Types

Outline

1. begin with a set of terms, a set of values, and an evaluation
relation

2. define a set of types classifying values according to their
“shapes”

3. define a typing relation t : T that classifies terms according
to the shape of the values that result from evaluating them

4. check that the typing relation is sound in the sense that,

41 ift : Tandt —" v, thenv : T
4.2 if t : T, then evaluation of t will not get stuck

Review: Arithmetic Expressions — Syntax

t

nv

true

false

if t then t else t
0

succ t

pred t

iszero t

true
false
nv

succ nv

terms

constant true
constant false
conditional
constant zero
successor
predecessor
zero test

values
true value
false value
numeric value

numeric values
zero value
successor value

Evaluation Rules

if true then t, else t3 — t» (E-IFTRUE)
if false then t, else t3 — t3 (E-IFFALSE)

t; — t)

if t; then t, else t3 — if t] then t; else tj3

(E-Ir)

t; — t)

succ t; — succ t}
pred 0 — O
pred (succ nvi) — nvy

t; — t)

pred t; — pred t}
iszero 0 — true
iszero (succ nvy) — false

ty — t)

iszero t; — iszero t}

(E-Succ)

(E-PREDZERO)

(E-PrREDSUCC)

(E-PrED)

(E-ISZEROZERO)

(E-IsZzEROSUCC)

(E-ISZERO)

Types

In this language, values have two possible “shapes”: they are
either booleans or numbers.
T = types

Bool type of booleans
Nat type of numbers

Typing Rules

true : Bool (T-TRUE)
false : Bool (T-FALSE)
t1 : Bool ty o T t3 : T
1 2 3 (T-Tr)
if t; then to else t3 : T
0 : Nat (T-ZERO)
t1 : Nat
— (T-Succ)
succ t; : Nat
t1 : Nat
B (T-PRED)
pred t; : Nat
t1 : Nat
! (T-IsZERO)

iszero tj : Bool

Typing Derivations

Every pair (t,T) in the typing relation can be justified by a
derivation tree built from instances of the inference rules.

T-ZERO T-ZERO
0 : Nat 0 : Nat
T-1ISZERO T-7ZERO —— T-PRED
iszero 0 : Bool 0 : Nat pred O : Nat
T-1r

if iszero O then O else pred O : Nat

Proofs of properties about the typing relation often proceed by
induction on typing derivations.

Imprecision of Typing

Like other static program analyses, type systems are generally
imprecise: they do not predict exactly what kind of value will be
returned by every program, but just a conservative (safe)
approximation.

t1 : Bool to ! T t3 : T

(T-IrF)
if t; then to else t3: T

Using this rule, we cannot assign a type to
if true then 0 else false

even though this term will certainly evaluate to a number.

Properties of the Typing
Relation

Type Safety

The safety (or soundness) of this type system can be expressed by
two properties:
1. Progress: A well-typed term is not stuck

If t : T then either t is a value or else t — t' for
some t'.

2. Preservation: Types are preserved by one-step evaluation
Ift : Tandt — t', then t' : T.

Inversion

Lemma:
1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
3. If if t1 then t, else t3 : R, then t1 : Bool, t» : R, and
t3 : R.
If 0 : R, then R = Nat.
If succ t1 : R, then R = Nat and t; : Nat.
If pred t; : R, then R = Nat and t; : Nat.
If iszero ti : R, then R = Bool and t; : Nat.

N o o k&

Inversion

Lemma:
1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
3. If if t1 then t, else t3 : R, then t1 : Bool, t» : R, and
t3 : R.
If 0 : R, then R = Nat.
If succ t1 : R, then R = Nat and t; : Nat.
If pred t; : R, then R = Nat and t; : Nat.
7. If iszero ti1 : R, then R = Bool and t; : Nat.
Proof:

o o &

Inversion

Lemma:
1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
3. If if t1 then t, else t3 : R, then t1 : Bool, t» : R, and
t3 : R.
If 0 : R, then R = Nat.
If succ t1 : R, then R = Nat and t; : Nat.
If pred t; : R, then R = Nat and t; : Nat.
7. If iszero ti1 : R, then R = Bool and t; : Nat.
Proof:

o o &

This leads directly to a recursive algorithm for calculating the type
of a term...

Typechecking Algorithm

typeof (t)

if t = true then Bool
else if t = false then Bool
else if t = if t1 then t2 else t3 then
let T1 = typeof(tl) in
let T2 = typeof(t2) in
let T3 = typeof(t3) in
if T1 = Bool and T2=T3 then T2
else "not typable"
else if t = 0 then Nat
else if t = succ tl1 then
let T1 = typeof(tl) in
if T1 = Nat then Nat else "not typable"
else if t = pred tl1 then
let T1 = typeof(tl) in
if Tl = Nat then Nat else "not typable"
else if t = iszero tl1 then
let T1 = typeof(tl) in
if Tl = Nat then Bool else "not typable"

Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof-

Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v on= values
true true value
false false value
nv numeric value
nv o= numeric values
0 zero value
succ nv successor value

For part 1,

Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v on= values
true true value
false false value
nv numeric value
nv o= numeric values
0 zero value
succ nv successor value

For part 1, if v is true or false, the result is immediate.

Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v on= values
true true value
false false value
nv numeric value
nv o= numeric values
0 zero value
succ nv successor value

For part 1, if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool.

Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v on= values
true true value
false false value
nv numeric value
nv o= numeric values
0 zero value
succ nv successor value

For part 1, if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool. Part 2 is similar.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some

type T). Then either t is a value or else there is some t’ with
t—t/.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t’ with

t — t/.

Proof-

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t’ with

t — t/.

Proof: By induction on a derivation of t : T.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t’ with

t — t/.
Proof: By induction on a derivation of t : T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since
t in these cases is a value.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t’ with

t — t/.
Proof: By induction on a derivation of t : T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since
t in these cases is a value.

Case T-IF: t =if t; then t, else t3
t1 : Bool to ! T t3 : T

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t’ with

t — t/.
Proof: By induction on a derivation of t : T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since
t in these cases is a value.

Case T-IF: t =if t; then ty else tj3

t1 : Bool to ! T t3 : T
By the induction hypothesis, either t; is a value or else there is
some t such that t; — t. If t; is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IFTRUE or E-IFFALSE applies to t. On the
other hand, if t; — t/, then, by E-IF,
t — if t] then ty else ts.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t’ with

t — t/.
Proof: By induction on a derivation of t : T.

The cases for rules T-ZERO, T-Succ, T-PRED, and T-ISZERO
are similar.

(Recommended: Try to reconstruct them.)

Preservation

Theorem: If t : Tand t — t/, then t/ : T.

Preservation

Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

Preservation

Theorem: If t : Tand t — t/, then t’ : T.
Proof: By induction on the given typing derivation.
Case T-TRUE: t = true T = Bool

Then t is a value, so it cannot be that t — t’ for any t/, and the
theorem is vacuously true.

Preservation

Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

Case T-1Ir:

t =1if t; then to else t3 t; :Bool to : T t3:T
There are three evaluation rules by which t — t/ can be derived:
E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Preservation

Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

Case T-IF:
t =1if t; then to else t3 t; :Bool to : T t3:T

There are three evaluation rules by which t — t/ can be derived:
E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IFTRUE: t1 = true t/ = 1tg

Immediate, by the assumption t, : T.

(E-IFFALSE subcase: Similar.)

Preservation

Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

Case T-1Ir:

t =1if t; then to else t3 t; :Bool to : T t3:T
There are three evaluation rules by which t — t/ can be derived:
E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IF: t; — t] t' = if t) then t, else t3
Applying the IH to the subderivation of t; : Bool yields

t} : Bool. Combining this with the assumptions that t> : T and
t3 : T, we can apply rule T-IF to conclude that

if t] then ty else t3 : T, thatis, t’ : T.

Recap: Type Systems

» Very successful example of a lightweight formal method
» big topic in PL research

» enabling technology for all sorts of other things, e.g.
language-based security

> the skeleton around which modern programming languages are
designed

