The Lambda Calculus



The lambda-calculus

» |If our previous language of arithmetic expressions was the
simplest nontrivial programming language, then the
lambda-calculus is the simplest interesting programming
language...

» Turing complete
> higher order (functions as data)

» Indeed, in the lambda-calculus, all computation happens by
means of function abstraction and application.

» The e. coli of programming language research

» The foundation of many real-world programming language
designs (including ML, Haskell, Scheme, Lisp, ...)



Intuitions

Suppose we want to describe a function that adds three to any
number we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x is succ (succ (succ x))."



Intuitions

Suppose we want to describe a function that adds three to any
number we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x is succ (succ (succ x))."

Q: What is plus3 itself?



Intuitions
Suppose we want to describe a function that adds three to any
number we pass it. We might write
plus3 x = succ (succ (succ x))
That is, “plus3 x is succ (succ (succ x))."

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields
succ (succ (succ x)).



Intuitions

Suppose we want to describe a function that adds three to any
number we pass it. We might write
plus3 x = succ (succ (succ x))
That is, “plus3 x is succ (succ (succ x))."
Q: What is plus3 itself?

A: plus3 is the function that, given x, yields
succ (succ (succ x)).

plus3 = Ax. succ (succ (succ x))

This function exists independent of the name plus3.

Ax. tis written “fun x — t” in OCaml.



So plus3 (succ 0) is just a convenient shorthand for “the
function that, given x, yields succ (succ (succ x)), applied to
succ 0."

plus3 (succ 0)

(Ax. succ (succ (succ x))) (succ 0)



Abstractions over Functions

Consider the \-abstraction

g = M. f (f (succ 0))

Note that the parameter variable f is used in the function position
in the body of g. Terms like g are called higher-order functions.

If we apply g to an argument like plus3, the “substitution rule”
yields a nontrivial computation:

g plus3

= (M. £ (£ (succ 0))) (Ax. succ (succ (succ x)))
i.e. (Ax. succ (succ (succ x)))
((Ax. succ (succ (succ x))) (succ 0))
i.e. (Ax. succ (succ (succ x)))
(succ (succ (succ (succ 0))))
j.e. succ (succ (succ (succ (succ (succ (succ 0))))))



Abstractions Returning Functions

Consider the following variant of g:
double = Af. Ay. f (f y)

l.e., double is the function that, when applied to a function f,

yields a function that, when applied to an argument y, yields
f (£ y).



Example

i.e.

i.e.

i.e.

i.e.

double plus3 0
(M. Ay. £ (£ )
(Ax. succ (succ (succ x)))
0
(Ay. (Ax. succ (succ (succ x)))
((Ax. succ (succ (succ x))) y))
0
(Ax. succ (succ (succ x)))
((\x. succ (succ (succ x))) 0)
(Ax. succ (succ (succ x)))
(succ (succ (succ 0)))
succ (succ (succ (succ (succ (succ 0)))))



The Pure Lambda-Calculus

As the preceding examples suggest, once we have A-abstraction and
application, we can throw away all the other language primitives
and still have left a rich and powerful programming language.

In this language — the “pure lambda-calculus”— everything is a
function.

» Variables always denote functions
» Functions always take other functions as parameters

» The result of a function is always a function



Formalities



t = terms
X variable
Ax.t abstraction
tt application
Terminology:

» terms in the pure A-calculus are often called A\-terms

> terms of the form A\x. t are called \-abstractions or just
abstractions



Syntactic conventions

Since \-calculus provides only one-argument functions, all
multi-argument functions must be written in curried style.

The following conventions make the linear forms of terms easier to
read and write:

» Application associates to the left

Eg,t v vmeans (t uw) v, nott (u v)

» Bodies of A\- abstractions extend as far to the right as possible

Eg,\z. \y. =z ymeans \z. (\y. z y), not
Az, QA\y. z) y



Scope

The A-abstraction term Ax.t binds the variable x.

The scope of this binding is the body t.

Occurrences of x inside t are said to be bound by the abstraction.
Occurrences of x that are not within the scope of an abstraction
binding x are said to be free.

AX. Ay. Xy z



Scope

The A-abstraction term Ax.t binds the variable x.

The scope of this binding is the body t.

Occurrences of x inside t are said to be bound by the abstraction.
Occurrences of x that are not within the scope of an abstraction
binding x are said to be free.

AX. Ay. Xy z
x. (A\y. zy)y



Values

v o= values
Ax.t abstraction value



Operational Semantics

Computation rule:

(Ax.t12) vo — [x— v2]t1n (E-APPABS)

Notation: [z + wy|t12 is “the term that results from
substituting free occurrences of z in ti> with vi,.”



Operational Semantics

Computation rule:

(Ax.t12) vo — [x— v2]t1n (E-APPABS)

Notation: [z + wy|t12 is “the term that results from
substituting free occurrences of z in ti> with vi,.”

Congruence rules:

t] — t
' /1 (E-APppP1)
ty to—1t; t2
ty — t)
(E-ApP2)

vy th — vy ‘t/2



Terminology

A term of the form (Ax.t) v — that is, a \-abstraction applied
to a value — is called a redex (short for “reducible expression™).



Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure,
call-by-value lambda-calculus.

The evaluation strategy we have chosen — call by value — reflects
standard conventions found in most mainstream languages.
Some other common ones:

» Call by name (cf. Haskell)
» Normal order (leftmost/outermost)

» Full (non-deterministic) beta-reduction



