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We shall discuss methods for computing numerical values of the solutions,
which are needed if a formula for the solution of an equation is not available
or is too complicated to be of practical use.

These methods are step-by-step methods, that is, we start from the given
Yo = ¥(xp) and proceed stepwise, computing approximate values of the
solution y(x) at the ““mesh points’’

Xy = xo + A, Xy = x5 + 2h, X3 = x5 + 3h,

..
'

where the step size 4 is a fixed number, for instance 0.2 or 0.1 or 0.01, whose
choice we discuss later in this section.

The computation in each step is done by the same formula, Such formulas
are suggested by the Taylor series
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(with the right side obtained from the given differential equation) and the
following iteration process. In the first step we compute

V1= ¥t hf(xo, Yo)
which approximates yx,) = y(xq + h). In the second step we compute

Ya = + hf(-xlv y)

which approximates yix,) = Y(xy + 2h), etc., and in general

@ Tast # Yo+ W(xy3,) (=01,
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EXAMPLE 1
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This crude method is hardly ever used in practice, but since it is simple,
it nicely explains the principle of methods based on the Taylor series.

Euler’s method is called a first-order method, because in (2) we take only
the constant terms and the term containing the first power of i, The omission
of the further terms in (2) causes an error, which is called the truncation
error of the method. For small A, the third and higher powers of & will be
small compared with /42 in the first neglected term in (2), and we therefore
say that the truncation error per step (or local truncation error) is of order
h2. In addition there are round-off errors in this and other methods, which
may affect the accuracy of the values Y15 Y3, * - more and more as n
increases; we shall return to this point in the next section.

Table 20.1
Euler Method Applied to (4) in Example 1 and Error 5

P LA _ji’aci
S MR | values s
0 0.0 0.000 0.000 0.000 0.000
1 0.2 0.000 0.040 0.02t 0.021
2 0.4 0.040 0.088 0.092 0.052
3 0.6 0.128 0.146 0.222 0.094
4 0.8 0.274 0.215 0.426 o 0.152
5 1.0 0.489 0.718 0.229
Euler method

Apply the Euler method to the following initial value problem, choosing h = 0.2 and computing
Yp ot Y5t

@) Y=x+y, y®=o.
Solution. Here f(x, y) = x + y, and we see that (3) becomes
Yne1 = Yp + 0.2x, + y,).
Table 20.1 shows the computations, the values of the exact solution
yix) = e* —x -1

obtained from (4) in Sec. 1.7, and the error. In practice the exact solution is unknown, but an
indication of the accuracy of the values can be obtained by applying the Euler method once
more with step 2& = 0.4 and comparing corresponding approximations. This computation is:

0.0 0.000 0.000 0.000 0.000
0.4 0.000 0.160 0.040 0.040
0.8 0.160 0.274 0.114

Since the error is of order A2, in a switch from k to 24 it is multiplied by 22 = 4, but since we
then need only half as many steps as before, it will only be multiplied by 4/2 = 2. Hence the
difference 2e; — €, = 0.040 indicates the error €3 of y, in Table 20.1 (which actually is 0.052),
and 0.114 that of ¥4 (actual: 0.152).

y

Sec. 20.1 Methods for First-Order Differential Equations 1037

 Improved Euler Method (Heun’s Method)

By taking more terms in (2) into account we obtain numerical methods of
higher order and precision. But there is a practical problem. If we substitute
y' = f(x, y(x)) into (2), we have

2% yx + h) = y(x) + hf + 3h2f" + R3f" + - -
where, since y in f depends on x,
fr=fo iy =f,+ 51

and the further derivatives f”, f” become even much more cumbersome.
The general strategy now is to avoid their computation and replace it by
computing f for one or several suitably chosen auxiliary values of (x, y),
where ‘‘suitably’” means that they are chosen to make the order of the
method as high as possible (to have high accuracy). Let us discuss two such
methods that are of practical importance.

The first method is the so-calied improved Euler method or improved
Euler-Cauchy method (sometimes also called Heun’s method). In each step
of this method we compute first the auxiliary value

(5a) Ynst = Yp + hfGy, y,)

and then the new value

(5b) Vier = Yn + $hif(x,, y,) + Flxyyps vE D)

This method has a simple geometric interpretation. In fact, we may say
that in the interval from x, tox, + 4h we approximate the solution y by
the straight line through (x,, y,,) with slope f(x,, ¥,), and then we continue
along the straight line with slope f(x, , ;, y* +) until x reaches x, _, (see Fig.
423, where n = 0).

The improved Euler-Cauchy method is a predictor—corrector method,
because in each step we first predict a value by (5a) and then correct it
by (5b).

In algorithmic form, using the notations k, = hf(x,, ¥,) in (5a) and
ky, = hf(x, +10 Yo, 1) in (5b) we can write this method as shown in Table

20.2 on the next page.

x0 x x

Fig. 423. Improved Euler method
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Table 20.2
improved Euler Method (Heun’s Method)
_— T

ALGORITHM EULER (f, xo Yoo 1, N)
T'his algorithm computes the solution of the initial value problem
Y = fx ), yxg) =y, at equidistant points x; = x, + h,
X, = X + 2h,_- Xy = Xo + Nh; here f is such that this problem has
a unique solution on the interval [xo, xyl (see Sec. 1.11).
INPUT: Initial values X Yo+ Step size h, number of steps N
OUTPUT: Approximation Yn+1 to the solution yx,,,) at
Tnry = Xg + (n + Dh, wheren =0, - - N - |

Forn=10,1,--- N - | do:

X1 =X, + h
ky = hf(x,, y,)
ky = hfC,p v, + ky)
Yne1r = Vo + $lky + ky)
OUTPUT x

n+1’ yn+l

End
Stop
End EULER
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Improved Euler method
Apply the improved Euler method to the initial value problem (4), choosing h = 0.2, as before.
Solution. For the present problem,

k= 0.2(x, + y,)
ky = 0.24x, + 0.2 + Yo + 0.2x, + Y
0.2
Yne1 = Yo + —2~(2.2x" + 22y, +0.2)
=¥yt 0.22x, + ¥y) + 0.02.

Table 20.3 shows that our present results are more accurate than those in Example 1; see also
Table 20.6 on p. 1041,

Table 20.3
Improved Euler Method Applied to {4) and Error
0.22 '

U R _‘(_x'(') ;z,y w Exact Values Error,
0 0.0 0.0000 0.0200 0.0000 0.0000
| 0.2 0.0200 0.0684 0.0214 0.0014
2 0.4 0.0884 0.1274 0.0918 0.0034
3 0.6 0.2158 0.1995 0.2221 0.0063
4 0.8 0.4153 0.2874 0.4255 0.0102
5 1.0 0.7027 0.7183 0.0156

The improved Euler method is a second-order method, because the trun-
cation error per step is of order h3.

Proof. Setting fn = f(x,, y(x,)) and using (2*), we have
(6a)  y(x, + b) - y(x,) = hfn + §h2f 4 g;ﬂf; P

Approximating the expression in the brackets in (5b) by f~n +f n+q and
again using the Taylor expansion, we obtain from (5b)

Yns1 =V = %h[fn + fn+1]

(6b) " " _ _
= 4hlf, + (f, + hf, + §R2F" + - ).

Subtraction of (6a) from (6b) gives the truncation error per step

This proves the assertion. ]

Choice of step size. This is an important matter in any step-by-step method.
h should not be too small, to avoid excessively many steps and corresponding
round-off error accumulation. But 4 should not be too large either, to avoid
a large truncation error per step and an additional error, call it ¢, , caused
by the evaluation of f at (x,, ¥,) instead of (x> y(x,)). Now ¢, would be
zero if f were independent of y: thus it will matter the more the faster f
varies with y, that is, the larger the absolute value of the partial derivative
fy = af/ay is. More precisely, by the definition of ¢, and the mean value
theorem we get

Pn = f, YD) = flx,, y,) = fi(x,, PO,

where M, = ¥(x,) — v, is the error of y, and ¥ lies between y(x,)and y,.
Hence the contribution of ¢, to the error of y, +1 is approximately
he, = hf (x,, y)n,. This suggests to take a close upper bound K of If | in
the region of interest and to choose / such that

x = hK

is not too large. We see that if | f,l is large (strong dependence of f on ),
then K is large and 4 must be small, which is understandable. (In Examples
1 and 2, fy =1LK=1kK=0.2) lffy varies very much, we may choose
a close upper bound K|, of | f,(xzs ¥)] and choose two or even three different
values of # in different regions, to keep

K, = hK,

within a certain interval (for example, 0.05 = x,, = 0.1), which depends on
the desired accuracy; of course, because of the truncation error per step,
we cannot let h increase beyond a certain value.
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Runge-Kutta Method

A still more accurate method of great practical importance is the Runge-Kutta
method,! shown in Table 20.4. We see that in each step we first compute
four auxiliary quantities ks ky, k3, k4 and then the new value Yus+1 These
formulas look complicated at first sight, but they are in fact very easy to
program.

It can be shown that the truncation error per step is of the order /45 (see
Ref. [E2] in Appendix 1) and the method is, therefore, a fourth-order method.

Table 20.4
Runge—Kutta Method {of Fourth Order)
ALGORITHM RUNGE-KUTTA (f, Xos Yg» 1, N).

This algorithm computes the solution of the initial value problem
Yy = fa,y), ¥(xg) = yg at equidistant points

X, =xo+h,xz=xo+2h,---,xN=x0+Nh;
here f is such that this problem has a unique solution on the interval
[xg, xyl (see Sec. 1.11).

INPUT: Initial values Xg» Yo Step size h, number of steps N
OUTPUT: Approximation Yney to the solution yx,,,) at
i1 = X + (n + Dh, where n = 0, Lo, N=1

Forn=0,l,---,N—ld0:

ky = hf(x,.y,)
ky = hf(x, + }h, Yo + 34
ks = hf(x, + %h, Yp + 34y
ky = hf(x, + h, Yp + ky)
Xpeg =X, + h
Yne1 = Yy + bk, + 2y + 2kg + k)
OUTPUT x,, ,, Yns1
End
Stop

End RUNGE-KUTTA

INamed after the German mathematicians CARL DAVID TOLME RUNGE (1856—1927),
professor of applied mathematics at Géttingen, and WILHELM KUTTA (1867—1944).

second-order Runge-Kutta method. The Runge-Kutta method discussed here is often called
the fourth-order Runge-Kutta method because there are Runge—Kutta methods of still higher
order based on the same principle of replacing the computation of derivatives by the computation
of auxiliary values (values of f at certain points). For details, see Ref. [E21} in Appendix 1.

EXAMPLE 3

0.2 0.021 403

),
/
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Note that if f depends only on x, this method reduces to Simpson’s rule
of integration (Sec. 18.5).

In hand calculations, the frequent calculation of f(x, y) is laborious. On
a computer this does not matter too much, and the method js well suited

Runge-Kutta method
Apply the Runge-Kutta method to the initial value problem (4) in Example I, choosing
h =102, as before, and computing five steps.

Solution. For the present problem we have f(x, ¥) = x + y. Hence

ky = 0.2(x, + Ynhr ky = 0.2(x, + 0.1 + Yn + 0.5k),

Ita = 0.2(xn + 0.1 + Y, + O.Skz). k, = 0.2(x" + 0.2 + Yy t k3).

Since these expressions are so simple, we find it convenient to insert ky into ky, obtaining
ky = 0.22(x,, + Ya) + 0.02, insert this into kg, finding ky = 0.222(x,, + ¥p) + 0.022, and finally
insert this into k4, finding ky = 0.2444(x” + yp) + 0.0444. If we use these expressions, the
formula for Yn+1 in Table 20.4 becomes

o) Va1 = Yn + 02210, + y ) + 0.0214,

of course, our present inserting process is not typical of the Runge-Kutta method and should
not be tried in general. Table 20.5 shows the computations. From Table 20.6 we see that the
values are much more accurate than those in Examples 1 and 2. [ ]

Table 20.5
Runge-Kutta Method Appiied to (4); Computations by the Use of 7

0BG, +y,).
1 00214 » Y
0.021 400 0

- Exact Vaiue

00 o

0

i 0.2 0.021 400 0.070 418 0.021 403 3

2 04  0.091 818 0.130 289 0.091 825 7

3 0.6 0.222 107 0.203 414 0.222 119 I

4 0.8  0.425 521 0.292 730 0.425 541 20

b 1.0 0.718 251 0.718 282 31
Table 20.6

Comparison of the Accuracy of the Three Methods Under Consideration in
the Case of the Initial Value Problem (4), withh = 0.2

e

0.4 0.091 825
0.6 0.222 119
0.8 0.425 541
1.0 0.718 282
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Step size h. The step size 4 should not be greater than a certain value H,
which depends on the desired accuracy, and should otherwise be such that
k= hK (K a close upper bound for [af/ay])

lies about between 0.01 and 0.05; this is similar to the case of the improved
Euler method discussed before,

It is an advantage of the Runge-Kutta method that we may control k by
means of k,, k,, kg, because from the definition of f y Ve have

fx, y*) = fx, y**)

y* — y* ’

k= hK ~ h|f | ~ h

and if in the numerator we choose

i

hf(x, y*) = k,
hf(x, y**) = k,

hf(x, + 3h,y, + 3ky), thus, y* = Yo + 3k,

[l

hf(x, + §h,y, + tk), thus, y** = Yo + 3k,

we have in the denominator y* — y** = é(kz — k,) and get the desired
formula for x in terms of computed quantities,

k, — k.
8 = 3“2.
®) K zkz—kll

We may now make provision to leave A unchanged if, say, 0.01 < K, = 0.05,
to decrease h by 50% if Kk, > 0.05, and to double 4 if K,, < 0.01 (if doubling
is possible without increasing & beyond a suitably chosen number H, which
depends on the desired accuracy).

Another control of # results from performing the computation simulta-
neously with step 24, which corresponds to increasing the truncation error
per step by a factor 25 = 32, but since the number of steps decreases, the
actual increase is by a factor 25/2 = 16. Hence the error € of an approximation
¥ obtained with step h equals about 1/15 times the difference § = y~-53
of corresponding approximations obtained with steps & and 2h, respectively,

1 - =
&) ezﬁ(y—y)-

We may now choose a number e (for example, | unit of the last digit that
is supposed to be significant) and leave A unchanged if 0.2¢ =< |§| = 10e,
_ decrease h by 50% if |8| > 10e, and double h if [8] < 0.2¢; of course, in
doubling we must take care that the step does not become larger than a
suitable number H; this is as before.

EXAMPLE 4
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Let us illustrate the error estimate (9) by a simple example.

Runge—Kutta method (of fourth order), error estimate
Solve the initial value problem

Y=y~-x-1D2+2, y0 =1

by the Runge—Kutta method for 0 = x s 0.4 with step b = 0.1 and estimate the error by (9).

Solution. The numerical results are shown in Table 20.7. They also illustrate how the accuracy
increases with decreasing step (from 24 = 0.2 to h = 0.1). The error estimates (9) are close
to the actual error. Although we cannot always expect this, formula (9) will certainty give
information about the order of magnitude of the error.

It can be shown that the methods discussed in this section are numerically
stable (definition in Sec. 18.1). They are one-step methods because in each
step we use the data of just one preceding step, in contrast to multistep
methods, which in each step use data from several preceding steps, as we
shall see in the next section.

Table 20.7
Runge—Kutta Method Applied to the Initial Value Problem in Example 4 and
Error Estimate

DR B

: SN .};~ . " :l' ? ,. RN ‘ Emr i e W | ’ Exact
T s (Siep ah Estimaté (9) " | Solution (9D)
0.0 1.000 000 000 | 1.000 000 000  0.000 000 000  0.000 000 000 1.000 000 000
6.1 1.200 334 589 0.000 000 083 | 1.200 334 672

0.2 1.402 709 878
0.3 1.609 336 039
04  1.822 792 993

0.000 000 210 | 1.609 336 250
1.822 788 917  0.000 000 291  0.000 000 226 | 1.822 793 219

/

Problem Set 20.1

Apply the Euler method to the following initial value problems. Do 10 steps. Solve
the problem exactly. Compute the errors.

Ly =y.90="1 h=0.l 2.5 =y, 90 =1, h = 0.01

3y +5x%2=0,50)=1, h=01 4. Y= +x 2,\y(0) =0, k=01

S

Apply the improved Euler method to the following initial value problems. Do 10
steps with 4 = 0.1. Solve the problem exactly. Compute the errors.

5=y, y0 =1 6.y =14+y% y0 =0
7.y +ytanx = sin2x, y(0) =1 8.y =y~-y2 y0) =05

Apply the Runge-Kutta method (of fourth order) to the following initial value prob-
fems. Do 5 steps with & = 0.2. Solve the probiem exactly. Compute the errors.

9.y =ay, yO) =1 10.y' =y - y% y(0) =05
1Ly = +xYy, y)=e 12. y' = $yix - xly), y2) =2

1.402 707 341 0.000 000 181  0.000 000 157 | 1.402 710 036 .
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13. Apply the Euler method and the improved Euler method with & = 0.1 and 10
steps to the initial value problem y' = 2 - 2y, y(0) = 0, and determine and
compare the errors.

14. Apply the Runge-Kutta method with & = 0.1 and 10 steps to Prob. 13 and
determine and compare the errors with those in Prob. 13.

15. Solvey’ = 2r-1Vy — Inx + x~!, y(1) = Ofor | = x < 1.8 by Euler's method
with h = 0.1. Verify that the exact solution is y = (In x)2 + In x and compute
the error. .

16. Solve Prob. 15 by the improved Euler method with h = 0.2, determine the error,

compare with Prob. 15, and comment. Note that this is a fair comparison because

here we evaluate f(x, y) eight times (4 steps with 2 evaluations each), just as in

Prob. 15.

Solve Prob. 15 by the Runge-Kutta method with & = 0.4, determine the error,

and compare with Prob. 15. (Note that these 2 Runge-Kutta steps require 8

evaluations of f(x, y), just as many as in Prob. 15.)

18. Solve Prob. 15 by the Runge-Kutta method with # = 0.1 and compare the error
with that in Prob. 15.

19. Another Euler-Cauchy type method is given by

17

.

Yney = ¥y + hfCx, + §h, y%, ),

where y* , =y, + ihf(x,,. ¥,). Give a geometric motivation of the method.
Apply it to (4), choosing & = 0.2 and calculating § steps.

20. Kutta's third-order method is defined by
Ynr1 = Yu + Bk, + dky + k)

where k, and k, are as in Table 20.4 and k§ = hf(x,,,.y, — k, + 2k,). Apply

this method to (4) in Example 1. Choose A = 0.2 and do § steps. Compare with
Table 20.6.

Multistep Methods

A one-step method is a method that in each step uses only values obtained
in a single step, namely, in the preceding step. Examples are the Runge-Kutta
method and all the other methods in the last section. In contrast, a method
that uses values from more than one preceding step is called a multistep
method. We shall explain the idea of obtaining such methods in terms of the
derivation of the Adams—Moulton method, which is of great practical im-
portance. The initial value problem is as before,

§})

where f is assumed to be such that the problem has a unique solution in
some interval containing x, as well as all the x-values at which we shall
compute approximate values of the solution.

B N T e P
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24. TAYLOR SERIES

Starting with the identity

J-: fl(x) dx = f(x) —_ f(a)’

we have

] @ =f@+ [ reax (2.20)

ff?:)e;l {' (x) is arbitrary, (2.20) should also hold with f(x) replaced by the function
F@=r@+ [ s @.21)

Using this expression for f'(x) in the integral in (2.20), we obtain
f@ = 1@+ [ {r@+ [ e de} ax

= f(@) + f'aXx — a) + j f " £7(x) dx dx. @.22)

B l as w ( . fl‘ .. y p
ut ust [ Obtalned 2 21 (0) 2 20 b Ie IaC 1 X, Wlth X), wWe can re; ]aCe

fn(x) = f”(a) + J'* f" r(x) dx. (2,23)
Using this result in (2.22), :

F¥) = f(a) + f(a)x — a) + j ) j ) {f"(a) + j ) dx} dx dx

- , _ fu( ) x Mx px
f(@ + f(aXx — @) + —2—!£)(x — a3+ J; f f f""(x) dx dx dx.

(2.24)

Repeating this process, und
> T 1 : N
course,!* we find er the assumption that £(x) is sufficiently differentiable of

P T SV
' n-— 1 n

(2.252)

10T .
“3;;: step t;: n:t the same as differentiating (2.20)
reas the functi i Heavisi
over amg e co:;:;;g?nxl‘tl lgx) (v./h.erc H is the Heaviside function) is not even once differentiabl
bl o e contai g the origin (because of its kink at x = 0), the function X sin (x2), fi .
Xam, over —oo < x < co as many times as we like; we say that it is inﬁn’ite?;

ﬁ‘ . AS
ple,
differentiable. As one more example, the function XJH(X) 18 twice dlﬁe‘lentlable over any inter val

34
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wow

where Ro=[" ] * fxXdxy ~ (2.25b)

and (dx)” means dx . .. dx, n times. Equation (2.25) is known as Taylor’s formula with
remainder, where the remainder is expressed in integral form.by (2.25b).
Suppose next that m < f™ (x) < M over [a, x],'? where m and M are constants.

Then
[ mer sr. [ [ MG

Integrating, we have
m(_x_%ﬂ <R, < M(i‘;;#)_" (2.26)

If we assume that £ (x) is continuous over [a, x], then (it can be shown that) it must
take on all values between its minimum m and its maximum M over the interval. It

follows from (2.26) that we must be able to express

R,= f—‘_‘(;)gé) (x — a), | @27

where ¢ is some suitable point in [a, x]; this is the Lagrange form of R,. For the special
case n = 1, Taylor’s formula with Lagrange remainder is simply

[ =f@+ f'@&)Xx—a)
or [Q‘%E{Q_) =f® (@<E<W) 2.28)

which is known as the mean value theorem of the differential calculus.
Assuming that f is infinitely differentiable at the point a, let us formally write down

the infinite series

@+ F@e—a+L@Qe -+ + LB —ar+ e 2B

" and call it the Taylor series of f(x)!* about the point a. Hoping that (2.29) is equal to’

f(x), we are tempted to make the tentative claim that if (2.29) converges, it converges
to f(x), and so we can write

£ = f@) + flaxe — )+ LB —ap +0 230
But :

® Example 2.11. The Taylor expansion of f(x) = -1/ gbout x = 0,14 also called
S —
12]t is standard practice to denote a closed interval & < x < B by the symbol [«, ] and an open
interval & < x < f by («, B). Similarly, [&, Py means 6 < x < B and so on. :
13Introduced by Brook Taylor (1685-1731) in 1715, although apparently known to James
Gregory at least 45 years earlier, its importance was not fully recognized until 1755 when Euler applied
it in his development of the differential calculus. :
141f we were fussy, we would note that f(0) is not actually defined by f(x) = e~1/%*, since 1/0 is
not defined. To complete the definition of f let us define f(x) = e~1/xt for x %0, and f(0)=0.
Incidentally, you should sketch this function. Note how extremely flat it is in the neighborhood of
x=0,since f'0Q) =f O =f"Q) =+ = 0, and yet is does eventually rise toward its asymptotic

value of unity as [x]| — oo.
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its Maclaurin expansion (i.e., the Taylor expansion about x = 0), is (Exercise 2.22)
0+0+0+---

which certainly converges (to zero) but not to the given f( x) (except at x = 0, where
f(0) = 0). The difficulty is that R,, which gets “lost” when we go from (2.25) to
(2.30), does not tend to zero as n —» co but is, in fact, equal to e~1/** for all n! |}

What we need to show is that R, — 0 if we want to be certain of the equality in
(2.30). Let us illustrate the procedure. '

Example 2.12. Let f(x) = e* and a = 0. The resulting Taylor serim‘

x? x"
l+x+2—!+~--+n—!+--- (2.31)
i§ seen (e.g., by the ratio test) to converge for all x, Now examine R,. Consider
x > 0. From (2.27)

Ry=Exn,
n!

Where 0 < £ < x. Actually, we don’t know the value of &, but since 0 < & < x,
it follows that R, << e*x"/n!, which tends to zero (for x fixed) as n — oo, [If you're
not sure why x%/n! — 0 as n — oo, recall that (2.31) converges, by the ratio test,
and hence the nth term, x*/n!, must — 0 as n — c0.] A similar argument applies
for x < 0. So not only does the Taylor series of ex converge for all x, it also con-
verges to e*, We therefore have the equality

2
e=1+x+5+ - (~w<x<cw). |

Example 2.13. The expansion of f(x) = 1/x about x = a (a # 0),

(2.32)

o (=1

; (am-?'(x —ay,
is seen (e.g., by the ratio test) to converge in |x — a| < a—that is, in 0 < x < 2a.
We state (this time without proof) that R, — 0 as n — oo, and so the sum function
coincides, in fact, with 1/x. [

If the equality (2.30) holds over |x — a| < & for some & > 0, we say that f(x) is
analytic az x = a. For instance, recalling that the Taylor series (2.32) of 1/x about
x = a converges to 1/x within | x — a| < afor all a # 0, it follows that 1/x is analytic
for all x.5= 0. The Taylor series about x = 0, however, does not converge in any
interval | x| < & [in fact, the terms f(0), f'(0), f"'(0), .. . in the series do not exist];
therefore 1/x is not analytic at x = 0. We say that it is singular there or that x = 0 is
a singular point of 1/x. The singular point x = 0 is significant not only in regard to the
failure of the Taylor expansion about this point but also in that it limits the interval
of convergence of the Taylor expansion about any other point a % 0. For example,
the interval of convergence of the expansion abouta =2is|x —2{<20r0<x <
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4; that is, the interval of convergence “spreads out equally to the le.. and right uatil
one end bumps up against a singularity,” in this case at x = 0. :

The function e~*/=* of Example 2.11 also happens to have a singular point at x = 0,
since the Taylor series 0 + 0 + 0 + . . . does not converge to e~*/*"in| x| < & for any -
& > 0. Why? What's wrong? The function seems to be nicely behaved at x = 0; in
fact, £(0), '(0), £”'(0), . . . all exist (and are zero). Although complex variable theory
is not discussed until Part II, let us anticipate a little and consider f@ =elV" =
e~ 1/t=+*; in other words, we extend the domain off the real axis into the complex
z plane. As x — 0 along the real axis (y = 0), f = e~'/** — 0, which looks fine. But
if we approach the origin along the imaginary axis (x = 0), then f=e V" =
el/” —» oo as y — 0, and the singular nature of f (2) at z = 0 now comes into view!

The fact is that we are not going to understand Taylor series and analyticity fully
until we study complex variable theory. As a final example, we note that the Taylor
expansion 1/(1 + x?) =1 —x* + x* — x* + ... holds in the interval of convergence
|x| < 1. Why the restriction | x| < 17 The function 1/(1 4 x2) is beautifully smooth
and well behaved for all —oo < x < oo: Quite so, but f(z) = 1/(1 + z*}issingular at
z = i, and these singularities limit the region of convergence to the unit disk|z| < 1
ot, putting our “blinders” back on and just looking at f on the x axis, to the interval
|x| < 1. Again, a detailed discussion must wait until Part II.

Having discussed both power series and Taylor series, we point out (without prov-
ing it) the following fundamental connection: namely, that every power series with
nonzero radius of convergence is the Taylor series of its sum function. Suppose that we

have

3 a,(x — af = 3 b,(x — a) 2.33)

[ []
over some common interval of convergence, say | x — a| < R; that is, the two series
converge to the same sum function, say f(x), over that interval. Then the previous
statement (italics) implies that a, = f™(a)/n! and that b, = f ") (ag)/n!, so that
a, = b,. We rely on this important result quite often—in the power series solution of
differential equations, for instance. It is stated below as a theorem for reference.

THEOREM 2.13. Equation (2.33) holds over some common interval of convergence
|x — a| < R if and only if a, = b, for all n.

COROLLARY.

50— by =0 @34

over |x — a| < R if and only if all the a,’s = 0.

Let us close the present discussion with an elementary look at (2.30). Basically,
the problem is one of extrapolation: given data at some point x = a—namely, the
values of fand all its derivatives—can we predict what f will be at some other point x?
The first partial sum provides the simplest extrapolation, simply f(x) = f(a). The
second and third partial sums provide tangent-line and parobolic fits and so on (Exer- -
cise 2.25).
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