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Abstract—Conventional or first generation transport models have for some time been heavily criticised for
their lack of behavioural content and inefficient use of data; more recently secomd generation or dis-
aggregate travel demand models based on a theory of choice between discrete alternatives have also been
viewed critically. First, it has been argued that implemented structures—and particularly the Multinomial
Logit model—have not been sufficiently general to accommodate the “interaction” between alternatives;
and second, and perhaps more importantly, that the underpinning theory,. involving a perfectly dis-
criminating rational man (homo economicus), endowed with complete information is an unacceptable
starting point for the analysis of behaviour. In this paper the potential errors in forecasting travel response
arising from theoretical misrepresentation are investigated; more generally, the problems of inference and
hypothesis testing in conjunction with cross-sectional models are noted.

A framework is developed to examine the consequences of the divergence between the behaviour of
individuals in a system, the observed, and that description of their behaviour (which is embedded in a
forecasting model) imputed by an observer, the modeller. The extent of this divergence in the context of
response to particular policy stimuli is examined using Monte Carlo simulation for the following examples:
(i) alternative assumptions relating to the structure of medels reflecting substifution between similar
alternatives; (ii) alternative decision-making processes; (iii) limited information and “satisficing” behaviour:
and {iv) existence of habit in choice modelling.

The method has allowed particular conclusions to be made about the importance of theoretical
misrepresentation in the four examples. More generally, it highlights the problems of forecasting response
with cross-sectional models and draws attention to the problem of validation which is all too often
associated solely with the goodness of statistical fit of analytic functions to data patterns.

LINTRODUCTION

In the absence of specific information on travel and locational response to transport system
changes it has become almost universal practise to infer the propensity of individuals to modify
their behaviour from trip patterns revealed at a single cross section. Indeed, the traditional use
of the cross-sectional approach has transcended the significant differences between two
generations of travel demand models. Explanations and theories of traveller behaviour become
associated with the interpretation of dispersion—the variability exhibited when individuals are
associated with different travel related options.

It is a fundamental assumption of the cross-sectional approach that a measure of the
response to (incremental) change may be assessed from demand functions simply by determin-
ing their derivatives with respect to the policy variables in question. Thus, if we write the
demand model as a functional relation :

P,=f(Z,...%,...2y;8) p=1,...N (1)

between the probability P, of occupying a particular state A, p=1,...N; the vectors of
attributes Z, and the parameter set 8, then the response 8P, to a policy stimulus, identified by
the combination of incremental changes in the components {8Z%} may be written

=35 575 p=1,...N @
poB L

tAn initial version of this. paper was presented at the P.T.R.C. proceedings, Annual Summer Meeting, University of
Warwick, 9-11 July, 1979. It is an extended version of the paper “Behavioural Travel Theories, Model Specification and
the Response Error Problem™.
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P, (and 8P,) might, for example, refer to the probability (and its change) that an individual will
select a particular travel related option. We shall write this equation in the matrix notation

8P=[(Z &) - 8Z A3)

in which f' contains all partial derivatives of the demand function.

‘The assumption that a realistic stimulus-response Telation may thus be derived from the
model (1), with its parameters estimated from cross sectional observations, has been elevated to
such a level of faith that the notion of validity of a travel response forecasting model is often
interpreted exclusively in terms of the statistical goodness-of-fit achieved between the base
predictions and observed travel behaviour. If this view were not so prevalent in transportation
studies it would be unnecessary to reassert that “goodness of statistical fit”” might be a necessary
but is not a sufficient condition for a valid response model. This has been demonstrated both in
numerical tests on demand models, and in the increasing number of studies in which it has been
possible to compare the results of demand predictions with observed behaviour in before-and-after
studies (see, e.g. Senior and Williams, 1977, Williams and Senior, 1977; the Kent County
Council, 1976; Papaoulias and Heggie, 1976; and Train, 1978).

The popularity of the so-called second generation demand models conceived in terms of
probabilistic consumer choice concepts has, in part, been founded on the successful marriage of an
explicit theory of behaviour with a micro-representation permitting an efficient statistical
analysis of dispersion at the level of the individual travelier. One of the powerful motivations
behind their development was the feeling that appropriately specified models which captured
the essence of human behaviour would be transferable in both space and time. While the merits
of the “conventional” micro-approach have been widely recognised, ther€ is a broad and
growing body of literature inspired by what are considered to be the deficiencies of the
commonly adopted model representations, and in particular the theoretical basis underpinning
them (see, e.g. Stopher and Meyburg, 1976; Burnett and Thrift, 1979; Heggie, 1978; Heggie and
Jones, 1978; Banister, 1978; Burnelt and Hanson, 1979). While these criticisms may be
discussed under the generic heading of behavioural misrepresentation, there are two particularly
important classes of comment which are worthy of note, relating to: the definition and
characterization of travel related options which are deemed relevant to the choice and response
contexts; and secondly, the nature and characterization of the decision process attributed to an
individual. Tn the latter context it is argued that the notion of a perfectly discriminating
“rational man” endowed with complete information is an unrealistic starting point for the -
analysis and prediction of travel behaviour.

Criticism against a prevailing orthodoxy is of course essential to prevent stagnation as the
state-of-the-art evolves, but critical assessments can be, and often are, made in the absolute
with little regard to their practical implications, and in particular, the way in which theoretical
statements assert themselves in empirical demand analyses. Some criticisms are testable
through numerical experimentation, and it is by this means that we shall seek to assess some of
the consequences of behavioural misrepresentation as manifested through the mis-specification of
micro-models.

Out of a very broad class of possible mis-specification problems we have singled out four
particular areas for illustration and numerical experimentation, relating to: the selection of 2
demand model inappropriately structured in relation to its accommodation of the perceived
similarity between travel related snbstitutes: alternative models of the decision process by
which individuals are considered to identify a preferred alternative; the relaxation of the
assumption of perfect information and discrimination in the choice process; and the existence
of habit in choice contexts. As we are not in the possession of information on actnal response
behaviour we have simulated data pertaining to choice contexts on the basis of particular
specifications of the behavioural process. A model(s) has then been estimated with this data and
its predictions compared with the simulated response.

Although we have distinguished the various simulation experiments for the purposes of

_pres_e.ntation, a number of themes relating to the issue of theory representation will weave their
~way through. the discussion. It is a central concern to deiermine whether two or more

q'm_p.et:ig'g_mo.d.é_lg_ of behaviour can each result in acceptable “statistical fits” to cross sectional
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data, and differ significantly in their response predictions. By this means we attempt to
determine the extent to which an observer (the modeller) can be indifferent to the many sources
of variability giving rise to dispersion.

First we must address the general problem of specification and the role of theory in model
formation. The particular aspects of decision contexts and frames of reference within which the
experimental tests on behavioural misrepresentation are conducted will then be examined.

2. THEORETICAL PERSPECTIVES: MIS-SPECIFICATION AND RESPONSE ERRORS

The specification of a cross-sectional micro-model (1) occupies a central place in the
development of analytic forecasting procedures, While it is recognised that in any particular
study data limitations and resource restrictions may well have a vital—and possibly over-
whelming influence on this process, it is important to establish how theoretical considerations
influence the construction of a demand function such as (1). In this paper we shall in the main
be concerned with the relationship between the form of the model and certain behavioural
premises assumed to underpin it.

Because a considerable amount of criticism of the current generation of micro-models is
directed at precisely this relationship it is necessary to make a brief excursion into the nature of
the theoretical base, in so far as this is refevant to the issues raised later in the paper. A natural
starting point is the theory of rational choice behaviour and its formal adaptation. This asserts
that

“...a decision maker can rank possible alternatives in order of preference, and will always
choose from available alternatives the option which he considers most desirable, given his
tastes and the relative constraints placed on his decision making, such as his level of income or
time availability. Suitably modified to take account of the psychological phenomena of learning
and perception errors, this theory...forms the foundation of modern economic analysis™.
{Domencich and McFadden, 1975)

Two questions may immediately be posed here. Is the theory reasonable, and if it is, is it of
any use? Many critics of the theory of rational choice, adopting a parficular interpretation of
what it implies, tend to oppose its strong normative flavour in utility analyses and point
especially to the assumption of perfect information and discrimination in the decision process
as being particular offenders against reality,

The concept of satisficing and “bounded rationality” proposed by Simon (1955} is perhaps
the most widely discussed alternative to the above approach. As Eilon (1572) has remarked

.. optimisation is the science of the ultimate: satisficing is the art of the feasible. The
optimiser sets off in a single minded fashion to determine the best solution to a given problem
in given circumstances . . . the satisficer on the other hand, acquiesces to the proposition that
it is seldom possible to define the ultimate in unambiguous terms and that it is sufficient to do
well enough”.

The notion of satisficing is often cited as having some support from the study of human
information processing and psychological theories in which decision making is conceptualized in
terms of attitude formation, triggers and responses within a dynamic “environment” of the
decision maker. While the economic and pyschological perspectives tend fo examine consumer
behaviour from different vantage points, they are in one sense complementary; the former
tends to take preferences as given and does not attempt to explain them, the latter goes one
stage further back to provide such explanations.

When the cost and effort of acguiring information and indeed making decisions are duly
accounted for, many of the distinctions between the so-called “optimising” and “‘satisficing”
approaches become moot points. Indeed, as McFadden (1975) has further remarked

“...classical economic analysis makes the assumption of homo economicus virtually
tautological, if an object is chosen then it must maximise “utility” as the chooser per-
ceives it” (our emphasis). ' : : : '
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In this sense we may perhaps regard any aspects of observed traveller behaviour which are

deemed “irrational” or “idiosyncratic” as but apparent and simply the consequences of

inaccurate or inappropriate descriptions of the behaviour in the frame of reference selected by
- the observer. This aspect of analysis will be further considered below.

We must first return to the question raised above and ask whether the {extended) framework
of rational choice theory interpreted through utility maximisation is of any use. A central
consideration is, whether the theory places any meaningful restrictions on the demand functions.
We can provide a partial answer to this question by referring to those empirical
studies of trave] behaviour which have employed demand functions unfettered by the restric-
tions of behavioural theories. It has been demonstrated (Senior and Williams, 1977; Williams
and Senior, 1977) that the properties (e.g. the signs of elasticity parameters) and resultant
response predictions of a number of models widely used in Transportation Studies are badly at
variance with what are generally regarded as acceptable.? An important point to note is that the
unacceptability of certain structures can be diagnosed @ priori, while others may be ruled out
after estimation (see Williams, 1977). Thus we may appeal to a theory of demand—based for
example, on the rational choice paradigm—in order to organize our a priori assumptions and
ensure that the demand functions which embody them will be free from some of the absurdities
and inconsistencies (interpreted within that paradigm!) which may, and indeed do, arise from
the indiscriminte use of “pragmatic” models.

In order to determine what restrictions, if any, the theoretical postulates (be they drawn
from economics, information science, physics or psychology) impose on a demand model we can
ask which functional forms f(z} are consistent with those postulates, and conversely we can
enquire about which theories or hypotheses, are consistent with a given functional form. Two
strategies have been adopted in addressing these issues. First, we can start with specific
hypotheses and constructively derive choice probabilities from them. As McFadden (1978)
notes, the primary drawback of this approach is that it often leads to analytic intractibilities, or
results in functional forms impractical for empirical analyses. (In later sections where tests on
mis-specification demand that complex behavioural models be formed by this procedure we
resort to Monte Carlo simulation for the generation of choice probabilities.) A second approach
is to attempt to verify directly or indirectly that a manageable demand function(s) is consistent
‘with a given hypothesis. Such an approach has been adopted ¢lsewhere in applied consumer
demand studies and is exemplified in the formation of an acceptable linear expenditure model
system (Deaton, 1975, Chap. 3).

Rejection of a particular model may take place on a range of criteria varying considerably in
their formal status. Inconsistency with a theoretical postulate is a rigorous and unambiguous
basis for rejection. In contrast the adoption of statistical goodness-of-fit criteria and parameter
comparability with previously determined values are often subject to a possible range of such
measures, While we may screen for and purge a model from the more dramatic or pathological
aspects of mis-specification, the functional form and included variables may still be inap-

- propriate and unrepresentative of the true process, which of course is not known & priori!
Specification errors will no doubt invariably exist, and the realistic goal of the demand analyst
is the generation of a model which is plausible and at the same time workable. From a theoretical
viewpoint it is of interest and perhaps vital to test a model against less restrictive or simply

- different theoretical forms. In particular we might want to enquire whether large specification
errors occur when the theoretical asumptions adopted in the generation of a particular model
are violated. This is a prominent theme of the paper.

It is convenient, and useful for later considerations, to refer to the mother logit homily
introduced by McFadden (1975) which states that any continuous qualitative choice model can
be written in multinomial logit form without loss of empirical generality. Thus, a normalized
choice model of the form

P, =f(Z, 8 4)
Epl f=1 )

satisfying

: __TThis_point‘ should not be 'confusgd with the imputation by the modeller to observed behaviour discussed above, Here
wg are d_rscussmg the properties of given models used to predict behavious.
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may be written as

| ' __exp(G,(Z, 8)) ©

* " Texp{G,(Z, 9)

with

G, =log f,. Q)

O may of course be a very complicated non-linear function of the attributes and parameters.
| Any choice model may thus be represented whether underpinned by utility theory or not. This
simple transformation allows mis-specification issues to be discussed and in certain cases
numerically assessed within the logit framework.

| If we wish to statistically assess or “test” a model,

_ exp(Gy(Z, 9) ®
* Sexp(Gy(Z, )

consistent with a set of premises T° against a theoretically or empirically less restrictive form -
f*% consistent with T*, then by writing :

_ exp (G
Pi= 2 exp (G}) ®

with
G =G+ aAG, (10
and

AG, =g,(T', ¢'), (11)

a test which determines whether « is significantly different from zero would serve to stafistic-
ally assess whether one or more of the assumptions upon which the model (8) had been
constructed are violated. If « is significant then the function g, expressed in terms of the sets
Z’ and ¢’ and reflecting the difference between T* and T, will assert itself in the exponent.

Now this process is considerably more straightforward to state than to execute. While all
discrete choice models will conform to the mother logit homily, it may simply not be useful to
express them in this form—as in the case of the intractible multinomial probit function. There
do however exist well known applications of the above procedure. These include tests for the
existence of ‘“interaction terms’ in the case of linear specifications against the so-catled
universal logit form by McFadden et al. (1976); and the test of a linear multinomial logit model
against nested logit forms, to which we shall return.

The rejection of a model against a more general specification as described above is achieved
by appealing to observed choice behaviour. Alternatively we might conduct a set of numerical
experiments to investigate the extent of mis-specification when applying a model (8) consistent
with 7° in circumstances were the form (9) underpinned by T* is considered to represent the
true process. The latter may for example correspond to a relaxation of one of the theoretical
restrictions or assumptions imposed on the former. To emphasise a possible distinction between
the attribute values and parameters in the two models we write

T exp (GHW*, ¢*))
p
and

_ exp(G,(Z, )

> =S exp (G, Z, 0) 13
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By generating synthetic choice data according to the model (12) for given sets of W* and
¢*, and estimating the parameters 8 of the model (13) applied to that data, according to a set of
statistical criteria, it i possible to assess: first, whether the latter provides a good description
of the pattern {P3} and secondly, how the response to change, obtained by varying a set of
attributes, differs in the two systems—that is how the esfimated elasticities, which involve
parameters from the set @, differ from the true elasticities derived from (12).

Now the value of @ estimated by this process of applying the model (13) to the simulated
data generated by (12) will in general be a function

g = 6W*, %) (14)

of both the given set of atiributes W* and parameters ¢*. We may now write

P* _ eXp {GE(Z, é) + AGE} (1 5)
*7 S exp {G(Z, 6) +AG,}
with
AG, = GHW*, %)~ G,(Z. HOW*, p*)). (16}

If the estimated model {P,; p= 1,.. N} provides a good statistical fit to the data it will be
because the difference {AG} fails to assert itself in the fit criterion. Interest will centre on how
the vector of differences AP defined by

AP,=P%-P,(Z,6) p=1.. N an
and response erTor SAP, whose components are (see eqn 2)

5AP, = 6P%—8P,(Z,8) p=1...N (18)

vary with the input values W and ¢, or the theoretical differences between T and T*. It should
be noted that the stimulus giving rise to the response vectors §P* and 8P in both the synthetic
data and applied model may or may not correspond to the same attribute set—that is, attribute
changes may themselves be subject to mis-specification. Now, if the differences {AP,} and
[5AP,}, or some composite function appropriate to a statistical fit criterion, proved to be
significant we would presumably conchude that the specification error was important under the
conditions of the experiment. However, it might well be the differences AP are in fact small—
because AG evaluated in the “base system” is small—vet SAP is significantly larger as the
changes in AG and importantly the differences in the parameter sets start to assert themselves
in the stimulus-response relation. The relative sizes of these differences AP and SAP will figure
prominently in a number of mis-specification experiments which we shall describe. It is one of
the objects of these tests to identify the conditions under which we are prepared to accept a
model on statistical grounds which may lead to large response errors.

It should be emphasised here that while we have formally expressed models in terms of
their exponential transforms according to the mother logit representation, the numerical
experiments in later sections will not employ this teature. It has been used to bring out certain
features of the mis-specification and response €rroT problems. It may be useful later to bear in
mind that the adoption of different sets of hypotheses as the basis for model formation, can
ultimately be reflected in the differences in the exponents of a logit-type expression {whether or
not the models are easily transformed to an explicit analytic form in practise).

We now turn to discuss the problems of mis-specification and theoretical misrepresentation
in a way which draws out the role of the modeller as an observer and the importance of the
framework within which data are interpreted, theoretical propositions organized and demand
models formulated. '

— . e (D T3
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3. DECISION CONTEXTS, FRAMES OF REFERENCE AND THE SIMULATION OF BEHAVIOUR

Theoretical mis-representation, manifested in functional mis-specification, resulfs partly
from our ignorance of the “true” process governing revealed behaviour, and importantly from
the strong desire to produce a workable model with the information available. As we indicated
above, tests on potential mis-specification issues may be performed by examining the disparities
which exists between alternative functional expressions reflecting differing descriptions of
assumptions about behaviour. We must now relate these considerations to the more general
problem of how an ebserver of behaviour can impose particular and inappropriate prescriptions .
of behaviour on the modelling process. In essence we wish to assess the consequences of
inappropriate descriptions for forecasting travel response.

We introduce two perspectives A and A* each of which involves a description of behaviour
within a selected frame of reference. The former A entails a description adopted by an observer
(the modeller) endowed with the information in traditional cross sectional surveys—namely
choices and certain measured attribute values. A* on the other hand, is a perspective of relative
privilege and will involve a more “realistic” description of the individual decision process (it
does not concern us vef whether this information is relevant and how it is obtained). In the
examples to follow this section A* will in fact involve simple refinements to the assumptions
normally employed in the generation of choice models. In terms of the mis-specification tests
described in the previous section the information in A and A* will be used to underpin choice
models {P} and {P*}.

We shall now assume that A and A* are characterized by the following aspects of a choice
context for each individual i:

A% {7 ARG 29 9% Q| Al AG ) v Q)

in which we denote d, % as the descriptors (attributes) of individual decision makers i; A, A* as
the sets of alternatives out of which a selection is considered by individual i. Each alternative is
characterized by state descriptors s and s*, respectively (and might relate, for example, to a
formal description of an individual travel tour or journey), and each state will be characterized
by sets of attributes Z and Z*; i, ¢r* as the set of constraints to which the individual is subject.
These may include: travel time, cost, family interdependence constraints, search time con-
straints, etc.; and Q, Q* as the set of objectives motivating the choice process. These formal
descriptors are introduced simply to characterize the two perspectives. In the formation of
mathematical expressions for predicting response these aspects are incorporated into explicit
models D% and D; of the decision process.

The residual dispersion which will in general characterize an observable trip pattern is
described through probabilistic concepts in the modelling process. The notion of probability
itself might vary according to the theory of behaviour selected. For examble, the observer
(modeller) might consider each individual to act rationally and consistently when repeatedly
confronted by the same cheice. In this case he might interpret the probability P} that an
individual ¢ selects alternative A, in terms of the proportion of a fictitious population 7 of
individuals with observable attributes identical to ¢ selecting A, Dispersion is attributed to the
observer’s uncertainty of the true subjective utility values which were taken to be proba-
bilistically distributed over . This is the usual interpretation adopted by choice modellers who
apply random utility theory. Alternatively, the observer might regard the decision rule of any
individual ¢ to be intrinsically uncertain and the notion of probability is interpreted in terms of
the relative frequency of choice of A, in repeated trials due to variability in the state of mind. In
this paper we shall generate models according to the first interpretation. The probabilistic model
will involve an aggregation process over the decision contexts and resultant choices of
members belonging to 7, as we describe below.

The discrepancies between A and A* characterize a whole family of mis-specification
problems associated with: the description of the choice contexts; the specification of the
decision models D and D*; and the process of aggregation over individuals in 7 and #*. Let us
examine the scope of potential mis-representation by considering the assumptions embedded in the
process by which conventional choice models, and the multinomial logit model in
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particular, are generated within random - utility theory. An explicit statement of these assump-
tions will be used later for comparative purposes.

(a) Choice making populations are identified with individual segments of the transport
markets. Constraints are handled explicitly or implicitly through the use of proxy variables.

{b} All individuals [; in a given market segment s have the same deterministic choice set A*
containing alternative A,,...A,..Ay. (We assume that certain obvious constraints are
catered for, for example the possession of a driving licence in order to be a car driver, or of car
availability as a pre-requisite for private travel.)

(c) The objectives of each individual are resoived in the formation of utility functions U,(Z,
@), p=1... N, which are used to record preferences.

(d) The decision model is simply one of utility maximisation,
if :

D;: Individual { will select A, if
U,>Ul; VAyeA®. (19)

{e) Within each market segment, dispersion is considered to arise from the unobserved
attributes both of individuals and those associated with the description of choice aiternatives.
Formally the utility function I/ ! is decomposed into a “representative” component L_f,, and a
residual €} accounting for a deviation from the ‘group average’ which absorbs non-observed
attributes including taste variation in the utility function U,(Z, 9). Thus,

Up=U,+e\  VAeA (20)

{f) The aggregation process over the population comprising s is performed by assuming the
“residuals” € = (¢, ... €, . .- &) to be distributed randomly over #°. Specification of the joint
probability density function F(e) allows the choice probabilities P, to be determined by
integrating over that portion of utility space R, for which the condition (19) holds; that is,

P~ [ deFte) 1)
RP

(g) If the random components (€1,...€,...€y) are identically and independently dis-
tributed (uncorrelated with each other and the attributes Z) according to Weibull functions
W(0, o) with standard deviation &, the aggregation process (21) may be resoived analytically to
yield the multinomiaf logit mode! (Domencich and McFadden, 1975; Cochrane, 1975)

_ _exp (60,
*~ Sexp (00, @
2 _
in which
_ 7w
0= Vo (23)

(h) The representative utilities U, are expressed as linear functions of the attributes Z, and
the parameter set ¢ (to be determined in the estimation process),

U,=3 ¢,2~ @4yt

(i) The response 8P arising from a change 8Z is traced directly through eqns (24) and (22)
by assuming constant parameters @ and &.

It can be seen that the assumptions involved in the formation of the linear logit model are

1The parameter ¢ in eqn (22) is related, through eqn (23) to the dispersion in utilities measnred in specific units, 8 may
be absorbed into the utility function for the purposes of estimation, as in the expression :

p o 5P (17_2'(1, ")

’ Zexp(UYZ, ¢7)
time units, then 8 wilt be equai to the coefficient of the attribute #me in
specific interpretation of the parameters
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many, and vary considerably in their formal content, from the postulation of a scalar utility
function used to record preferences, to very specific analytic assumptions—e.g. Weibull
distributed residuals—invoked for computational tractibility, '

Now the adoption of the Multinomial Logit {(MNL) model does not necessarily imply a
commitment to the theory outlined above, as it is well known that the model can be derived
from other theoretical stand-points (see, ¢.g. Thrift and Williams, 1981). There may also be
other explanations of dispersion which are statistically consistent with the above model.
Through a series of simulation experiments we seek such explanations.

In order to investigate the implications of the differences between the behavioural per-
spectives A* and A it is necessary to generate a data base P*. If it were possible to aggregate
analytically over the “individual” decisions of the members of 7 then it would be unnecessary to
resort to simulation. In this paper we shall be dealing with behavioural processes which typically
require numerical analysis for their resolution, and we have appealed to Monte Carlo
simulation to generate the resultant model. The resohution of choice models using this method
has also been considered by Albright ef al, 1977, Manski and Lerman, 1978; Ortuzar,
1978, 1979; Robertson, 1978; Robertson and Kennedy, 1979; among others. Each member of the
population 7 of size M associated with a given market segment, is sampled and assigned to a
particular alternative Ay, ... A,, ....A, according to the outcome of a simulated decision rule
D* associated with the perspective A*. When M is large, the proportion M,/M which “selects”
A, then approximates P%, a member of a discrete probability distribution P¥,..., P%,... P%.
What was considered sufficiently “large” in each experiment had to be determined in the
process of the investigation. The vectors P* associated with population m(Z}, corresponding to
different observable attributes, are now considered to be the travel related choice data available
to the modeller. .

The model P underpinned by the perspective A is then estimated with the synthetic data and
used to predict population response under conditions of changg. These modelled forecasts are
then compared with those separately generated using simulation according to D¥, in the manner
described in the previcus section, and the deviation or response error between the “true” and
forecast probability measures is recorded. The experimental scheme is depicted in Fig. 1.

The model P adopted by the observer will often correspond-to the multinomial logit form for
which we shall provisionally accept the assumptions in perspective A with the stages (a)-(i)
outlined above. A* will involve the relaxation of one or more of the assumptions employed in
these steps. The simulation tests involve relaxation of the assumptions associated with steps
(), (h), (d), {e) and (i) in the above list.
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Fig, 1. Testing models of behaviour using simulation.
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To repeat, we seek, in each case, alternative explanations and models which are statistically
consistent with given patterns of choice behaviour, and which result in different response
forecasts. The difference, referred to as the response error, is a measure, as we later discuss, of
the consequences of failing to discriminate between alternative representations of behaviour at
the cross section. _ _

Now, in practise data consists of 1,0 information on whether an alternative in a set is
accepted or not by an individual, and the existence of dispersion due to behavioural variations
in decision making is imputed from the observed dispersion in the model {P,} ¢stimated from
data points corresponding to different Z values. Because details of the decision process are
known in the A* perspective the discrete probability distribution—the data-P% = {P#(Z)} may
be generated directly. The modeller might seek to attribute the source of the dispersion in P* to
the distribution in utility values according to eqn (23). If then a logit model

p - 0O, §)
" Soxp (0,2, 4

is adopted to account for the variation in the data P*, and found to provide a good statistical fit,
the estimated parameters will be consistent with an interpretation of P* having been generated
by utility maximisers whose utilities are Weibull distributed with means {0,....0,... Oy} and
common standard deviation o given by eqn (23), that is

T
o= NG (25)

As P* will, in fact, have been generated according to an alternative set of rules or
assumptions, it is clear that a good fit to the base pattern P* is in this case consistent in a
statistical sense, with at least two interpretations of the observed dispersion or variation in
behaviour. It then remains to see whether the response predicted by the model adopted by the
observer (the multinomial logit function in the above case) provides an accurate approximation
to the simulated response recorded by P* for a revised set of external conditions—interpreted
as a policy stimulus. '

We now proceed to the mis-specification experiments. Out of the whole family of possible

tests introduced above we have chosen four, The first is, in natore, the most conventional and )

involves an assessment of mis-specification arising from the use of a model insufficiently refined
to accommodate the perceived similarity between alternative choices. The test is designed not
only to shed some light on the limitations of the multinomial and nested logit models, but more
importantly from a theoretical standpoint, provides an important link with later considerations
of the generation of choice probabilities from alternative decision models.

4 MODEL STRUCTURES AND THE SIMILARITY OF TRAVEL RELATED SUBSTITUTES

4.1 Correlation and model structures

The adoption of simple models such as the multiromial logit model for applications in which
the choice alternatives are considered to be endowed with degrees of “‘similarity”” has resulted in
a series of ambiguities and inconsistencies which have recently been resolved within the
framework of random utility theory (Williams, 1977; Daly and Zachary, 1978; McFadden, 1978:
Hausman and Wise, 1978; Daganzo et al., 1977). It is now well known that if the multinomial
logit model is indiscriminately applied to choice contexts, involving: multiple modes; mutiple
routes; mode-route or location-mode combinations, etc. the cross elasticitics obtained and
resultant response properties of the models will often be unacceptable. In fact the multinomial
logit model has frequently been applied in conjunction with utility functions which are
inconsistent with its formulation (Williams 1977, 1980). To overcome these difficulties, encoun-
tered in the use of the simple logit function, a broader class of models with less restrictive

properties of cross-substitution has been derived within the framework of random utility
theory. ' '
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In the remainder of this section we shall use the term “elasticity function” and ‘“‘cross-
substitution™ to refer to variation of a choice probability P, with respect to the change in a
utility component U’,,f which will in general be a function of the set of attributes {Z%;
=12 ... m}. These elasticities

Z ,=a_PP_.gE' ‘ (26)
®oeU, P, -

ate related to those defined in terms of the attributes &b, in the following straightforward -

manner

e all,

gh =€, =
ap e Up' 625;'
In the considerations on alternative model structures and mis-specification we shall be interested in
the response properties of models, and in particular in the number of parameters which
characterize the matrix € with elements {€,,}.
The structure of random utility models generated by eqn (21)

P, =L deF(e)

is directly determined by the distribution function F(e) and a number of parameters which
characterize the resultant function f(Z, #) in eqn (1) will be embodied in the variance-covariance
matrix . The elements of this matrix are defined by

2= Eleg,) 28)

in which E( - ) denotes the expectation value. In general the number of parametérs in the matrix
& will be the same as that entering 2.

The variance-covariance matrix corresponding to the multinomial logit model, generated
from identical and independent distributions, is given by

S=gd (29)
2
= 61321 (30)

in which I is the unit matrix, and the elastic matrix & is characterized by the single
parameter 6.

A natural point of enquiry is the potential mis-specification arising from the application of
models characterized by diagonal (or other restricted forms of) variance-covariance matrices in
choice contexts for which more general structures are appropriate. This is a question we shall
take up later.

A number of model structures have now been derived which accommeodate varying degrees of
“similarity”” as expressed through the correlation between the stochastic residuals in eqn (21).
These range from: the nested or hierarchical logit model (HL) (Williams, 1977; Daly and
Zachary, 1978; McFadden, 1979);1 the cross-correlated logit (CCL) model (Williams, 1977); the
general extreme vatue (GEV) class of models proposed by McFadden (1978) which contains the
hierarchical and multinomial logit functions as special cases; to the general but computationally
unwieldy multinomial probit (MNP) model (Domencich and McFadden, 1975; Daganzo et al.,
1977). :

The existence of a broad class of models constructed on less restrictive principles than the
multinomial logit mode! has allowed mis-specification tests to be performed on the latter. As we
noted above, McFadden ef al. (1976) have tested the MNL model against a universal logit

FAn excellent discussion of the nested logit model can be found in the paper by Sobel (1980).

ipinsins
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specification, Hausman and Wise (1978) and Horowitz (1979a, 1979b) have examined the
multinomial logit against muitinomial probit forms—while Ben-Akiva (1974) and others have in
turn tested the MNL model against alternative nested (HL) specifications.

In this section we shall examine the performance of restricted members of the logit
family—the MNL and alternative HL varieties—against a 3 parameter cross-correlated
representation which contains these specifications as special cases. We shall examine the
potential mis-specification in contexts invelving a combination of choice “dimensions” X and
Y-say location and mode. If X.. £ =1,2,...represents the set of alternatives available in the
X-dimension and Y,, »=1,2,... those in the Y-dimension, then the total set of available
alternatives {... A, ...} is composed of the combination {. . . XY, .}

The utility function governing choice between these alternatives will be taken to be of
traditional form (see Ben-Akiva, 1974; Williams, 1977)

UX, Yy=Ux+ Uy + Uy (31
The components of eqn (31) may be written
U, v)=U,+U,+ U, VX.eX, Y,eY, ' (32)

in which U, and U, are themselves components specific to the choice dimensions X and Y
respectively, while U, is an interaction term. Thus in a location (X) and mode (Y) choice
context, Uy would refer to components which vary over locations but not modes, Uy vary
over modes but not locations, while Uyy are components, perhaps transportation costs which
vary over location and modes. '

If now U(g, ») is written in terms of the representative utilities and residuals

U, v) = O, v) + e(u, ) (33)
in which ) o
l7(p,, v)=U,+U,+U, (34)
and
e(u,v)=€,+€+¢, (35)

the variance-covariance matrix can be expressed in terms of the following expectation value
znw,y, =F(e, e, + € €t €0t €. (36)

We shall now assume that €. € and €, are separately identically and independently
distributed, with

Elee,) =% B 37
E(eva') = G'zYaw’ (38)
E(E,u.we,u,'v') = G-.z)ﬂ’ B,uu.'aw' (39)

with all cross terms {such as E(e,¢e,} vanishing). The Kronecker delta is defined in the usual
way .
6“3 = 1 if o = B

=0 otherwise, . (40)

The matrix elements of I now become
E,u.v,p,'v' = UZXBWL’ + 02}’ 6w‘ + 8%{}’ 6;L_u,' ) Bw" (41)

We wish to determine the conditions under which the épplication of MNL and HL
models—themselves underpinned by X matrices which are special cases of eqn (41), will give
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Fig. 2. Representation of the structure of choice models.

Table 1. Characteristics of selected members of the logit family
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rise to serious mis-specification errors when the true choice process is characterised by a 3
parameter mode] with non-zero oy, oy, and oxy.

‘Some characteristics of the I-parameter MNL and 2-parameter N specifications together
with a pictorial representation of the structures of correlation between the choice alternatives
are given in Fig. 2. We have expressed the specification of these models in terms of their
G-functions (in Table 1). Thus the traditional representation of the

Nested Logit (X/Y) model (see Williams, 1977),

p —_exp{BU,+ U exp AT, + T

* 2#: exp{B(U, + U,)} 2 exp (AU, + U,,)} “
with
0, = %Iog 2, exp{A(T, + U,.)} | @3)
can, by simple manipulation, be written in mother logit form
p, - {BU, +(B~A) U+ AT, + T,,)} )

" > exp {80, + (8- A) O-+a(0,+ 0,0}

thus revealing the structure of the G-function. This makes transparent the fact that when
off-diagonal elements of the correlation matrix ¥ vanish (ax —0), B tends to A and the model
collapses to the multinomial logit expression. Correspondingly, the 2-parameter elasticity matrix
elements '

— -A
%#V,#'V' = AU.u'V' {Smt’ "8y — PF"” * @ A ) (61*#'1)”',# + P#'v’ : Pv'i#’)} 45)

with

_exp{AU, + O )
WS exp (MO, + U0

(46)

reduce in this limit to their 1-parameter forms.
Note that the model will only be consistent with utility maximisation if the estimated
elasticity parameters 8 and A satisfy the inequality

B~A=0. (47)

A violation of this condition can result in the pathological condition in which certain elasticity
clements attain the wrong sign—and increase in the desirability of an alternative may result in a
decrease of its share. This anomaly has in fact been associated with a class of nested logit
models empioyed in British Transport Studies (Williams and Senior, 1977). We shall be
particularly anxious to identify the conditions in which this pathological condition arises in the
mis-specification tests below.

In order to assess the extent of mis-specification errors we seek a model(s) which
accommodates the full degree of cross-substitution implied by the variance-covariance matrix
(41) with ox#0, gy # 0, oxy # 0 and which collapses in appropriate limits to the Nested and
Multinomial logit models.

One possibility is to appeal to the GEV class for the generation of 2 suitably structured model
model with 3 parameter degrees of freedom. McFadden (1978) has shown that if
#(Vy,...V, ... Vy)is a non-negative linear homogeneous function of non-negative represen-
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tative utilities Vi,... V,... V,, and subject to certain additional restrictions, the model

JH
Pp(Vl,---Vp,...VN)z Vﬂ.a_Vp.%-l (48)

will be consistent with utility maximisation, For the choice contexts considered in this section

the J-functions required to form the multinomial and nested models are given in Table 2.
Although the following three parameter generalization of these forms

Hy=pIA, §=MA)Y= %{2 wa}, + Z{; Vm‘”}a - ; Vi (49)

suggests itself, this does not lead to a simple expression whose parameters can be readily
related to the elements of the £ matrix The search for a simple exact closed form analytic
expression was thus abandonedt in favour of the intuitively more appealing method of direct
numerical solution of eqn (21) by Monte Carlo simulation using Weibull distributions for each
component in the Uy, Uy, and Uy, dimensions. In the process it was possible to test the
accuracy of the cross-correlated logit (CCL) model proposed by Williams (1977) as a 3-
parameter generalization of the MNL and HL models to which it reduces in appropriate limits.
This model is not however consistent with utility maximisation. Its characteristics and pictorial
representation are given in Fig. 2, and its full specification is given in Williams (1977).

4.2 Simulation experiments with alternative model structures
The models and their underlying utility functions will now be referred to in terms of their
utility coordinates.

{ﬁ; E} = {ﬁ}é ﬁ}’s [_]XY; T3, Uy,ﬂ'X}r},

and the test on mis-specification by the juxtaposition

U*; 3¥a%, 0% ox®)| (U 2oy, oy, oxy).

Table 2. The generation of members of the fogit family from the GEV system (for notation please see text)

MODEL M -FURCTION v

Multinomial Logit TLv n(E . —ﬁ . T )
e "y v uv

MNL L

Hierarchical Logit

T {r VA'IB}BM ea(ﬁu * E\; * qu)
HL{X/Y) wow M
Hierarchical Logit . VAI'X]UA el(au . ﬁ“ . ﬁu\,)
HL{¥/X) vop MW

1There are many possible homogeneous degree one functional expressions H(V) which reduce in appropriate limits to those
shown in Table 1. Equation (49) is one such form. It appears that the existence of *‘cross-correlation™ does considerably
complicate the resultant model. We decided to record our rather negative experiences with the GEV system in the hope that
other might improve on our attempts in the formation of a practical model from this potentially very useful method.

#This method generates a model consistent with the variance-covariance matrix (41) but does introduce a shight
approximation in the timits when either oy or oy tend to zero, as an approximation must be invoked in order to form the
nested logit model from the sum of Weibull distributions {Williams, 1977). This effect of approximation was tested and was
found to be insignificant. It does not affect the conclusions drawn from the simulation experiments. It should however be noted
thatit {s not necessary to invoke an approximation in the formation of the nested logit model from utility maximising behaviour.

TR(B) Val. 16, No. 3—B
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Data are generated by direct simulation from the sum of Weibull functions distributed
according to U*, 3* (¢ )},cry, a%y). The four models (MNL, HL(X]Y), HL(Y/L), CCL) are
then adopted for assessing mis-specification errors. In the multinomial logit model and alter-
native hierarchical forms the respective parameters were estimated by maximum likelihood. For
the CCL model the parameters were theoretically determined (Williams, 1977). In all tests two
alternatives were taken in each of the X and Y dimensions, allowing a four alternative choice
model to be generated.

Two series of tests were performed. In the first the corresponding pairs of representative
utilities U* and U were taken to be identical and the simulation tests involved variation of the
co-ordinates (0%, o, o %y). A standardization or “normalization” condition is used to bound the
joint variation of these quantities, and is of the form

o+ o + oty = constant, (50)

A particular co-ordinate (c%, %, c%y) corresponds to a simulation test. To illustrate the
possible combinations of these three components we can appeal to a property of an equilateral
triangle for which the sum of perpendicular distances to the three sides from an interior point is
equal to the height of the triangle.

Four particular co-ordinate test points were taken, as shown in Fig. 3(b) in addition to test
pomts randomiy sampled within the triangle. Any test point may thus be identified with a point
in or on the boundary of the triangle as shown in Fig. 3(a). At interior points a three elasticity
parameter model is necessary to capture the full range of cross-substitution embodied in the
choice probabilities derived from the utility function (31). On the boundaries CB and CA the
alternative hicrarchical logit models HL(X/Y} and HL{Y/X) for which ¢%=0 and =0
respectively, are appropriate. It is only at the vertex C(c% = ¢% = 0) that the multinomial logit
model is strictly an appropriate representation. The four members of the logit family (adopted
in the A-perspective), which correspond to particular points lines or areas of this triangle are
used to assess the extent of the response error,

A sample set of results for the four models used to fit data generated from the test points are
shown in Fig. 3(c) and (d), in order to illustrate the existence of response errors and
pathological response behaviour. The results of the simulations, which are described fully in
Williams and Ortuzar (1979) and Ortuzar (1979), are consistent with the following conclusions:

() The cross-correlated logit (CCL) model is a good theoretical approximation to that
generated by the three parameter utility function. It is, as expected, more flexible than the other
three members, and this is particularly apparent when the three quantities o%, o%, and oty are
rather different from zero, and from each other. Because of the interaction between utilify
components in the separate choice dimensions X- and Y- its estimation is however complex
(Williams, 1977} and, for this reason, does not commend itself. It is thus rather important to
assess the theoretical error in applying the MNL and HL forms:

(i) when %> o¥; the specification HL(Y/X), which corresponds to oy >ayx =0, will
usually result in pathological response behaviour—the change in behaviour predicted by the
calibrated model, when the utility of one of the alternatives is modified, is opposite to that
simufated. The exact conditions under which anomalous TeSPONSE OCCUTS appear to depend on
the values of the representative utility values. When, in the second series of tests, the
restriction (U%= Uy ; etc.) was replaced by conditions in which alternative values were placed
on components of U+ U* all | response errors were found to be worse than their counterparts in
the first series in which U*=U. The performance of the HL models deteriorated and
pathological behaviour became more prevalent. This pathological behaviour could in all cases
be diagnosed from the value of the estimated parameters of the HI.-forms through the violation
of condition {47).

(i) The multinomial logit model performs reasonably well when (0%, 0%, o Xy) correspond
to interior points of the triangle and this is partlcularly true when 0§ = o§. When o%, 0% -0 the
model fit to simulated base data not surprisingly is excellent, Although the limited structure of
cross substitution becomes apparent near the sides of the triangle (CA) and (CB) the model was
found to be considerably more robust than the authors had anticipated.
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Fig. 3. The design and results of simulation tests to investigate model structure variation,

(iv) Out of the three alternative structures (MNL and the two HL forms) the model which
proviaes the best fit to base (simulated) data, and is consistent with any restrictions appropriate
to its structure (e.g. eqn 47), provides a good estimate of the response to change.

Although the simulation tests have been confined to a choice context with a small number
of alternatives (4), it is thought that the conclusions above would not be qualitatively modified
when the number of alternatives is increased, because the focus of the mis-specification tests is
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the variance-covariance matrix itself the structure of which does not vary with problem size.
The results summarized above and particularly {iv) seem to indicate that the choice between the
MNL and HL-logit forms is not unduly restrictive—with respect to a less restrictive member of
the logit family—and would seem to lend some numerical support for the suggestion of
Ben-Akiva (1977a) and Williams and Senior (1977) that results of alternative HL and MNL
models could be compared and an appropriate model selected according to the estimated value of
the “similarity coefficient”, which in the present notation is 1 — (8/A) for the HL(X/Y) form. It
should however be emphasised that the above tests have not included variation over the choice
population of the value of travel (or location) attributes which has been shown by Hausman and
Wise (1978), Horowitz (1979) and Cardeli and Reddy (1977) to be a significant source of
mis-specification. We shall return to this point below.

In this section we have discussed the generation of alternative (and post hoc rationalization
of existing) model forms within the framework of random utility maximisation which ac-
commodate differing degrees of similarity between choice alternatives, and have examined the
consequences of employing models with restricted properties of cross substitution in particular
2-dimensional choice contexts. We have emphasised the essential continuity between what have
often been viewed as very distinct model structures. It is now time to turn to alternative
derivations of models and inferpretations of their structure based on different formulations of

" the decision process by which choices are considered to be made.

5. THEMULTICRITERION PROBLEM, DECISION RULE SETS AND THE
GENERATION OF CHOICE MODELS

5.1 Functional characteristics and decision processes

In this section we shall discuss two issues: alternative conceptualisations of the decision
process through which choices are considered to be made; and, the formation of choice models
which are underpinned by such processes. This will provide the basis for numerical tests on
behavioural mis-representation to be presented in the next section. The discussion will also
form a link with the rationalization of alternative model structures developed above, and also
on the significance of information limitations in the decision process dealt with later.

Ong strong focus of the growing literature on mis-specification is associated with the form
of the utility function, and particularly the linear-in-parameters-linear-in-attributes (LPLA)
varieties accompanying the vast majority of multinomiaj logit model applications. The body of
criticism directed at LPLA forms has stimulated interest in the specification and estimation of
non-linear formulations of varying designs (see, e.2. Lerman and Louviere, 1978; Louviere,
1979; Hensher, 1979; Gaudry and Wills, 1977).

Commentary on these functional characteristics has been intertwined with statements about
alternative models of the decision process considered to underpin the choice models. Although
a variety of sentiments have been expressed about this relationship, a not untypical view is that
because LPLA forms are associated with an unrealistic compensatory decision making process
(the trade-offs implied by eqn (24) allow a change in one or more of the attributes to be
compensated by changes in others) the model cannot be appropriately specified.t It is often
argued that the decision process is characterized by perception non-linearities, discontinuities,
and is more plausibly of a non-compensatory naturef, and that these features should naturally
assert themselves in a model specification (see the discussions in Golob and Richardson, 1979;
Recker and Golob, 1979; and Gensch and Svestka, 1978). There is then the view that the
distinction between compensatory and non-compensatory models is a theoretically significant
classification, which it is claimed has some empirical basis in market research studies.

Before considering these constructs in more detail, it should not be forgotten that one of the
prime motivations behind the construction of alternative models of the decision process based,
e.g. on elimination-by-aspects (Tversky, 1972), was precisely the limitations of simple scaleable

tCompensatory behaviour should not be associated solely with LPLA functions. Various transformations can generate
model forms (e.g. multiplicative in attributes) which are consistent with trade-off principles in the normal sense of that
term.

fIn individual decision models based on a non-compensatory mechanism some “goad” aspects of an alternative may not
be allowed to compensate for inferior aspects which are ranked higher in importance in the selection procedure, simply
because that alternative may be eliminated on the basis of the latter in the process of *“searching” for an option.
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choice models typified by the multinomial logit form. Because they were endowed with the
controversial “independence from irrelevant alternatives” property, and could not accommodate
satisfactorily the inclusion of options characterized by degrees of similarity, it was recognised
as long ago as the early 1960s that such simple models would often portray restrictive and
unrealistic properties. Their defects have sometimes been attributed exclusively to an opti-
misation framework underpinning them, rather than the particular assumptions used in- con-
junction with this approach. _

The development of more general model structures for eqn (21) with less restrictive joints
distribution functions (as outlined in the previous section), which allow degrees of similarity to
be accommodated, has in a certain sense removed some of the original justification for the
construction of alternative decision models. This does not, of course, imply that the currently
adopted models of the decision process, and the assumptions through which the more general
random utility models have been achieved are necessarily appropriate or realistic, nor does it
remove the need to examine competing frameworks.

In the following section we shall examine the consequences of adopting a model based on
compensatory (LPLA) behaviour in a situation for which the data are generated by individuals
conforming to alternative, including “non-compensatory”, rules. That is, we shall juxtapose
the two perspectives

-!A*: various D*I IA:D = linear compensation utility model

Before this may be achieved however we shall draw out some of the characteristics of
“compensatory’” and “non-compensatory” decision making rules and discuss their joint mem-
bership of a set of decision rules. For this purpose we shall examine the decision process in
terms of the formal solution of a multicriterion choice problem, which is assumed to confront a
population of decision makers. This will allow us also to discuss some of the distinctions which
are sometimes associated with the notions of “optimisation™ and “satisficing” discussed above.

5.2 The multicriterion problem and decision rule sets

Let us consider each individual confronted by the decision to be endowed with a set of
goals or objectives (Q and a sef of constraints ¢ In terms of these we shall formally state the
multicriterion problem as follows:

Max {51(2}) e f;(zfv)}

{options}

Max  {{.(Z"). ... L(Z3")} GD

{options}

Max {0a(Z1) ... (u(Z R

{options}

subject to the vector of constraints _
g(Z)<b ' (52)

in which {,(z%) is the value of a criterion function associated with the attribute Z% accompany-
ing alternative A,. For example, we might be interested in finding an option (say a mode) in an
N-membered set {4, ... Ay} which minimises travel time, minimises cost, maximises comfort
and safety, etc. These attributes associated with any particular alternative might, in addition, be
required to satisfy absolute constraints such as (52).

If a single alternative is found which simultaneously satisfies these optimality criteria (1.e.
optimises the M functions in (51)) and whose attributes are feasible in terms of (52) then an
unambiguous optimal solution is obtained. There will however, in general, be conflicts between
objectives—that is, options will be superior in some respeets and inferior in other—and this of
course gives the multicriterion problem its flavour.




186 H.C. W. L. WiLLiams and I. D. OrRTUZAR

There are a number of impottant questions we must address before a choice model based on
this multicriterion problem may be constructed:

(i) What strategies might be adopted for the resolution of this problem? _

(i) Are there differences in the stragegies adopted by different individuals in the population
7?

(iii) How are these strategies to be formally represented?

(iv) How do we aggregate over the population 7 to produce a model to be estimated with
individual data?

It is especially important to emphasise that the probabilistic choice models which we wish to
discuss are derived by aggregating over the actions of the individuals within the population =,
and that while any or all individuals may indulge in a “non-compensatory” decision process, it
may or may not be appropriate to characterize the “‘sum-total” of these decisions and the
resultant choice madel in these terms. We shall encounter this point again.

Let us now consider the first of these issmes—how may an individual confronted by a
hypothetical decision context resolve the multicriterion problem. There is a wide literature
dispersed over several fields which involves the application of decision theory to problems of
this kind. In certain disciplines one will meet a distinction between optimising and satisficing
approaches (Eilon, 1972) and because it is a so-called vector optimisation problem, some notion
of what optimisation means must be supplied in this context. For our purposes it is unnecessary
to be more specific on this issue, and our discussion will centre on the formulation of
compensatory, non-compensatory and hybrid decision rules.

Perhaps the best known and most widely adopted approach to the multiple objective
problem is the trade-off strategy which forms the basis for compensatory decision models, in
which a single objective function '

F=F b du) (53)

is formed and the appropriate option is extracted. If the £, functions are simply the attributes
Z¥ themselves, or linear transformations on them, § may be written

F=5{3 a2, D g;...;}ﬁ:a"m} (54)

and the conventional type of linear *trade-off” problem is addressed. The ‘“trade-off”
parameters « are determined from either the stated or revealed preferences of the individual
decision maker. 7

One of the characteristics of the trade-off approach is its symmetric treatment of the
objective functions. An alternative general approach to the problem is to treat these functions
asymmetrically, by either ranking them or converting some or all to constraints by introducing
“norms” or thresholds. That is we might require, e.g. that any acceptable alternative has an
associated travel time less than a particular amount. Formally, the restriction is imposed that

Z§, .. ZE s (55)

in which Z* is a maximum (or minimum when the inequality sign is reversed) satisfactory
value for Z¥. '

The creation of norms or thresholds restricts the range of feasible alternatives which
individuals are considered to impose on their decision process. Various forms of satisficing
model are generated by converting some (or all) of the constraints into norms and establishing a
structured search for the desired alternative in conjunction with an eliminating strategy. _

There are a great many ways in which this “resolution” or “search” strategy may be
considered to be organized. It might be that a complex cyclic process is used by an individual in
which the thresholds become sequentially modified until a unique alternative is found.
Equally an individual might be prepared to curtail the search at any point according to a
pre-specified decision rule in which case some or alt of the attributes or alternatives may not be

P e R - i = T &)
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considered. Indeed, when the notion of satisficing is applied to travel related decisions and
particularly those involving location (Heggie, 1978; Young and Richardson, 1978; Thrift and
Williams, 1981) the decision model is closely bound up with the acquisition of information in the
search process. As Young and Richardson (1978) have remarked, a search may be characterized
by an elimination process based on atfributes or one based on alternatives. In the former,
attributed are selected in turn and alternatives are “processed” and maintained or rejected in
the search depending on the value of these attributes; while in the latter, alternatives are selected in
turn and their “bundle of attributes” examined. At any stage of the process, alternatives which do
not satisfy norms or other constraints are eliminated. In a complex decision process of selecting a
house say, both strategies of appraisal may well exist simultancously. A more detailed
consideration of alternative decision strategies is given by Foerster (1979).

The important point to note is that there exists a sef of decision rules 2 from which an
individual may be considered to refer to in order to resolve a complex choice problem, and that
what strategy is adopted may well be context dependent. Both the so-called “compensatory”
(e.g. linear trade-off) and “non-compensatory” {e.g. lexicographic order rules) refer to particular
members of this sel. Other members will include hydrid rules which are combinations of
“pon-compensatory” and “‘compensatory” elements.

While attempis may be made to determine empirically how individuals do resolve travel
related problems, it would appear that any model which emphasises one strategy to the total
exclusion of others would appear on 4 priori grounds to be theoretically restrictive. We are not
suggesting that it is an easy task to construct (let alone estimate) a computationally tractable
model which embraces a broad range of decision rules, but to the extent that current
frameworks are deemed to be overly simplistic, however, it remains to assess the numerical
consequences of their inherent restrictions.

We may now decompose the probability P, of selecting an alternative A, from the set A in
terms of the outcome of all possible ways by which A, might be selected. That is we can write

= 3, P(A,|D*) P(D*|) (56)
Dl

in which P(D*|%) is the probability that the decision rule D* is selected from a finite and
non-empty set &; P(A,!D*) is the probability that A, is chosen on the basis of the selected

decision rule D*; and I represents summation over all decision rules in the set 9. It should
D*ed :

be noted here that the effect of policy measures may in principle appear in both models for
P(A,|D*) and P(D*|9).

We can trivially identify the so-called ‘compensatory” and “non-compensatory” models as
special cases of this general structure. For example, the LPLA multinomial logit mode! may be
considered to arise as the following special case: P(D*/@)=1 if D* is a linear trade-oft
construction (see equation (24)). That is, all members belonging to 7 are endowed with the
identical rule D*, while for all other strategies P(D*%)=0; and P(A,|D*)=MNL model,
constructed on the basis of the usual source of dispersion due to distributed utility values, We shall
encounter other special cases below.

The existence of a possibly large set of rules % from which individuals in the population =
may be considered to refer to, has enriched the possible sources of dispersion which may
underpin observed behaviour. The decomposition (56) itself emphasises that individuals—if the
probabilities are interpreted in terms of proportions of #—may not only differ in the rules they
select and thus be associated with different behaviour, but may differ in the value of
“parameters” (e.g. thresholds, trade-off valuations, etc.) associated with any given rule.

The process of model formation may be regarded as one of summing over the contribution
to P, from the decision rules associated with all members of the population . This may
proceed explicitly or implicitly. We can for example spec1fy the set of relevant decision rules
and parameterize the probability distribution determining their frequency of selection, generate
the choice probability P(A,|D*) and finally perform the summation to accumulate the con-
tributions to each share. Alternatively, indirect attempts may be made to show that a con-
structed model is consistent with eqn {56).
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Before proceeding to the mis-specification tests in the next section we shall consider
Tversky’s elimination-by-aspects (EBA) model (Tversky, 1972) which is one of the best known
to be based on “non-compensatory” constructs. This will allow us te classify the model with
the general framework provided by eqn (56), and, importantly to reconsider the basis for
alternative model structures which accommodate degrees of similarity between alternatives.

5.3 Some comments on Tversky's Elimination-By-Aspects (EBA) Model

In Tversky’s model individuals are considered to move from choice set to choice set
eliminating alternatives in the process, according to a particular transition probability. Formally
the model may be derived from the following recursive relation

P(A,|A) = D, P(B: A)P(A,[B) (57)
B
with the transition probability P(B:A) given by

Vs
5 Vp

BeQy

PB:A)= (38)

in which B is a non-empty subset of alternatives A; P(A,|A), P(A,[B) are the probabilities of
selecting alternative A, from the choice sets A and B respectively; while Vy is the scale value of the
collection of aspects which are unigue to and common within members of set B. V; may be

regarded as a measure of the unique advantages of the alternatives in set B; X denotes

B'eQy
summation over all subsets belonging to the set A In Tversky’s model then thresholds are so
defined as to render alternatives satisfactory or not satisfactory with respect to each particular
attribute or “aspect”. Because the scales V (which are variously referred to by the terms “utility”,
“weight” or “attractiveness’)relate only to those aspects unique and common to particular sets, it
is clear from eqn (58) that the relative probability of selecting two alternatives will not depend on
the scale value common to them. In this way the modelaccommodates the similarity between the
alternatives and introduces differential substitutability between different members of the set of
alternatives.

It is interesting to note Tversky’s own comments on the behavioural interpretation -of the
model

“The EBA model accounts for choice in terms of a covert elimination process based on
sequential selection of aspects. Any such sequence of aspects can be regarded as a particular
state of mind which leads to a unigue choice. In light of this interpretation, the choice
mechanism af any given moment in time is entirely deterministic; the probabilities merely
reflect the fact that at different moments in time different states of mind (leading to different
choices) may prevail. According to the present theory, choice probability is an increasing
function of the values of the relevant aspects. Indeed, the elimination by aspects model is
compensatory in naturc despite the fact that at any given instant in time, the choice is
assumed to follow a conjunctive {or a lexicographic) strategy. Thus the present model is
compensatory “globally” with respect to choice probability but not “locally” with regard to any
particular state of mind”. (Tversky, 1972, p. 296).
As McFadden and others have remarked, the EBA model is also consistent with the
behaviour of a population of preference maximisers, each with fexicographic preferences over
aspects in which

*...the transition probabilities can be interpreted as the result of a process in which an
individual drawn randomly from the population has a ranking of all aspects of alternatives,
and moves serially down the ranking, eliminating alternatives which fail to have the desired
aspect, until a single choice remains”. (McFadden, 1978, p. 14).
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Tversky’s remarks on the characterization of the decision process may thus be reinterpreted as
follows: non-compensatory behaviour may be taken to characterize each individual in the
population =, while that group as a whole, conforming to the EBA model appear fo act in a
compensatory fashion.

The model is consistent with eqn (56) in which @ represents a set of lexicographical orderings.
Once a strategy D¥* is drawn, all but one alternative, say A,, will be eliminated requiring that
P(A,|D*)=§,, if D* eliminates all alternatives other than A, (Note, that there will in general be
more than one strategy which will result in a given a]ternatlve being selected.) The probability
P(D*|%) of drawing the ordering D*, (o be consistent with eqn 58), is related to the scale values V
defined above. ‘

It should be emphasised that in the use of and fitting of the EBA model a knowledge of the
internal decision process of a person and an explicit statement of the lexicographical orderings is
not presupposed. We have found it useful to discuss the EBA model in this explicit fashion in order
to compare other models consistent with eqn (36) to be described below.

In the Tversky model the quantities V are the unknowns and these must be determined i in an
application. They may be obtained directly from the various probabilities and conditional
probabilities which characterize the results of a choice process (see, e.g., Tversky, 1972;
Makowski ef al., 1978) or parameterised in terms of the values of attributes Z 5 unique and common
to the various sets (see McFadden, 1978)

Vg = Va(Zp, ¢). (39)

Because the intersection of the sets of aspects in the general case will be very complex, the
number of parameters to be estimated will proliferate rapidly with the number of alternatives. In
certain important cases, however, in which the structare of similarity (interpreted in terms of the
commonality between the aspects of alternatives) is relatively simple, the resultant models are of
more manageable form.

Consider again the “two dimensional” choice context involving location mode combinations,
and the 4-alternative model in particular, with A, p = 1... 4. These will be taken to correspond
to A, #=12; v=172 as before, with peX and veY referring to the location and mode,
respectively. The similarity between the alternatives émbodied in the variance-covariance
matrix {41) may now be discussed in terms of commonality or overlap in the sets of aspects
characterizing each alternative. These sets and the structure of their overlap for the four cases
encountered in Fig. 2 are shown in Fig. 4. If we let V|, denote the scale value for aspects
unique to A,,, while V,. and V.. signify those common to alternatives in dimensions X and Y
respectively, the EBA models are readily constructed: We shall write the model for the
“cross-correlation”” case from which the others may be determined as special cases.

Directly from egns (57) and (58) we have

V;.w + Vu* P(A.u.leuls A_u?) + V“DP(AuulAlw AZV)

P(A.lA)= (60)
SV, +tZV.+2Z Vs,
By H v
with
V,,+ Ve
P(Ap.ylApl: A,U.Z) ——— (61)
EV,.tE V.,
and v
P(A| Ay, Ay) =t Ver (62)

S Vit 3 Ve

A given alternative, say A;; (location | and mode 1) may be chosen in three “ways”
corresponding to the different lexicographic orders in the set &, Most directly, it will be
selected if an aspect unique to A,; is considered most important. Secondly, a contribution to Py,
will come from the selection of an aspect common fo the set of alternatives containing A, and Ay,
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Model Structure of Overlap of Structure of Choice Model
Aspect Sets

8 AN

I
AZZ

Simple
‘independent’

Choice Model O

Hierarchical or
Nested
Structure (X[Y)

Hierarchical or
Nested
Struc!ure!Y’X]

Cross- /\X
Correlated LT
Model Structure ‘(/ o :u‘
X %Y CeY

Fig. 4. Pictorial representation of the structure of selected Elimination-by-aspects models for the XY choice
context.

with the subsequent elimination of A,. The final contribution will be achieved from the selection of
an aspect common and exclusive to the set (A and A,,) with the subsequent elimination of A,,.
These three contributions correspond to those terms in the numerator of (60}). The two “tree like”
structures (X/ Y and Y/X) and the simple scaleable choice model will be obtained when V- or Vs,
or both are zero, respectively (see Fig. 4).
It appears that there is a great deaj of similarity between the structures of the corresponding
" models of Figs. 2 and 4. This will also be reflected in a comparison between their elasticity
matrices. Indeed, McFadden (1980) has suggested that the GEV system and EBA meodels are
roughly comparible in flexibility and complexity. He adds however that

*...one drawback of EBA for econometric applications is that the motivation for the
model provides little guidance for parametric specification of the scale functions V”
(McFadden, 1980).

Indeed, one of the criticisms raised against Tversky’s model is its formulation in terms of 0-1
aspects rather than intervally scaled variables (see, e.g. Gensch and Svestka, 1978), In the next
section we shall discuss a class of models which include elimination criteria based on the latter.

6. TESTS ON COMPENSATORY, NON-COMPENSATORY AND HYBRID DECISION MODELS
6.1. Infroduction

In this section we consider the formulation of models, characterized by egn (56), which
involve an explicit specification of the decision rules D* and parametrization of the probability
distributions determining their frequency of selection. Having generated choice models by
accumulating contributions to {P*} from all different strategies belonging to @ we perform a
series of experiments and estimate the parameters of a test model from the simulated data in
the usual way. We shall discuss and present the results of tests using two different types of
model based on distinct characterizations of @, P(D*|9) and P{A,/D*). In the first series of
tests (7)) the contributions to P* are decomposed in terms of the numbers of attributes
considered in the choice process. The resultant model will then be characterized by specific
distributions of the sets of attributes considered by individuals. In the second series (T5) we
directly apply the explicit decomposition (56) with a set of lexicographical (rank order) rules,
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and a probabilistic choice model P(A,{D*) involving distributed thresholds which are used to
eliminate unsatisfactory options. In this process we draw on elements of the models discussed
recently by Recker and Goleb (1979) and Gensch and Svetska (1978).

Let us recapitulate on the motivation for the experiments—what is it we are looking for?
Basically we wish to discover whether any variants in the decision process which give rise to
observed patterns of dispersion will result in serious response errors when that variability is
interpreted and fitted by the LPLA multinomial logit model, deemed to be underpinned by
“trade-off”” behaviour. The essential features we wish to bring out are the interprefational and
numerical conseguences of estimating the parameters of a particular choice model with data
underpinned by the notion of individuals who might formulate their decision process in terms of
priorities, who might scrutinize a limited number of attributes associated with alternatives, and
generally fail to make a “global” assessment of alternatives. As we pointed out above this does
not imply that they behave irrationally within their own frame of reference. In approaching
these issues it is essential to bear in mind the comments of the last section, namely that in
general it is the composite of different decision processes which will be responsible for the
observed dispersion, and the discontinuities and sequences which one might atiribute to any
“individual” may well become “smoothed” on aggregation over members of the population.

Let us reconsider two extremes of the spectrum of possible decision processes:

(i) an individual makes a decision on the basis of a complete set of M attributes in the
traditionally discussed trade-off fashion;

(i) the decision is made on the basis of what is considered the most important attribute
(strong lexicographic behaviour).

Between these two extremes there is a range of possibilities derived from rules consistent
with the active consideration of 1< m < M attributes, In the series of tests to be described in
this section we shall continuously span this range of possibilities using alternative models of the
decision process. '

There are many ways in which a model can be decomposed and the contributions from
various sources explicitly recognized. The usefulness of a particular decomposition will depend
on the problem or hypothesis at hand. The above considerations suggest that a decomposition
in terms of the distribution over the population 7 of the sets of attributes actively considered in
the choice process, is a useful starting point in the formulation of a model, as this feature is one
of the outcomes of “non-compensatory” behaviour. '

6.2 Models embodying Distributed Attribute Sets (DAS).

We shall define the following: & is the set of all non-empty sets of attributes derived from
the M attributes {Z°, ... Z¥%,. .. ZM}; P(S|%) is the probability that a particular set of attributes
S from ¥ is used to characterize a choice process; P(A,|S) is the probability that an alternative
A, is selected on the basis of a decision rule which involves various attributes belonging to the
set S. The probability P, can now be synthesized from the following contributions

P=3 P(A,|S) P(S|) (63)

in which ¥ denotes summation over all contributions to P, from all sets belonging to &.

Se¥

The set & contains elements—which are sets of attributes—which may be ordered according
to the number of attributes in each set. That is ¥ contains the non-empty sub-sets:
S {ZY,...{2"},...{ZM}

Sm:{Zl,ZQ,. .. ’Zm},' i .{ZM-mé—i’. . .ZM_I,ZM}

SM:{Z],ZQ. . .ZM},
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in which S,,m =1,..., M is the sub-set containing m-membered set of attributes. There are
clearly MC,, possibilities of selecting m attributes from M and this is therefore the number of

M
members in set S,. The total number of non-empty sets in & is then simply % MC,=2M—1,
m=1
and these range as indicated above between the M sub-sets containing 1 attribute and the single
set with M attributes. This decomposition is clarified in Fig. 5(a). We shall in the following
interpret P(S,,|¥) as the proportion of individuals in 7 who select an alternative having
considered m attributes in the decision process.

The decomposition (63) may now be further organized in terms of the various sets which are
contained in the M sets {S),... S,.,.. Sy}, as follows

B _
P,=3 g P(A,|S) P(S]S,,) P(S,|%) (64)
m=1 Seb,,

in which P(S]S,,) is the probability of drawing a particular m-membered set S from the set §,,;
and ¥ denotes summation over contributions from all sets § which contain m members,

€Sy

It is clear that the usual trade-off model involving M attributes can be taken to correspond
to the special case

P(SaH=1 im=M
={  otherwise. (63)F
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and, at the other extreme, the strong lexicographic rule corresponds to
P(S. /%=1 iftm=1
=0  otherwise. (66)

The spectra appropriate to these cases, together with the general distribution of attribute set
sizes are shown in Figs. 5(b)—(d). (We have portrayed the discrete distribution P(S,,|¥) as a
continuous curve in Fig. 5b.)

It should be emphasized that the decomposition (64) does not constitute a mode! until
particular assumptions and specifications are associated with the various contributions P(A,/S),
P(S]S,,) and P(S,,|#). The expression (64) is consistent with a continuum of decision processes
and as we pointed out above, it may in fact not be convenient to decompose the quantity P, in
these terms. For our purposes such a decomposition is useful and we shall parameterize the
distribution of attribute set sizes P(S,,|#) in such a way that it is possible fo span a range of
possibilities between the two above extremes (65) and (66).

It is clear that the dispersion in the resultant data set {P*} will in general arise from the three
sources associated with the distributions P(S,,|%), P{S|S,) and P(A,}S). That is, variation in
behaviour over members of 7 will depend on the different propensities to make decisions
involving various sets of attributes, and on the distribution of the decision rule over those
“individuals” who scrutinize the attributes in the particular set S.

In order to generate a model we need then to specify P(S,|9), P(S|/S,) and P(A,|S). Let us
consider first the choice model P(A,|S) which is the probability of selecting A, from the set A
on the basis of a decision rule consistent with an examination of the m attributes in the set 8,
which is a member of S,,. To provide P(4,]S) with a behavioural basis we adopt a decision rule
involving the m attributes, One possibility, and the one taken here, is to adopt a linear trade-off
rule with the restricted set of attributes in S. In this way we shall attempt to simulate
“non-global” or “satisficing” behaviour by introducing compensatory behaviour within the
context of a distribution of attribute sets.

Within this formulation we may construct a decision rule in which an alternative A A is
selected on the basis of maximum utility, according to:

Y $.20= Y 6,74 VA EA. 67
O 2 |

Here »E denotes summation over the particular attributes in the m-membered set S.
{ZF}es

We must now confront the issue of dispersion in these utility functions, and in particular
whether all or some of the m attributes in the set are considered observable or not, If we
considered all M attributes {Z'... ZM} to be the only ones relevant to the choice process and
these were observable and measureable, then distributed utilities will result if the vector of
parameters ¢ is distributed over the population 7. We can express this “taste’ variation in the
usual way by writing each component ¢, in the form of a representative (mean value) qgﬂ,
common to all sets, and a random component 7,. The utility function associated with the
m-membered set can now be wrilten

US= 2 ¢.20+ 2 mZr (68)
{z*}e8 {ZF1e8
SES,, SeS8,,

It is clear from (68) that the variance in the utility values will increase with the number of
attributes in the set S. When the distributions of the various residuals are independent we have

Var {US}= Y {Z/¥Var(n,). _ (69)

ZEIES
55

A consequence of this specification would be that an increased propensity for individuals in
to make decisions on the basis of smaller attribute sets results in some of the dispersion from
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the utility maximization being “squeezed out”. Under this formulation the two extremes shown
in Figs. 5(c) and 5(d) correspond respectively to the maximum and minimum contributions to
dispersion arising from variation accompanying the linear compensation rule.

From an experimental viewpoint it is an attractive feature to include the above model in a
mis-specification test. However apart from any response error which might arise from the
distribution of attribute sets we should have to contend with the additional complication of the
attribute dependence of the residual in eqn (68) when applying a multinomial logit which is free
from such dependence. Qur initial tests confirmed the existence of mis-specification due to taste

‘variation which has been thoroughly examined by Hausman and Wise (1978), Horowitz (1979),

Cardell and Reddy (1977), among others. Instead of adopting a random parameter model for the
model to be estimated (which was not available to us), and because of the desirability of
constructing the experiments in such a way that data generated in the extreme case (65) would
result in zero (or negligible) response error when a multinomial logit model is adopted by an
observer, we resorted to the following compromise, in which the utility function (68) was
expressed as

2 RSt 2 (70)
{Ztes {Z*)es
SES, SES8,

This retained the desired effect of the reduction in variability as the set size decreases. Further,
if the distributions of the residuals are bell-shaped the model P(A;|S) resulting from this
specification will be very well approximated by a multinomial logit function, as we confirmed in
the tests with Weibull distributions. In the limit when all members of & are associated with
the complete set Sy, a negligible response error will thus arise.t

It remains to specify the distributions P(S,,|%) and P(S|S,.). A particular parameterization
which allows a continuous variation of the attribute set size distribution between two extremes

=1 and m =M is a binomial distribution truncated at m =1 and appropriately normalized.
That is P(S,,|#) is taken as

P(S,|#) = B(m|M, q)

_"Cyq(1- gyt
R w

in which g, the binomial parameter, varies in the range 0 < g < 1. The mean attribute set size is
given by

. Mg
nq_l_(l_q) r (72)
and it can be seen from (71) and (72) that the special cases referred to in eqns (65) and (66)
correspond to g = 1 and g = 0 respectively. In the former case the complete set of attributes is
examined by all members of =, and in the latter only one-membered sets are involved-in the
decision process, As g decreases from unity we include a consideration of smailer attribute sets.
sets.

We need finally to specify the probability P(S!S,,) of selecting a particular set (....),
containing m members from all the ¥C,, possible m-membered sets in S,,. Our strategy here is
to perform sensitivity apalyses in two series of tests. In the first we shall assume that all the
M, sets are equiprobable and that there is no propensity to prefer one attribute over another
in the generation of attribute sets. As it might reasonazbly be argued that because individual
attributes are perceived with different importance in the process of selection between alter-
natives in the choice model P(A,|S), we include a second series which involves addifional
biases in the consideration of attributes leading to differential probabilities of selecting the
various attribute sets in S,,..

11f the random component in eqn (70) is associated also with unobserved factors, then the set {Z%,... Z¥} corresponds only
to the observable attributes in the usual way.
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We can now summarize the strategy in the two series of tests on the first model system
described in this section which we shall refer to as a Distributed Attribute Set (DAS) model, as
follows:

A*; compensatory -A: LPLA multinomial
decision making S logit model (compensatory
involving attribute : decision making from a
sets distributed over single full set of

the population . attributes).

We now describe the experiments and their results.

6.3 Experiments with Distributed Attribute Set (DAS) Models
It is our intention to estimate the parameters 8 of a multinomial logit model

M
exp{ = 8,75}
R (73)
% exp {#E:] 8,75}

with data derived from the model (64). The characteristics of this data set and the results of the
tests themselves will be a function of the parameters of the three distributions which are
summarized here: P(S,,|#): g—the binomial parameter; P(S|S,): a—the vector of relative
weights associated with membership by each attribute of a set of attributes (see below); and
P(A,|S) &, o the parameters associated with the mean utility and distribution (standard
deviation} of the independent residuals (see eqn 70) We may thus write the probability P* as
follows

P* = f(Z 4, @, ¢, o) (74)

and it is necessary to determine the salient characteristics of the response error as a function of
these several parameters. Our strategy in all tests has been to retain the parameter set @ at a
fixed value (which corresponded to realistic values derived from a mode choice context) and
assess the consequence of varying g, « and 0. We are interested in and will present results for
the following aspects: the “goodness of statistical fit” accompanying the use of the model (73);
the variation of the estimated logit parameters @ with ¢ and a, and the response error (which
will be taken here as the difference between estimated and simulated elasticities) as a function
of the parameters, g, & and .

A mode choice context is nsed for the experiments in which the particular observed Z
values correspond to 3 attributes (in-vehicle time; cost/income; and out-of-vehicle time) for
each of three modes (car driver, car pool and bus).t At each data point, corresponding to a
particular combination of attribute values Z, the probability P*(Z) p =1, 2, 3 of selecting the
three aiternatives is generated by Monie Carlo simulation. That is we take a sample 7 of
“individuals” of a given size, and for each member perform the following operations:

(i) generate an attribute set size S, from the discrete distribution (71);

(i) select a particular attribute set SeS,, by sampling from the discrete distribution P(S]S.);

(i) sample values of residuals n from equal variance Weibull distributions associated
with each attribute belonging to the set S, :

(iv} allocate to the “chosen™ alternative according to eqn (70).

The accumulated proportions of the population associated with each alternative will, as we
mentioned in the Section 3, approximate weil the probability distribution {PHZ), P(Z), P¥(Z)}
when the size of the population # is sufficiently large. Sample sizes varying from 500 to 25000 were
used to assess the appropriate size. Note again that in general our generated data is in the form of
fractional quantities unlike the 1, 0 information collected in actual studies.

TThe variation of Z was derived from observations drawn from a sample coflected in Washington D.C. We are grateful to
S.R. Lerman for providing us with this information.
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‘This procedure was repeated at a sufficient number of data points with different Z values to
ensure that the estimated coefficients of the logit model (73) had fully converged, The model
estimated in these tests and used for forecasting response contained a utility function of the
following form

“p

i 1 (in-vehicle

. t-of-
= fime ) + gy{cost{/income) + 63( out-o )+ 6,+ 05 (75

vehicle time

in which 8, and 65 are car driver and bus specific constants respectively. The parameters
é,,... 8; were estimated by the Berkson-Theil method (McFadden, 1976) and the goodness-of-fit
expressed as the coefficient of determination (R?) associated with the corresponding regression
equations.

6.3.1 The case of no bias in attribute set membership. In this series of tests we stipulated that
the probability of selecting an attribute set is a function of its size alone, and the g-variation
was then examined. The results of this series are summarized in Fig. 6. The goodness of fit of
the multinomia! logit model (73) with the utility function (75) was impressive over the whole
g-range (0= g <1)and only decreased from R*=099%atg=1t0 R*=0910at¢g= 0.01. At all
tested points the parameters & were significant at the 95% level and in no case was a mode
specific constant significant at the 90% level. The parameters 6,, 6, and 6, all decreased in a very
similar manner as increasingly smaller attribute sets were introduced, and as a consequence the
“yalues” of in-vehicle and out-of-vehicle times 6,/8, and 6,6, changed very little over the
g-range. These characteristics are shown in Figs. 6(b) and (¢).

It can be seen from Fig. 6(a) that the response error, measured by the aggregate direct
elasticity, and derived by reducing the cost on the car pool mode, increases as ¢ is reduced and
achieves a maximum at g =0. Although this deviation between the estimated and simulated
elasticities is very significant in proportional terms at g = 0 and corresponds to a 40% error, it is
debatable whether the resultant absolute discrepancy in the aggregate shares would be
considered of practical significance.

Because of the particular assumptions used in eqn (70) to formulate the model P(A,|S} we
have not retrieved in this range of tests the strong lexicographic limit characterized by zero
dispersion in the choice mode]. There remains a residual dispersion in the utility functionat g = 0.
In order to “squeeze out” this residual variation in behaviour the vector of standard
deviations o of the residuals n was reduced in stages to zero, and the above statistics
re-estimated. The error was found to increase, but importantly the statistical fit of the estimated
multinomial logit mode! rapidly deteriorated with the parameters &, 6, and #; becoming
increasingly badly specified. In fact, before the strong lexicographic limit (with zero dispersion)
was achieved the logit mode! had been rejected.t In other words it was not acceptable to fit a
LPLA logit mode! to data generated in this limit.

6.3.2 Experiments with heterogeneously distrib uted attribuie sets. It is important to consider the
consequences of relaxing the assumption '

P(SIS=mp-  VSeS (76)

adopted in the above tests, and enquire whether the response error is a function of any bias in
the formation of attribute sets scrutinized by individual decision makers. In order to examine
this issue we stipulated that the probabilities that each member of the M attributes z,

Z¢ .. ZM will enter a given set are in proportion a;, @!... @M with Se, = 1. It is now

. H
straightforward to compute the relative frequency of the C,, different sets in §,,—the above
tests being characterized by & = (3, 1, 3). :

The effect of variation with e will be considered in two ways in order to bring out the
variation of response error with g and a. Firstly, the above tests are repeated for variation with
q with the vector {a; =0.165, a,=0.4, a3=0435). This particular set was suggested by the
relative weights of the attributes in the utility function (68). In other words, the same set of

tAs o was reduced one or more of the coefficients acquired an unacceptabie sign.
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ler the Fig. 6. Characteristiés of simulation experiments with Distributed Attribute Set (DAS) model.
parameters is used to determine both the probability that a particular attribute will be
(76) considered, and also the relative “weights” or “values” accorded to the variables in the linear
utility function. In a further series of tests a variety of vectors a were selected and the model
. statistics and response error determined at a particular distribution of attribute set sizes
bias in (q = 0.5)
:amlznle The results of the series with (e, = 0.165, &, = 0.4, a; = 0.435) are summarized in Fig. 6 and
s 2, can be compared directly with the vatues for e =, 3, 3). The multinomial logit model could
§ NOwW again be very satisfactorily estimated at all values of ¢ with R? values ranging from 0.996 at
b qg=11to 0.956 at g =0.01. The parameters #;, #, and #; were again significant at the 95% level
above with expected signs, and the mode-specific constants not significant at the 909% level.
t th It can be seen from Figs 6(b) and (c) that the g-variation now induces significantly different
u 't}i behaviour in the ratios 8{g)/8,(g = 1) with the result that the measured value of in-vehicle time
;1 WIh decreases substantially over the g-range. A comparison of the Figs. in 6(a) reveals that the
yt ? imposition of attribute set entry bias also has a significant influence on the response error which
set o increases, relative to the homogeneous case, over the whole range. The maximum error is again
TR(B) Vol. 16, Na. 3—C
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recorded at g = 0 where the estimated direct elasticity of ~12% substantially over-estimates the
simulated value of ~6%. :

Having established that the effect of bias in the attribute sets has an influence on the
response error at varying g-values, it was considered desirable to test for error over a wider
range of « values for a given value of g, taken as 0.5. The various a test points are illustrated
with reference to the triangle shown in Fig. 7, and the specific co-ordinates @, a, @, are also
given in the figure.t : :

In all cases well specified logit models with highly significant values for 6, #, and 8,, and
impressive R’-values were obtained. Again the mode specific constants did not prove
significant. The response error is very variable over the nine test points and ranges from zero at
point X to 25% at point . There is little doubt that this variability will increase for smaller
g-values as-we allow the bias to impress itself on a range of smaller attribute set sizes.

One of the interesting features of this experiment was the relationship between the
estimated parameters 8, the input vector & in the utility function (68) and the co-ordinates in
the a-vector. If we form the ratios 6/(s;), i =1, 2, 3 and express these quantities as relative
proportions &, i = 1,2, 3, then it may be noted from the table in Fig. 7 that these quantities are
ranked according to @, @2 a3 This is particularly apparent at test points E, F and G (where
one attribute is omitted from consideration in the generation of data) where £ is approximately
equal to a,

6.3.3 A summary of the tests on the DAS models. We can summarize the results of all the
above tests as follows: the effect of introducing smaller attribute sets and concommitantly
reducing variability associated with a distribution of utility values introduces a response error
which varies both with the distribution of attribute set sizes and with the bias in the
formulation of attribute sets—the maximum error being recorded when sets contain a single
attribute. The actual error obtained by varying the choice set bias is rather variable, but with
the exception of two test points, and in the context of the whole series of tests, we found that
the multinomial logit model underestimated the direct elasticities. This is a consequence of the
relative weight a, given to the attribute 27 in the tests.

O(E\\ -
T3

l

|

4

Coordinafe points of fests.

A E F G X Y Z
Coorainates o 033033 |033]00 [05 |95 {05 {00 |05 {05 10-5 luu mas[mss[ 5 mﬁs[naf lotsfe 7 | 0165 0165
R? 9-980 0597 099 0993 0987 0990 0972
Elastcity of 99 154 00 200 M 180 54
Elasticity of B6 13-2 25 147 71 156 §-7
i1, 031 {033 joas oas o4 148 Joso Joos o-wfoss oz Joasfoze ozt Joss 026050 |02 Jos3lon Joas

Fig. 7. Characteristics of simulation experiments with the DAS model for selected attribute weightings
(g=0.5).

In this case the position in the triangle is given for fllustrative purposes onfy because the sum of the co-ordinates
themselves, and not the sum of their squares, is normalised.

1We have presented the response error in terms of the direct elasticities corresponding to a change in the value of 2
particular attribute (cost of the car pocl mode). 1t was found that the results for cross elasticities produced few comments
worthy of note.
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With the above model we have attempted to simulate the effects of a ‘“non-global”
assessment of the attributes of altérnatives—which is sometimes associated with “satisficing”
behaviour—by characterizing the outcome of the decision process in terms of a distribution of
attribute sets. The particular behavioural mechanism by which attributes are excluded is in this
model latent and underpins the set size distribution. We considered it appropriate to examine
the effects of including a specific “‘elimination mechanism™ accompanying what is generally
regarded as non-compensatory behaviour at the micro-level. It is to the formulation of this
model and the corresponding experimental tests that we now turn.

6.4 A joint compensatory-non-compensatory (hybrid) model
Let us return to the decomposition of the choice model expressed by eqn (56) which we
repeat here for convenience

P,= 3 P(4,[D* P(D*{3).

In Tversky’s model which is underpinned by lexicographic or attribute rank order rules D*, the
probabilistic choice model P(A,|D*) attains a value of either zero or one.

In this section we consider the formulation of a model which includes sources of
behavioural variation arising from both P(D*@) and P(A,|D*). In the former we shall
consider @ to be composed of a fixed distribution of rank crder rules, while the latter will be
based on a decision mechanism belonging to the class of weak lexicographical processes (see
the discussion by Foerster, 1979) and involves elements of “compensatory” and “non-compen-
satory” behaviour. It embodies a critical tolerance principle which relates to the psychological
concept of just noticeable differences. Alternatives will- be eliminated from further con-
sideration in a decision process according to the perceived difference between attribute values
in relation to individuaily defined thresholds or critical tolerances.

The general behaviour underpinning the formulation of the choice model is as {follows:

(1) Individuals rank attributes in order of importance. For individuai { this rank order will be
denoted R,

(i) The available aiternatives are scrutinized with reference to the values of the attribute
which is first in the list R, and alternatives are eliminated if a threshold constraint for that
attribute is violated.

(il This process is repeated for the second and subsequent entries in R; until either a
single alternative remains or the set of attributes upon which the alternatives are assessed is
exhausted—with more than one alternative remaining.

(iv) If the latter case results, a decision is made between the remaining alternatives on the
basis of a compensatory utility maximising rule.

The rationale for this process is simply that a failure to discriminate easily between
alternatives on the basis of thresholds is assumed to encourage a closer joint scrutiny of the
several relevant characteristics in a compensatory fashion. Put another way, an individual wilf
be considered to engage in “compensatory” behaviour unless particular alternatives notably
distinguish themselves as inferior in terms of their individual attributes.

It is now necessary to specify the elimination process in detail. To do this we draw on
clements of the Elimination-by-Aspects models recently discussed by Recker and Golob (1979)
and by Gensch and Svestka (1578), in which the criterion for acceptance or rejection of a
particular alternative with respect to a given attribute, is based on an individual's perception of
the best available alternative at any particular stage of the search. We define the following
quantities: w'(r) is the attribute associated with the rth rank of the order R; for individual i; A(,
r) is the set of alternatives still under consideration by individual i when the rth attribute is
considered; T%™ is the percentage difference between the individual evaluation of the alter-
native judged best with respect to attribute u(r) and the evaluation of alternative A, on the
attribute p(r), and 7, is the critical tolerance between the evaluation of any alternative on the
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attribute w and an acceptable standard. This quantity will be considered distributed over the
population 7 with probability P(7,; ,). 7, is the mean, and o, the standard deviation of this
distribution. ‘ .

We now define the elimination process in terms of the quantities 7" determined as
follows:

opt {Z}-Z¢
T - s.i(r) - AprEA(r, r) (77)
opt {Z4}

AgeAln)

in which Opt denotes the maximum value associated with attribute p over the set of
alternatives A(i, 7). Here the value is interpreted in terms of the measured guantities Z, and
Opt is the appropriate maximization or minimization (e.g. maximum {comfort} or minimum
{cost}, etc.). The elimination criterion is now simply defined as follows:

TH<Ji:  Accept A,
' (78)
Te>Ji:  Reject A,

We summarize this aspect of the model as follows: at any stage of the search process
determined by the rank of the attribute currently under scrutiny, a set of alternatives A(i, r) will
be available to an individual i For each alternative A, in A(i, r) the deviation of the relevant
attribute Z*% from the best value in this set is expressed as a proportion and compared with the
critical value 97 which is similarly expressed as a proportion or percentage. The alternatives
remaining in the choice set are then examined with reference to the next attribute— and so on.

If when the list R, is exhausted two or more alternatives remain in the set A(j, r,) then a
compensatory rule is adopted in the usual way and expressed through the LPLA multinomial
logit function in terms of the observable attributes Z

exp {ﬁ‘,{ qB“Z‘;}
M »
exp {gl WA }

P! = VA eAll, ry). (79).

AeAll, ryp)

For simulation purposes in the context of the model as a whole the probabilistic choice model
P(A,|D*) was operationalized by sampling from independent Weibull variates.

In order to specify the distribution P(D*|9) of rank orders D* = R over the set of all rank
orders @ = & we note that the number of possible rank orders derived from M attributes is M!
We shall consider the generation of individual orders through the sequential sampling of
attributers from the set {Z', Z2%,... ZM} according to the probabilities {a;: as:... ap}. After
each attribute is “removed’” from the set and placed in rank, the selection probabilities for the
remaining attributes are appropriately normalized. For small numbers of atiributes the dis-
tribution P(R|®) may be written down in a straightforward manner and rank orders directly
sampled in the usual way.

We can now express the composite model P, as a function of the parameters of the above
distributions. That is '

P, =f(Zi7 a, ¢, a) (80)

Consider for a moment the variation of P, with the means 7, =1.... M of the distributions of
critical tolerance for fixed ¢ and «. If these components of the vector r are large then the
number of alternatives eliminated in the sequential analysis of attributes will be very small, and
in the limit as ¥—oo all alternatives will be assessed in a compensatory manner. No response
error will then be obtained if a multinomial logit model is used for prediction. On the other
hand, in the limit as these components tend to zero only the “best” alternative defined with
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respect to the highest ranking attribute in the list R; will be retained, and strong lexicographical
behaviour results. If we set all the mean values equal to T we can, as in the above series of
tests, span a range of behaviour between these two extemes.t As an outcome of this process
will be a distribution over the population of the sets of attributes considered before a selection
is made the model is clearly consistent with the general decomposition expressed in eqn (63).

We now proceed to a description of tests on what we shall refer to as the “Hybrid Model”.

6.5 Simulation tests with the Hybrid Model

The context and data used for this series of tests were those adopted in the experiments
with the DAS model. In the three attribute cases the set @ consists of the 6 rank orders
Ri...Rs

zil [zv [22) [22) [Z2) (22
VAR AR VAR R IR A Z?
VRN ARVAIRY ANV

and these are generated in a straightforward fashion with the vector @ = (a,a,,a3). The various
possible outcomes of the decision process upon which P(A,(R) is based are illustrated in Fig. 8,

3
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d \\
2/ 3 1
7 ®
Second attribute considered (i ,,,,, P
, % A ‘
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3 ¥ .
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a.) Possible consequences of the decision processes in the Hybrid Model.
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b.} Distribution of the decision process in the'Hybrid Model as a function of
mean threshold.

Fig. 8. €haracteristics of the Hybrid medel.

1t should be recalied that T is expressed as a proportion or percentage.
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Again the tests were divided into two series correspondmg to equiprobable rank orders, in
which case the above ranks each enter with probability i, and “non-flat” or biased order
distributions determined by the specific vector a. In both series of tests the thresholds were
nermally distributed with mean T and variance proportional to 7.t Again this allows some of
the dispersion in the data to be “squeezed out” as the tolerance is reduced.

The results of the simulation tests for e = (0.33, 0.33, 0.33), including the goodness-of-fit
measures, are shown in Figs. 8(b), 9(a)~(c). Only for the case T = 0.5 at the “lower end” of the
tests range did significant estimation problems arise as judged by the “goodness-of-fit” and the
significance of the parameters. It should be appreciated what this quantity T = 0.5 represents
“on average” an alternative will be rejected at any stage of the assessment if its associated
attribute p is > 50% worse than that corresponding to the best available alternative, as
measured by the optimal Z* value. The significance of this tolerance level in terms of size must
be viewed in the context of the size of the best available attribute. If this is small then a large T

()~
E(T=m) —————  Model
H ———— MNL

E{Tzm) = 16-6%

-
ri - p"{
CiesWIEs 21 15 g . 13 104
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Fig. 9. Characteristics’ of simu]ation experiments. with Hybrid model.

$At T =0.5 a small number of negative tolerances were sampled with the adopted variation, and were simply discarded.
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value might be required to retain the second best option. This is a consequence of basing an
elimination process on proportions and not differences.

It is interesting to note that as T is reduced from a high value (T =10) the entry of
significant mode specific constants occurs first at T = 2.0 and it appears that this is responsible
for the salient features of the curves in Figs. 9. As T is reduced 8, increases, the “values of
time” decrease, and the model elasticily increases until the emergence of significant mode
specific constant reverses the trend in 8, and produces the maxima and minimum shown. In
contrast, the simulated response continues to rise as T decreases with the result that a large
response error is apparent in the range below T = 2.0. The constants begin to play a prominent
role as T is reduced further in this range, but it is not until T = 0.5 that the multinomial logit
model begins to encounter serious difficulties in accommodating the dispersion in the synthesized
data. In other words we would not reject the logit model until T = 0.5,

The unacceptability of the model as T—0 is consistent with the previous finding that the
variation in behaviour appropriate to the strong lexicographical limit can not be satisfactorily
accounted for by the multinomial fogit function for the & values selected. Furthermore, we
found that the fit statistics deteriorated at a given T as the standard deviations of the threshold
distributions were jointly reduced. _ '

In the range for which the logit model was not rejected we found perhaps surprisingly, little
variation in the results portrayed in Fig. 9 when different rank order parameters e were
selected. It appears that in the hybrid model the elimination mechanism itself is largely
responsible for the response error and, as we have suggested, it is the influence of the constants
entering the multinomial logit model, to improve the statistical fit measure, which are respon-
sible for the “distortion” of the model elasticity. This is of course part of the occupational
hazard of operating with an inappropriately specified model.

6.6 Discussion

In this section we have tried in a varicty of ways to determine the significance of relaxing
the conventional decision mechanism as a basis for model development, and in particular the
implications for mis-specification of applying the LPLA logit model. As we introduce additional
sources of behavioural variation and hence the parameters of the distributions representing
them, the possible range of assumptions and experiments increase considerably. We have
concentrated on what we feel have been significant parameter variations but have by no means
exhausted the possibilities.

1t is clear that response errors may be generated when distributed attribute set assumptions
are introduced, whether these are accompanied by implicit or explicit behavioural mechanisms.
The absolute size of the errors and general characteristics of the parameters of the logit model,
are clearly dependent on the specific assumptions used to generate the the data as might have
been expected.

Further general comments on these tests will made in the conclusion. We now proceed to an
examination of the closely related issues associated with the role of information on the decision
process and the existence of variation of choice sets over the population confronted by 2
choice.

7. INFORMATION, DISPERSION AND CHOICE SET GENERATIQN

7.1 Introduction

In the models considered above at least one attribute or aspect of each alternative in a
choice set is scrutinized in the search process. There is a growing literature which confirms the
widely held view that in location (of jobs and residence) and travel choice contexts individuals
act under a restricted knowledge of alternatives and of their attribute values (see, e.g. the
discussion in the papers by Kirby, 1979; Richardson, 1978; Thrift and Williams, 1981; and the
references cited therein). Indeed, the geographical concept of a2 mental map is a recognition of
the spatial heterogeneity of information (Gould and White, 1974; Young and Richardson, 1978).

In this section we shall concentrate on the relaxation of the assumption embodied in eqn
(19), that each individual in the population = has the same choice set A available to them. While
it is clear that this assumption of homogeneous and complete information, which is invoked to
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produce a workable model is an abstraction from reality, it is important to determine the extent
to which it is a source of serious mis-specification.

Models which explicitly recognize the role of information in a cheice process have tended to
emphasise the dynamics of the search process in conjunction with aspiration levels and
“satisficing” behaviour, and a well developed mathematical theory of such processes is
available as detailed by Weibull (1978) and others. We can contemplate a series of simulation
experiments based on an explicit model of the search process in which individuals sequentially
consider alternatives and terminate that search when the net perceived utility of accepting an
alternative is greater than a random “threshold” or satisfaction level (see also Richardson, 1978,
for a discussion of such “alternative based” searches). An output of this process is a distribution
of the sets of choice alternatives considered by individuals in the population.

We have instead resorted to a simulation framework in which the search process and
imperfect knowledge are accommodated through the random generation of choice sets—which
are simply collections of alternatives considered by an individual. The search process will be
described in terms of its outcome, which is characterized by the distribution of number
alternatives searched before a choice is made. The formulation of an appropriate mode! and
organization of the simulation experiments will parallel those associated with the DAS model
described above. We shall investigate the consequences of assuming complete information—
identical and deterministic choice sets for all individuals (the perspective A), when the actual
choice process involves a distribution of choice sets (the perspective A*).

7.2 Modéls embodying Distributed Choice Sets (DCS)

In order to generate models involving distributed choice sets, the choice probability P, is
decomposed according to the various possible ways in which an alternative A, may be selected
from the various sets containing it. We can write, following Manski (1977)

= ; P(A,[C) P(C|%) (8D

in which are defined the following: € is the set of all available choice sets; P(C|%) is the
probability of selecting choice set C from the set €; and P(A,|C) is the probability of selecting
alternative A, from the choice set C.

We now consider the further decomposition in which the set of all choice sets 4 is
partitioned according to the number of members in each subset C. Equation (81) can then be
written

N
=Y, > P(A,/OP(C|C)P(C,|). " (82)

n=1 CeC,

Here C, defines the set of all choice sets within n members and P(C|C,) is the probability of
drawing a particular choice set with n aiternatives from C,. ¥ denotes summatlon over all
choice sets of size n. CeCe

Let us consider this decomposition for the N choices Al, ooy Ap o A, There are clearly
N(, choice sets of size n in the set C, and a maximum of 2V — 1 available choice sets in €.
These can be arranged as before in terms of the subsets C),... G, ...Cy as follows:

Ci{A.. {A}. .. [Ax}
CN {A Az } {AN n+ls e AN—l!AN}
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This decomposition of € is organized on the tree structure as shown in Fig. 10(a).
The conventional assumption in random utility models is, as is well known, that all members
of a market segment s select an alternative from the single set Cys (= A). That is

P(C,|6)=1 ifn=N°*
=0 otherwise. (83)

This will be a special case of a choice set distribution considered below.

In order to generate a choice model the probability P(C|%), which has been decomposed
into P(C|C,) and P(C,|%€), must be specified in terms of the size of the sets and the attributes
of their members. A decision model must alse underpin the process of selecting A, from the
sets C containing it.

The two perspectives A and A* will be formed based on these two facets of the choice
process. A* will involve a description of dispersion due to the heterogeneity of information
interpreted analytically through the probability functions of choice set generation. In A it will
be assumed that all members of 7,° scrutinise one available choice set {A, ... Ay} containing
all alternatives. Both perspectives will involve a decision model based on utility maximisation—
individuals select what they consider to be the best alternative from the sample which each
considers.

We can now summarise the simulation experiments through the following description of the

perspectives:

o/ Cx < Ca -
Iy i
N A
;o .\\ ll.:..\ | "I - \ i
," o N \\ ! /o \ [
/ [ ‘\ o Y | I : ‘ i
Y N T T T i
W e feead S s
a.] Choice set possibilities in the general b) Choice set possibilities appropiate
case. to the Dogit modei
Pln/N,q) P(n/N,q)
10 000 Q=100 10t
; SRR
] w
05 S 03¢
=0 s
1+q
q=050
_ 3 Y ! N
0~ 2 3L wn " 0772 3Z4N

¢) Binomigl choice set generction. d) dagit choice sel generaticn.

Fig. 10. Choice set generation partitioned by size of choice sets,




206 H. C. W. L. WiLLIAMS and J. D. OrTUZAR

Random Utility All members Utility
Ak generation . Mmaximisation . search the full D: maximisation
" of choice " from * choice set ‘from
sets Wio, o%) available W(o, &)

In the series of simulation tests, the data P* will be generated from parametric probability
distributions, and the probability of a choice set of size n being selected will again be taken as a
truncated binomial function with parameter ¢. That is P(C,{%), which we shall write P(n|N, g)),
will be taken as :

NCg (1= )N

for which the mean set size 7, is given by
_ Ng '
A,=— "1 _
ST ®)

The forms of the discrete probability function P(n|N, q) for different g values are shown in
Fig. 10(c). (Continuous curves are used fo distinguish the various functions.) The two special
cases corresponding to g = 1 and g = 0 are again worthy of note. In the former

P(r|N,1)=1 ifn=N
={ otherwise, (86)

and corresponds to the homogeneous and complete choice set assumption of conventional
theory. For g =0, on the other hand

P(iN,0O)=1 ifn=1
=0 otherwise, (87

all individuals select a choice set containing a single aliernative from the set of choice sets,

Having specified the probability of selecting a particular set C, it is necessary to examine
the probability of selecting a given set of alternatives {...},, containing n members. In the first
series of simultation test (4), it is once more assumed that the ¥C, member sets in C, occur
with equal probability—that is, the probability of selecting a set of alternatives is a function of
its size alone. In the second series of simulations (B), the probability of selecting any member
C from C, will be a function of the mean utilities of its component choice alternatives.

1.3 Simulation experiments with DCS models

As we have found no simple solution (generator functions) for the series expression (82) we
have resorted to simulation in order to generate the data P*(g) by sampling choice sets
randomly from P(n|N,q). In each set of tests the probabilities P(A,|C) defined in eqn (22) are
determined according to the usual principles of utility maximisation with random components
of utility. For numerical tests five alternatives (N = 5} were considered, and the Weibull curves
adopted in A* were taken to have a standard deviation o* of 5 units (the difference between the
largest and smallest mean utilitics was 1 standard deviation).

In tests (A) choice sets CeC, were drawn from a uniform distribution, and the choice model
P(A,|C) was generated from Weibull distributions,t with mean values (U}, ... U,,... Uy_s). The
maximum utility optionis recorded for each sampled “individual” and the process repeated for the
members of .

For all values of (s ¢ <1 it was found that the logit function

LGN
Plq)= 3 i, (88)
)
$Other distributions {e.g. normal functions) were also adopted in an alternative series of tests
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provided an excellent fit to the base data P*(gq). The variation of the estimated dispersion
parameter #(q) with ¢ is shown in Fig. 11a. For g = 1 the complete set {A,..., A,.....A,}is
selected by all members of o and the estimated parameter 8(g = 1} may be compared with its
exact value 8 = (#/v/(60%)) = 0.257. A reduction of ¢ which has the effect of introducing smaller
choice sets (see eqn 85), results in an increase in the standard deviation o(g) imputed by the
observer in accordance with :

w
= THway ®)

The agreement between the model predictions P and the simulated results P* in the base system
is shown for different g values in Fig. 12(a).

We can now compare the simulated and predicted response, 8P* and 8P respectively, when
the utility values {U,,..., U,,..., Uy} are modified. In fact a single value Us was altered to
allow the direct and cross elasticities to be measured. In Fig. 12(b) we plot the predicted share
modifications from the base system against their simulated counterparts for the five alternatives
A, p=1,...,5. Although the agreement is slightly erratic, the important point to note is the
lack of a systematic over- or under-prediction of response.

In the above set of tests (A), the probability of drawing any one of the NC, sets of
alternatives{ ...}, with # members was given by

PCIC) = 90)

5
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Fig. 11. Variation of the dispersion parameter @ with the choice set generation parameters.
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Fig. 12. A comparison of simulated and modelled results in the base and response costexts for various
combinations of K and g.

It might be more realistic to assume that the probability of selecting a particular set {...}, is
related to the characteristics of the alternatives in the set—perhaps the utility values, or the
spatial configuration. In the second series of tests (B), P(C|C,) involves a discounting factor
which reduces the probability of an alternative A, being selected for membership of any set in
accordance with the difference between its mean utility U, and that of the maximum, max
{U,..., Uy}=U". That is, the relative odds of membership of A,,..., A, ..., Ay in a set of
any given size are taken as

—wfO+-0p (T +-T,) eux(ﬁ+—t'fN)
e yares

e e
respectively. When « =0, all members are equally likely to be chosen and the results of the
tests in series A are retrieved, As « increases there is an increasing likelihood that utility
options with high mean values will be sampled. (In the actual construction of the tests the
options were considered to be spatially arranged and « identified with a spatial discounting
factor.) There are now two parameters characterising information heterogeneity which are
identified with the two levels of the tree structure in Figs. 10. The binomial parameter g
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governs the choice sét size distribution, while x governs the probability of selecting a given set
{.. .}, from C,. Note that when g = 1 the single set {A,, ... Ax}is chosenand the discounting factor
has no effect.

We can now enquire, as before, if the logit function P(q, k) with an estimated dispersion
parameter #(q, x}—now a function of g and x—provides a good statistical fit to P*(g, «), in the
base and response contexts. For the base system the fit is impressive, deteriorating only
slightly for higher values of x. The variation of 8{q, «) with g and « is shown in Fig. 11(b) and
the base vectors P*(g, x} and P(q, «) are compared in Figs. 12(c) and (¢). Under conditions of
change, however, there is a systematic overprediction of modelled response for values of «
greater than zero and g less than 1, as indicated in Figs. 12(d) and (f).

We can now summarise the results and implications of these tests as follows.

As all combinations of selected parameters {g, «} generate data sets P* which are well fitted
by the logit function we may say that the dispersion reflected in the estimated parameter 6(g, )
is consistent with utility maximisation under both full and partial information assumptions.
That is, the dispersion exhibited in the data P* is statistically consistent with the following
interpretations:

(i) Complete information and preference dispersion from utility distributions with standard
deviation given by

_ T
7% )= T 60q, oY

(i) Partial information characterised by the distribution parameters g and «; in conjunction
with random utility functions of standard deviation ¢*. For given o*, the (g, x) combinafions
which generate the same dispersion as a(g, ) defined by eqn (91) may be read off Fig. 11(b).

Further, if information about opportunities is incomplete (g < 1) but there are no biases in
the selection of choice sets (i.e. k = 0) no systematic response error will be involved with logit
forecasts. On the other hand if the data is the outcome of a process characterised by
preferential tendencies for particular choice sets to be selected (x > 0) logit forecasts may well
involve a systematic over-prediction of the response to policy stimuli. As the observer in A has
no knowledge whatsoever what process did generate P* it is not possible to discriminate
between the interpretations {i) and (ii), and there remains an indeterminacy in the response
forecasts.

Clearly the above simulations may be generalised in a number of ways, and it would be
interesting to ascertain how the response error was dependent on further detailed aspects of
choice set generation and decision models. {How for example the policy sensitivity of the
parameters of the choice set generating function influence response results.) This is however,
beyond the scope of this paper. Before leaving the theme of choice set generation however, we
wish to relate the above considerations to two further models, namely: the DOGIT model
introduced by Gaudry and Dagenais {1979) and a location model recently discussed by Kirby
{1979).

7.4 The Dogit and other DCS models

The Dogit model is a generalisation of the logit model to accommodate varying degrees of
interaction between alternatives. Its formation, originally achieved by means of transformation
theory, has been given a behaviourai interpretation and derivation by Ben-Akiva (1977a) who
considered individuals to either be captive to a particular alternative or to have the full choice
set available to them. Out of the set 4 the N sets associated with C; and the single set C, are
considered, as shown in Fig. 10(b). The spectrum P(C,|%), shown in Fig. 10(d) consists of the
two “spikes” atn=1and n = N. '

If the probability of selecting the individual choice sets {A;}.. . {4,}...{Anv}L{A;... Ay} is
taken to be '

' 1
PClO)=—H—, .. —H—. . = — 62
i+2 1+ 2 p, A+ T, 124
p=1 n=1 p=1 =1
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for which the odds of being captive and non-captive are

P62 T

the DOGIT model is readily derived from egn (81) and is given by

et g, Ze?%
P,= £ (94)

P P

The parameters p may be taken to be functions of the atiributes associated with the
alternatives.

For the particular simulations performed in this section “lumpy” distribution spectra for
P(C,|%)—which are appropriate to the Dogit model have not been adopted. We should not
therefore be particularly surprised that the modifications to the logit function due to captivity,
which inspired the formation of the Dogit, have failed to assert themselves in numerical
tests on the model derived from the Binomial distribution. These modifications will inevitably
become more important as the number of alternatives becomes smail (as, e.g. in modal choice
contexts).t

We turn finally and briefly to Kirby’s model (Kirby, 1979} which involves search within
locationally defined choice sets. In its simplest form the model incorporates a range function ¢(r)
which denotes the probability of an individual selecting a house up to range r from his or her place
of work. (The housing market and choice making populations are actually considered stratified and
r is considered to be expressed in terms of generalised cost.) Individuals are now considered to
confine their search within their selected range and to choose a zone of residence within it with a
probability proportional to the number of houses of the relevant type within the zone.

It is clear that the model is a special case of the choice set generating processes defined in
eqn (82) above. For suitably defined choice sets the function P(C[%), or P(C|C,) and P(C,|%),
may be related in a straightforward way to the range function. The Kirby model appears in fact
to be very similar to the intervening opportunities model, although the behavioural descriptions
underpinning them are distinct.

1.5 Discussion

In this section we have examined the formulation of models which embody distributed
choice sets and have investigated the mis-specification problems arising from relaxing the
assumption of complete information in conventional micro-models. The parallels between the
DAS model system developed in Section 6 and the DCS decomposition considered here are
readily apparent (and could be further exploited), These characterizations of the choice model
may be seen in terms of complementary aspects of information processing in the solution of the
multi-criterion problem as described in Section 5. Indeed it is clear that the “attribute based”
and “alternative based” decompositions could be integrated to produce a further and more
general class of models characterized by a distribution of the number of alternatives and

attributes searched in the choice process which could be underpinned by a variety of decision-

mechanisms. A consideration of these developments is however outside the scope of this paper.

8, HABIT, HYSTERESIS ANDTRAVEL RESPONSE
Many authors have remarked on the relevance and role of habit, learning and “triggers” in
the decision process accompanying (re-) location (i.e. migration) and travel choice behaviour
(see, e.g. Banister, 1978; Heggie, 1978; Hensher, 1975; Goodwin, 1977, 1979; and the references
cited therein). In spite of the widespread recognition of the influence of habit, few empirical or

Note that in the development of DCS models we defined market segments in order to generate homogeneous
populations with respect fo certain obvious constraints, The notion of captivity as discussed here is a residual
characteristic pertaining to those individuals who are constrained to a particular alternative on the basis of non-identified
factors. '
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theoretical results concerning this phenomenon have been forthcoming, although the papers
by Blase (1979) in the former class, and those of Goodwin (1977, 1979) and Wilson (1976) in the
latter are noteworthy.

The work of Goodwin is of particular interest and our intention is to offer some elaboration
of the ideas presented by that author within the framework of perspectives developed in this
paper. We shall adopt a random utility model of binary choice incorporating habit developed by
Goodwin. _

The existence of habit, or what might be considered as inertia accompanying the decision
process of the individual is possibly the most insidious of behavioural aspects which represent
divergencies from the traditional assumptions underpinning choice models, for its existence
appears directly in the response context. In order to examine the effects and the implications of
habit it is appropriate to return once more to the assumption underpinning the conventional
cross-sectional approach.

In Fig. 13(a) the familiar S-shaped curve relevant to binary choice is reproduced. We can
think of this in terms of a continuum of populatlons #(U,— U,) characterised by an imputed
utility difference distributed along the curve. For a given difference {7, U, there exists a single
poputation « with a fixed proportion of members associated with the alternatives, and identified
by a point on the curve. Under conditions of change (Uz U,- U4 — U"}) the populationa(U, —
0, will sxmply acquire the characteristics of «'(U%— U’) observed in the base system. The
response is determined from the cross-sectional dispersion.

An implication of this assumption is that the response to a particular policy or change will
be exactly reversed if the stimuius is removed. The stimulus-response relation is symmetric
with respect to the sign and size of the stimulus. :

These features are consistent with the “rationality” assumption attributed to an individual,
prepared to continually monitor his present and alternative options. They must be modified in
the presence of habit, although we should re-emphasise that the necessity for modification is
not a refutation of homo-economicus but simply a re-interpretation by the observer of the
actions and behaviour of the individual. To understand the required modifications, we consider
a single population 7 subjected to a continuous modification in characteristics of the alter-
natives A; and A, which are reflected in U, - U,.
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Fig. 13. The influence of habit on the interpretation and response of cross-sectional models.
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In the conventional derivation of random utility models we identify with each individual Lern
utility functions U{ and U} and decree that alternative A, will be selected if

Ui> Ui (95)

Let us assume that this inequality is satisfied and A, is selected. A stimulus of magnitude U,
in favour of the rejected option A, must be applied before a response—that is, a change of
option—will be observed. The minimum size of U, is |U{ — U}|.

In the presence of habit, which will be interpreted as an equivalent utility value A’ this
minimum required stimulus is raised to

sUL=U{~ UL+ K
and the total population response to change is given by

R= 2 n(dU}) (96)

in which e
nx)=1if x>0

=0 otherwise. o7)

The existence of the habit term will clearly accompany those members of = who are currently
associated with an alternative(s} experiencing a stimulus to the relative advantage of another
option(s). This feature introduces a basic asymmetry into response behaviour and gives rise to
the phenomenon of hysteresis (Goodwin, 1977, Wilson, 1976). Now, the present state of the
population 7, identified in terms of the proportions on each alternative, is dependent on not
only the utility values U, and {7, but on how these utility variables attained their current value.
Formally, the state of the system P, may be expressed as a path integral in the space of utility
components (U,, U, ..., Uy). The value of this integral is path independent when habit is
absent, but path dependent when it is present.

The features of these hysteresis curves have been reproduced by Monte Carlo simulation
and the results shown in Fig. 13(b). As Goodwin (1977} has noted, when there exists a
distribution of habit k' over the population, the response behaviour of 7, which is dependent
on the prior state of the system, can be complicated, In the figure we have identified the
system “history” by means of arrows. (Utilities were sampled from Weibull distributions and
habit values from a negative exponential function with mean H.) Now it can be seen that for a
given utility difference U,~ U,, a multiplicity of P, values can exist, each of which is
dependent on the path of utility values by which U, — U; was achieved. The response to change
is likewise history dependent.

It is important to remember that these curves correspond to a single population
responding to changes in the utility differences, We now return to the interpretation of the
S-shaped curve in Fig. 13(a) which is assumed to provide a good statistical fit to underlying
observations on dichotomous choice. Admitting the possibility of habit, we must consider the
history of cost changes which accompanies each population (U, — U)) at the cross-section.
One such history might be a continually increasing difference of U, ~ U; so that all populations
simply move up a curve identified at the cross-section. Another history is that shown in Fig. 13¢
which accompanies an initial rise and subsequent fall of utility differences experienced by all
populations, 7. We cannot be sure of the response of ¢ach population identified on an observed
S-curve unless' we know something of its history. The traditionai assumption of zero habit,
and the movement of all populations 7 along a single curve, will in general introduce a response
error—Dbut of what size? To examine this numerically, we introduce the perspectives A* and A

characterised as follows:

Distribution utility No : utility
A*: of habit; D*: maximisation A: habit; D: maximisation
from W(o, o*) from W(e, o)




Behavicural theories of dispersion and the mis-specification of travel demand models 213

and look for the response error under a given “path” of utility changes. We have assumed that
a given population o(U,— U, = 10) is identified on the right-hand curve in Fig. 13(d) which is
appropriate to a continually increasing utility difference. The stimulus is now identified with
three stages: an initial increase of J,— U7, of 10 units, a subsequent reduction of 40 units and 2
final increase of 30 units. (This kind of situation might correspond to an initial increase in the
relative advantage of car travel (I: bus; 2: car) which is in line with previous cost movements,
followed by a sudden large rise in car costs, accompanying say a series of petrol rises, Finally,
the cost-difference is eroded when public transport operators increase charges to further
increase revenue.)

The response error corresponding to this situation is mapped in Fig. 13(d). The simulated
response to cost changes with H = 15 units are plotted against the modelled response derived
from the single logit curve under the assumption of zero habit. On the first stage no error is
involved as the past trend is reinforced. A significant over-estimate of the modelled response
takes place on the second stage, and this decreases on the third.

We shall discuss the more general implications of habit for response forecasting, together
with the other implications of the paper in the next section.

9. DISCUSSION AND CONCLUSIONS

The topics considered in this paper may all be accommodated under the umbrella of model
specification issues. This broad field embraces a variety of problems ranging from the process
of embedding theoretical statements within a model, through the statistical analyses of compet-
ing functional forms, to the important and controversial aspects of model transferability. At the
outset of the work we were conscious of the different emphases placed by commentators in the
discussion of thesc issues, and this is particularly true of the problems associated with
mis-specification. There are the clear influences and priorities of practise on the one hand, and
the fastidiousness of formal theoretical research on the other. It is equally the case that
individual perspectives are derived from the various disciplines whose interests intersect in the
analysis of travel behaviour, :

In the absence of firm evidence to validate travel response forecasting models in the wide
range of applications contexts, it is not surprising then that statements on the validity issue span
the confident expression of faith in the state-of-the-art through considered agnosticism to
downright disbelief. There is the danger in these circumstances that any suspected deficiencies
in the theoretical base are treated cither with complacency or as having a profound significance
for the forecasting process. In this paper we have adopted a broad experimental base for the
discussion and assessment of potential mis-specification issues, and have attempted to unify a
number of critical themes within an extended choice theoretic framework. We have placed
emphasis on the rather obvious point that the rational choice paradigm is far less restrictive, and
many distinctions less significant, than a number of commentators have tended to imply in their
discussions on the current generation of travel choice models.

Before offering some general comments and revealing our own prejudices of the validity
issue we shall briefly review what we feel are the implications of the tests themselves. We
would emphasise that out of the whole family of possible mis-specification experiments the four
selected are not of course necessarily the most important in practise, their discussion has been
motivated by a number of criticisms raised against amalytic models of probabiiistic choice.
What are regarded as the most important sources of mis-specification in any particular
circumstance is perhaps the major contentious issue in the validity debate (see Ben-Akiva,
1979; Horowitz, 1979, 1979¢; and Louviere, 1979). The rationale for the experimental
approach adopted here is essentially that a demonstration that one or other of the assumptions
was suspect would serve to direct further theoretical and empirical investigations.

We feel that the tests themselves give some cause for optimism and some cause for concern,
Reconsider them from a purely numerical viewpoint. An attempt has been made to fit a
function with p parameters and w variables to data generated by a function characterised by p
(> p) parameters and w' variables, Now unless special conditions are present it is expected
that there would be circumstances in which the simulated and estimated responses diverge. We
have however constrained the experiments by the requirement that the fitted model pass some
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test of statistical scrutiny, and have sought to discover the extent to which such special
conditions are present for plausible behavioural postulates, and in addition, how the parameters
of a fitted mode! attempt to “compensate” for its restricted degrees of freedom. We have aimed
to design the experiments in such a way the choice model under test (typically the linear
multinomial logit model) may be regarded as a special (extreme) case of a family of models
characterised by one or more additional parameters. This has usually been possible when one of
the assumptions in the formation of a model is relaxed.

The question then was: in the range for which the test model—say the LPLA multinomial
logit model—was deemed acceptable on stafistical grounds, would the response error be
significant or not? This raises the issue of what are the criteria for “acceptability” and
“significance” and leads us to a further point. Because of the construction of the tests the size
of the response error will tend to increase with the size of the extra parameter(s) governing an
additional source of variability and this will zend to be accompanied by a deterioration of the
statistical fit. Unless the response errors are dramatic or negligible we are again faced with the
problems associated with the modeller’s own standards for accepting or rejecting a model on
statistical grounds. This issue will be influenced by the experimental design itself and in
particular whether we are judging the acceptability of a single model or comparing the
performance of two models estimated with synthetic data, as in the first test on structural
mis-specification. We must of course also be aware that in these experiments on theoretical
misrepresentation we have been able to carefully control the sources and size of variability in
the (synthetic) data. In practise the problems of functional specification compete with data
problems, and theoretical deficiencies must be explored within a “fuzzy” environment, and n
the context of the inaccuracies of the model as a whole.

Because of some of the well known restrictive properties of the linear multinomial logit, we
were preconditioned to believe that that model could be rather easily confounded—that is, a
range of conditions could readily be found which would lead to serious mis-specification.
Although these conditions can certainly be found, and not surprisingly with respect to the
inclusion of similarity effects, we found that the model was rather more robust than we had
initially thought, and that when the nested logit model is added to the “modelling kit"” the Togit
family becomes rather powerful (notwithstanding the problems of taste variation examined by
Hausman and Wise, 1978; Horowitz, 1979a, 1979b; by Cardell and Reddy, 1977, and others).

The problems of similarity, or correlation, once exposed are now appearing considerably
less formidable in theory and practice. Circumstances can occur in which the nested logit model
of a particular design becomes suspect, particularly when a complex web of similarities exist
between the attributes and alternatives. Inappropriate nested models may readily be diagnosed
through the violation of the condition for consistency with the theoretical base.

The recognition that models based on alternative decision processes may provide mutnal
numerical approximations may revive the long debated issue of the appropriate rationale for
alternative model structures (Brand, 1973; Ben-Akiva, 1973; Williams, 1977). Within the
framework in which individuals are concerned to optimise their choices on the basis of
particular utility functions, the question as to whether simultaneous or sequential decision
making processes provides an appropriate rationale for alternative model structures is, we
believe, largely irrelevant. The question is essentially one of determining the appropriate utility
function and from that deducing the structure. If, on the other hand, distinctions are to be
made on the basis of optimising and satisficing behaviour (the latter interpreted in terms of, for
example, priority ranking and information content of the decision process) there are two
immediate concerns: firstly, how do we discriminate empirically between such expressions, and
secondly, if we are indifferent from a numerical point of view to.the response properties of
such models, are we also indifferent to the implications for measuring nser benefits? These
questions must await further research.

The experiments on alternative decision processes and information do emphasise again the
potential hazards of the “correlation = causation” syndrome. If biases exist in the selection of
choice sets there seems to be some danger that serious response errors may occur. This is not
as surprising as might appear at first sight, when the actual choice process is decomposed into a
model for choice (or attribute) set formation, and one for the decision process, it is evident that
dispersion arises from at least two sources. If these models are endowed with different sets of
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explanatory variables, some of which may exhibit high correlation (e.g. distance, time and cost
in a locational context) then an attempt to explain the full variability in terms of a restricted set
of such variables may well have serious implications.

The results on the influence of habit are not particularly surprising, and we consider these
the least satisfactory of the experiments. Because the influence of habit manifests itself directly
in the response context our results, and those of Goodwin (1977) have simply shown that if it
exists then it can be significant, and that the absolute size of the effect will depend on the size
and distribution of the habit effect over the population, the present position on the “S-curve”,
and on the history of cost changes. :

While the existence of habit will influence the response of a population and indeed the
interpretation of data in the context of model development, the defailed implications for
location and mode switching in the presence of, for example, petrol price increases are unclear.
We must not forget also that changes of say mode or location may be triggered by a series of
other stimuli (life cycle effects, etc.) and the extent to which the system is considered to be in
“disequilibrium™ because of inertia will be dependent on these. The significance of inertia
will thus be dependent on context and in particular on the time scales over which cost changes
are introduced and the response to them measured,

The recent evidence of Blase (1979) suggests that the effects of habit can be of practical
significance and that should treat the phenomenon seriously. It would seem that two ways
forward would be through the greater use of transfer pricing methods and in particular the use,
where possible, of time series data. We shall return to the issue of “calibration’’ below. _

Let us now proceed to a more general issue. At the start of this paper we suggested that a
large number-—the majority—of transportation study models made little explicit use of
behavioural theory. The criterion for selecting an appropriate functional explanation was
basically a statistical goodness-of-fit measure. In the cross sectional approach the prime task is
that of identifying the variability which is associated with ene or more policy variables in a
larger set. We argued that one of the dangers of an indifference to behavioural postulates and
the source of dispersion in the data, was that of obtaining elasticity parameters which were
simply not sensible. This being the case we were therefore encouraged to look for the implications
and restrictions which are introduced when a set of behavioural postulates is invoked. Of
course, from a numerical viewpoint an observer will be totally indifferent between sets of
postulates which result in the same functional expression for forecasting response, and there
will be no particular incentive to discriminate between them. Furthermore, it may be that a
specified model, through luck or judgement, may override a particular critique. Because a
particular assumption in a particular formulation is not plausible, the functional expression—
the model—is not necessarily damned for ever; we have reported on such cases. Conversely
and typically the analyst may not have the evidence or the conviction to reject a model which is
in fact seriously mis-specified, Theoretical fastidiousness fends to be sacrificed very readily to
practical considerations.

In the same way as a “perfect” model of behaviour is not our goal, so teo can we not
expect to explain the totality of variability in a data set. It does however, seem ominous to us
that we are not able to discern and discriminate with any conviction between the contributions
to behavioural variability at the cross section. from the multitude of sources: preference
dispersion; the heterogeneous disposition of a wide variety of constraints: the role of in-
formation; the “inertia” or “disequilibrium™ associated with habit effects; sub-optimal
behaviour by individuals becaunse ... they have not the wits to maximise™ (Simon, 1955): or
the measurement, aggregation and representational error on the part of an observer in the
process of providing the framework within which dispersion is recorded!

We can of course, entertain the possibility of embellishing the theoretical framework of
present models to include more complex features of the choice process. Indeed, is it not part of
the demand analysts terms of reference to discover whether such features as information
imperfections, etc. exist rather than use as a starting point a model which precludes them?
Furthermore, were not the nested logit, probit, dogit and GEV models inspired by simple
deficiencies in the traditional theoretical base? Unfortunately the relaxation of additional
assumptions often leads to models which are not particularly amenable to empirical in-
vestigation. We can, of course, always resort to simulation as adopted in this paper but to
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estimate such models in practise will not be inexpensive unless approximations are found.
Moreover the immediate consequence of such generalisations {(even if relatively simple models
could be found) is an increase in the number of parameters to be determined, raising problems
associated with their estimation. Would we have any more confidence then that we had
captured the essentials of human behaviour suitable for predicting response? Our concern is
that with the present emphasis on cross-sectional models and revealed preference estimation
methods, it would seem difficult, if not impossible, fo discriminate in practise between
hypotheses relating to behavioural responses. '

Let us return to the problem of “calibration™. It has been argued and we have.some
sympathy with the view, that :

“the model shonld not be calibrated on the same travel components that it was called to
reproduce, for instance a truly behavioural model based on the constraints under which
travel choices are made should produce such choices independently that would then be
compared with the observed choices for its validity and not calibrated to them ., .”
(Zahavi, 1978).

This represents a basic sentiment and optimism behind the transferability issue and ultimately
the notion that some “universal law’* may be found to explain behaviour. The search for
transferability however seems to be an elusive one—indeed commentators are yet to agree on
whether human behaviour is extraordinarily complex or amenable to a relatively simpie
explanation.

The “new option”™ policy will always prove somewhat of an embarrassment for current
methods simply because the attributes of existing choices may not be satisfactorily matched to
those apparent in the fest system and, as more “‘unconventional” policies are introduced, we
will have to rely increasingly on stated preference methods for determining elasticities. In spite
of their limitations, transfer pricing methods should, we believe, be more widely explored (see
the discussions by Daly, 1978; and Bonsall, 1979).

It is a characteristic of a number of recent approaches to travel forecasting, that different
emphases are placed both on the sowrces of variability on the one hand, and the means for
gleening information on response. This is particularly evident in some constraint-based activity-
travel analyses, which are geared towards the response context. In the HATS framework, for
example, (Jones, 1979), it is attempted through loose structuring of interviews to decrease the
likelihood that an observer (in this case the interviewer) will impose an inappropriate framework
for the analysis of behavioural response. At present such studies are in their infancy, and must be
broadened when significant degrees of choice are found to be relevant to the decision context.
Traditional problems may be met in representing in a formal analytical framework (if indeed this is
indeed this is sought) and distinguishing between the influences of constraints and preferences.

In our opinion real progress in understanding and assessing the effectiveness of forecasting
models will be made only when more information on behavioural response becomes available—
and it would be useful if this exercise were co-ordinated. From a theoretical viewpoint, it is
desirable that appropriate frameworks for the analysis of choice contexts be designed which
allow the means for both the direct testing and refutation of hypotheses relating to response to
be established. Until this is achieved, the problems of misrepresentation reflecting the un-
certainty of the observer, will we fear continue to plague cross-sectional studies.

In the paper we have addressed a number of themes concerned with the general debate on
the validity of travel forecasting models. During the process of research we have focused on a
number of related questions, specifically: what is the nafure of the criticisms raised against the
current generation of travel choice models? Under what conditions are they justified? Can a
model—which is, after all, simply a functional relation—over-ride the criticism raised against its
underpinning theory? Do alternative theoretical postulates produce empirically testable
differences? To what extent can an observer (the modeller) be indifferent to the many facets
of behaviour which may give rise to the measured dispersion in a data set? To what extent does
the framework set up by an observer influence the interpretation of data? Does the choice of
alternative models Iead to major differences in the interpretation of evidence even when the
models differ little in principle? To what level of realism are we committed if we assume the
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task of building a “behavioural” model; and, more centrally, can the elasticity parametérs
estimated from cross-sectional data give a reasonable indication of behavioural response?

Although we have touched upon all these topics we would not of course, claim to have
provided comprehensive answers, Even less would we claim to have a monopoly of interest in
them! We would, however, suggest that they.are important, under-researched, and deserve 2
more explicit treatment in the literature.
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