
The two typing relations

Question: What is the relation between these two statements?

1. t : T

2. � t : T

First answer: These two relations are completely different things.

� We are dealing with several different small programming

languages, each with its own typing relation (between terms in

that language and types in that language)

� For the simple language of numbers and booleans, typing is a

binary relation between terms and types (t : T).

� For λ→, typing is a ternary relation between contexts, terms,

and types (Γ � t : T).

(When the context is empty — because the term has no free

variables — we often write � t : T to mean ∅ � t : T.)



The two typing relations

Question: What is the relation between these two statements?

1. t : T

2. � t : T

First answer: These two relations are completely different things.

� We are dealing with several different small programming

languages, each with its own typing relation (between terms in

that language and types in that language)

� For the simple language of numbers and booleans, typing is a

binary relation between terms and types (t : T).

� For λ→, typing is a ternary relation between contexts, terms,

and types (Γ � t : T).

(When the context is empty — because the term has no free

variables — we often write � t : T to mean ∅ � t : T.)



Conservative extension

Second answer: The typing relation for λ→ conservatively extends
the one for the simple language of numbers and booleans.

� Write “language 1” for the language of numbers and booleans

and “language 2” for the simply typed lambda-calculus with

base types Nat and Bool.

� The terms of language 2 include all the terms of language 1;

similarly typing rules.

� Write t :1 T for the typing relation of language 1.

� Write Γ � t :2 T for the typing relation of language 2.

� Theorem: Language 2 conservatively extends language 1: If t
is a term of language 1 (involving only booleans, conditions,

numbers, and numeric operators) and T is a type of language

1 (either Bool or Nat), then t :1 T iff ∅ � t :2 T.


