
Exceptions



Motivation

Most programming languages provide some mechanism for

interrupting the normal flow of control in a program to signal some

exceptional condition.

Note that it is always possible to program without exceptions —

instead of raising an exception, we return None; instead of

returning result x normally, we return Some(x). But now we need

to wrap every function application in a case to find out whether it

returned a result or an exception.

It is much more convenient to build this mechanism into the

language.



Varieties of non-local control

There are many ways of adding “non-local control flow”

� exit(1)

� goto

� setjmp/longjmp

� raise/try (or catch/throw) in many variations

� callcc / continuations

� more esoteric variants (cf. many Scheme papers)

Let’s begin with the simplest of these.



An “abort” primitive in λ→

First step: raising exceptions (but not catching them).

t ::= ... terms
error run-time error

Evaluation

error t2 −→ error (E-AppErr1)

v1 error −→ error (E-AppErr2)

� What if we had booleans and numbers in the language?



Typing

Typing

Γ � error : T (T-Error)



Typing errors

Note that the typing rule for error allows us to give it any type T.

Γ � error : T (T-Error)

This means that both

if x>0 then 5 else error

and

if x>0 then true else error

will typecheck.



Aside: Syntax-directedness

Note that this rule

Γ � error : T (T-Error)

has a problem from the point of view of implementation: it is not

syntax directed.

This will cause the Uniqueness of Types theorem to fail.

For purposes of defining the language and proving its type safety,

this is not a problem — Uniqueness of Types is not critical.

Let’s think a little, though, about how the rule might be fixed...



An alternative

Can’t we just decorate the error keyword with its intended type,

as we have done to fix related problems with other constructs?

Γ � (error as T) : T (T-Error)

No, this doesn’t work!

E.g. (assuming our language also has numbers and booleans):

succ (if (error as Bool) then 5 else 7)
−→ succ (error as Bool)

Exercise: Come up with a similar example using just functions and

error.
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Another alternative

In a system with universal polymorphism (like OCaml), the

variability of typing for error can be dealt with by assigning it a

variable type!

Γ � error : �a (T-Error)

In effect, we are replacing the uniqueness of typing property by a

weaker (but still very useful) property called most general typing.

I.e., although a term may have many types, we always have a

compact way of representing the set of all of its possible types.



Yet another alternative

Alternatively, in a system with subtyping (which we’ll discuss in the

next lecture) and a minimal Bot type, we can give error a unique

type:

Γ � error : Bot (T-Error)

(Of course, what we’ve really done is just pushed the complexity of

the old error rule onto the Bot type! We’ll return to this point

later.)



For now...

Let’s stick with the original rule

Γ � error : T (T-Error)

and live with the resulting nondeterminism of the typing relation.



Type safety

The preservation theorem requires no changes when we add error:
if a term of type T reduces to error, that’s fine, since error has

every type T.

Progress, though, requires a litte more care.
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Progress

First, note that we do not want to extend the set of values to

include error, since this would make our new rule for propagating

errors through applications.

v1 error −→ error (E-AppErr2)

overlap with our existing computation rule for applications:

(λx:T11.t12) v2 −→ [x �→ v2]t12 (E-AppAbs)

e.g., the term

(λx:Nat.0) error

could evaluate to either 0 (which would be wrong) or error
(which is what we intend).



Progress

Instead, we keep error as a non-value normal form, and refine the

statement of progress to explicitly mention the possibility that

terms may evaluate to error instead of to a value.

Theorem [Progress]: Suppose t is a closed,
well-typed normal form. Then either t is a value or
t = error.



Catching exceptions

t ::= ... terms
try t with t trap errors

Evaluation

try v1 with t2 −→ v1 (E-TryV)

try error with t2 −→ t2 (E-TryError)

t1 −→ t�
1

try t1 with t2 −→ try t�
1 with t2

(E-Try)

Typing

Γ �t1 : T Γ �t2 : T

Γ �try t1 with t2 : T
(T-Try)



Exceptions carrying values

t ::= ... terms
raise t raise exception



Evaluation

(raise v11) t2 −→ raise v11 (E-AppRaise1)

v1 (raise v21) −→ raise v21 (E-AppRaise2)

t1 −→ t�
1

raise t1 −→ raise t�
1

(E-Raise)

raise (raise v11) −→ raise v11 (E-RaiseRaise)

try v1 with t2 −→ v1 (E-TryV)

try raise v11 with t2 −→ t2 v11 (E-TryRaise)

t1 −→ t�
1

try t1 with t2 −→ try t�
1 with t2

(E-Try)



Typing

To typecheck raise expressions, we need to choose a type — let’s

call it Texn — for the values that are carried along with exceptions.

Γ �t1 : Texn

Γ �raise t1 : T
(T-Exn)

Γ �t1 : T Γ �t2 : Texn→T

Γ �try t1 with t2 : T
(T-Try)



What is Texn?

To complete the story, we need to decide what type to use as Texn.

There are several possibilities.

1. Numeric error codes: Texn = Nat (as in C)

2. Error messages: Texn = String

3. A predefined variant type:

Texn = <divideByZero: Unit,
overflow: Unit,
fileNotFound: String,
fileNotReadable: String,
... >

4. An extensible variant type (as in OCaml)

5. A class of “throwable objects” (as in Java)
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