
Basics of Induction (Review)



Induction

Principle of ordinary induction on natural numbers:

Suppose that P is a predicate on the natural numbers.
Then:

If P(0)
and, for all i , P(i) implies P(i + 1),
then P(n) holds for all n.



Example

Theorem: 2
0
+ 2

1
+ ... + 2

n
= 2

n+1 − 1, for every n.

Proof: Let P(i) be “2
0
+ 2

1
+ ... + 2

i
= 2

i+1 − 1.”

� Show P(0):

2
0

= 1 = 2
1 − 1

� Show that P(i) implies P(i + 1):

2
0
+ 2

1
+ ... + 2

i+1
= (2

0
+ 2

1
+ ... + 2

i
) + 2

i+1

= (2
i+1 − 1) + 2

i+1
by IH

= 2 · (2
i+1

)− 1

= 2
i+2 − 1

� The result (P(n) for all n) follows by the principle of

(ordinary) induction.



Shorthand form

Theorem: 2
0
+ 2

1
+ ... + 2

n
= 2

n+1 − 1, for every n.

Proof: By induction on n.

� Base case (n = 0):

2
0

= 1 = 2
1 − 1

� Inductive case (n = i + 1):

2
0
+ 2

1
+ ... + 2

i+1
= (2

0
+ 2

1
+ ... + 2

i
) + 2

i+1

= (2
i+1 − 1) + 2

i+1
IH

= 2 · (2
i+1

)− 1

= 2
i+2 − 1



Complete Induction

Principle of complete induction on natural numbers:

Suppose that P is a predicate on the natural numbers.
Then:

If, for each natural number n,
given P(i) for all i < n
we can show P(n),

then P(n) holds for all n.



Complete versus ordinary induction

Ordinary and complete induction are interderivable — assuming

one, we can prove the other.

Thus, the choice of which to use for a particular proof is purely a

question of style.

We’ll see some other (equivalent) styles as we go along.



Syntax



Simple Arithmetic Expressions

Here is a BNF grammar for a very simple language of arithmetic

expressions:

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

Terminology:

� t here is a metavariable



Abstract vs. concrete syntax

Q: Does this grammar define a set of character strings, a set of
token lists, or a set of abstract syntax trees?

A: In a sense, all three. But we are primarily interested, here, in
abstract syntax trees.

For this reason, grammars like the one on the previous slide are
sometimes called abstract grammars. An abstract grammar defines
a set of abstract syntax trees and suggests a mapping from
character strings to trees.

We then write terms as linear character strings rather than trees
simply for convenience. If there is any potential confusion about
what tree is intended, we use parentheses to disambiguate.



Abstract vs. concrete syntax

Q: Does this grammar define a set of character strings, a set of
token lists, or a set of abstract syntax trees?

A: In a sense, all three. But we are primarily interested, here, in
abstract syntax trees.

For this reason, grammars like the one on the previous slide are
sometimes called abstract grammars. An abstract grammar defines
a set of abstract syntax trees and suggests a mapping from
character strings to trees.

We then write terms as linear character strings rather than trees
simply for convenience. If there is any potential confusion about
what tree is intended, we use parentheses to disambiguate.



Q: So, are

succ 0
succ (0)
(((succ (((((0))))))))

“the same term”?

What about

succ 0
pred (succ (succ 0))

?



A more explicit form of the definition

The set T of terms is the smallest set such that

1. {true, false, 0} ⊆ T ;

2. if t1 ∈ T , then {succ t1, pred t1, iszero t1} ⊆ T ;

3. if t1 ∈ T , t2 ∈ T , and t3 ∈ T , then
if t1 then t2 else t3 ∈ T .



Inference rules

An alternate notation for the same definition:

true ∈ T false ∈ T 0 ∈ T
t1 ∈ T

succ t1 ∈ T
t1 ∈ T

pred t1 ∈ T
t1 ∈ T

iszero t1 ∈ T
t1 ∈ T t2 ∈ T t3 ∈ T
if t1 then t2 else t3 ∈ T

Note that “the smallest set closed under...” is implied (but often
not stated explicitly).

Terminology:

� axiom vs. rule

� concrete rule vs. rule scheme


