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Looking Back at Image Formation

Light is a stream of photons
• which move in straight lines
• propagating from lights
• we ignore wave nature of light

Some rays strike the eye
• (passing through image plane)
• these rays form the image

Light interacts with surfaces
• objects absorb some light
• reflect some of the light
• may bounce off many objects

Incident light

Some light is absorbed

Reflected light
Some reaches eye

Simulating Rays of Light in the World

We can render the scene by simulating physical light transport
• we hope that this produces more realistic results

Simulation would look like this:
• light source shoots rays in all directions
• rays bounce when they hit surfaces
• can ignore rays when

– they fly off into empty space
– almost all of their energy is absorbed

• record rays that strike the image plane
• we call this kind of simulation forward ray tracing

But there’s a big problem with this
• it can be extremely slow
• only a tiny fraction of light rays actually strike the eye
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(Backward) Ray Tracing

Fortunately, there’s a simple solution to this problem
• we only care about light rays that eventually strike the eye
• so shoot rays from the eye out into the world
• just reverse arrows on the ray diagram

Traditionally, most ray-based renderers take this approach
• so we usually drop the “backward” from the name
• but keep in mind there are alternatives that don’t

Ray Casting: Simple Ray-Based Rendering

We can formulate a very simple rendering algorithm
• we’ll ignore all this business about rays bouncing around
• just shoot rays into world, see what they strike, and shade

What we need to resolve
• how to represent rays & generate rays through screen
• how to compute intersections with objects in the world

Ray Casting Algorithm:

for all pixels (x,y)
compute ray from eye through (x,y)
compute intersections with all surfaces
find surface with closest intersection

shade this surface point (standard illumination equation)
write this color into pixel (x,y)
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Representing Light Rays

Geometrically, a ray is just a starting point plus a direction
• the set of all points described by

• implementation tip:
make sure d is unit vector

Each ray will return some amount of light from the world
• for implementation purposes, an RGB color

where ( )t t t= + > 0x p d

(the origin of the ray)
p

(direction of ray)
d

Computing Ray–Surface Intersections

We start with an equation of our ray

General idea: write equation for point on both ray & surface
• for an implicit surface

– substitute ray equation

• for a parametric surface

– find location where distance between ray and surface is 0

• in general, both approaches can require expensive root finding

( )t t= +x p d

( )f = 0x

( )f t+ = 0p d

( , )h u v=x

( , ) ( )h u v t− + =p d 0
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Ray–Plane Intersection

For specific surfaces, can derive more efficient methods

We start with the equation for the plane

Then substitute the ray equation into it and solve for t

To find the actual intersection point of the ray with the plane
• substitute the computed value of t back into the ray equation
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Ray–Polygon Intersection

First, find the intersection of the ray and the polygon’s plane
• we just need to determine whether this point is in the polygon
• there are many approaches to point-in-polygon testing

For efficiency, typically project to 2-D for plane computations
• there are several ways to do this, but one of the cheapest is

– find component of plane normal (A,B,C) with largest magnitude
– drop corresponding coordinate (i.e., |A| is largest = drop x)
– this works because |A| is proportional to projection on yz plane
– in other words, the polygon is mostly facing the yz plane

• our goal in these computations: minimize number of operations
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Point-in-Polygon Test for Convex Polygons

For general convex polygons, we can use half-space tests
• construct lines through each edge of the polygon

– just as with Cohen–Sutherland clipping
• must make sure that normals are consistently oriented

– either they all point in or they all point out
• the point (x,y) is in the polygon if 

Note that this also works in 3-D
• construct planes through each edge
• perpendicular to polygon plane
• point must lie on inside of all of them

all have same signi i ia x b y c+ +

Point-in-Triangle Tests

With triangles, can make good use of barycentric coordinates
• all points in triangle satisfy equation

• these coefficients are triangle area ratios
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Point-in-Triangle Test

We can compute the 2-D area of a triangle as

• note: this is the signed area of the triangle
– it’s positive if points are in counter-clockwise order
– and negative if they’re in clockwise order

So, to figure out if a given point is in the triangle
• compute it’s three barycentric coordinates
• point is inside the triangle exactly when

• note that this can also be made to work directly in 3-D
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Ray–Sphere Intersection

Consider a sphere centered at the origin

We substitute the ray equation

Which gives us a quadratic equation in t
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Ray–Sphere Intersection

We can directly solve this quadratic equation

For the two intersection locations

• the smaller (non-negative) one is the closest ray intersection
• a negative discriminant means that the ray missed the sphere

t1

t2
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Ray–Quadric Intersection

Implicit surfaces of the form:

Substituting the ray equation:

Gives us a quadratic polynomial in t
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The Geometry of Screen Space

cameraM

perspM

z z

world screen persp camera→ =M M M

World Space

Screen Space

Generating Eye Rays

Need to construct ray from eye through each pixel

Start with screen space coordinates

Transform them to world space

De-homogenize pw and qw

Origin and direction of ray are

world screen persp camera→ =M M M

World Space
Screen Space

( )screen world world screen
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screen world

screen world
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Pseudo-Code Outline of a Minimal Ray Caster

void raycast()
for all pixels (x,y)

image(x,y) = trace(compute_eye_ray(x,y))

rgbColor trace(ray r)
for all surfaces s

t = compute_intersection(r, s)
closest_t = MIN(closest_t, t)

if( hit_an_object )
return shade(s, r, t)

else
return background_color

rgbColor shade(surface s, ray r, double t)
point x = r(t)
// evaluate (Phong) illumination equation
return color

So Where Has This Gotten Us?

We’re using ray intersection tests to resolve visibility
• instead of z-buffer, Painter’s algorithm, …

• still using simple Phong illumination model
• results will look like OpenGL, only much slower

The real power is in the flexibility of tracing rays
• we’ll see that we can simulate many phenomena

– shadows, reflections, refractions, smoke, …
• all by tracing more and more rays through the world


