Object-Oriented
Design Heuristics

Alexandre Bergel
abergel@dcc.uchile.cl
09/10/2010

mailto:abergel@dcc.uchile.cl
mailto:abergel@dcc.uchile.cl
mailto:abergel@dcc.uchile.cl
mailto:abergel@dcc.uchile.cl

source

Book from Arthur J. Riel

Addison-Wesley Professional (May 10, 1996)
Click to LOOK INSIDE!

-~

978-0201633856

Java 1.6

Pharo 1.0

Thursday 9 September 2010

(Goal of this lecture

Provide useful and simple programming “rules”

nsight into object-oriented design improvement

ntended to

Increase the readability and the quality of your code

Facilitate software maintenance

Thursday 9 September 2010

Goal of this lecture

This lecture can be considered as the continuation of
CC3002

This lecture provides good hints to not make people
throw stones at you when they will look at your code

Thursday 9 September 2010

Classes and Objects

Thursday 9 September 2010

Classes and Objects

The building blocks of the object-oriented paradigm

An object will always have four important facets

its own identify (e.g., its address in memory)

the attributes of its class (usually static) and values for those
attributes (usually dynamic)

the behavior of its class (the implementor’s view)

the published interface (the user’s view)

Thursday 9 September 2010

All data should be hidden within its class

Thursday 9 September 2010

public class DefaultCaret extends Rectangle implements Caret,
Focuslistener, Mouselistener, MouseMotionlListener {

int updatePolicy = UPDATE_WHEN_ON_EDT;

boolean visible;

boolean active;

int dot;

int mark;

Object selectionTag;

boolean selectionVisible;

Timer flasher;

Point magicCaretPosition;

transient Position.Bias dotBias;

transient Position.Bias markBias;

boolean dotLTR;

boolean markLTR;

transient Handler handler = new Handler();
transient private int[] flagXPoints = new int[3];
transient private int[] flagYPoints = new int[3];
private transient NavigationFilter.FilterBypass filterBypass;
static private transient Action selectWord = null;
static private transient Action selectlLine = null;

}

Thursday 9 September 2010

Piece of code extracted from the JDK 1.6. The class DefaultCaret belongs to the package
javax.swing.text. It contains 15 public attributes

Y
-

Handler

<«— DefaultCaret

Class blueprint [Lanza 2003]

Thursday 9 September 2010

We will make heavy use of visualization along the semester. Visualizing software is a very handy
and intuitive mechanism for getting a quantitative and qualitative impression about a system.

Class blueprint is a visualization that shows class internal. A class is represented as a box. Each box
is composed of 5 part. Each part correspond to some particular elements that composes the class.
From left to right: constructors, public methods, private methods, variable accessors and mutators
(get and set methods), attributes.

Blue edges represent methods invocations. Cyan edges represent variable accesses.

Access to public variables

L 7T
E]
Handler
<«— DefaultCaret

Class blueprint [Lanza 2003]

Thursday 9 September 2010

The class DefaultCaret contains 15 public attributes. These attributes are accessed by other classes.
Handler for example. This shows a poor programming style. Never make field public or package
visible.

One may argue that for optimization reason, it may be preferable to have public variables instead of
accessors. It was true some time ago when virtual machines and compiler were not that
sophisticated. Today, making variable public is hardly considered as an efficient way to optimize
your program.

How to hide data”

Visibility of variables should lbe set to private or
protected

Define accessors and mutators when necessary

Thursday 9 September 2010

Minimize the number of messages in the protocol of a class

Thursday 9 September 2010

——
[] 2. 000 [][]UDU [] []D[] gpo [I“[l[][] 0pao []UU 00 []I][l 0po []"[][]
00[] [][] U[][] ‘o[] c'[][]|:|[][]|:|[:]ﬂ DU“: U v 0[]
=0 4 A 00 op T O [
op o: [] i H DD
s [U oo
number of
variables
D ——
A
| number of < number of
\ 4

System complexity [Lanza 2003]

Thursday 9 September 2010

We can see another visualization, called System complexity. This visualization is about class

hierarchies. Each class is represented as a box, shaped with three metrics: number of variables,
number of methods and number of lines of code.

The hierarchy represented here is PLAF, the pluggable look and feel of Java. You can notice the
irregularity of the hierarchies, which probably hide some missing functionalities.

I

T e
I] o 0aa0 [][][]D[] []|:IU|:|[][] g0 []OU[][]U[] 00 UUU 0 0] U”ﬂ [] [][I[] 0 []
(m]) [][] il 0 u °ﬂ Du °|] D A" ﬂ[]
o L] I] D DD °[|[]°°°U
Bk oo

javax.swing.plaf.basic.BasicTreeUl
10630 lines of code
49 variables
131 methods

System complexity [Lanza 2003]

Thursday 9 September 2010

JComponent
1888 LOC

169 methods

/3 attributes

EUH : Dounﬂ ”“[UDE—DFTD | § IU

Ll o ! N
A DUHG A O
JTable
20691 LOC

185 methods
44 attributes

Thursday 9 September 2010

We can merely observe the two biggest classes of Swing: JComponent and JTable

However, we should not blame their developers. The root of a graphical user interface framework is

inherently complex and difficult to implement. To convince yourself, have a look at the root class of
any serious GUI framework.

Thursday 9 September 2010

Thursday 9 September 2010

A class should capture one and only one key abstraction

Thursday 9 September 2010

L | =
I | =
e Il &
o i, .
14 E : ‘
£ o
// G
4 -
] |
: : ; _
\ —— | ¢
\ A
\.\... \-i_ ! '
b 4 R
mem /N
] |

Example in ArgoUML

Thursday 9 September 2010

We can observe a class which has 2 public methods and many private methods. This class is quite
particular in the sense that its private methods are divided into two distinct groups. Each group of
private method is used by one public method.

This is an example of a class that offers two distinct functionalities.

Action-Oriented vs Object-Oriented

Thursday 9 September 2010

The god class problem

A “god” class performs most of the work, leaving
minor details to a collection of trivial classes

Thursday 9 September 2010

Do not create god classes/objects in your system.
Be very suspicious of a class whose name contains
Driver, Manager, System, Subsystem, Utility

Thursday 9 September 2010

* @version 1.158, 03/13/06
* @since JDK1.0

*/
public final class System {

/* First thing---register the natives */
private static native void registerNatives();
static {

registerNatives();

}

/** Don't let anyone instantiate this class */

private System() {
ks

/**
* The "standard" input stream. This stream is already
* open and ready to supply input data. Typically this stream
* corresponds to keyboard input or another input source specified b

Thursday 9 September 2010

java.lang.System is the perfect example. It offers methods ranging from writing on the standard
streams to copying arrays and managing security.

» [applet - ”Il"llll!l“!!! = % CurrencyNameProvider.java

@ Properties.java

¥ B awm d 1B~ : : % LocaleNameProvider.java
(] beans ' .‘_‘ PropertyPermission.java 3 ¥ LocaleServiceProvider. java
i & o : .__, PropertyResourceBundle.java 2 package.htmi
(1 lang d 1B~ Queue.java ¢ TimeZoneNameProvider.java
. G math " ", Random.java
G net _ %) RandomAccess.java
(3 nio » | regex "
vl B mi . % RegularEnumSet java
, 88 security . %l ResourceBundle java
& sql . % Scanner.java
Gl text 5 @ ServiceConfigurationError.java
@ util s % ServiceLoader java

@ Setjava

® | SimpleTimeZone.java

@ SortedMap.java

@ SortedSet. java

@ Stack.java

@ StringTokenizer.java

@ Timer.java

@ TimerTask.java m

¢ TimeZone.java

¥ TooManylistenersException java

< TreeMap.java

® TreeSetjava

% UnknownFormatConversionException.java

% | UnknownFormatfFlagsException.java

% UUID.java

% Vector.java
v
v

| WeakHashMap.java
¢ XMLUtils.java
I n Bl zip T
€
& Macintosh HD » (5] Users » ¢ alexandrebergel + (] Desktop » (] CaseStudies » (] JOK » (] java » (] util » (] spi

Thursday 9 September 2010

Note that the heuristic given before is also valid for packages. Consider the package java.util.
This package contains 229 classes, most of them are collections. But it also contains the classes
Data, JapaneselmperialCalendar, Locale, Random, XMLUtils and many more unrelated classes.

o000 OB Package prowser: systembictionary =
SystemDictionary (Z:)Urst)k;)

B System-Object Storac SARInstaller class names bytesLeft

B System-Platforms : SecurityManager A lcopying bytesLeftString

B System-Pools Smalltalkimage deprecated bytesLeft:

B System-Serial Port SystemDictionary dictionary access createStackOverflow

#B System-Support SystemNavigation housekeeping forceTenure

B System-Tools ' SystemOrganizer ¢ limage, changes name garbageCollect

< ‘ ' memory space garbageCollectMost

hier.). groups instancs ? | class | trimiscellaneous installLowS aceWatf‘hc _'

forceTenure

"Primitive. Tell the GC logic to force a tenure on the next increment GC."
<primitive: 'primitiveForceTenure'>
~self primitiveFailed

Thursday 9 September 2010

In the Pharo and Squeak Smalltalk languages, the class SystemDictionary is another example of a
god class.

SystemDictionary enables one to control the garbage collectors, streaming objects, accessing
classes, querying the systems. It has little to do with the notion of dictionary!

In application that consist of an object-oriented model interaction
with a user interface, the model should never be dependent on the
interface.

The interface should be dependent on the model

Thursday 9 September 2010

In Mozilla:
dom/base/nsDOMWindowUtils.cpp

/* —-%*- Mode: C++; tab-width: 2; indent-
tabs-mode: nil; c-basic-offset: 2 —-*- */
/* **x*x*x% BEGIN LICENSE BLOCK ***%%

* Version: MPL 1.1/GPL 2.0/LGPL 2.1
#include "nsIDOMHTMLCanvasElement.h"
#include "nsICanvasElement.h"

#include "gfxContext.h"
#include "gfxImageSurface.h”

Thursday 9 September 2010
Have a look at the definition of the class nsDOMWindowUtils, which is central to the DOM

component of Mozilla.
This class has references to some graphical packages, which goes against the idea of having a clean

and modular DOM.

belong to

the core
In Mozilla: ¢

dom/base/nsDOMWindowUtils.cpp

/* —*—- Mode: C++; tab-width: 2; indent-
tabs-mode: nil; c-basic-offset: 2 —-*- */
/* **x*x*x% BEGIN LICENSE BLOCK ***%%

* Version: MPL 1.1/GPL 2.0/LGPL 2.1
#include "nsIDOMHTMLCanvasElement.h"
#include "nsICanvasElement.h"

#include "gfxContext.h" - belong to
#include "gfxImageSurface.h" gfx package

Thursday 9 September 2010

i PSRN [——— | S Y

C... (class search), i...

(implementor search), #C...

(class ref search),

#s...

o))

v B Kernel
Chronology
Classes
Methods
Numbers

jects

hier. | groups

ObjectTracer
ObjectViewer

ProtoObject
Object
Boolean

?

class

o

tr

testing

thumbnail
translation support
undo

updating

user interface
viewer

-

v defaultBackground

v defaultLabelForins|’
explore

v hasContentsInExpl

v inform:

v initialExtent

v inspectWithLabel: ‘

inform: aString

"Display a message for the user to read and then dismiss. 6/9/96 sw"

aString iseEmptyOrNil ifFalse: [UIManager default inform: aString]

Thursday 9 September 2010

Another example of the kernel of Pharo. The class Object contains a reference to the UlManager,
which belongs to the package ToolBuilder. The method #inform: is clearly wrongly packaged

About encapsulation

desired_temp?() Desired Temp

Heat flow actual_temp 208 INe TEIN = 1o
regulator

anyone_in_room?() Occupancy

Home heating system without encapsulation

Thursday 9 September 2010
Example of poor system intelligence distribution

About encapsulation

get_actual_temp?()
get_desired_temp() = Blecicel =00

Heat flow

Actual Temp

regulator >

is_occupied() Occupancy

Home heating system with encapsulation

Thursday 9 September 2010

About encapsulation

do_you_need_heat"() Desired Temp

Heat flow

Actual Temp

regulator >

Occupancy

Home heating system with distributed intelligence

Thursday 9 September 2010

Do not turn an operation into a class. Be suspicious of any class
whose name is a verb or is derived from a verb.

Thursday 9 September 2010

DigitCollector DialTonelnitiator

call_buffer connector

Classes which should be operations

Thursday 9 September 2010

TelephoneCall

call_bufter

connector

A better design for telephone services

Thursday 9 September 2010

The relationship between classes
and objects

Thursday 9 September 2010

Minimize the number of classes with which another class
collaborates

Thursday 9 September 2010

public class JTable extends JComponent implements TableModellistener,
Scrollable,

TableColumnModelListener, ListSelectionListener, CellEditorlListener,
Accessible, RowSorterlListener

/¥*¥ The <code>TableModel</code> of the table. */
protected TableModel dataModel ;

/** The <code>TableColumnModel</code> of the table. */
protected TableColumnModel columnModel;

/** The <code>ListSelectionModel</code> of the table, used to keep
track of row selections. */

protected ListSelectionModel selectionModel;

/*¥* The <code>TableHeader</code> working with the table. */
protected JTableHeader tableHeader;

Thursday 9 September 2010

public class JTable extends JComponent implements TableModellistener,
Scrollable,
TableColumnModellListener, ListSelectionlListener, CellEditorListener,
Accessible, RowSorterlListener

/** The <code>Tab . *
protected Table

ek The <codes T RACISIS depends on more
e R than 50 different classes

2, ¥/

/** The <code>ListSelectionModel</code> o e table, used to keep

track of row selections. */
protected ListSelectionModel selectionModel;

/*¥* The <code>TableHeader</code> working with the table. */
protected JTableHeader tableHeader;

Thursday 9 September 2010

The inheritance relationship

Thursday 9 September 2010

Inheritance

The Inheritance relationship is one of the most
important relationships within object-orientation

It Is best used to capture the a-kind-of relationship
between classes

Thursday 9 September 2010

Component

Window

Example of the core of java.awt

Thursday 9 September 2010

JComponent

accessibleContext
listenerList

JAN

AbstractButton

itemListener
changeEvent

N\

JButton

JButton

AbstractButton
itemListener
changekvent, ...

JComponent
accessibleContext
listenerList

Thursday 9 September 2010

Virtual Classes
A powerful mechanism in object-oriented programming

Ole Lehrmann Madsen

Computer Science Department, Aarhus University
Ny Muskegade, DK-$000 Aashus C, Denmark
TH: 4456 12 71 35 - E-mail: clmadsen@daimidk

Abstract

The notions of class, subelass and virtaal procedure are
fairly well understood and recognized as some of the key
concepts in object-oriented programming. The peasibil.
ity of modifying a virtual procedure in a subclass is a
powerful technique for specializing the general proper-
ties of the superclass,

In most object-oriented languages, the atiributes of
an object may be references to objects and (virtual) pro-
cedures. In Simula and BETA it is also possible to have
class attributes. The power of class attributes has not
yet been widely recognited. In BETA a class may also
have mrinal class attributes. This makes it possible to
defer part of the specification of & class attribute to &
subclass. In this sense virtual classes aze analogous to
virtual procedures. Virtual classes are mainly interest.
ing within strongly typed languages where they provide
a mechanism for defining general parameterized classes
such as set, vector and list. In this sense they provide
an alternative to generics.

Although the notion of vizteal class originatles ftom
BETA, it is presented as & general language mechanism.

Keywords: languages, virtual procedure, virtual class,
strong typing, parameterized class, gemerics, BETA,
Simula, Eiffe]l, C+ 4, Smalltalk

1 Introduction

The notions of class and subclass are some of the key
language concepts associated with object.oriented pro-

Prraiasem 0 copy withont for a8 o0 pant of Dus masenad u gracted provaded
123t Pae Copeey e Pk made o Sodrireied fow Grel comm i sisantage.
he ACM copymght somor and the il of the publiction and i dete sppesr
and mote i Even [t cogreang o By pev o e A e
Competing Machinery. 1o copy ofSerene. or 10 repubind, reguees » fex
el o e pET TV

O 1980 ACM 09 W AT 00O NT S 9

Dirger Meller-Pedorsen
Norwegian Computing Center
PO, Box 114, Blindern, N-0314 Oslo 3, Novway
TH: 447 245 35 00 - E-moail: bizger@ne uninett.no

gramming. Classes support the classification of objects
with the same properties, and subclassing supports the
specializsation of the general properties. A class defines
a set of attributes associated with each instance of the
class. An sttribute may be either an object reference
(or just reference for short) or a procedure.

In & sabeclass it is possible to specialize the general
properties defined in the superclass. This can be done
by adding references and /ot procedures. However, it is
also possible to modify the procedures defined in the su.
petclass. Modification can take place in different ways.
In Simula 87 [4] a procedure attribute may be declared
virteal. A virtual procedure may then be redefined in o
subclass. A mon-virtual procedure cannot be redefined®.
This is essentially the same scheme adapted by Cé+ s
[16] and Eiffel [13]. In Smalltalk [6] any procedure is
virtual in the sense that it can be redefined in & sub
class, and even the parameters of a procedure may be
redefined,

In BETA [8] & virtual procedure cannot be redefized
in & subclass, but it may be further defined by an e2.
tended definitica. The extended procedure is a “sub-
procedure” (in the same way as for subclass) of the pro-
cedure defined in the superclass. This implies that the
actions of & virtual procedure definition are automat.
ieally combined with the actions of the extended pro-
cedure in & subclass. This is the case for all levels of
subclasses that farther defines a virtual procedure. In
Smalitalk and C++ it is the responsibility of the pro-
grammer to combine a redefined vistual procedure with
the corresponding virtual procedure of the superclass,
This is of course more flexible, since the programmer
can ignote the procedure in the superclass. However, it
is also & potential source of esrcs since the programmes
may forget to execute the virtusl procedure from the
superclass

Using the terminology from [18] a class 1 BETA

Sela)

- may
-

& new procedure with the
mme procedure defined in & superclase. This does not
have the effect of & redefiution s in

@OOPSLA'89

Thursday 9 September 2010

Window: class Stream
(# UpperLeft,LowerRight: @ Point;
Label: = Text;
Move: proc (2 ... 8);
Display: virtual proc (# ... #);
#)

Figure 2: Example of class declaration

“In Figure 2 an example of a class is given. Class Window is
described as a subclass of class Stream. ...”

Thursday 9 September 2010

Window: class Stream
(# UpperLeft,LowerRight: @ Point;
Label: = Text;
Move: proc (2 ... 8);
Display: virtual proc (# ... #);
#)

Figure 2: Example of class declaration

“In Figure 2 an example of a class is given. Class Window is
described as a subclass of class Stream. ...”

Do you think a window can be considered as a stream?

Thursday 9 September 2010

Collection

SMALLALK=8O %
cus Link
/\ /\
LinkedList Process
Adele Godberg and David Robeon A
Semaphore

Probably a semaphore can be seen as a collection, but is it
worth subclassing LinkedList in that case”

Thursday 9 September 2010

All abstract classes must be base classes

Thursday 9 September 2010

All abstract classes must be base classes

Since an abstract class cannot be instantiated, does it make sense
to have an abstract class leaf?

Thursday 9 September 2010

Mistaking olbjects for derived classes

CarManufacturer

GeneralMotors Chrysler

Thursday 9 September 2010

Consider the inheritance hierarchy given on this slide. At first view the inheritance hierarchy looks
correct. GeneralMotors, Ford and Chrysler are all special types of car manufacturers. On second
thought, is GeneralMotors really a special type of car manufacturer? Or is it an example of a car
manufacturer? This is a classic error and it causes proliferation of classes.

how many GeneralMotors objects are there? Ford objects? Chrysler objects? The answer for all three
classes if one. In this case they should have been objects.

Keep in mind that not all derived classes that have only one instance in your system are
manifestations of this error, but many will be.

[t should be illegal for a derived class to override a base class
method with a NOP method, that is, a method that does nothing

Thursday 9 September 2010

BT s 0.

Dlelo|NONWEloR wag_tail() { /* empty */}

What is wrong with this design?

Thursday 9 September 2010

Consider a class Dog. The behaviors that all Dogs know how to carry out is bark, chase_cats and
wag_tail. Consider that we want to have a dog that does not wag its tail, let’s say DogNoWag. This
new class is exactly like a Dog except it doesn’t know how to wag its tail. A solution could be to
have DogNoWag inherit from Dog and override the wag_tail method with an empty method (NOP).

BT s 0.

Dlelo|NONWEloR wag_tail() { /* empty */}

This design does not capture a logical relationship

It implies the following statements:

All dogs know how to wag their tails
DogNoWag is a special type of dog

DogNoWag does not know how to wag its tail

The rules of classic logic are not being obeyed

Thursday 9 September 2010

bark() {...}
chase_cats|() {...}

DogNoWag wag_tail() {...]

Dogs and their tails...

Thursday 9 September 2010

Some other heuristics

Thursday 9 September 2010

When building an inheritance hierarchy, try to construct reusable
frameworks rather than reusable components

Thursday 9 September 2010

Users of a class must be dependent on its public interface, but a
class should not be dependent on its users

Thursday 9 September 2010

Minimize the number of message sends between a class and its
collaborator

Thursday 9 September 2010

A class must know what it contains, but it should not know who
contains it

Thursday 9 September 2010

All base classes should be abstract classes

Thursday 9 September 2010

All base classes should be abstract classes

Not everybody will agree with this one (including me),
but this heuristic deserves some attention

Thursday 9 September 2010

