
Object-Oriented
Design Heuristics

Alexandre Bergel
abergel@dcc.uchile.cl

09/10/2010

Thursday 9 September 2010

mailto:abergel@dcc.uchile.cl
mailto:abergel@dcc.uchile.cl
mailto:abergel@dcc.uchile.cl
mailto:abergel@dcc.uchile.cl

Source

 Book from Arthur J. Riel

 Addison-Wesley Professional (May 10, 1996)

 978-0201633856

 Java 1.6

 Pharo 1.0

Thursday 9 September 2010

Goal of this lecture

 Provide useful and simple programming “rules”

 Insight into object-oriented design improvement

 Intended to

 Increase the readability and the quality of your code

 Facilitate software maintenance

Thursday 9 September 2010

Goal of this lecture

 This lecture can be considered as the continuation of
CC3002

 This lecture provides good hints to not make people
throw stones at you when they will look at your code

Thursday 9 September 2010

Class aClasses and Objects

Thursday 9 September 2010

Classes and Objects

 The building blocks of the object-oriented paradigm

 An object will always have four important facets

 its own identify (e.g., its address in memory)

 the attributes of its class (usually static) and values for those
attributes (usually dynamic)

 the behavior of its class (the implementor’s view)

 the published interface (the user’s view)

Thursday 9 September 2010

All data should be hidden within its class

Thursday 9 September 2010

public class DefaultCaret extends Rectangle implements Caret,
FocusListener, MouseListener, MouseMotionListener {
 ...
 int updatePolicy = UPDATE_WHEN_ON_EDT;
 boolean visible;
 boolean active;
 int dot;
 int mark;
 Object selectionTag;
 boolean selectionVisible;
 Timer flasher;
 Point magicCaretPosition;
 transient Position.Bias dotBias;
 transient Position.Bias markBias;
 boolean dotLTR;
 boolean markLTR;
 transient Handler handler = new Handler();
 transient private int[] flagXPoints = new int[3];
 transient private int[] flagYPoints = new int[3];
 private transient NavigationFilter.FilterBypass filterBypass;
 static private transient Action selectWord = null;
 static private transient Action selectLine = null;
 ...
 }

Thursday 9 September 2010

Piece of code extracted from the JDK 1.6. The class DefaultCaret belongs to the package
javax.swing.text. It contains 15 public attributes

DefaultCaret

Handler

Class blueprint [Lanza 2003]
Thursday 9 September 2010

We will make heavy use of visualization along the semester. Visualizing software is a very handy
and intuitive mechanism for getting a quantitative and qualitative impression about a system.

Class blueprint is a visualization that shows class internal. A class is represented as a box. Each box
is composed of 5 part. Each part correspond to some particular elements that composes the class.
From left to right: constructors, public methods, private methods, variable accessors and mutators
(get and set methods), attributes.

Blue edges represent methods invocations. Cyan edges represent variable accesses.

DefaultCaret

Handler

Access to public variables

Class blueprint [Lanza 2003]
Thursday 9 September 2010

The class DefaultCaret contains 15 public attributes. These attributes are accessed by other classes.
Handler for example. This shows a poor programming style. Never make field public or package
visible.

One may argue that for optimization reason, it may be preferable to have public variables instead of
accessors. It was true some time ago when virtual machines and compiler were not that
sophisticated. Today, making variable public is hardly considered as an efficient way to optimize
your program.

How to hide data?

 Visibility of variables should be set to private or
protected

 Define accessors and mutators when necessary

Thursday 9 September 2010

Minimize the number of messages in the protocol of a class

Thursday 9 September 2010

System complexity [Lanza 2003]

number of
methods

number of
variables

number of
lines of code

Thursday 9 September 2010

We can see another visualization, called System complexity. This visualization is about class
hierarchies. Each class is represented as a box, shaped with three metrics: number of variables,
number of methods and number of lines of code.

The hierarchy represented here is PLAF, the pluggable look and feel of Java. You can notice the
irregularity of the hierarchies, which probably hide some missing functionalities.

System complexity [Lanza 2003]

javax.swing.plaf.basic.BasicTreeUI
1636 lines of code

 49 variables
131 methods

Thursday 9 September 2010

JComponent
 1888 LOC

 169 methods
 73 attributes

JTable
 2691 LOC

 185 methods
 44 attributes

Thursday 9 September 2010

We can merely observe the two biggest classes of Swing: JComponent and JTable.
However, we should not blame their developers. The root of a graphical user interface framework is
inherently complex and difficult to implement. To convince yourself, have a look at the root class of
any serious GUI framework.

Thursday 9 September 2010

Thursday 9 September 2010

A class should capture one and only one key abstraction

Thursday 9 September 2010

Example in ArgoUML

Thursday 9 September 2010

We can observe a class which has 2 public methods and many private methods. This class is quite
particular in the sense that its private methods are divided into two distinct groups. Each group of
private method is used by one public method.

This is an example of a class that offers two distinct functionalities.

ObjecAction-Oriented vs Object-Oriented

Thursday 9 September 2010

The god class problem

 A “god” class performs most of the work, leaving
minor details to a collection of trivial classes

Thursday 9 September 2010

Do not create god classes/objects in your system.
Be very suspicious of a class whose name contains

Driver, Manager, System, Subsystem, Utility

Thursday 9 September 2010

 * @version 1.158, 03/13/06
 * @since JDK1.0
 */
public final class System {

 /* First thing---register the natives */
 private static native void registerNatives();
 static {
 registerNatives();
 }

 /** Don't let anyone instantiate this class */
 private System() {
 }

 /**
 * The "standard" input stream. This stream is already
 * open and ready to supply input data. Typically this stream
 * corresponds to keyboard input or another input source specified by

Thursday 9 September 2010

java.lang.System is the perfect example. It offers methods ranging from writing on the standard
streams to copying arrays and managing security.

Thursday 9 September 2010

Note that the heuristic given before is also valid for packages. Consider the package java.util.
This package contains 229 classes, most of them are collections. But it also contains the classes
Data, JapaneseImperialCalendar, Locale, Random, XMLUtils and many more unrelated classes.

Thursday 9 September 2010

In the Pharo and Squeak Smalltalk languages, the class SystemDictionary is another example of a
god class.
SystemDictionary enables one to control the garbage collectors, streaming objects, accessing
classes, querying the systems. It has little to do with the notion of dictionary!

In application that consist of an object-oriented model interaction
with a user interface, the model should never be dependent on the

interface.

The interface should be dependent on the model

Thursday 9 September 2010

In Mozilla:
dom/base/nsDOMWindowUtils.cpp

/* -*- Mode: C++; tab-width: 2; indent-
tabs-mode: nil; c-basic-offset: 2 -*- */
/* ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
...
#include "nsIDOMHTMLCanvasElement.h"
#include "nsICanvasElement.h"
#include "gfxContext.h"
#include "gfxImageSurface.h"
...

Thursday 9 September 2010

Have a look at the definition of the class nsDOMWindowUtils, which is central to the DOM
component of Mozilla.
This class has references to some graphical packages, which goes against the idea of having a clean
and modular DOM.

In Mozilla:
dom/base/nsDOMWindowUtils.cpp

/* -*- Mode: C++; tab-width: 2; indent-
tabs-mode: nil; c-basic-offset: 2 -*- */
/* ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
...
#include "nsIDOMHTMLCanvasElement.h"
#include "nsICanvasElement.h"
#include "gfxContext.h"
#include "gfxImageSurface.h"
...

belong to
the core

belong to
gfx package

Thursday 9 September 2010

Thursday 9 September 2010

Another example of the kernel of Pharo. The class Object contains a reference to the UIManager,
which belongs to the package ToolBuilder. The method #inform: is clearly wrongly packaged

About encapsulation

Heat flow
regulator

Desired Temp

Actual Temp

Occupancyanyone_in_room?()

desired_temp?()

actual_temp?()

Home heating system without encapsulation

Thursday 9 September 2010

Example of poor system intelligence distribution

About encapsulation

Heat flow
regulator

Desired Temp

Actual Temp

Occupancyis_occupied()

get_desired_temp()
get_actual_temp?()

Home heating system with encapsulation

Room

Thursday 9 September 2010

About encapsulation

Heat flow
regulator

Desired Temp

Actual Temp

Occupancy

do_you_need_heat?()

Home heating system with distributed intelligence

Room

Thursday 9 September 2010

Do not turn an operation into a class. Be suspicious of any class
whose name is a verb or is derived from a verb.

Thursday 9 September 2010

Classes which should be operations

call_buffer

DigitCollector

connector

DialToneInitiator

Thursday 9 September 2010

A better design for telephone services

call_buffer
connector

TelephoneCall

Thursday 9 September 2010

RelatioThe relationship between classes
and objects

Thursday 9 September 2010

Minimize the number of classes with which another class
collaborates

Thursday 9 September 2010

public class JTable extends JComponent implements TableModelListener,
Scrollable,
 TableColumnModelListener, ListSelectionListener, CellEditorListener,
 Accessible, RowSorterListener
{
 ...
 /** The <code>TableModel</code> of the table. */
 protected TableModel dataModel;

 /** The <code>TableColumnModel</code> of the table. */
 protected TableColumnModel columnModel;

 /** The <code>ListSelectionModel</code> of the table, used to keep
track of row selections. */
 protected ListSelectionModel selectionModel;

 /** The <code>TableHeader</code> working with the table. */
 protected JTableHeader tableHeader;
 ...

Thursday 9 September 2010

public class JTable extends JComponent implements TableModelListener,
Scrollable,
 TableColumnModelListener, ListSelectionListener, CellEditorListener,
 Accessible, RowSorterListener
{
 ...
 /** The <code>TableModel</code> of the table. */
 protected TableModel dataModel;

 /** The <code>TableColumnModel</code> of the table. */
 protected TableColumnModel columnModel;

 /** The <code>ListSelectionModel</code> of the table, used to keep
track of row selections. */
 protected ListSelectionModel selectionModel;

 /** The <code>TableHeader</code> working with the table. */
 protected JTableHeader tableHeader;
 ...

JTable depends on more
than 50 different classes

Thursday 9 September 2010

InheriThe inheritance relationship

Thursday 9 September 2010

Inheritance

 The Inheritance relationship is one of the most
important relationships within object-orientation

 It is best used to capture the a-kind-of relationship
between classes

Thursday 9 September 2010

Component

Container Button

FrameWindow

Example of the core of java.awt

Thursday 9 September 2010

JButton

AbstractButton
itemListener

changeEvent, ...

JComponent
accessibleContext

listenerList

...

accessibleContext
listenerList

JComponent

...

itemListener
changeEvent
...

AbstractButton

...
JButton

Thursday 9 September 2010

@OOPSLA’89

Thursday 9 September 2010

“In Figure 2 an example of a class is given. Class Window is
described as a subclass of class Stream. ...”

Thursday 9 September 2010

“In Figure 2 an example of a class is given. Class Window is
described as a subclass of class Stream. ...”

Do you think a window can be considered as a stream?

Thursday 9 September 2010

Semaphore

LinkedList

Collection

...

Process

Link

Probably a semaphore can be seen as a collection, but is it
worth subclassing LinkedList in that case?

Thursday 9 September 2010

All abstract classes must be base classes

Thursday 9 September 2010

All abstract classes must be base classes

Since an abstract class cannot be instantiated, does it make sense
to have an abstract class leaf?

Thursday 9 September 2010

Mistaking objects for derived classes

CarManufacturer

GeneralMotors Ford Chrysler

Thursday 9 September 2010

Consider the inheritance hierarchy given on this slide. At first view the inheritance hierarchy looks
correct. GeneralMotors, Ford and Chrysler are all special types of car manufacturers. On second
thought, is GeneralMotors really a special type of car manufacturer? Or is it an example of a car
manufacturer? This is a classic error and it causes proliferation of classes.

how many GeneralMotors objects are there? Ford objects? Chrysler objects? The answer for all three
classes if one. In this case they should have been objects.

Keep in mind that not all derived classes that have only one instance in your system are
manifestations of this error, but many will be.

It should be illegal for a derived class to override a base class
method with a NOP method, that is, a method that does nothing

Thursday 9 September 2010

Dog

DogNoWag

wag_tail() {...}

wag_tail() { /* empty */}

What is wrong with this design?

Thursday 9 September 2010

Consider a class Dog. The behaviors that all Dogs know how to carry out is bark, chase_cats and
wag_tail. Consider that we want to have a dog that does not wag its tail, let’s say DogNoWag. This
new class is exactly like a Dog except it doesn’t know how to wag its tail. A solution could be to
have DogNoWag inherit from Dog and override the wag_tail method with an empty method (NOP).

Dog

DogNoWag

wag_tail() {...}

wag_tail() { /* empty */}

 This design does not capture a logical relationship

 It implies the following statements:

 All dogs know how to wag their tails

 DogNoWag is a special type of dog

 DogNoWag does not know how to wag its tail

 The rules of classic logic are not being obeyed

Thursday 9 September 2010

AllDogs

DogNoWag wag_tail() {...}Dog

bark() {...}
chase_cats() {...}

Dogs and their tails...

Thursday 9 September 2010

Some other heuristics

Thursday 9 September 2010

When building an inheritance hierarchy, try to construct reusable
frameworks rather than reusable components

Thursday 9 September 2010

Users of a class must be dependent on its public interface, but a
class should not be dependent on its users

Thursday 9 September 2010

Minimize the number of message sends between a class and its
collaborator

Thursday 9 September 2010

A class must know what it contains, but it should not know who
contains it

Thursday 9 September 2010

All base classes should be abstract classes

Thursday 9 September 2010

All base classes should be abstract classes

Not everybody will agree with this one (including me),
but this heuristic deserves some attention

Thursday 9 September 2010

