
More About Bound Variables



Substitution

Our definition of evaluation is based on the “substitution” of
values for free variables within terms.

(λx.t12) v2 −→ [x �→ v2]t12 (E-AppAbs)

But what is substitution, exactly? How do we define it?



Substitution

For example, what does

(λx. x (λy. x y)) (λx. x y x)

reduce to?

Note that this example is not a “complete program” — the whole
term is not closed. We are mostly interested in the reduction
behavior of closed terms, but reduction of open terms is also
important in some contexts:

� program optimization

� alternative reduction strategies such as “full beta-reduction”



Formalizing Substitution

Consider the following definition of substitution:

[x �→ s]x = s
[x �→ s]y = y if x �= y
[x �→ s](λy.t1) = λy. ([x �→ s]t1)
[x �→ s](t1 t2) = ([x �→ s]t1)([x �→ s]t2)

What is wrong with this definition?

It substitutes for free and bound variables!

[x �→ y](λx. x) = λx.y

This is not what we want!



Formalizing Substitution

Consider the following definition of substitution:

[x �→ s]x = s
[x �→ s]y = y if x �= y
[x �→ s](λy.t1) = λy. ([x �→ s]t1)
[x �→ s](t1 t2) = ([x �→ s]t1)([x �→ s]t2)

What is wrong with this definition?

It substitutes for free and bound variables!

[x �→ y](λx. x) = λx.y

This is not what we want!



Substitution, take two

[x �→ s]x = s
[x �→ s]y = y if x �= y
[x �→ s](λy.t1) = λy. ([x �→ s]t1) if x �= y
[x �→ s](λx.t1) = λx. t1

[x �→ s](t1 t2) = ([x �→ s]t1)([x �→ s]t2)

What is wrong with this definition?

It suffers from variable capture!

[x �→ y](λy.x) = λx. x

This is also not what we want.



Substitution, take two

[x �→ s]x = s
[x �→ s]y = y if x �= y
[x �→ s](λy.t1) = λy. ([x �→ s]t1) if x �= y
[x �→ s](λx.t1) = λx. t1

[x �→ s](t1 t2) = ([x �→ s]t1)([x �→ s]t2)

What is wrong with this definition?

It suffers from variable capture!

[x �→ y](λy.x) = λx. x

This is also not what we want.



Substitution, take three

[x �→ s]x = s
[x �→ s]y = y if x �= y
[x �→ s](λy.t1) = λy. ([x �→ s]t1) if x �= y, y �∈ FV (s)
[x �→ s](λx.t1) = λx. t1

[x �→ s](t1 t2) = ([x �→ s]t1)([x �→ s]t2)

What is wrong with this definition?

Now substition is a partial function!

E.g., [x �→ y](λy.x) is undefined.

But we want an result for every substitution.



Substitution, take three

[x �→ s]x = s
[x �→ s]y = y if x �= y
[x �→ s](λy.t1) = λy. ([x �→ s]t1) if x �= y, y �∈ FV (s)
[x �→ s](λx.t1) = λx. t1

[x �→ s](t1 t2) = ([x �→ s]t1)([x �→ s]t2)

What is wrong with this definition?

Now substition is a partial function!

E.g., [x �→ y](λy.x) is undefined.

But we want an result for every substitution.



Bound variable names shouldn’t matter

It’s annoying that that the “spelling” of bound variable names is
causing trouble with our definition of substitution.

Intuition tells us that there shouldn’t be a difference between the
functions λx.x and λy.y. Both of these functions do exactly the
same thing.

Because they differ only in the names of their bound variables,
we’d like to think that these are the same function.

We call such terms alpha-equivalent.



Alpha-equivalence classes

In fact, we can create equivalence classes of terms that differ only
in the names of bound variables.

When working with the lambda calculus, it is convenient to think
about these equivalence classes, instead of raw terms.

For example, when we write λx.x we mean not just this term, but
the class of terms that includes λy.y and λz.z.

We can now freely choose a different representative from a term’s
alpha-equivalence class, whenever we need to, to avoid getting
stuck.



Substitution, for alpha-equivalence classes

Now consider substitution as an operation over alpha-equivalence
classes of terms.

[x �→ s]x = s
[x �→ s]y = y if x �= y
[x �→ s](λy.t1) = λy. ([x �→ s]t1) if x �= y, y �∈ FV (s)
[x �→ s](λx.t1) = λx. t1

[x �→ s](t1 t2) = ([x �→ s]t1)([x �→ s]t2)

Examples:

� [x �→ y](λy.x) must give the same result as [x �→ y](λz.x).
We know the latter is λz.y, so that is what we will use for
the former.

� [x �→ y](λx.z) must give the same result as [x �→ y](λw.z).
We know the latter is λw.z so that is what we use for the
former.



Review

So what does

(λx. x (λy. x y)) (λx. x y x)

reduce to?


