
Types



Outline

1. begin with a set of terms, a set of values, and an evaluation
relation

2. define a set of types classifying values according to their
“shapes”

3. define a typing relation t : T that classifies terms according
to the shape of the values that result from evaluating them

4. check that the typing relation is sound in the sense that,

4.1 if t : T and t −→∗ v, then v : T
4.2 if t : T, then evaluation of t will not get stuck



Review: Arithmetic Expressions – Syntax

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
true true value
false false value
nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value



Evaluation Rules

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t�
1

if t1 then t2 else t3 −→ if t�
1 then t2 else t3

(E-If)



t1 −→ t�
1

succ t1 −→ succ t�
1

(E-Succ)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

t1 −→ t�
1

pred t1 −→ pred t�
1

(E-Pred)

iszero 0 −→ true (E-IszeroZero)

iszero (succ nv1) −→ false (E-IszeroSucc)

t1 −→ t�
1

iszero t1 −→ iszero t�
1

(E-IsZero)



Types

In this language, values have two possible “shapes”: they are
either booleans or numbers.

T ::= types
Bool type of booleans
Nat type of numbers



Typing Rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

0 : Nat (T-Zero)

t1 : Nat

succ t1 : Nat
(T-Succ)

t1 : Nat

pred t1 : Nat
(T-Pred)

t1 : Nat

iszero t1 : Bool
(T-IsZero)



Typing Derivations

Every pair (t, T) in the typing relation can be justified by a
derivation tree built from instances of the inference rules.

T-Zero
0 : Nat

T-IsZero
iszero 0 : Bool

T-Zero
0 : Nat

T-Zero
0 : Nat

T-Pred
pred 0 : Nat

T-If
if iszero 0 then 0 else pred 0 : Nat

Proofs of properties about the typing relation often proceed by
induction on typing derivations.



Imprecision of Typing

Like other static program analyses, type systems are generally
imprecise: they do not predict exactly what kind of value will be
returned by every program, but just a conservative (safe)
approximation.

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

Using this rule, we cannot assign a type to

if true then 0 else false

even though this term will certainly evaluate to a number.



Properties of the Typing
Relation



Type Safety

The safety (or soundness) of this type system can be expressed by
two properties:

1. Progress: A well-typed term is not stuck

If t : T, then either t is a value or else t −→ t� for
some t�.

2. Preservation: Types are preserved by one-step evaluation

If t : T and t −→ t�, then t� : T.



Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type
of a term...



Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type
of a term...



Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type
of a term...



Typechecking Algorithm

typeof(t) = if t = true then Bool
else if t = false then Bool
else if t = if t1 then t2 else t3 then
let T1 = typeof(t1) in
let T2 = typeof(t2) in
let T3 = typeof(t3) in
if T1 = Bool and T2=T3 then T2
else "not typable"

else if t = 0 then Nat
else if t = succ t1 then
let T1 = typeof(t1) in
if T1 = Nat then Nat else "not typable"

else if t = pred t1 then
let T1 = typeof(t1) in
if T1 = Nat then Nat else "not typable"

else if t = iszero t1 then
let T1 = typeof(t1) in
if T1 = Nat then Bool else "not typable"



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof:

Recall the syntax of values:

v ::= values

true true value

false false value

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

For part 1, if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool. Part 2 is similar.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v ::= values

true true value

false false value

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

For part 1,

if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool. Part 2 is similar.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v ::= values

true true value

false false value

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

For part 1, if v is true or false, the result is immediate.

But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool. Part 2 is similar.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v ::= values

true true value

false false value

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

For part 1, if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool.

Part 2 is similar.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v ::= values

true true value

false false value

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

For part 1, if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool. Part 2 is similar.



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some

type T). Then either t is a value or else there is some t� with

t −→ t�.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since

t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is

some t�
1 such that t1 −→ t�

1. If t1 is a value, then the canonical

forms lemma tells us that it must be either true or false, in

which case either E-IfTrue or E-IfFalse applies to t. On the

other hand, if t1 −→ t�
1, then, by E-If,

t −→ if t�
1 then t2 else t3.



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some

type T). Then either t is a value or else there is some t� with

t −→ t�.

Proof:

By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since

t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is

some t�
1 such that t1 −→ t�

1. If t1 is a value, then the canonical

forms lemma tells us that it must be either true or false, in

which case either E-IfTrue or E-IfFalse applies to t. On the

other hand, if t1 −→ t�
1, then, by E-If,

t −→ if t�
1 then t2 else t3.



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some

type T). Then either t is a value or else there is some t� with

t −→ t�.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since

t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is

some t�
1 such that t1 −→ t�

1. If t1 is a value, then the canonical

forms lemma tells us that it must be either true or false, in

which case either E-IfTrue or E-IfFalse applies to t. On the

other hand, if t1 −→ t�
1, then, by E-If,

t −→ if t�
1 then t2 else t3.



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some

type T). Then either t is a value or else there is some t� with

t −→ t�.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since

t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is

some t�
1 such that t1 −→ t�

1. If t1 is a value, then the canonical

forms lemma tells us that it must be either true or false, in

which case either E-IfTrue or E-IfFalse applies to t. On the

other hand, if t1 −→ t�
1, then, by E-If,

t −→ if t�
1 then t2 else t3.



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some

type T). Then either t is a value or else there is some t� with

t −→ t�.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since

t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is

some t�
1 such that t1 −→ t�

1. If t1 is a value, then the canonical

forms lemma tells us that it must be either true or false, in

which case either E-IfTrue or E-IfFalse applies to t. On the

other hand, if t1 −→ t�
1, then, by E-If,

t −→ if t�
1 then t2 else t3.



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some

type T). Then either t is a value or else there is some t� with

t −→ t�.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since

t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is

some t�
1 such that t1 −→ t�

1. If t1 is a value, then the canonical

forms lemma tells us that it must be either true or false, in

which case either E-IfTrue or E-IfFalse applies to t. On the

other hand, if t1 −→ t�
1, then, by E-If,

t −→ if t�
1 then t2 else t3.



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t� with
t −→ t�.

Proof: By induction on a derivation of t : T.

The cases for rules T-Zero, T-Succ, T-Pred, and T-IsZero
are similar.

(Recommended: Try to reconstruct them.)



Preservation

Theorem: If t : T and t −→ t�, then t� : T.

Proof: By induction on the given typing derivation.



Preservation

Theorem: If t : T and t −→ t�, then t� : T.

Proof: By induction on the given typing derivation.



Preservation

Theorem: If t : T and t −→ t�, then t� : T.

Proof: By induction on the given typing derivation.

Case T-True: t = true T = Bool

Then t is a value, so it cannot be that t −→ t� for any t�, and the
theorem is vacuously true.



Preservation

Theorem: If t : T and t −→ t�, then t� : T.

Proof: By induction on the given typing derivation.

Case T-If:
t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

There are three evaluation rules by which t −→ t� can be derived:
E-IfTrue, E-IfFalse, and E-If. Consider each case separately.



Preservation

Theorem: If t : T and t −→ t�, then t� : T.

Proof: By induction on the given typing derivation.

Case T-If:
t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

There are three evaluation rules by which t −→ t� can be derived:
E-IfTrue, E-IfFalse, and E-If. Consider each case separately.

Subcase E-IfTrue: t1 = true t� = t2

Immediate, by the assumption t2 : T.

(E-IfFalse subcase: Similar.)



Preservation

Theorem: If t : T and t −→ t�
, then t� : T.

Proof: By induction on the given typing derivation.

Case T-If:
t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

There are three evaluation rules by which t −→ t�
can be derived:

E-IfTrue, E-IfFalse, and E-If. Consider each case separately.

Subcase E-If: t1 −→ t�
1 t�

= if t�
1 then t2 else t3

Applying the IH to the subderivation of t1 : Bool yields

t�
1 : Bool. Combining this with the assumptions that t2 : T and

t3 : T, we can apply rule T-If to conclude that

if t�
1 then t2 else t3 : T, that is, t� : T.



Recap: Type Systems

� Very successful example of a lightweight formal method

� big topic in PL research

� enabling technology for all sorts of other things, e.g.
language-based security

� the skeleton around which modern programming languages are
designed


