

Outline

- 1. begin with a set of terms, a set of values, and an evaluation relation
- 2. define a set of *types* classifying values according to their "shapes"
- 3. define a *typing relation* t : T that classifies terms according to the shape of the values that result from evaluating them
- 4. check that the typing relation is *sound* in the sense that,

4.1 if t : T and t $\longrightarrow^* v$, then v : T 4.2 if t : T, then evaluation of t will not get stuck

Review: Arithmetic Expressions – Syntax

t ::=	true false if t then t else t O succ t pred t iszero t	terms constant true constant false conditional constant zero successor predecessor zero test
v ::=	true false nv	values true value false value numeric value
nv ::=	0 succ nv	numeric values zero value successor value

if true then t_2 else $t_3 \longrightarrow t_2$ (E-IFTRUE) if false then t_2 else $t_3 \longrightarrow t_3$ (E-IFFALSE) $\frac{t_1 \longrightarrow t'_1}{(E-IF)}$

if t_1 then t_2 else $t_3 \longrightarrow$ if t_1' then t_2 else t_3

$\frac{\mathtt{t}_1 \longrightarrow \mathtt{t}_1'}{\texttt{succ } \mathtt{t}_1 \longrightarrow \texttt{succ } \mathtt{t}_1'}$	(E-Succ)
pred $0 \longrightarrow 0$	(E-PredZero)
$\texttt{pred} (\texttt{succ} \ \texttt{nv}_1) \longrightarrow \texttt{nv}_1$	(E-PREDSUCC)
$\frac{\mathtt{t}_1 \longrightarrow \mathtt{t}_1'}{\texttt{pred } \mathtt{t}_1 \longrightarrow \texttt{pred } \mathtt{t}_1'}$	(E-Pred)
iszero 0 \longrightarrow true	(E-IszeroZero)
$\texttt{iszero} \ (\texttt{succ} \ \texttt{nv}_1) \longrightarrow \texttt{false}$	(E-IszeroSucc)
$\frac{\texttt{t}_1 \longrightarrow \texttt{t}_1'}{\texttt{iszero } \texttt{t}_1 \longrightarrow \texttt{iszero } \texttt{t}_1'}$	(E-IsZero)

Types

In this language, values have two possible "shapes": they are either booleans or numbers.

Typing Rules

true : Bool	(T-TRUE)
false : Bool	(T-False)
$\frac{\texttt{t}_1:\texttt{Bool}}{\texttt{if }\texttt{t}_1\texttt{ then }\texttt{t}_2\texttt{ clse }\texttt{t}_3\texttt{ : T}}$	(T-IF)
O : Nat	(T-Zero)
$\frac{\texttt{t}_1:\texttt{Nat}}{\texttt{succ }\texttt{t}_1:\texttt{Nat}}$	(T-Succ)
$\frac{\texttt{t}_1:\texttt{Nat}}{\texttt{pred }\texttt{t}_1:\texttt{Nat}}$	(T-Pred)
$\frac{\mathtt{t}_1:\mathtt{Nat}}{\mathtt{iszero}\ \mathtt{t}_1:\mathtt{Bool}}$	(T-IsZero)

Typing Derivations

Every pair (t, T) in the typing relation can be justified by a *derivation tree* built from instances of the inference rules.

Proofs of properties about the typing relation often proceed by induction on typing derivations.

Imprecision of Typing

Like other static program analyses, type systems are generally *imprecise*: they do not predict exactly what kind of value will be returned by every program, but just a conservative (safe) approximation.

$$\frac{t_1:Bool}{if t_1 then t_2 else t_3:T}$$
(T-IF)

Using this rule, we cannot assign a type to

```
if true then 0 else false
```

even though this term will certainly evaluate to a number.

Properties of the Typing Relation

Type Safety

The safety (or soundness) of this type system can be expressed by two properties:

1. *Progress:* A well-typed term is not stuck

If t : T, then either t is a value or else $t \longrightarrow t'$ for some t'.

2. Preservation: Types are preserved by one-step evaluation If t : T and $t \longrightarrow t'$, then t' : T.

Inversion

Lemma:

- 1. If true : R, then R = Bool.
- 2. If false : R, then R = Bool.
- 3. If if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R.
- 4. If 0 : R, then R = Nat.
- 5. If succ t_1 : R, then R = Nat and t_1 : Nat.
- 6. If pred t_1 : R, then R = Nat and t_1 : Nat.
- 7. If iszero t_1 : R, then $R = Bool and t_1$: Nat.

Inversion

Lemma:

- 1. If true : R, then R = Bool.
- 2. If false : R, then R = Bool.
- 3. If if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R.
- 4. If 0 : R, then R = Nat.
- 5. If succ t_1 : R, then R = Nat and t_1 : Nat.
- 6. If pred t_1 : R, then R = Nat and t_1 : Nat.
- 7. If iszero t_1 : R, then R = Bool and t_1 : Nat.

Proof: ...

Inversion

Lemma:

- 1. If true : R, then R = Bool.
- 2. If false : R, then R = Bool.
- 3. If if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R.
- 4. If 0 : R, then R = Nat.
- 5. If succ t_1 : R, then R = Nat and t_1 : Nat.
- 6. If pred t_1 : R, then R = Nat and t_1 : Nat.
- 7. If iszero t_1 : R, then R = Bool and t_1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type of a term...

Typechecking Algorithm

```
typeof(t) = if t = true then Bool
else if t = false then Bool
else if t = if t1 then t2 else t3 then
  let T1 = typeof(t1) in
  let T2 = typeof(t2) in
  let T3 = typeof(t3) in
  if T1 = Bool and T2=T3 then T2
  else "not typable"
else if t = 0 then Nat
else if t = succ t1 then
  let T1 = typeof(t1) in
  if T1 = Nat then Nat else "not typable"
else if t = pred t1 then
  let T1 = typeof(t1) in
  if T1 = Nat then Nat else "not typable"
else if t = iszero t1 then
  let T1 = typeof(t1) in
  if T1 = Nat then Bool else "not typable"
```

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof:

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v	::=		values
		true	true value
		false	false value
		nv	numeric value
nv	::=		numeric values
		0	zero value
		succ nv	successor value
Fo	r par	t 1,	

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v	::=		values
		true	true value
		false	false value
		nv	numeric value
nv	::=		numeric values
		0	zero value
		succ nv	successor value
For part 1, if v is true or false, the result is immediate.			

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v	::=		values
		true	true value
		false	false value
		nv	numeric value
nv	::=		numeric values
		0	zero value
		succ nv	successor value

For part 1, if v is true or false, the result is immediate. But v cannot be 0 or succ nv, since the inversion lemma tells us that v would then have type Nat, not Bool.

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v	::=		values
		true	true value
		false	false value
		nv	numeric value
nv	::=		numeric values
		0	zero value
		succ nv	successor value

For part 1, if v is true or false, the result is immediate. But v cannot be 0 or succ nv, since the inversion lemma tells us that v would then have type Nat, not Bool. Part 2 is similar.

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof:

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t : T.

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t : T.

The T-T-T-E- and T-Z-E-R-O cases are immediate, since t in these cases is a value.

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t : T.

The $T\text{-}T\text{-}T\text{-}\text{RUE},\ T\text{-}\text{FALSE},$ and T-ZERO cases are immediate, since t in these cases is a value.

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t : T.

The T-T-T-E- and T-Z-E-R-O cases are immediate, since t in these cases is a value.

Case T-IF:
$$t = if t_1 then t_2 else t_3$$

 $t_1 : Bool t_2 : T t_3 : T$

By the induction hypothesis, either t_1 is a value or else there is some t'_1 such that $t_1 \longrightarrow t'_1$. If t_1 is a value, then the canonical forms lemma tells us that it must be either true or false, in which case either E-IFTRUE or E-IFFALSE applies to t. On the other hand, if $t_1 \longrightarrow t'_1$, then, by E-IF, $t \longrightarrow \text{if } t'_1$ then t_2 else t_3 .

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t : T.

The cases for rules T-ZERO, T-SUCC, T-PRED, and T-IsZERO are similar.

(Recommended: Try to reconstruct them.)

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-TRUE: t = true T = Bool

Then t is a value, so it cannot be that $t \longrightarrow t'$ for any t', and the theorem is vacuously true.

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-IF: $t = if t_1 then t_2 else t_3 t_1 : Bool t_2 : T t_3 : T$

There are three evaluation rules by which $t \longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-IF: $t = if t_1 then t_2 else t_3 t_1 : Bool t_2 : T t_3 : T$ There are three evaluation rules by which $t \longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IFTRUE: $t_1 = true$ $t' = t_2$ Immediate, by the assumption t_2 : T.

(E-IFFALSE subcase: Similar.)

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-IF: $t = if t_1 then t_2 else t_3 t_1 : Bool t_2 : T t_3 : T$

There are three evaluation rules by which $t \longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IF: $t_1 \longrightarrow t'_1$ $t' = \text{if } t'_1 \text{ then } t_2 \text{ else } t_3$ Applying the IH to the subderivation of t_1 : Bool yields t'_1 : Bool. Combining this with the assumptions that t_2 : T and t_3 : T, we can apply rule T-IF to conclude that if t'_1 then t_2 else t_3 : T, that is, t': T.

Recap: Type Systems

- Very successful example of a *lightweight formal method*
- big topic in PL research
- enabling technology for all sorts of other things, e.g. language-based security
- the skeleton around which modern programming languages are designed