2 are available,
then the choice probability (obtained from (20) by setting V3 = ~co}
has the binomial form

v V V
(22) P(1{1,2) =e T / {e e 2}
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If only alternatives 2 and 3 are available, the choice probability
again has a binomial logit form,

V2

\7
(23) p(2]2,3) = e / {el"’ + el } .

Examining the choice probabilities (20) and (21) when all three alterna-

tives are available, the value o0 = 0 gives multinomial logit probabi-

lities, while the limiting value ¢ » 1 gives the probabilities

il
[p]
H<1
S
®
l_.<1
+
(]
N<
©
<
"
 S—
S’

(24) P(1{1,2,3)

v, v, v,
(25) P(2]1,2,3) = e /{e +e } , if v, >V, ;

In this extreme case, the consumer will treat two alternatives with

identical strict utilities V2 = V3 as a single alternative in compari-

sons with alternative 1 .
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6 RELATION OF THE NESTED LOGIT AND GENERALIZED EXTREME VALUE
MCODELS

The choice probabilities (18) can be specialized to the nested
logit model given by (9) and (11), as we shall now show, This result
establishes that nested logit models are consistent with stochastic
utility maximization, and that the coefficient of inclusive value
provides an estimate of the similarity of the unobserved terms in the
first level of the nested model. Hence, it is possible to estimate
same generalized extreme value choice models using nested logit models
and inclusive values. Further, the generalized extreme value choice
models provide a generalization of nested logit models, and could be
estimated directly to test for the presence and form of a nested (or
tree) structure for similarities.

To obtain the nested logit model (9) and (1l) fram (18), replace
the alternative index i with the double index c<n for coammmity
¢ and dwelling n , replace m by c , assume the sets Bc have the
form Bc = {cl,...,ch) , and assume the similarity coefficients have

a common value o . Then, (18) becomes

cn [ N cm) ¢ Vim l-o
i | & Io ¢ I
(26) P =e 3 R '
m=1 =1 [m=1

implying
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NC NC 1?; 1-o Nb _l_ihx_g l-o
@  r =] p_=|1] /{111 e :
n=1 el b=1 =1
and
‘v, Y
o _ l-c 1-o
(28) Pn|c =P /P =€ "/ ] e
m=]

Recalling that Vcn = B’xcn + a’yc , these formulae can be written

a'yc+(1—U)Ic C a'yb+{1-U)Ib

(29) P =e / )} e ;
=1
r r r
Bxcn Bxcm Bxcn
1-o c 1-0 1-c Ic
(30) P = e / Z e = a /e :
n|c
m=1
z
N P
< 1-o
(31) I.=1log )} e
C
m=1

Hence, the nested logit model is a specialization of the generalized
extreme value model, with the coefficient 1 - ¢ of inclusive value
an index of the degree of independence of random terms for alternative
dwellings in the same comunity.

Applying the argument above to the choice probabilities corres-
ponding to (19), with a triple index of alternatives and each level of
nesting corresponding to one of these indices, leads to a nested logit
rodel with two levels of conditional probabilities and inclusive values
This arqument for three-level decision trees can be extended to trees of
any depth. The condition for (19} to satisfy the hypotheses of

Theorem 1 implies that a sufficient condition for a nested logit model
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to be consistent with stochastic utility maximization is that the

coefficient of each inclusive value lie in the unit interval.

Application of the Daly-Zachary method shows that these restric-
tions on the coefficients of inclusive values are also necessary for

consistency with stochastic utility maximization; see McFadden (1977b).

7 LIMITING THE NUMBER OF ALTERNATIVES CONSIDERED

Consider application of the joint multinamial logit model (3)
to the demand for housing, with alternatives indexed by commmity and
by dwelling within the commmity. Ideally, the functional form of the
model (3) is appropriate for describing choice among the full set of
alternatives available to consumers, and it is practical in terms of
data collection and statistical analysis to study decision behavior at
this lewvel. In practice, the number of available alternatives at the
most disaggregate level often imposes infeasible data processing
requirements, and strains the plausibility of the independence from
irrelevant alternatives property of the multinomial logit functional
form, as in the example of similar dwellings in the same community,
which are likely to have similar unobserved attributes.

Consider first the problem where enumeration of all alternatives
is impractical, but data on selected disaggregate alternatives can be
observed. If the multinomial logit functional form is valid, we
shall establish the result that consistent estimates of the parameters
of the strict utility function can be obtained from a fixed or random

sample of alternatives fram the full choice set.
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Iet C denote the full choice set. We shall assume it does not
vary over the sample; however, this is inessential and can easily be
generalized. ILet P(i|C,z,0*%) denote the true selection probabilities
where 6 is a vector of parameters, and 2z 1is a vector of explanatory
variables. We assume the choice probabilities satisfy the independence

from irrelevant alternatives assumption,

(32) ieDc C==>P(i|C,2,0) = P(i|D,2,8) ) P(j|C,z,8) ,
jeD
which characterizes the multinomial logit model.

Now suppose for each case, a subset D is drawn from the set C
according to a probability distribution w(D|i,z) which may, but need
not, be conditicned on the observed choice i . The observed choice
may be either in or out of the set D . Examples of m distributions
are (a) choose a fixed subset D of C , independent of the observed
choice, (b) choose a random subset D of C , independent of the cb-
served choice, and (¢) choose a subset D of C , consisting of the
observed choice 1 and one or nore other alternatives, selected ran-
domly.

We give several examples of distributions of type (c):

(c-1) Suppose D is comprised of i plus a sample of alterna-
tive from the set C \ {i} , obtained by considering each element of
this set independently, and including it with probability p . Then,
the probability of D will depend solely on the number of elements

K = #(D) it contains, and is given by the binomial formula



1

(33) T(D|i,z) =p T -p X if ieD and K= ¢MD)

0 if i ¢D ,

where J 1is the number of alternatives in C . For example, the prob-

ability that D will be a specified two—-alternative set containing i

as one alternative is p(l - p)J”2

(c-2) Suppose D is always selected to be a two-element set con-
taining i and one other alternative selected at random. If J is

the number of alternatives in C , then

(34) (dli,2) = s~  if D={i,j} and FFi ,

0 otherwise .
(c-3) Suppose C has four elements, and

(35) m({1,4}|4) = m({1,4}|1) = n({2,3}]2) = w({2,3}[{3) =1 ,

and w(Dli) = 0 otherwise

(c-4) Suppose C 1is partitioned into sets {Cl, cen ,CM} , with
Jm elements in Cm , and suppose D 1is formed by choosing 1 (from
the partition set Cn) and one randamly selected alternative from

each remaining partition set., Then,

M
{36) m{D|i,z) =3 / I J if i eD, M= #(D) , and
n m
m=1

Dncm#ﬂ for m=1,...,M ,

0 otherwise .



The 7w distributions of the type (a), (b), and (c-1) to (c-4)
all satisfy the following basic property, which guarantees that if an
alternative j appears in an assigned set D , then it has the logical
possibility of being an observed choice from the set D, in the sense
that the assignment mechanism could assign the set D if a choice of
j 1s obserwved:

Positive conditioning property: If j ¢ D < C and w(D|i,z) >0 ,

then w(D|j,z} > 0 .

The 7 distributions (a), (b), and (c~1) to (c-3), but not

{c-4), satisfy a stronger condition:

Uniform conditioning property: If i,j ¢ D c C, then

m(D|i,2z) = w(D|j,z) .

A distribution with the uniform conditioning property can be
written #(D|i,z) = ¢(D,z)X (i) , where X (i) equals one for i ¢ D,
and zero otherwise.

Consider a sample n=1,...,N , with the alternative chosen on
case n denoted by in , and Dr1 denoting the choice set assigned
to this case fram the distrilation W(Dlin,zn) . Observations with
an observed choice not in the assigned set of alternatives are assumed
to be excluded from the sample. Write the multinomial logit model in

the form

Vk(z,(}) V.{z,8)
(37) P(i|C,z,0) = e /1 e ,

jeC
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where Vi(z,e) is the strict utility of alternative i .

THEOREM 2. If w(D[i,2) satisfies the positive conditioning property

and the choice model is multinomial logit, then maximization of the

modified likelihood function

: L0)+ i, .
Vln(zn 6)+1og TT(Dnlln zn) V.(z_,08)+log 7(D_|j,z )
log e /) e ) n n n
1 _ jeC

Zi
%rwdz

(38} Ly =

vields, under normal regularity conditions, consistent estimates of 6% ,

When w(D|i,z) satisfies the uniform conditioning property, then (38) re-

duces to the standard likelihood functicn,

V. (z,9)
1 i
B9 IyTy

Proof. Consider the likelihood function {38), and consider its

probability limit plim L =L, where

v, (z,8)+log m(D|1i,2)

(40) L= 7V plilc,z,0%n(D|i,2z) log |- : p(z)dz
ieC DEC Z evj (zfe)+10g TT(D|],Z)
jeC
Z

with pl(z) the frequency distribution of =z . Then,

f V. (z,0%}
e J mT(D}3,2) v, (2,8%) |
— jEC e m(Dl1,2)
(41) L DEC 7, (2,00 igc v, (z,6%)
- 7 e Y oe T(D|3,2)
jeC jeC

{(continued)
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V. (z,8) |
* log AT plz)dz .
e T(D|5,z)
jeC

The parameters § enter this expression in a term of the form

(42) P ¢;(8%) log ¢, (6) with } ¢.(8) =1

ieC ieC
One can show that (42) has a maximum at 6 = 8* , Then, L has a
maximm at © = 8* . Under normal regularity conditions, this maximum
is wnique, and it can be shown (Manski-McFadden (1977)) that the
maxima of LN converge in probability to the maximum of L . This
establishes that maximization of (38) yields consistent estimators.

If the uniform conditioning property holds, then the terms
log m(D|i,z) in (38) cancel out, and (39) results. Q.E.D.

In a study of choice of camunity and dwelling type using data
for the San Francisco peninsula, Friedman (1975) used the mechanism
(c-4) to limit the number of alternatives in the analysis, partition-
ing the choice set by community and major dwelling type. Friedman's
strict utility function has the form Vétd(z’e) =a. + zitdB ’
where c¢ indexes commnity, t indexes dwelling type, d indexes
dwelling within class ct , Z td is a sub-vector of z specifying
attributes of altermative ctd , oL is a class-ct-specific para-

meter, B is a parameter vector, and 0 denotes the collection of

parameters B and «o The modified likelihood function (38), using

ct °
(36) and cancelling terms, 1s
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(43)
+Z f+log J
N ct “ctd C o +z B+log J
l Itf Ty rar Fyer
£ E log {e nnn n n / Z e C c't’d c't
n= c’ ,t’ ,d'
where Jct is the number of dwellings in class ct . However, Friedman

estimates the parameters by maximizing the likelihood function (39) , which
differs from (43) by omission of the terms log Jct . Comparison of these
functions shows that Friedman's procedure provides consistent estimates
of the parameter vector B , and that his estimates of the class-specific
parameters converge in probability to the sum of the true class-specific
paraneters, a;t , and the log of the mumber of dwellings available in the
ct class.

In conclusion, analysis of housing location can be carried out with
a limited number of alternatives, facilitating data collection and pro-
cessing, provided the choice process is described by the multinamial logit
model. If a mechanism such as (c-4) is used to select alternatives, the
likelihood function should be modified to the form (38) to obtain con-
sistent estimates of all parameters. If a non-modified likelihood func-
tion is used, estimation can still be carried out satisfactorily provided
the effect of the selection mechanism for alternatives is absorbed by
class-specific parameters. Caution is required in this case in veri-
fying that the configuration of class-specific variables in the model
is adequate to accommodate the selection mechanism effects, and in inter-

preting the estimates of class-specific parameters.
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8 AGGREGATION OF ALTERNATIVES AND THE TREATMENT OF SIMILARITIES

The preceding section has shown that when the multinomial logit
functional form is valid, estimation can be carried out using randomly
selected "representative" alternatives from each "class" of elemental
alternatives, where the classes are defined by the analyst. Community
and dwelling type were classification criteria mentioned in the earlier
examples. Analysis of choice amcng classes by identifying them with
"representative" members can be viewed as a method of aggregation of
alternatives. We shall now consider alternative methods of aggregation
which can be employed when the multinomial logit form fails because of
dependence between unobserved attributes of different alternatives
within a class.

Again consider a consumer faced with a choice of housing locations
in ¢=1,...,C comunities, with n = l,...,Nc dwellings in commnity
c . All the dwellings in a commnity c¢ have common unchserved
comunity attributes, introducing a dependence which conflicts with
the assumptions of the joint multinomial logit model. To represent |
this dependence we shall assume that the choice probabilities have the
nested logit structure, from (29) — (31) ,

a’yc+(l-U)Ic C a'yb+(l-0)1b

(44) - P =e / )} e .
b=1

(45) I, = log ¥
=
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As was shown in Section 6, this model is derivable fram the general-
ized extreme value model of stochastic utility maximization, with o
a measure of the degree to which dwellings within a class c¢ are
perceived as similar. When o = 0 , (44) reduces to the multinamial
logit model, and in the limit when o =1 , (44} reduces to
' ’ ' ’
(46) Pc _ ea yc+maxn B *on / % eu yb+maxn B *bn
b=1

An analysis of housing demand by Quigley (1976) using Pittsburgh
data employs a model of the form of (46). (In Quigley's model, the
nesting of commnity and housing type is reversed, with C denoting
housing type, and n denoting specific dwelling, identified by cammnity
and location.) OQuigley assumes a sufficient structure on location choice
so that the term mgx B'xcn can be computed prior to parameter estima-
tion. Then, (46) can be treated as an ordinary multinomial logit model.

Two features of the Quigley model require note. First, Quigley
defines 'ngx B'xcn to be the mean of the largest five percent of the
B'xcn's , rather than the largest value of B’xcn . Second, Quigley
includes the number of units Nc in each class as an explanatory vari-
able, justifying it as a "proxy for the information available to con-
sumers about the location and prices of alternative housing types."
As the discussion below shall make clear, a possible alternative
explanation of the significant positive coefficients of Nc in Quigley's
model is that the true model is of the form (44) with o <1 .

In an analysis of neighborhood choice using Washington, DC data,

lerman (1977) estimates a model of the form
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* *
a7) P~ ea'yc+xc+(l—o)log NC y % ea'yb+xb+(l—c)log Nb ,
b=1
where ¢ indexes census tracts and X:; is an "average" of the utility
terms B'xcn of the dwellings in tract ¢ . He notes that log N,
"is the measure of tract size required to correct for the fact that a
census tract is actually a group of housing units. Other conditions
being equal, a very large tract (i.e., one with a large number of hous-
ing units) would have a higher probability of being selected than a
very small one, since the number of disaggregate opportunities is
greater in the former than the latter. If all units of a particular
type in a given zone are relatively homogeneous and the [joint multi-
nomial} logit model applies to each individual unit, then the appro-
priate term to correct for tract size is the natural logarithm of
the number of units [with] a coefficient of one." Noting the model
(46) as a second extreme case, with XZ = m§% B’xcn , Lerman concludes
that "if the assumptions of the [joint multinomial] logit model are
violated, the coefficient may differ from one." ILerman estimates the
coefficient of log Né tobe 1- 0= .492 , with a standard error
of 0.094 . Hence, o satisfies the hypotheses of Theorem 1 and is
significantly different from both zero and one.
In the nested logit model (44) and (45}, the inclusive value

can be re-written

’ *
N, B' X %o
flogN_+logi § et
(o N
C mel

|0><x-

(48) 1= 1
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If a tract ¢ is homogeneous in terms of observed variables, so
that B’xcm = X: , then the last term in (48) vanishes, and the
choice probability for the nested logit model (44) is exactly the
Ierman model (47). This establishes the consistency of the Lerman
model with stochastic utility maximization, and supports his conclu-
sion that the coefficient of log N, indexes the degree of inde-
pendence of the alternatives within a tract. The same arqument can
be used to interpret Quigley's model, with X: = maﬁx 8'xcn or X:
given by the average of the "best" five percent of the disaggregate
alternatives. Since Quigley uses N, rather than log Nc as an
explanatory variable, his model does not provide a direct estimate
of o.

when X: is the mean of B’xcn , and not all B’xcn*—'xz . the
convexity of the exponential implies

*

N, B X %o
(49) = Je ™ 21,
c el
*
X
and hence I 2 l(-:_or + log N, , with the difference of the two sides of

the inequality depending on the variance of B'xcm . One limiting
case of (48) that is of interest occurs when the number of dwellings

within a tract is large, and the X e behave as if they are indepen-

*
dently identically normally distributed with mean X, - Iet
m2 denote the variance of $'x . Then,
c cm

*
r r
X _~—b'X
8 & U] B C

I- 1 2
(50) Ee 0 =@@{§(ﬁ;~]} ;



-30-

and
I ey g '}
Nc 8 X ) X% .
1 1-¢ l,c 2
1) N, mzl € a.s. &P {7{1:5 }
Hence,
Bfx* w
C l7cy2

(52) Ic a5, 1o log No * E{T:E :

The higher the variance wz , the higher the inclusive value Ic for
trace c . If Nb = rCN (i.e., the numbers of alternatives in tracts
grow proportiocnately), then

o'y _+B"x%+(1-0) log r_+ %. wf:/(l—o)
e

(53) P >

. ? eon'yb+6’xb+(l—o)log rb+ %—wﬁ/(l—c)

b=1

When the disaggregate data X, are not observed, but their distri-
bution can be approximated or estimated, and W is known, then model
(53) can be used with standard multinomial logit estimation programs
to provide estimates of ¢ and B . If r, is uncbserved, then it
can be estimated when W, is known, although when Yo contains a
tract-specific dumy variable, the tract-specific coefficient and r.
are unidentified. This suggests one interpretation of tract-specific
coefficients as indicating in part the number of "equivalent" disag-
gregate alternatives contained in the tract.

When W, is not known, but is known to have the structure
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2 . , .
w. = B’QCB , and the variables X, are multivariate normal with co-

c

variance matrix Qc , direct estimation of B , 0 , and o« is possible.
A modification of standard multinomial logit programs to handle non-—
linear constraints on £ would be required for full maximm likeli-
hood estimation. Alternately, consistent estimators could be cbtained
by writing out the terms in the quadratic form B'QCB as independent

parameters and ignoring constraints.

9 CONCLUSION

This paper has considered the problem of modelling disaggregate
choice of housing location when the number of disaggregate alternatives
is impractically large, and when the presence of a structure of simi-
larities between alternatives invalidates the commonly used joint
multinomial logit choice model. Theorems on sampling from the full set
of alternatives, and on generalizations of the multinomial logit model
structure to accammodate similarities, provide methods for circumventing
these problems. Studies of housing demand by Friedman (1975},

Quigley (1976), and Lerman (1977), motivate the analysis and illustrate

its applicability.
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