
On to real programming

languages...



Base types

Up to now, we’ve formulated “base types” (e.g. Nat) by adding
them to the syntax of types, extending the syntax of terms with
associated constants (zero) and operators (succ, etc.) and
adding appropriate typing and evaluation rules. We can do this for
as many base types as we like.

For more theoretical discussions (as opposed to programming) we
can often ignore the term-level inhabitants of base types, and just
treat these types as uninterpreted constants.
E.g., suppose B and C are some base types. Then we can ask
(without knowing anything more about B or C) whether there are
any types S and T such that the term

(λf:S. λg:T. f g) (λx:B. x)

is well typed.



The Unit type

t ::= ... terms
unit constant unit

v ::= ... values
unit constant unit

T ::= ... types
Unit unit type

New typing rules Γ � t : T

Γ � unit : Unit (T-Unit)



Sequencing

t ::= ... terms
t1;t2

t1 −→ t�
1

t1;t2 −→ t�
1;t2

(E-Seq)

unit;t2 −→ t2 (E-SeqNext)

Γ � t1 : Unit Γ � t2 : T2

Γ � t1;t2 : T2
(T-Seq)



Sequencing

t ::= ... terms
t1;t2

t1 −→ t�
1

t1;t2 −→ t�
1;t2

(E-Seq)

unit;t2 −→ t2 (E-SeqNext)

Γ � t1 : Unit Γ � t2 : T2

Γ � t1;t2 : T2
(T-Seq)



Derived forms

� Syntatic sugar

� Internal language vs. external (surface) language



Sequencing as a derived form

t1;t2
def
= (λx:Unit.t2) t1

where x /∈ FV(t2)



Equivalence of the two definitions

[board]


