
References

Mutability

� In most programming languages, variables are mutable — i.e.,

a variable provides both

� a name that refers to a previously calculated value, and

� the possibility of overwriting this value with another (which

will be referred to by the same name)

� In some languages (e.g., OCaml), these features are separate:

� variables are only for naming — the binding between a variable

and its value is immutable

� introduce a new class of mutable values (called reference cells
or references)

� at any given moment, a reference holds a value (and can be

dereferenced to obtain this value)

� a new value may be assigned to a reference

We choose OCaml’s style, which is easier to work with formally.

So a variable of type T in most languages (except OCaml) will

correspond to a Ref T (actually, a Ref(Option T)) here.

Basic Examples

r = ref 5

!r

r := 7

(r:=succ(!r); !r)

(r:=succ(!r); r:=succ(!r); r:=succ(!r);
r:=succ(!r); !r)

i.e.,

((((r:=succ(!r); r:=succ(!r)); r:=succ(!r));
r:=succ(!r)); !r)

Basic Examples

r = ref 5

!r

r := 7

(r:=succ(!r); !r)

(r:=succ(!r); r:=succ(!r); r:=succ(!r);
r:=succ(!r); !r)

i.e.,

((((r:=succ(!r); r:=succ(!r)); r:=succ(!r));
r:=succ(!r)); !r)

Aliasing

A value of type Ref T is a pointer to a cell holding a value of type
T.

r =

5

If this value is “copied” by assigning it to another variable, the cell
pointed to is not copied.

r =

5

s =

So we can change r by assigning to s:

(s:=6; !r)

Aliasing all around us

Reference cells are not the only language feature that introduces

the possibility of aliasing.

� arrays

� communication channels

� I/O devices (disks, etc.)

The difficulties of aliasing

The possibility of aliasing invalidates all sorts of useful forms of

reasoning about programs, both by programmers...

The function

λr:Ref Nat. λs:Ref Nat. (r:=2; s:=3; !r)

always returns 2 unless r and s are aliases.

...and by compilers:

Code motion out of loops, common subexpression elimination,

allocation of variables to registers, and detection of

uninitialized variables all depend upon the compiler knowing

which objects a load or a store operation could reference.

High-performance compilers spend significant energy on alias
analysis to try to establish when different variables cannot possibly

refer to the same storage.

The benefits of aliasing

The problems of aliasing have led some language designers simply

to disallow it (e.g., Haskell).

But there are good reasons why most languages do provide

constructs involving aliasing:

� efficiency (e.g., arrays)

� “action at a distance” (e.g., symbol tables)

� shared resources (e.g., locks) in concurrent systems

� etc.

Example

c = ref 0
incc = λx:Unit. (c := succ (!c); !c)
decc = λx:Unit. (c := pred (!c); !c)
incc unit
decc unit
o = {i = incc, d = decc}

let newcounter =
λ_:Unit.
let c = ref 0 in
let incc = λx:Unit. (c := succ (!c); !c) in
let decc = λx:Unit. (c := pred (!c); !c) in
let o = {i = incc, d = decc} in
o

Syntax

t ::= terms
unit unit constant
x variable
λx:T.t abstraction
t t application

ref t reference creation
!t dereference
t:=t assignment

... plus other familiar types, in examples.

Typing Rules

Γ � t1 : T1

Γ � ref t1 : Ref T1
(T-Ref)

Γ � t1 : Ref T1

Γ � !t1 : T1
(T-Deref)

Γ � t1 : Ref T1 Γ � t2 : T1

Γ � t1:=t2 : Unit
(T-Assign)

Final example

NatArray = Ref (Nat→Nat);

newarray = λ_:Unit. ref (λn:Nat.0);
: Unit → NatArray

lookup = λa:NatArray. λn:Nat. (!a) n;
: NatArray → Nat → Nat

update = λa:NatArray. λm:Nat. λv:Nat.
let oldf = !a in
a := (λn:Nat. if equal m n then v else oldf n);

: NatArray → Nat → Nat → Unit

Evaluation

What is the value of the expression ref 0?

Crucial observation: evaluating ref 0 must do something.

Otherwise,

r = ref 0
s = ref 0

and

r = ref 0
s = r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and

yield a reference (or pointer) to that storage.

So what is a reference?

Evaluation

What is the value of the expression ref 0?
Crucial observation: evaluating ref 0 must do something.

Otherwise,

r = ref 0
s = ref 0

and

r = ref 0
s = r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and

yield a reference (or pointer) to that storage.

So what is a reference?

Evaluation

What is the value of the expression ref 0?
Crucial observation: evaluating ref 0 must do something.

Otherwise,

r = ref 0
s = ref 0

and

r = ref 0
s = r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and

yield a reference (or pointer) to that storage.

So what is a reference?

Evaluation

What is the value of the expression ref 0?
Crucial observation: evaluating ref 0 must do something.

Otherwise,

r = ref 0
s = ref 0

and

r = ref 0
s = r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and

yield a reference (or pointer) to that storage.

So what is a reference?

The Store

A reference names a location in the store (also known as the heap
or just the memory).

What is the store?

� Concretely: An array of 8-bit bytes, indexed by 32-bit
integers.

� More abstractly: an array of values

� Even more abstractly: a partial function from locations to
values.

The Store

A reference names a location in the store (also known as the heap
or just the memory).

What is the store?

� Concretely: An array of 8-bit bytes, indexed by 32-bit
integers.

� More abstractly: an array of values

� Even more abstractly: a partial function from locations to
values.

The Store

A reference names a location in the store (also known as the heap
or just the memory).

What is the store?

� Concretely: An array of 8-bit bytes, indexed by 32-bit
integers.

� More abstractly: an array of values

� Even more abstractly: a partial function from locations to
values.

The Store

A reference names a location in the store (also known as the heap
or just the memory).

What is the store?

� Concretely: An array of 8-bit bytes, indexed by 32-bit
integers.

� More abstractly: an array of values

� Even more abstractly: a partial function from locations to
values.

Locations

Syntax of values:

v ::= values
unit unit constant
λx:T.t abstraction value
l store location

... and since all values are terms...

Syntax of Terms

t ::= terms
unit unit constant
x variable
λx:T.t abstraction
t t application
ref t reference creation

!t dereference
t:=t assignment
l store location

Aside

Does this mean we are going to allow programmers to write
explicit locations in their programs??

No: This is just a modeling trick. We are enriching the “source
language” to include some run-time structures, so that we can
continue to formalize evaluation as a relation between source
terms.

Aside: If we formalize evaluation in the big-step style, then we can
add locations to the set of values (results of evaluation) without
adding them to the set of terms.

Evaluation

The result of evaluating a term now depends on the store in which
it is evaluated. Moreover, the result of evaluating a term is not
just a value — we must also keep track of the changes that get
made to the store.
I.e., the evaluation relation should now map a term and a store to
a reduced term and a new store.

t| µ −→ t�| µ�

We use the metavariable µ to range over stores.

Evaluation

An assignment t1:=t2 first evaluates t1 and t2 until they become
values...

t1 | µ −→ t�
1 | µ�

t1:=t2 | µ −→ t�
1:=t2 | µ� (E-Assign1)

t2 | µ −→ t�
2 | µ�

v1:=t2 | µ −→ v1:=t�
2 | µ� (E-Assign2)

... and then returns unit and updates the store:

l:=v2 | µ −→ unit | [l �→ v2]µ (E-Assign)

A term of the form ref t1 first evaluates inside t1 until it
becomes a value...

t1 | µ −→ t�
1 | µ�

ref t1 | µ −→ ref t�
1 | µ� (E-Ref)

... and then chooses (allocates) a fresh location l , augments the
store with a binding from l to v1, and returns l :

l /∈ dom(µ)

ref v1 | µ −→ l | (µ, l �→ v1)
(E-RefV)

A term !t1 first evaluates in t1 until it becomes a value...

t1 | µ −→ t�
1 | µ�

!t1 | µ −→ !t�
1 | µ� (E-Deref)

... and then looks up this value (which must be a location, if the
original term was well typed) and returns its contents in the
current store:

µ(l) = v

!l | µ −→ v | µ
(E-DerefLoc)

Evaluation rules for function abstraction and application are
augmented with stores, but don’t do anything with them directly.

t1| µ −→ t�
1| µ�

t1 t2| µ −→ t�
1 t2| µ� (E-App1)

t2| µ −→ t�
2| µ�

v1 t2| µ −→ v1 t�
2| µ� (E-App2)

(λx:T11.t12) v2| µ −→ [x �→ v2]t12| µ (E-AppAbs)

Aside: garbage collection

Note that we are not modeling garbage collection — the store just
grows without bound.

Aside: pointer arithmetic

We can’t do any!

Store Typings

Typing Locations

Q: What is the type of a location?

A: It depends on the store!

E.g., in the store (l1 �→ unit, l2 �→ unit), the term !l2 has type
Unit.

But in the store (l1 �→ unit, l2 �→ λx:Unit.x), the term !l2 has
type Unit→Unit.

Typing Locations

Q: What is the type of a location?

A: It depends on the store!

E.g., in the store (l1 �→ unit, l2 �→ unit), the term !l2 has type
Unit.

But in the store (l1 �→ unit, l2 �→ λx:Unit.x), the term !l2 has
type Unit→Unit.

Typing Locations — first try

Roughly:

Γ � µ(l) : T1

Γ � l : Ref T1

More precisely:

Γ | µ � µ(l) : T1

Γ | µ � l : Ref T1

I.e., typing is now a four-place relation (between contexts, stores,
terms, and types).

Typing Locations — first try

Roughly:

Γ � µ(l) : T1

Γ � l : Ref T1

More precisely:

Γ | µ � µ(l) : T1

Γ | µ � l : Ref T1

I.e., typing is now a four-place relation (between contexts, stores,
terms, and types).

Problem

However, this rule is not completely satisfactory. For one thing, it

can make typing derivations very large!

E.g., if

(µ = l1 �→ λx:Nat. 999,
l2 �→ λx:Nat. !l1 (!l1 x),
l3 �→ λx:Nat. !l2 (!l2 x),
l4 �→ λx:Nat. !l3 (!l3 x),
l5 �→ λx:Nat. !l4 (!l4 x)),

then how big is the typing derivation for !l5?

Problem!

But wait... it gets worse. Suppose

(µ = l1 �→ λx:Nat. !l2 x,
l2 �→ λx:Nat. !l1 x),

Now how big is the typing derivation for !l2?

Store Typings

Observation: The typing rules we have chosen for references

guarantee that a given location in the store is always used to hold

values of the same type.

These intended types can be collected into a store typing — a

partial function from locations to types.

E.g., for
µ = (l1 �→ λx:Nat. 999,

l2 �→ λx:Nat. !l1 (!l1 x),
l3 �→ λx:Nat. !l2 (!l2 x),
l4 �→ λx:Nat. !l3 (!l3 x),
l5 �→ λx:Nat. !l4 (!l4 x)),

A reasonable store typing would be

Σ = (l1 �→ Nat→Nat,
l2 �→ Nat→Nat,
l3 �→ Nat→Nat,
l4 �→ Nat→Nat,
l5 �→ Nat→Nat)

Now, suppose we are given a store typing Σ describing the store µ
in which we intend to evaluate some term t. Then we can use Σ
to look up the types of locations in t instead of calculating them
from the values in µ.

Σ(l) = T1

Γ | Σ � l : Ref T1
(T-Loc)

I.e., typing is now a four-place relation between between contexts,
store typings, terms, and types.

Final typing rules

Σ(l) = T1

Γ | Σ � l : Ref T1
(T-Loc)

Γ | Σ � t1 : T1

Γ | Σ � ref t1 : Ref T1
(T-Ref)

Γ | Σ � t1 : Ref T11

Γ | Σ � !t1 : T11
(T-Deref)

Γ | Σ � t1 : Ref T11 Γ | Σ � t2 : T11

Γ | Σ � t1:=t2 : Unit
(T-Assign)

Q: Where do these store typings come from?

A: When we first typecheck a program, there will be no explicit
locations, so we can use an empty store typing.

So, when a new location is created during evaluation,

l /∈ dom(µ)

ref v1 | µ −→ l | (µ, l �→ v1)
(E-RefV)

we can observe the type of v1 and extend the “current store
typing” appropriately.

Q: Where do these store typings come from?

A: When we first typecheck a program, there will be no explicit
locations, so we can use an empty store typing.

So, when a new location is created during evaluation,

l /∈ dom(µ)

ref v1 | µ −→ l | (µ, l �→ v1)
(E-RefV)

we can observe the type of v1 and extend the “current store
typing” appropriately.

Safety

Preservation

First attempt: just add stores and store typings in the appropriate
places.

Theorem (?): If Γ | Σ � t : T and t | µ −→ t� | µ�, then
Γ | Σ � t� : T.

Wrong!

Why is this wrong?

Because Σ and µ here are not constrained to have anything to do
with each other!

(Exercise: Construct an example that breaks this statement of
preservation.)

Preservation

First attempt: just add stores and store typings in the appropriate
places.

Theorem (?): If Γ | Σ � t : T and t | µ −→ t� | µ�, then
Γ | Σ � t� : T. Wrong!

Why is this wrong?

Because Σ and µ here are not constrained to have anything to do
with each other!

(Exercise: Construct an example that breaks this statement of
preservation.)

Preservation

First attempt: just add stores and store typings in the appropriate
places.

Theorem (?): If Γ | Σ � t : T and t | µ −→ t� | µ�, then
Γ | Σ � t� : T. Wrong!

Why is this wrong?

Because Σ and µ here are not constrained to have anything to do
with each other!

(Exercise: Construct an example that breaks this statement of
preservation.)

Preservation

A store µ is said to be well typed with respect to a typing context
Γ and a store typing Σ, written Γ | Σ � µ, if dom(µ) = dom(Σ)
and Γ | Σ � µ(l) : Σ(l) for every l ∈ dom(µ).

Next attempt:
Theorem (?): If

Γ | Σ � t : T
t | µ −→ t� | µ�

Γ | Σ � µ
then Γ | Σ � t� : T.

Still wrong!

Creation of a new reference cell...

l /∈ dom(µ)

ref v1 | µ −→ l | (µ, l �→ v1)
(E-RefV)

... breaks the correspondence between the store typing and the
store.

Preservation

A store µ is said to be well typed with respect to a typing context
Γ and a store typing Σ, written Γ | Σ � µ, if dom(µ) = dom(Σ)
and Γ | Σ � µ(l) : Σ(l) for every l ∈ dom(µ).

Next attempt:
Theorem (?): If

Γ | Σ � t : T
t | µ −→ t� | µ�

Γ | Σ � µ
then Γ | Σ � t� : T.

Still wrong!

Creation of a new reference cell...

l /∈ dom(µ)

ref v1 | µ −→ l | (µ, l �→ v1)
(E-RefV)

... breaks the correspondence between the store typing and the
store.

Preservation

A store µ is said to be well typed with respect to a typing context
Γ and a store typing Σ, written Γ | Σ � µ, if dom(µ) = dom(Σ)
and Γ | Σ � µ(l) : Σ(l) for every l ∈ dom(µ).

Next attempt:
Theorem (?): If

Γ | Σ � t : T
t | µ −→ t� | µ�

Γ | Σ � µ
then Γ | Σ � t� : T. Still wrong!

What’s wrong now?

Creation of a new reference cell...

l /∈ dom(µ)

ref v1 | µ −→ l | (µ, l �→ v1)
(E-RefV)

... breaks the correspondence between the store typing and the
store.

Preservation

A store µ is said to be well typed with respect to a typing context
Γ and a store typing Σ, written Γ | Σ � µ, if dom(µ) = dom(Σ)
and Γ | Σ � µ(l) : Σ(l) for every l ∈ dom(µ).

Next attempt:
Theorem (?): If

Γ | Σ � t : T
t | µ −→ t� | µ�

Γ | Σ � µ
then Γ | Σ � t� : T. Still wrong!

Creation of a new reference cell...

l /∈ dom(µ)

ref v1 | µ −→ l | (µ, l �→ v1)
(E-RefV)

... breaks the correspondence between the store typing and the
store.

Preservation (correct version)

Theorem: If

Γ | Σ � t : T
Γ | Σ � µ
t | µ −→ t� | µ�

then, for some Σ� ⊇ Σ,

Γ | Σ� � t� : T
Γ | Σ� � µ�.

Proof: Easy extension of the preservation proof for λ→.

Preservation (correct version)

Theorem: If

Γ | Σ � t : T
Γ | Σ � µ
t | µ −→ t� | µ�

then, for some Σ� ⊇ Σ,

Γ | Σ� � t� : T
Γ | Σ� � µ�.

Proof: Easy extension of the preservation proof for λ→.

Progress

Theorem: Suppose t is a closed, well-typed term (that is,
∅ | Σ � t : T for some T and Σ). Then either t is a value or else,
for any store µ such that ∅ | Σ � µ, there is some term t� and store
µ� with t | µ −→ t� | µ�.

