
The Lambda Calculus



The lambda-calculus

� If our previous language of arithmetic expressions was the

simplest nontrivial programming language, then the

lambda-calculus is the simplest interesting programming

language...

� Turing complete

� higher order (functions as data)

� Indeed, in the lambda-calculus, all computation happens by

means of function abstraction and application.

� The e. coli of programming language research

� The foundation of many real-world programming language

designs (including ML, Haskell, Scheme, Lisp, ...)



Intuitions

Suppose we want to describe a function that adds three to any

number we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x is succ (succ (succ x)).”

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields

succ (succ (succ x)).

plus3 = λx. succ (succ (succ x))

This function exists independent of the name plus3.

λx. t is written “fun x → t” in OCaml.
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So plus3 (succ 0) is just a convenient shorthand for “the
function that, given x, yields succ (succ (succ x)), applied to
succ 0.”

plus3 (succ 0)
=

(λx. succ (succ (succ x))) (succ 0)



Abstractions over Functions

Consider the λ-abstraction

g = λf. f (f (succ 0))

Note that the parameter variable f is used in the function position
in the body of g. Terms like g are called higher-order functions.
If we apply g to an argument like plus3, the “substitution rule”
yields a nontrivial computation:

g plus3
= (λf. f (f (succ 0))) (λx. succ (succ (succ x)))
i .e. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) (succ 0))
i .e. (λx. succ (succ (succ x)))

(succ (succ (succ (succ 0))))
i .e. succ (succ (succ (succ (succ (succ (succ 0))))))



Abstractions Returning Functions

Consider the following variant of g:

double = λf. λy. f (f y)

I.e., double is the function that, when applied to a function f,
yields a function that, when applied to an argument y, yields
f (f y).



Example

double plus3 0
= (λf. λy. f (f y))

(λx. succ (succ (succ x)))
0

i .e. (λy. (λx. succ (succ (succ x)))
((λx. succ (succ (succ x))) y))

0
i .e. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) 0)
i .e. (λx. succ (succ (succ x)))

(succ (succ (succ 0)))
i .e. succ (succ (succ (succ (succ (succ 0)))))



The Pure Lambda-Calculus

As the preceding examples suggest, once we have λ-abstraction and
application, we can throw away all the other language primitives
and still have left a rich and powerful programming language.

In this language — the “pure lambda-calculus”— everything is a
function.

� Variables always denote functions

� Functions always take other functions as parameters

� The result of a function is always a function



Formalities



Syntax

t ::= terms
x variable
λx.t abstraction
t t application

Terminology:

� terms in the pure λ-calculus are often called λ-terms

� terms of the form λx. t are called λ-abstractions or just
abstractions



Syntactic conventions

Since λ-calculus provides only one-argument functions, all
multi-argument functions must be written in curried style.

The following conventions make the linear forms of terms easier to
read and write:

� Application associates to the left

E.g., t u v means (t u) v, not t (u v)

� Bodies of λ- abstractions extend as far to the right as possible

E.g., λx. λy. x y means λx. (λy. x y), not
λx. (λy. x) y



Scope

The λ-abstraction term λx.t binds the variable x.
The scope of this binding is the body t.
Occurrences of x inside t are said to be bound by the abstraction.

Occurrences of x that are not within the scope of an abstraction

binding x are said to be free.

λx. λy. x y z

λx. (λy. z y) y
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Values

v ::= values
λx.t abstraction value



Operational Semantics

Computation rule:

(λx.t12) v2 −→ [x �→ v2]t12 (E-AppAbs)

Notation: [x �→ v2]t12 is “the term that results from
substituting free occurrences of x in t12 with v12.”

Congruence rules:

t1 −→ t�
1

t1 t2 −→ t�
1 t2

(E-App1)

t2 −→ t�
2

v1 t2 −→ v1 t�
2

(E-App2)
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Terminology

A term of the form (λx.t) v — that is, a λ-abstraction applied
to a value — is called a redex (short for “reducible expression”).



Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure,
call-by-value lambda-calculus.
The evaluation strategy we have chosen — call by value — reflects

standard conventions found in most mainstream languages.

Some other common ones:

� Call by name (cf. Haskell)

� Normal order (leftmost/outermost)

� Full (non-deterministic) beta-reduction


