
Inductive Proofs about the
Lambda Calculus



Two induction principles

Like before, we have two ways to prove that properties are true of
the untyped lambda calculus.

� Structural induction on terms

� Induction on a derivation of t −→ t�.

Let’s look at an example of each.



Structural induction on terms

To show that a property P holds for all lambda-terms t, it suffices
to show that

� P holds when t is a variable;

� P holds when t is a lambda-abstraction λx. t1, assuming
that P holds for the immediate subterm t1; and

� P holds when t is an application t1 t2, assuming that P
holds for the immediate subterms t1 and t2.

N.b.: The variant of this principle where “immediate subterm” is
replaced by “arbitrary subterm” is also valid. (Cf. ordinary
induction vs. complete induction on the natural numbers.)
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An example of structural induction on terms

Define the set of free variables in a lambda-term as follows:

FV (x) = {x}
FV (λx.t1) = FV (t1) \ {x}
FV (t1 t2) = FV (t1) ∪ FV (t2)

Define the size of a lambda-term as follows:

size(x) = 1
size(λx.t1) = size(t1) + 1
size(t1 t2) = size(t1) + size(t2) + 1

Theorem: |FV (t)| ≤ size(t).



An example of structural induction on terms

Theorem: |FV (t)| ≤ size(t).

Proof: By induction on the structure of t.

� If t is a variable, then |FV (t)| = 1 = size(t).

� If t is an abstraction λx. t1, then
|FV (t)|

= |FV (t1) \ {x}| by defn
≤ |FV (t1)| by arithmetic
≤ size(t1) by induction hypothesis
≤ size(t1) + 1 by arithmetic
= size(t) by defn.
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Induction on derivations

Recall that the reduction relation is defined as the smallest binary
relation on terms satisfying the following rules:

(λx.t12) v2 −→ [x �→ v2]t12 (E-AppAbs)

t1 −→ t�
1

t1 t2 −→ t�
1 t2

(E-App1)

t2 −→ t�
2

v1 t2 −→ v1 t�
2

(E-App2)



Induction on derivations

Induction principle for the small-step evaluation relation.

To show that a property P holds for all derivations of t −→ t�, it
suffices to show that

� P holds for all derivations that use the rule E-AppAbs;

� P holds for all derivations that end with a use of E-App1
assuming that P holds for all subderivations; and

� P holds for all derivations that end with a use of E-App2
assuming that P holds for all subderivations.



Example

Theorem: if t −→ t� then FV (t) ⊇ FV (t�).



Induction on derivations

We must prove, for all derivations of t −→ t�, that
FV (t) ⊇ FV (t�).

There are three cases.

� If the derivation of t −→ t� is just a use of E-AppAbs, then t
is (λx.t1)v and t� is [x|→v]t1. Reason as follows:

FV (t) = FV ((λx.t1)v)
= FV (t1)/{x} ∪ FV (v)
⊇ FV ([x|→v]t1)
= FV (t�)
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� If the derivation ends with a use of E-App1, then t has the
form t1 t2 and t� has the form t�

1 t2, and we have a
subderivation of t1 −→ t�

1

By the induction hypothesis, FV (t1) ⊇ FV (t�
1). Now

calculate:
FV (t) = FV (t1 t2)

= FV (t1) ∪ FV (t2)
⊇ FV (t�

1) ∪ FV (t2)
= FV (t�

1 t2)
= FV (t �)

� If the derivation ends with a use of E-App2, the argument is
similar to the previous case.
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