
Distribution Map
In Proceedings of International Conference on Software Maintenance (ICSM 2006)

Stéphane Ducasse
Language and Software Evolution Group

Université de Savoie, France

Tudor Gı̂rba Adrian Kuhn
Software Composition Group

University of Berne, Switzerland

Abstract

Understanding large software systems is a challenging
task, and to support it many approaches have been devel-
oped. Often, the result of these approaches categorize exist-
ing entities into new groups or associates them with mu-
tually exclusive properties. In this paper we present the
Distribution Map as a generic technique to visualize and
analyze this type of result. Our technique is based on the
notion of focus, which shows whether a property is well-
encapsulated or cross-cutting, and the notion of spread,
which shows whether the property is present in several parts
of the system. We present a basic visualization and comple-
ment it with measurements that quantify focus and spread.
To validate our technique we show evidence of applying it
on the result sets of different analysis approaches. As a
conclusion we propose that the Distribution Map technique
should belong to any reverse engineering toolkit.

Keywords: software clustering, software metrics, visu-
alization

1 Introduction

Understanding large and complex software is a challeng-
ing task. To address this issue, various approaches have
been proposed such as software visualization [21, 11], met-
rics [17], or clustering [2, 13]. Often, the result of these
analyses categorizes existing entities into new groups or
clusters, or associates them with mutually exclusive prop-
erties. Understanding these results can be tedious as we
have to understand how they are distributed over the sys-
tem. Indeed, while these analyses are powerful to identify
or characterize aspects of a large application, they often lack
the support to understand the results they produce.

In this paper we offer a generic technique to reason about
the result of software analyses. Understanding how a given
phenomenon is distributed across a large software system
is a key information for the overall comprehension of the
system. We focus on relating the reference partition of a

system to a comparison partition1. Typically the reference
partition is the intrinsic structure of the system (e.g., the
package structure of classes), and the comparison partition
is given by a grouping or property (e.g., classes grouped by
their authors).

For example, suppose we know which developer owns
which file in the system [7], we would like to answer sev-
eral questions: What are the zones of interest of the devel-
opers? Is the work of a developer focused on only one part
of the system, or is it scattered throughout the system? Is a
package implemented by one or several developers?

As another example, suppose we cluster the system
based on its domain concepts [10], the questions that we
would like to answer are: How are the specific concepts
distributed over the package structure of the system? Are
there concepts localized in one layer? Are there concepts
that are spread over the entire system? Are there packages
that implement one concept only? Are there packages that
implement multiple concepts?

In this paper, we are particularly interested in two
generic questions:

Spread: how much does a property spread across the ref-
erence partition: is it local or global?

Focus: how close does a property match the reference par-
tition: is it well-encapsulated or cross-cutting?

We introduce two measurements, as an automated means
to analyze spread and focus, and we complement the mea-
surements with a visualization that captures spread and fo-
cus of clusters or properties visually. We exemplify our
technique on two different types of results: on clusters and
on mutually exclusive properties. The case studies exercise
different parts of the technique: first we offer an in-depth
view on two case studies showing how to interpret the mea-
surements and the visualization, and afterwards we show
the scalability of the visualization on one large case study.

1In mathematics, a partition of a set is a division into non-overlapping
parts that cover all its elements. In the context of this paper, part denotes
a part of the reference partition, while cluster or property denotes a part of
the comparison partition.

1

Paper structure. In Section 2 we present the technique
by concentrating on its visual aspect and we define a set of
metrics that complement it. In Section 3.1 we illustrate our
technique on the analysis of domain concepts in Java pack-
ages, and in Section 3.2 we illustrate it on code ownership.
In Section 4 we discuss the pros and cons as well as some
variation points of our technique. We present the state of
the art in Section 5, and we conclude in Section 6.

2 Analyzing the Distribution of Properties

Our technique has two facets. On the one hand we pro-
pose a basic visualization, the Distribution Map, and on the
other hand we define a set of measurements that represent
the spread and focus of properties over a partition.

2.1 The Distribution Map

Given the software system S as a set of software artifacts
and two partitions P and Q of that set, we introduce the Dis-
tribution Map as a means to visualize Q compared to P .
The visualization is composed of large rectangles contain-
ing small squares in different colors (similar to the Shrimp
views [21]). There is a small square for each element of
S, the partition P is used to group the squares into large
rectangles and the partition Q is used to color the squares.

Reference partition: the partition P corresponds to a well
understood partition. Typically the reference partition
represents the intrinsic structure of the software system
(e.g., the package structure). However, we could also
use the result of a clustering.

Comparison partition: the partition Q is the result of an
analysis. Mostly, this partition is either a set of clus-
ters, or some mutually exclusive properties associated
with the elements of S.

In the context of this paper, to distinguish the comparison
partition from the reference partition, we call the parts of
the comparison partition properties (the terms cluster and
property are used synonymously in this paper). Thus, we
say that each software artifact si belongs to a part pn of P
and is attributed with a property qm out of Q.

Figure 1 illustrates an example Distribution Map with
five parts containing 6, 2, 5, 10 and 14 elements respectively
and with four properties: Red, Blue, Green and Yellow. On
the visualization, for each part pn there is a large rectangle
and within that rectangle, for each element si ∈ pn there
is a small square whose color refers to the property qm at-
tributed to that element.

From the visualization we can characterize both the parts
with respect to the contained properties, and the properties

part 1 part 2 part 3

part 4part 5

Figure 1. A Distribution Map showing five pack-
ages and four properties: Red, Blue Green
and Yellow.

with respect to their distribution over the parts. In our ex-
ample from Figure 1, about the properties we say that Blue
is well-encapsulated, that Yellow is cross-cutting and that
Green is like an octopus because it has a body and tentacles
spread over the system. We can also say that part 1 and part
4 are self-contained.

2.2 Measuring Spread and Focus

In addition to the visualization we introduce two mea-
surements to quantifying both the spread and the focus of a
property q in relation to a partition P .

The set of elements in part p ∈ P that have property q is
the intersection between property q and part p. Its relative
size can either be given in terms of a percentage of p or in
terms of a percentage of q, thus we define the relative size
of q ∩ p in relation to p as:

touch(q, p) :=
|q ∩ p|
|p|

The name relative size is generic, when applying the Dis-
tribution Map on a specific result set its problem domain
usually provides a more accurate vocabulary. For example,
in the case of authorship we would say “percentage of pack-
age B touched by author A”.

Spread. Given the total set S, a subset of elements q ⊂ S
and a partition P such that ∪P = S, we define the spread
of q over P as the number of touched parts:

spread(q, P) :=
∑
pi∈P

{
1, touch(q, pi) > 0
0, touch(q, pi) = 0

2

Focus. Given again the total set S, a subset of elements
q ⊂ S and a partition P such that ∪P = S, we define the
focus of q on the touched parts of P as:

focus(q, P) :=
∑
pi∈P

touch(q, pi) ∗ touch(pi, q)

The focus is a number between 0 and 1 and measures the
distance between the subset q and the partition P : the larger
the number, the more the parts touched by q are touched
entirely by q. This means that well-encapsulated properties
have a high focus value, and cross-cutting properties have a
low focus value.

Note that the notion of focus differs from the notion of
cohesion: focus characterizes a property, while cohesion
characterizes the internals of a part.

Example. The table below lists the size, the spread and
the focus of each property from the Figure 1:

color size spread focus description
red 15 2 .80 main property
blue 11 1 1.0 well-encapsulated
green 9 4 .75 octopus
yellow 3 3 .25 cross-cutting

The table reinforces what we detected in Figure 1. For
example, we characterize Blue as being well-encapsulated
because it has a high focus, and we characterize Yellow
as being cross-cutting because it has a low focus and high
spread.

3 Application of the Distribution Map

In this section we apply the Distribution Map on the re-
sults of two analyses: (1) the distribution of domain con-
cepts over Java packages, and (2) the distribution of code
ownership over folders.

The intent of this section is to evaluate the Distribution
Map as an exploration tool when applied on the result of
automated analysis. The discussion of the actual analyses is
out if the scope of this paper. For an in-depth understanding
of the details we refer the reader to papers already published
by the authors [7, 10].

The case studies exercise different parts of the technique:
in the case of semantic analysis we offer an in-depth view on
two case studies showing how to interpret the measurements
and the visualization, while in the case of code ownership
analysis we show the scalability of the visualization on one
large case study.

3.1 Application: Distribution of Linguis-
tic Concepts in Software Systems

As a first showcase we employ Semantic Clustering on
two case studies to illustrate the application of the Distribu-

tion Map on software clustering. The semantic partition of
a system, as obtained by semantic clustering, does generally
not correspond one-to-one to its structural modularization.
In most systems we find both concepts that correspond to
the structure and concepts that cross-cut it [10].

3.1.1 Semantic Clustering of JEdit

JEdit is a text editor written in Java, the source has a total of
394 classes in 31 packages and uses a vocabulary of 1603
distinct terms, applying semantic clustering results in nine
domain concepts [10]. Figure 2 illustrates how the retrieved
domain concepts are distributed over the package structure:
the parts are the packages, the elements are the classes and
the colors refer to their concepts.

The table below lists for each concept its size, its spread,
its focus and a description of its concept.

color size spread focus concept
red 116 25 .605 (main domain concept)
blue 80 4 .883 BeanShell scripting
cyan 68 8 .712 regular expressions
green 63 13 .475 user interface
pink 26 7 .335 text buffers
dark-green 12 3 .456 TAR and ZIP archives
yellow 10 4 .105 dockable windows
magenta 10 3 .484 XML reader
orange 9 1 .900 bytecode assembler

Looking at the Numbers. The three most well-
encapsulated concepts, that is the clusters with the high-
est focus (Orange, Blue and Cyan), implement clearly
separated concepts such as scripting and regular expres-
sions. The concepts with the lowest focus cross-cut the
system: Yellow implements dockable windows, a custom
GUI-feature, and Pink is about handling text buffers. These
two concepts are good candidates for a closer inspection,
since we might want to refactor them into packages of their
own.

Looking at the Distribution Map. In Figure 2 the distri-
bution of Red, the largest cluster and thus the main domain
concept of the application, shows which parts of the system
belong to the core and which do not. Based on the ordering
of the packages, we can conclude that the two UI concepts,
Green and Yellow, are more closely related to the core than
for example concept Cyan, which implements regular ex-
pressions.

3.1.2 Semantic Clustering of Ant

Ant is a popular development tool for Java. Its source has a
total of 665 classes in 66 packages and uses a vocabulary of
1787 distinct terms. Applying semantic clustering resulted
in nine domain concepts [10]. Figure 3 illustrates how the

3

Figure 2. Distribution Map of linguistic concepts over the packages of JEdit 31 parts, 394 elements
and 9 properties).

retrieved domain concepts are distributed over the package
structure of the system.

color size spread focus concept
red 390 47 .808 (main domain concept)
blue 103 22 .555 string processing
cyan 56 7 .803 version control clients
green 48 10 .421 unit-test support
pink 23 9 .557 network protocols
orange 21 6 .210 XML handling
yellow 15 4 .904 image and graphics
magenta 7 2 1.0 another versioning client
black 3 3 .087 FTP and filesystem

The table above lists for each cluster its size, its spread,
its focus and a description of its concept.

Looking at the Numbers. The four concepts with the
lowest focus value, Blue, Green, Orange and Pink, cross-
cut the package structure and implement main features of a
development tool: string processing, unit-testing and XML
handling. Other features, such as access to version con-
trol systems and network protocols, are well-encapsulated
in concepts with a high focus number.

Looking at the Distribution Map. The order of the pack-
ages is not arbitrary or by name, but reflects the distribution
of the concepts. The packages are ordered using dendro-
gram seriation (see Section 4.2). On the first three rows
there are packages that implement the core functionality of
Ant, the largest concept which is Red, dominates this part of
the figure. Then, on row four we find the octopus concepts
Blue and Green that are used by the core packages in the
third row. And, on the last row there are well-encapsulated

plug-ins such as the Pink parts, which implement network
protocols, or the Cyan and Magenta parts, which implement
plug-ins for different version control systems.

3.2 Application: The Distribution of File
Ownership

As second showcase we apply Distribution Map on a dif-
ferent domain (i.e., code ownership analysis) and we focus
on the scalability of the visualization by studying a large
case study (JBoss). As a further difference to the previous
showcase, the comparison partition of this case study is not
the result of a clustering algorithm, but is the result of at-
taching a property to each artifact. In this case, the artifacts
are the files, and the properties are the owner of the file. To
obtain the owner of a file, we use the heuristic that a file is
owned by the developer that wrote the most lines of code in
that file [7].

JBoss2 is an open source Java application server. The
CVS repository goes back five years beginning in April
2000 and contains about 2700 files summing up over 25000
revisions. The system is written by 133 authors, and 14 of
them have implemented over 80% of the lines. Thus we
select those 14 to be shown on the visualization as colored
properties, and leave the remaining properties grayed out.

Figure 4 shows how the files owned by these authors are
distributed over the file-folder structure: the parts are the
folders that ever existed in the system, the elements are the
file that ever existed in the system and the colors refer to the
owners.

2JBoss CVS-repository, Nov. 2005, http://www.jboss.org.

4

Figure 3. Distribution Map of linguistic concepts over the packages of Ant (66 parts, 665 elements
and 9 properties).

color size spread focus color size spread focus
red 279 61 .416 pink 102 30 .349
cyan 194 23 .796 brown 99 28 .325
blue 187 19 .857 royal 79 21 .692
magenta 145 21 .546 yellow 72 24 .193
orange 130 11 .934 d’green 69 12 .312
purple 120 15 .437 olive 69 21 .738
green 115 35 .282 navy 60 14 .829

The table above lists for each author, its color on the fig-
ure, the number of files he owns, and both the spread and
the focus of its ownership.

Looking at the Distribution Map. There are over 2000
elements and 200 parts, yet the visualization still scales.
Only the top 14 authors are colored, the remaining are left
out in light gray. Folders that have been written by one
author are clearly distinguishable from folders written by
teams. We can identify the focus authors that worked on
separate parts of the system, as well as the cross-cutters that
spread over the system.

Looking at the Numbers. Even if the comparison parti-
tion of this case study results from an approach that funda-
mentally differs from clustering, the two metrics focus and
spread make sense as well. The focus metric for example
covers the whole ranges from 0.1 to 0.9, revealing that there

are all-rounders as well as specialists among the main devel-
opers of the system. The two authors with the lowest focus,
Green and Yellow, cross-cut the system touching about 30
parts, while the author with the next lowest focus, which
is Dark green, touches only 12 folders. On the other end
of the spectrum there are Orange, Blue and Navy as most
focused authors, each of them owns a dozen parts just by
themselves, and author Red, that owns the most files and
touches a third of the system but with a moderate focus.

Variation point. In Figure 5 we show a variation of Fig-
ure 4 where we use the same layout, but we show the num-
ber of commits on the files. We employed the heat scale:
Red denotes more than 50 commits, Yellow more than 20
commits, and Light blue less than 20 commits. The figure
is zoomed out to the size of a thumbnail and contains 2000
elements: yet it is still readable.

4 Discussion

In this section we discuss the applicability of the Dis-
tribution Map, we abstract some recurring patterns we ob-
served from our experiments, and we discuss the most im-
portant design decisions for the visualization.

5

Figure 4. Distribution Map of the file ownership of JBoss during five years (204 parts, 2107 elements
and 15 properties).

6

Figure 5. Distribution Map of the number of
commits in JBoss (204 parts, 2107 elements
and 3 properties).

In the previous sections we exemplified our technique on
two common types of analysis results: clustering and prop-
erties. However, our technique is more generic and it can be
applied to any two partitions of the system: one partition as
a reference, and the other for comparison. The simplest case
for a comparison partition is a boolean partition splitting the
elements into two distinct sets based on the conformity to a
certain property.

Furthermore, having two partitions, the Distribution
Map can be applied in both directions by inverting the refer-
ence with the comparison partition. For example, in the case
of software clustering we can either choose the structure as
reference and compare it to the clustering, or the other way
round, take the clustering as reference and relate it to the
structure as comparison partition.

4.1 Recurring Patterns

Based on our experiments, we develop a vocabulary to
describe the recurring patterns we encountered. The vocab-
ulary covers both the characterization of the parts as com-
pared with the properties they contain and the characteriza-
tion of the properties with respect to the parts they touch.

Characterizing the parts. For the parts we identified the
following patterns:

• Single property. It denotes a part in which all elements
have the same property. Other parts may have elements
with the same property. We identified this case in all
the three case studies. For example, in Figure 4 almost
all the bottom right folders are written entirely by Or-
ange.

• Unique property. It denotes a part in which its ele-
ments have a property that no other part has in the sys-
tem. In Figure 2, the third package of the third row has
five classes with properties unique in the system.

• Dominant property. It denotes a part in which nearly
all the elements have a certain property. In Figure 3,
Red is characterized as having a dominant property.

• Property Assembler. It denotes a part that contains el-
ements showing most of the properties present in the
system. In Figure 2, the fifth package of the fourth row
has the most properties of the system, and in Figure 4
the fourth folder from the right on the third row (named
ejb) was touched by most of the developers.

Characterizing the properties. For the properties we
identified the following patterns:

• Well-encapsulated. If a property corresponds to the
structure, we call this a well-encapsulated concept.
Such a concept is spread over one or multiple modules,
and includes almost all artifacts within those modules.
In Figure 3 Yellow is well encapsulated.

• Cross-Cutting. If a property is spread over several
parts but only touches them slightly, we call cross-
cutting. In Figure 4 the Yellow author is changing bits
and pieces everywhere, and in Figure 2 the Pink con-
cept cross-cuts several packages.

• Black Sheep. If there is a property that cross-cuts the
system, but it touches very few elements, we call it a
black sheep. In Figure 3 Black is such a black sheep.

• Octopus. If a property is well encapsulated in a few
parts, but also spreads across other parts, as a cross-
cutter does, we call this an octopus. In Figure 3 Green
covers the JUnit plugin implementation package and
also spreads over several other packages.

4.2 Visual Design Decisions

The visualization we propose looks simple. The sim-
plicity of the visualization is an important characteristic be-
cause we want it to be useful for software engineers with-
out much training in visualization [12]. This visualization

7

is simple to draw and then to reproduce, simple to inter-
pret and can convey a reasonable amount of information in
a limited amount of space.

On the arrangement of the part-boxes. The order of the
parts is crucial, since the layout determines whether distri-
bution patterns are easily recognizable or not.

The location of the parts given by the structure is not
necessarily the best choice: using an arbitrary order, as for
example by name or directory structure, most patterns get
lost as they are scattered too sparsely over the structure.
Therefore, we prefer an ordering where parts with similar
properties are placed near each other.

To achieve this ordering we use dendrogram seriation,
a clustering technique that orders items such that similar
items are placed near each other according to a similarity
metric [18]. In our case, we define the similarity between
two parts as the cosine between their feature vectors: two
parts are more similar if the ratios between their respective
properties match.

The feature vector v of a part p lists for each property qi

the number of touched elements in that part. In Figure 1,
part 3 has three red, no blue, one green and one yellow ele-
ment, thus its feature vector is v = (3, 0, 1, 1). This vector
is more similar to part 2 (v = (0, 0, 1, 1)) and with part
4 (v = (12, 0, 1, 1)) which are therefore placed next to it,
and it is not similar to part 5 (v = (0, 10, 0, 0)) which is
therefore placed in the opposite corner.

This layout strategy enables a spatial interpretation of the
visualization: quantifications such as far apart or near each
other become a meaningful interpretation, relational infor-
mation is expressed in spatial terms. This makes the Distri-
bution Map a real map. The location of both the parts and
the properties reflect their relation among and between each
other. For example, even if two related properties never ap-
pear together in the same part, the layout algorithm places
them nonetheless near each other on the map, provided that
both co-occur somewhere with other properties.

On the shape of part-boxes. We experimented with sev-
eral shapes, but in the end we designed an algorithm to pro-
duce rectangles with dimensions close to the ratio of the
golden mean [23].

On the arrangement of the element-boxes. Inside the
packages we group the elements by properties, and use in
each package the same order. That is, for example on Fig-
ure 5, the red elements come first, then the yellow ones, and
then the blue ones. This layout has two advantages: it is
easy to tell the number of elements with the same property,
and as the properties are always placed in the same order,
one can compare different parts easier.

On the choice of colors. The choice of colors affects the
readability of the Distribution Map as well. We need to pay
attention to the characteristic of human vision to make sure
that the visualization is easy to read and to avoid wrong
conclusions. First, scattered squares are easier to spot if
they are shown in distinct colors than if they are shown in
colors similar to the well-encapsulated colors. Therefore
light colors are a good choice for cross-cutting concerns and
dark colors a good choice for well encapsulated concepts.
Second, a human reader will draw conclusions concerning
the similarity between concepts based on the similarity of
the colors that denote these concepts. For example, green
and dark green suggest that two concepts are related, while
green and red suggest that the same two concepts are unre-
lated. Therefore, it is recommended to take domain specific
similarities into account when choosing the colors. For ex-
ample, in the case of software clustering, more similar clus-
ters have more similar colors and vice versa.

On the limitation of colors. The study of human percep-
tion shows that there are only eight colors which are re-
called by humans with more than 75% probability. This
means that we can not discriminate more than a dozen dif-
ferent colors at once [25], which puts an upper limit on the
number of properties being displayed on the Distribution
Map. Sometimes it is possible to work around this limi-
tation using the Pareto principle, which is the well known
rule-of-thumb that for many phenomena, 80% of the conse-
quences stem from 20% of the causes. See for example the
case study in Section 3.2, where 80% of the systems code is
written by only 14 out of 133 authors.

5 Related Work

Graphical representations of software have long been ac-
cepted as comprehension aids. Lanza and Ducasse present
polymetrics views, simple visualizations enriched by met-
rics [4, 12]. Polymetric views are powerful since the sim-
ple visualizations are scalable and semantics is added via
the combination of metrics. The difference with the cur-
rent work is that we focus on analyzing nominal properties,
while polymetric views focus on analyzing metrics.

SV3D, developed by Marcus et al, presents lines of code
as dots and each dot can be associated with different infor-
mation such as the nesting level or the control flow [14].
For quantitative information, such as the occurrence of a
phenomena, 3D is used. Their approach is close to ours.
however in their case the parts and the elements are ordered
by file name and source line, while in our case we put them
in a more comprehensive order such that pattern become
more visible.

Microprints are a dot-based representation of method
bodies [19]. Microprints are similar to Seesoft [6] visual-

8

ization and follow the source code to conserve familiarity.
Similarly Control Structure Diagrams [9] are also based on
the layout of the code since they are intended to support the
programmers to understand the flow and structure of meth-
ods. These approaches are different from ours since they fo-
cuses bringing more information at the code structure level.

Ducasse, Lanza and Ponisio butterfly’s visualization goal
is to characterize packages in a fine grained manner by pro-
viding a compact view based on seven different measure-
ments [5]. Sharble and Cohen introduce a compass-type
plot for eight metrics [20]. Chuah and Eick visualize project
information through glyphs [3]. They use glyphs for view-
ing project management data (i.e., evolution aspects, pro-
gramming languages used, and errors found in a software
component). The work presented in this paper is different
since we focused on the concept of spread and containment
i.e., how a given phenomenon distributes over a system and
its constituents.

Using measurements is another widely spread approach
to assess unknown systems. Hautus introduced Pasta, a tool
to analyze the structure of Java programs and a metric to de-
termine the quality of the package architecture [8]. Allen et
al, defined information theory-based – as opposed to count-
ing – coupling and cohesion metrics for modules [1] that are
represented as graphs. They define module and intramod-
ule in terms of the subgraph’s information and cohesion in
terms of intra-module coupling.

Marinescu defined detection strategies as metric-based
expressions to detect design flaws [15]. Our technique can
be used to display the design flaws over the system.

Another related area is the one of clustering. Tzerpos and
Hold compare the results of software clustering using a dis-
tance measurement [24]. They present the MoJo-distance,
a distance metric that compares entire partitions and tells
only how close one partition is to another. Their approach
is much more coarse than ours, as we zoom into the details
and measure how the specific parts of the comparison par-
tition are spread over the reference partition. Tonella intro-
duces a distance metric as well, which focuses on the cost of
restructuring the system from [22]. Both approaches define
the distance as the minimal number of elementary opera-
tion required to transform the first partition into the second
partition.

Similar to our layout strategy, Merkl used self organiz-
ing maps (SOM) to arrange software project on a 2D plane
based on some distance metric [16]. Self organizing maps
are an artificial intelligence technique based on neutral net-
works: they are good at producing 2D layouts of high-
dimensional data. Our technique uses a similar layout strat-
egy but with another focus, we do not aim at the similarity
between parts but at revealing pattern in the distribution of
properties.

6 Conclusion

Analyzing a system means decomposing it into signifi-
cant parts. Different analyses will decompose a system in
different ways. Examples of such analyses are clustering or
grouping, where the results of such methods are groups of
elements from the system that share common properties. In
this paper, we address the problem of reasoning about these
results.

We develop the concept of Distribution Map and propose
a visualization and two measurements to analyze the distri-
bution of properties over the reference partition. Based on
our practice with the Distribution Map technique we pro-
vide a vocabulary to characterize reoccurring pattern of both
partition and properties. This vocabulary, as well as the
development of the technique in general, is distilled from
practical experience with the results of automated software
analyses.

We paid special attention to presenting the decisions we
took when designing the visualization. Even if it looks sim-
ple, there are a couple of important attributes of it, in par-
ticular the layout of the part-boxes and the choice of col-
ors. Due to its layout the Distribution Map is indeed a map
showing relational information in a spatial space: distance
quantifications such as far away or near each other do have
a meaningful interpretation. Related parts and properties
are placed near each other, while unrelated parts or proper-
ties are placed far apart.

To validate our technique, we apply it on the results
of two distinct analyses (semantic analysis and ownership
analysis) to exercise different facets of it: readability and
scalability of the visualization, and correlation between the
visualization and the proposed measurements. We show
that the Distribution Map is a generic tool and applicable
on a broad range of software analyses.

The technique provides a quick look at the distribution of
properties within a system, and it uncovers complex infor-
mation in an intuitive way. The Distribution Map is meant
to fill the gap between the raw results obtained by automated
algorithms and the following analysis carried out by a hu-
man expert.

The Distribution Map is an eclectic approach that com-
bines an intuitive visualization and straightforward metrics
into a generic and easy-to-use tool. It is this combination
that makes the Distribution Map a good starting point to rea-
son about the results of automated algorithms, and should as
such belong to any reverse engineering toolkit.

In the future, we plan to continue to apply the Distribu-
tion Map in the context of different analyses. Furthermore,
we plan to explore the effect of other layouts strategies on
the spatial space of the visualization.

9

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science Foundation
for the project Recast: Evolution of Object-Oriented Appli-
cations (SNF 2000-061655.00/1) and french ANR for the
Cook: rearchitecturing object-oriented applications.

References

[1] E. Allen and T. Khoshgoftaar. Measuring coupling and
cohesion of software modules: An information theory ap-
proach. In Seventh International Software Metrics Sympo-
sium, 2001.

[2] N. Anquetil and T. Lethbridge. Experiments with Clustering
as a Software Remodularization Method. In Proceedings of
WCRE ’99 (6th Working Conference on Reverse Engineer-
ing), pages 235–255, 150 Louis Pasteur, University of Ot-
tawa, Ottawa, Canada, 1999.

[3] M. C. Chuah and S. G. Eick. Information rich glyphs for
software management data. IEEE Computer Graphics and
Applications, 18(4):24–29, July 1998.

[4] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse
engineering platform combining metrics and program visu-
alization. In F. Balmas, M. Blaha, and S. Rugaber, edi-
tors, Proceedings WCRE ’99 (6th Working Conference on
Reverse Engineering). IEEE, Oct. 1999.

[5] S. Ducasse, M. Lanza, and L. Ponisio. Butterflies: A vi-
sual approach to characterize packages. In Proceedings of
the 11th IEEE International Software Metrics Symposium
(METRICS’05). IEEE Computer Society, 2005.

[6] S. G. Eick, J. L. Steffen, and S. Eric E., Jr. SeeSoft—a tool
for visualizing line oriented software statistics. IEEE Trans-
actions on Software Engineering, 18(11):957–968, Nov.
1992.

[7] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse. How de-
velopers drive software evolution. In Proceedings of Inter-
national Workshop on Principles of Software Evolution (IW-
PSE 2005), pages 113–122. IEEE Computer Society Press,
2005.

[8] E. Hautus. Inmproving Java software through package struc-
ture analysis. In International Conference Software Engi-
neering and Applications, 2002.

[9] D. Hendrix, J. H. Cross II, and S. Maghsoodloo. The Ef-
fectiveness of Control Structure Diagrams in Source Code
Comprehension Activities. IEEE Transactions on Software
Engineering, 28(5):463–477, May 2002.

[10] A. Kuhn, S. Ducasse, and T. Gı̂rba. Enriching reverse engi-
neering with semantic clustering. In Proceedings of Working
Conference on Reverse Engineering (WCRE 2005), pages
113–122, Los Alamitos CA, Nov. 2005. IEEE Computer So-
ciety Press.

[11] M. Lanza. Codecrawler — lessons learned in building a
software visualization tool. In Proceedings of CSMR 2003,
pages 409–418. IEEE Press, 2003.

[12] M. Lanza and S. Ducasse. Polymetric views—a lightweight
visual approach to reverse engineering. IEEE Transactions
on Software Engineering, 29(9):782–795, Sept. 2003.

[13] J. I. Maletic and A. Marcus. Supporting program compre-
hension using semantic and structural information. In Pro-
ceedings of the 23rd International Conference on Software
Engineering (ICSE 2001), pages 103–112, May 2001.

[14] M. Marchesi and G. Succi, editors. Extreme Programming
and Agile Processes in Software Engineering. Springer,
2003.

[15] R. Marinescu. Detection strategies: Metrics-based rules for
detecting design flaws. In 20th IEEE International Confer-
ence on Software Maintenance (ICSM’04), pages 350–359,
Los Alamitos CA, 2004. IEEE Computer Society Press.

[16] D. Merkl. Content-based software classification by self-
organization. In Proceddings of International Conference on
Neural Networks (ICNN’95), volume II, pages 1086–1091,
1995.

[17] T. Miceli, H. A. Sahraoui, and R. Godin. A metric based
technique for design flaws detection and correction. In
Proceedings IEEE Automated Software Engineering Confer-
ence (ASE), 1999.

[18] S. Morris, B. Asnake, and G. Yen. Dendrogram seri-
ation using simulated annealing. Information Visualization,
2(2):95–104, 2003.

[19] R. Robbes, S. Ducasse, and M. Lanza. Microprints: A pixel-
based semantically rich visualization of methods. In Pro-
ceedings of ESUG 2005 (13th International Smalltalk Con-
ference), pages 131–157, 2005.

[20] R. C. Sharble and S. S. Cohen. The object-oriented brewery:
a comparison of two object-oriented development methods.
SIGSOFT Softw. Eng. Notes, 18(2):60–73, 1993.

[21] M.-A. D. Storey and H. A. Müller. Manipulating and Docu-
menting Software Structures using SHriMP Views. In Pro-
ceedings of ICSM ’95 (International Conference on Soft-
ware Maintenance), pages 275–284. IEEE Computer Soci-
ety Press, 1995.

[22] P. Tonella. Concept Analysis for Module Restructuring.
IEEE Transactions on Software Engineering, 27(4):351–
363, Apr. 2001.

[23] E. R. Tufte. The Visual Display of Quantitative Information.
Graphics Press, 2nd edition, 2001.

[24] V. Tzerpos and R. Holt. MoJo: A distance metric for soft-
ware clusterings. In Proceedings Working Conference on
Reverse Engineering (WCRE 1999), pages 187–195, Los
Alamitos CA, 1999. IEEE Computer Society Press.

[25] C. Ware. Information Visualization. Morgan Kaufmann,
2000.

10

