
References

Mutability

� In most programming languages, variables are mutable — i.e.,

a variable provides both

� a name that refers to a previously calculated value, and

� the possibility of overwriting this value with another (which

will be referred to by the same name)

� In some languages (e.g., OCaml), these features are separate:

� variables are only for naming — the binding between a variable

and its value is immutable

� introduce a new class of mutable values (called reference cells
or references)

� at any given moment, a reference holds a value (and can be

dereferenced to obtain this value)

� a new value may be assigned to a reference

We choose OCaml’s style, which is easier to work with formally.

So a variable of type T in most languages (except OCaml) will

correspond to a Ref T (actually, a Ref(Option T)) here.

Basic Examples

r = ref 5

!r

r := 7

(r:=succ(!r); !r)

(r:=succ(!r); r:=succ(!r); r:=succ(!r);
r:=succ(!r); !r)

i.e.,

((((r:=succ(!r); r:=succ(!r)); r:=succ(!r));
r:=succ(!r)); !r)

Basic Examples

r = ref 5

!r

r := 7

(r:=succ(!r); !r)

(r:=succ(!r); r:=succ(!r); r:=succ(!r);
r:=succ(!r); !r)

i.e.,

((((r:=succ(!r); r:=succ(!r)); r:=succ(!r));
r:=succ(!r)); !r)

Aliasing

A value of type Ref T is a pointer to a cell holding a value of type
T.

r =

5

If this value is “copied” by assigning it to another variable, the cell
pointed to is not copied.

r =

5

s =

So we can change r by assigning to s:

(s:=6; !r)

Aliasing all around us

Reference cells are not the only language feature that introduces

the possibility of aliasing.

� arrays

� communication channels

� I/O devices (disks, etc.)

The difficulties of aliasing

The possibility of aliasing invalidates all sorts of useful forms of

reasoning about programs, both by programmers...

The function

λr:Ref Nat. λs:Ref Nat. (r:=2; s:=3; !r)

always returns 2 unless r and s are aliases.

...and by compilers:

Code motion out of loops, common subexpression elimination,

allocation of variables to registers, and detection of

uninitialized variables all depend upon the compiler knowing

which objects a load or a store operation could reference.

High-performance compilers spend significant energy on alias
analysis to try to establish when different variables cannot possibly

refer to the same storage.

The benefits of aliasing

The problems of aliasing have led some language designers simply

to disallow it (e.g., Haskell).

But there are good reasons why most languages do provide

constructs involving aliasing:

� efficiency (e.g., arrays)

� “action at a distance” (e.g., symbol tables)

� shared resources (e.g., locks) in concurrent systems

� etc.

Example

c = ref 0
incc = λx:Unit. (c := succ (!c); !c)
decc = λx:Unit. (c := pred (!c); !c)
incc unit
decc unit
o = {i = incc, d = decc}

let newcounter =
λ_:Unit.
let c = ref 0 in
let incc = λx:Unit. (c := succ (!c); !c) in
let decc = λx:Unit. (c := pred (!c); !c) in
let o = {i = incc, d = decc} in
o

Syntax

t ::= terms
unit unit constant
x variable
λx:T.t abstraction
t t application

ref t reference creation
!t dereference
t:=t assignment

... plus other familiar types, in examples.

Typing Rules

Γ � t1 : T1

Γ � ref t1 : Ref T1
(T-Ref)

Γ � t1 : Ref T1

Γ � !t1 : T1
(T-Deref)

Γ � t1 : Ref T1 Γ � t2 : T1

Γ � t1:=t2 : Unit
(T-Assign)

Final example

NatArray = Ref (Nat→Nat);

newarray = λ_:Unit. ref (λn:Nat.0);
: Unit → NatArray

lookup = λa:NatArray. λn:Nat. (!a) n;
: NatArray → Nat → Nat

update = λa:NatArray. λm:Nat. λv:Nat.
let oldf = !a in
a := (λn:Nat. if equal m n then v else oldf n);

: NatArray → Nat → Nat → Unit

Evaluation

What is the value of the expression ref 0?

Crucial observation: evaluating ref 0 must do something.

Otherwise,

r = ref 0
s = ref 0

and

r = ref 0
s = r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and

yield a reference (or pointer) to that storage.

So what is a reference?

