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Sec. 9.1 Methods for First-Order Differential Equations
Problem Set 19.1. Page 951

3. Euler method. This method is hardly used in practice because it is not accurate enough for most purposes,
and there are other methods (Runge-Kutta methods, in particular) that give much more accurate values
without too much more work. However, the Euler method explains the principle underlying this class of
methods in the simplest possible form, and this is the purpose of the present problem. The latter has the
advantage that it concerns a differential equatlon that can easily be solved exactly, so that you can observe
the behavior of the error as the computation is progressing from step to step. The given inital value
problem is

y +5x%y? =0, y(0)=1
For the Euler method you have to write the differential equation in the form

Y =fx,y) =-5x*y% (A)
The required step size is & = 0.2, so that 10 steps will give approximate solution values from O to 2.0.
Because of (A) the formula (3) for the Euler method takes the form

Ynst _yn+02(—5xny )= yn‘_x:)’n (B)
Because of the initial condition y(0) = 1 your starting values are
x=xy=0 and y=y =1
The exact solution is obtained by separating variables. Dividing (A) by y* on both sides and integrating,

you obtain
y'lyt = -5x4, - % =-x>+c.
Taking the reciprocal and multiplying by —1 gives
1
y=—=—s (c*=-0.

x+c
From this and the initial condition y(0) = 1 you obtain c¢* = 1. Hence the solution of the problem is

y= ©

X+1°
Use (C) in computing the error of the approximations obtained from (B). The computations with 10S
rounded to 6S give the values shown in the following table.
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Table for Problem 3. Computations with Euler’s Method

n X, Ya y? xty? _ Exact Error -
0 1 1 0 1 0

02 1 1 0.001600 0.999680 -0.000320
0.4 0.998400 0.996803 0.025518 0.989864 —0.008536
0.6 0972882 0.946499 0.122666 0.927850 -0.045031
0.8 0.850216 0.722867 0.296086 0.753194 -0.097022
1.0 0.554129 0.307059 0.307059 0.500000 -0.054129
1.2 0.247070 0.061044 0.126580 0.286671 +0.039601
1.4 0.120490 0.014518 0.055772 0.156783 0.036293
1.6 0.064718 0.004188 0.027449 0.087064 0.022346
1.8 0.037269 0.001389 0.014581 0.050262 0.012993
2.0 0.022688 0.000515 0.008236 0.030303 0.007615
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It is interesting that the error is neither monotone increasing nor of constant sign, as you might have
expected. Of course, this has to do with the particular form of the equation and its solution, which

approaches zero as x approaches infinity. The figure shows the behavior of the solution and the
approximate values marked as points.
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Section 19.1. Problem 3. Solution curve and approximations by Euler’s method

13. Classical Runge-Kutta method. This is perhaps the most popular method. The given initial value
problem is (see Prob. 11)

2 1
Y=5fy-lhx++, y1)=0. (A)
In Prob. 11 this was solved by Euler’s method with & = 0.1 for 8 steps from 1.0 to 1.8. The error was

determined from the exact solution and was found to increase from O to 0.05, approximately. The exact

solution can be obtained as follows. The form of the differential equation suggests introducing the new
unknown function

z=y-Inx. Then z'=y'—%=—i—./f, B)
where the last equality sign follows by using (A). You can now separate the variables, obtaining
2.2
ZE

By integration, 2/Z = 2Inx + c*, hence J/z = In x + c. Squaring and then using (B), you have
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z=(nx+c)?, y=z+lhx=(nx+c)>+Inx

Since In 1 = 0, you obtain from this and the initial condition y(1) = c? = 0. Hence the solution is

y = (In x)? + In x, as shown in Prob. 11. The point of Prob. 13 is a comparison of the accuracy of Euler’s
method with that of the Runge-Kutta method. Now in the latter you have to compute four auxiliary
quantities k,, k,, ks, k4 per step; hence in the required two steps this amounts to eight such computations,
compared to eight steps in the Euler method in Prob. 11; in this sense, the comparison seems fair. The
error will turn out to be about half of that of Euler’s method. The results of the Runge-Kutta calculations
(108, rounded to 5S) are shown in the table.

Table for Problem 13. Computations with the Runge-Kutta method

Xp  Yn k, k, ky ky Exact  Error |
1.0 0 0.4 042197 0.44621 047501 O 0o .
14 043522 046529 047241 0.47440 0.47436 0.44969 0.01446
1.8 0.90744 0.93328 0.02584

Sec.19.2 Multistep Methods
Problem Set 19.2. Page 955

1. Adams-Moulton method. The initial value problem to be solved is

Yy =fxy) =x+y, y0)=0. (A)
The differential equation is linear. Hence you can solve it exactly, so that no numerical method would be
needed. Indeed, write the equation in (A) in the standard form (1), Sec. 1.6,

y-y=x
and solve it by (4), Sec. 1.6, with p = —1, hence h = —x, obtaining
y(x) = e“(je"‘xdx+c) =ce*-x—1.

The initial condition gives y(0) = c—=0—1 = 0, ¢ = 1. Hence the solution of the initial value problem (A)
is

y(x) = e —x-1 ®)
You can later use (B) for determining the errors of the approximate values obtained by the ;
Adams-Moulton method. Now begin with the computation. From (A) you have

fn =f(xm yn) = Xp+ Yns fn—l =f(xn-h yn-—l) = Xp1 + Y1
and similarly for the other terms in (7a). Hence (7a) takes the form

0.1
] )’:+| =Yyn+ _22'[55(xn + yn) -39 (xn-—l + yn-l) +37 (xn—2 + yn—Z) - 9(xn-3 + yn-S)]-
This gives the predictor. Similarly, the corrector (7b) takes the form

0.1
Y1 = Yn+ Sz (9 + Yiua) + 19 (i +3n) = 3 (Xps + Ya-1) + (g + Yu-2)]-
Arrange the numerical values obtained as in Table 19.9 on p. 955.



