
A Testing Framework
Alexandre Bergel

abergel@dcc.uchile.cl
12/10/2010

Tuesday 12 October 2010

mailto:abergel@dcc.uchile.cl
mailto:abergel@dcc.uchile.cl

A Testing Framework

 Source

 JUnit 4.0 documentation (from www.junit.org)

 PHPUnit (http://www.phpunit.de)

Tuesday 12 October 2010

http://www.junit.org/
http://www.junit.org/
http://www.phpunit.de
http://www.phpunit.de

“Software testing used to be an activity for lesser
programmers. It was tedious, it was repetitive, it was
everything a respectable programmer would hate. It
took two guys, a couple of classes and a nice xUnit
naming scheme to turn the game around. Now, you
know a respectable programmer by the tests he
writes.”

- Tudor Doru Girba

Tuesday 12 October 2010

Roadmap

1.JUnit - a testing framework

1.testing practices

2.frameworks vs. libraries

3.JUnit 3.x vs. JUnit 4.x (annotations)

2.Money and MoneyBag - a testing case study

3.Double dispatch - how to add different types of
objects

Tuesday 12 October 2010

Roadmap

1.Junit - a testing framework

1.testing practices

2.frameworks vs. libraries

3.JUnit 3.x vs. JUnit 4.x (annotations)

2.Money and MoneyBag - a testing case study

3.Double dispatch - how to add different types of
objects

Tuesday 12 October 2010

THE Problem

 “Testing is not closely integrated with development.
This prevents you from measuring the progress of
development — you can't tell when something starts
working or when something stops working.”

 Interactive testing is tedious and seldom exhaustive.

 Automated tests are better, but,

 how to introduce tests interactively?

 how to organize suites of tests?

Tuesday 12 October 2010

3 Testing Practices

 1 - During Development

 When you need to add new functionality, write the tests first

 You will be done when the test runs

 2 - When you need to redesign your software to

 add new features, refactor in small steps, and run the (regression)
tests after each step

 Fix what’s broken before proceeding.

Tuesday 12 October 2010

Testing Practices

 3 - During Debugging

 When someone discovers a defect in your code, first write a test
that demonstrates the defect

 Then debug until the test succeeds

 “Whenever you are tempted to type something into
a print statement or a debugger expression, write it as
a test instead.” -- Martin Fowler

Tuesday 12 October 2010

JUnit - A Testing Framework

 JUnit is a simple framework to write repeatable tests.
It is an instance of the xUnit architecture for unit testing
frameworks written by Kent Beck and Erich Gamma

 For documentation of how to use JUnit http://
junit.sourceforge.net/doc/cookbook/cookbook.htm

Tuesday 12 October 2010

http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://junit.sourceforge.net/doc/cookbook/cookbook.htm

Frameworks vs. Libraries

 In traditional application architectures, user code
makes use of library functionality in the form of
procedures or classes:

 A framework reverses the usual relationship between
generic and application code. Frameworks provide
both generic functionality and application architecture:

User application
main()

Library classes

User classesFramework
main()

Tuesday 12 October 2010

Frameworks vs. Libraries

Essentially, a framework says: “Don’t call me — I’ll call you.”

Tuesday 12 October 2010

JUnit 3.8...

 JUnit is a simple “testing framework” that provides:

 classes for writing Test Cases and Test Suites

 methods for setting up and cleaning up test data (“fixtures”)

 methods for making assertions

 textual and graphical tools for running tests

Tuesday 12 October 2010

JUnit 3.8

 JUnit distinguishes between failures and errors:

 A failure is a failed assertion, i.e., an anticipated problem that you
test.

 An error is a condition you didn’t check for, i.e., a runtime error.

Tuesday 12 October 2010

The JUnit 3.x Framework

Tuesday 12 October 2010

A Testing Scenario

The framework calls the test methods that you define for your test cases.

Tuesday 12 October 2010

JUnit 3.x Example Code

import junit.framework.*;
public class MoneyTest extends TestCase {
! private Money f12CHF;!! ! // fixtures
! private Money f14CHF;

! protected void setUp() {! ! // create the test data
! ! f12CHF = new Money(12, "CHF");
! ! f14CHF = new Money(14, "CHF");
! }
 void testAdd() {! ! ! ! // create the test data
! ! Money expected = new Money(26, “CHF”);
! ! assertEquals(“amount not equal”,
 expected,f12CHF.add(f14CHF);
! }
! ...
}

Tuesday 12 October 2010

Annotations in J2SE 5

 J2SE 5 introduces the Metadata feature (data about
data)

 Annotations allow you to add decorations to your
code (remember javadoc tags: @author)

 Annotations are used for code documentation,
compiler processing (@Deprecated), code
generation, runtime processing

 http://java.sun.com/docs/books/tutorial/java/javaOO/
annotations.html

Tuesday 12 October 2010

http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html
http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html
http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html
http://java.sun.com/docs/books/tutorial/java/javaOO/annotations.html

JUnit 4.x

 JUnit is a simple “testing framework” that provides:

 Annotations for marking methods as tests

 Annotations for marking methods that setting up and cleaning up
test data (“fixtures”)

 methods for making assertions

 textual and graphical tools for running tests

Tuesday 12 October 2010

JUnit 4.x Example Code

import junit.framework.*;
import org.junit.*;
import static org.junit.Assert.*;
public class MoneyTest {
! private Money f12CHF;
! private Money f14CHF;

! @Before public void setUp() {! ! ! // create the test data
! ! f12CHF = new Money(12, "CHF"); // - the fixture
! ! f14CHF = new Money(14, "CHF");
! }
! @Test public void testadd() {! ! ! // create the test data
! ! Money expected = new Money(26, “CHF”);
! ! assertEquals(“amount not equal”,
 expected,f12CHF.add(f14CHF));
! }
! ...
}

Tuesday 12 October 2010

Testing Style

 “The style here is to write a few lines of code, then
a test that should run, or even better, to write a test
that won't run, then write the code that will make it
run.”

 write unit tests that thoroughly test a single class

 write tests as you develop (even before you implement)

 write tests for every new piece of functionality

“Developers should spend 25-50% of
their time developing tests.”

Tuesday 12 October 2010

Roadmap

1.JUnit - a testing framework

1.testing practices

2.frameworks vs. libraries

3.JUnit 3.x vs. JUnit 4.x (annotations)

2.Money and MoneyBag - a testing case study

3.Double dispatch - how to add different types of
objects

Tuesday 12 October 2010

Representing multiple currencies

 The problem ...

 “The program we write will solve the problem of representing
arithmetic with multiple currencies. Arithmetic between single
currencies is trivial, you can just add the two amounts. ... Things get
more interesting once multiple currencies are involved.”

Tuesday 12 October 2010

MoneyTest

 We start by defining a TestCase that exercises the
interface we would like our Money class to support:

import org.junit.*;
import static org.junit.Assert.*;
public class MoneyTest {
! private Money f12CHF;
! private Money f14CHF;
! public MoneyTest(String name) { super(name); }

! @Before public void setUp() {! // create the test data
! ! f12CHF = new Money(12, "CHF");
! ! f14CHF = new Money(14, "CHF");
! }
! ...
}

Tuesday 12 October 2010

Some basic tests...

 We define methods to test what we expect to be
true ...

! @Test public void testEquals() {
! ! assertNotNull(f12CHF);
! ! assertEquals(f12CHF, f12CHF);
! ! assertEquals(f12CHF, new Money(12, "CHF"));
! ! assertFalse(f12CHF.equals(f14CHF));
! }

! @Test public void testSimpleAdd() {
! ! Money expected = new Money(26, "CHF");
! ! Money result = f12CHF.add(f14CHF);
! ! assertEquals(expected, result);
! }

Tuesday 12 October 2010

Some basic tests

 NB: assertTrue, etc. are static imported methods of
the Assert class of the JUnit 4.x Framework and raise
an AssertionError if they fail.

Junit 3.x raises a JUnit AssertionFailedError (!)

Tuesday 12 October 2010

Money

 We now implement a Money class that fills our first
few requirements:

public class Money {
! ...
! public Money add(Money m) {
! ! return new Money(...);
! }
! ...
}

Note how the test case drives the design!

NB: The first version does not consider how to add different
currencies!

Tuesday 12 October 2010

Running tests from eclipse

Right-click on the
class

(or package) to run
the tests

Tuesday 12 October 2010

Testing MoneyBags (I)

 To handle multiple currencies, we introduce a
MoneyBag class that can hold several instances of
Money:

import static org.junit.Assert.*;
public class MoneyTest {
! ...
! @Before public void setUp() {
! ! f12CHF = new Money(12, "CHF");
! ! f14CHF = new Money(14, "CHF");
! ! f7USD = new Money(7, "USD");
! ! f21USD = new Money(21, "USD");
! ! fMB1 = new MoneyBag(f12CHF, f7USD);
! ! fMB2 = new MoneyBag(f14CHF, f21USD);
! }

Tuesday 12 October 2010

Testing MoneyBags (II)

 ... and define some new (obvious) tests ...

@Test public void testBagEquals() {
! assertNotNull(fMB1);
! assertEquals(fMB1, fMB1);
! assertFalse(fMB1.equals(f12CHF));
! assertFalse(f12CHF.equals(fMB1));
! assertFalse(fMB1.equals(fMB2));
}

Tuesday 12 October 2010

MoneyBags

 We can use a HashTable to keep track of multiple
Monies:
class MoneyBag {
! private Hashtable monies = new Hashtable(5);
! MoneyBag(Money m1, Money m2) { ... }
! MoneyBag(Money bag[]) {
! ! for (int i= 0; i < bag.length; i++) {
! ! ! appendMoney(bag[i]);
! ! }
! }
! private void appendMoney(Money aMoney) {
! ! Money m = (Money) monies.get(aMoney.currency());
! ! if (m != null) { m = m.add(aMoney); }
! ! else { m = aMoney; }
! ! monies.put(aMoney.currency(), m);
! }
}

Tuesday 12 October 2010

Testing MoneyBags (III)

and we run the tests.

Tuesday 12 October 2010

Roadmap

1.JUnit - a testing framework

1.testing practices

2.frameworks vs. libraries

3.JUnit 3.x vs. JUnit 4.x (annotations)

2.Money and MoneyBag - a testing case study

3.Double dispatch - how to add different types of
objects

Tuesday 12 October 2010

Adding MoneyBags

 We would like to freely add together arbitrary Monies
and MoneyBags, and be sure that equals behave as
equals:

 That implies that Money and MoneyBag should
implement a common interface ...

! @Test public void mixedSimpleAdd() {
! ! // [12 CHF] + [7 USD] == {[12 CHF][7 USD]}
! ! Money bag[] = { f12CHF, f7USD };
! ! MoneyBag expected = new MoneyBag(bag);
! ! assertEquals(expected, f12CHF.add(f7USD));
! }

Tuesday 12 October 2010

The IMoney interface (I)

 Monies know how to be added to other Monies

 Do we need anything else in the IMoney interface?

Tuesday 12 October 2010

Double Dispatch (I)

Problem: we want to add Monies
and MoneyBags without having
to check the types of the
arguments.

Solution: use double dispatch to
expose more of your own
interface.

Tuesday 12 October 2010

Double Dispatch (II)

 How do we implement add() without breaking
encapsulation?

 “The idea behind double dispatch is to use an
additional call to discover the kind of argument we are
dealing with...”

class Money implements IMoney { ...
! public IMoney add(IMoney m) {
! ! return m.addMoney(this);! ! ! // add me as a Money
! } ...
}
class MoneyBag implements IMoney { ...
! public IMoney add(IMoney m) {
! ! return m.addMoneyBag(this);! ! // add as a MoneyBag
! } ...
}

Tuesday 12 October 2010

Double Dispatch (III)

 The rest is then straightforward ...

 and MoneyBag takes care of the rest.

class Money implements IMoney { ...
! public IMoney addMoney(Money m) {
! ! if (m.currency().equals(currency())) {
! ! ! return new Money(amount()+m.amount(),currency());
! ! } else {
! ! ! return new MoneyBag(this, m);
! ! }
! }
! public IMoney addMoneyBag(MoneyBag s) {
! ! return s.addMoney(this);
! } ...

Tuesday 12 October 2010

Double Dispatch (IV)

 Pros

 No violation of encapsulation (no downcasting)

 Smaller methods; easier to debug

 Easy to add a new type

 Cons

 No centralized control

 May lead to an explosion of helper methods

Tuesday 12 October 2010

The IMoney interface (II)

 So, the common interface has to be:

 NB: addMoney() and addMoneyBag() are only needed
within the Money package.

public interface IMoney {
! public IMoney add(IMoney aMoney);
! IMoney addMoney(Money aMoney);
! IMoney addMoneyBag(MoneyBag aMoneyBag);
}

Tuesday 12 October 2010

A Failed test

This time we
are not so
lucky ...

Tuesday 12 October 2010

The fix ...

 It seems we forgot to implement MoneyBag.equals()!

 We fix it:

 ... test it, and continue developing.

class MoneyBag implements IMoney { ...
! public boolean equals(Object anObject) {
! ! if (anObject instanceof MoneyBag) {
! ! ! ...
! ! } else {
! ! ! return false;
! ! }
! }

Tuesday 12 October 2010

What you should know!

 How does a framework differ from a library?

 What is a unit test?

 What is an annotation?

 How does JUnit 3.x differ from JUnit 4.x?

 What is a test “fixture”?

 What should you test in a TestCase?

 How can testing drive design?

 What is “double dispatch”? What does the name
mean?

Tuesday 12 October 2010

Can you answer these questions?

 How does implementing toString() help in debugging?

 How does the MoneyTest suite know which test
methods to run?

 How does the TestRunner invoke the right suite()
method?

 Why doesn’t the Java compiler complain that
MoneyBag.equals() is used without being declared?

Tuesday 12 October 2010

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

!
Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

Tuesday 12 October 2010

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

