
ELEMENTS OF THE
THEORY OF
COMPUTATION

Second Edition

Harry R. Lewis
Gordon McKay Professor of Computer Science
Harvard University
and Dean of Harvard College
Cambridge, Massachusetts

Christos H. Papadimitriou
C. Lester Hogan Professor of Electrical Engineering
and Computer Science
University of California
Berkeley, California

PRENTICE-HALL, Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in-PubJication Data

Lewis, Harry R.
Elements of the theory of computation I Harry R. Lewis and

Christos H. Papadimitriou. - 2nd ed.
p. em.

Includes bibliological references and index.
ISBN: 0-13-26247&-8
I. Machine theory. 2. Formal languages. 3. Computational

complexity. 4. Logic, Symbolic and mathematical.
I. Papadimitriou. Christos H. II. Title.
QA267.L49 1998
511.3--<1c21 97-13879

Publisher: Alan Apt
Development Editor: Sondra Chavez
EditorialJProduction Supervision: Barbara Kraemer
Managing Editor: Bayani Mendoza DeLeon
Editor-in-Chief: Marcia Horton

OP

Assistant Vice President of Production and Manufacturing: David W. Riccardi
Art Director: Jayne Conte
Manufacturing Manager: Trudy Pisciotti
Manufacturing Buyer: Donna Sullivan
Editorial Assistant: Toni Holm

©1998 by Prentice-Hall, Inc.
Simon & Schuster I A Viacom Company
Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their effectiveness.
The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs
or the documentation contained in this book. The author and publisher shall not be liable in any event for
incidental or consequential damages in connection with, or arising out of. the furnishing. performance. or
use of these programs.

Printed in the United States of America

1098765432

ISBN 0-13-262478-8

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

To our daughters

Contents

Preface to the First Edition

Preface to the Second Edition

Introduction

1 Sets, Relations, and Languages

1.1 Sets 5

1.2 Relations and functions 9

1.3 Special types of binary relations 13

1.4 Finite and infinite sets 20

1.5 Three fundamental proof techniques 23

1.6 Closures and algorithms 30

1. 7 Alphabets and languages 42

1.8 Finite representations of languages 47

References 52

vii

ix

1

5

2 Finite Automata 55

2.1 Deterministic finite automata 55

2.2 Nondeterministic finite automata 63

2.3 Finite automata and regular expressions 75

2.4 Languages that are and are not regular 86

2.5 State minimization 92

2.6 Algorithmic aspects of finite automata 102

References 110

3 Context-free Languages 113

3.1 Context-free grammars 113

3.2 Parse trees 122

3.3 Pushdown automata 130

3.4 Pushdown automata and context-free grammars 136

3.5 Languages that are and are not context-free 143

3.6 Algorithms for context-free grammars 150

3.7 Determinism and parsing 158

References 175

4 Turing machines

4.1 The definition of a Turing machine 179

4.2 Computing with Turing machines 194

4.3 Extensions of Turing machines 200

4.4 Random access Turing machines 210

4.5 Nondeterministic Turing machines 221

4.6 Grammars 227

4.7 Numerical functions 233

References 243

179

5 Undecidability 245

5.1 The Church-Turing thesis 245

5.2 Universal Turing machines 247

5.3 The halting problem 251

5.4 Unsolvable problems about Turing machines 254

5.5 Unsolvable problems about grammars 258

5.6 An unsolvable tiling problem 262

5.7 Properties of recursive languages 267

References 272

6 Computational Complexity 275

6.1 The class P 275

6.2 Problems, problems. . . 278

6.3 Boolean satisfiability 288

6.4 The class NP 292

References 299

7 NP-completeness 301

7.1 Polynomial-time reductions 301

7.2 Cook's Theorem 309

7.3 More NP-complete problems

7.4 Coping with NP-completeness

References 350

Index

317

333

353

Preface to the First Edition

This book is an introuuction, on the undergraduate level, to the classical and
contemporary theory of computation. The topics covered are, in a few words,
the theory of automata and formal languages, computability by Turing machines
and recursive functions, uncomputability, computational complexity, and math
ematicallogic. The treatment is mathematical but the viewpoint is that of com
puter science; thus the chapter on context-free languages includes a discussion
of parsing, and the chapters on logic establish the soundness and completeness
of resolution theorem-proving.

In the undergraduate curriculum, exposure to this subject tends to come
late, if at all, and collaterally with courses on the design and analysis of al
gorithms. It is our view that computer science students should be exposed to
this material earlier -as sophomores or juniors- both because of the deeper
insights it yields on specific topics in computer science, and because it serves to
establish essential mathematical paradigms. But we have found teaching to a
rigorous undergraduate course on the subject a difficult undertaking because of
the mathematical maturity assumed by the more advanced textbooks. Our goal
in writing this book has been to make the essentials of the subject accessible
to a broad undergraduate audience in a way that is mathematically sound but
presupposes no special mathematical experience.

The whole book represents about a year's worth of coursework. We have
each taught a one-term course covering much of the material in Chapters 1
through 6, omitting on various occasions and in various combinations the sec
tions of parsing, on recursive functions, and on particular unsolvable decision
problems. Other selections are possible; for example, a course emphasizing com
putability and the foundations of mechanical logic might skip quickly over Chap
ters 1 through 3 and concentrate on Chapters 4, 6, 8, and 9. However, it is used,
our fervent hope is that the book will contribute to the intellectual development

Preface

of the next generation of computer scientists by introducing them at an early
stage of their education to crisp and methodical thinking about computational
problems.

We take this opportunity to thank all from whom we have learned, both
teachers and students. Specific thanks go to Larry Denenberg and Aaron Temin
for their proofreading of early drafts, and to Michael Kahl and Oded Shmueli
for their assistance and advice as teaching assistants. In the spring of 1980 Al
bert Meyer taught a course at M.LT. from a draft of this book, and we thank
him warmly for his criticisms and corrections. Of course, the blame for any re
maining errors rests with us alone. Renate D' Arcangelo typed and illustrated the
manuscript with her characteristic but extraordinary perfectionism and rapidity.

Preface to the Second Edition

Much has changed in the fifteen years since the Elements of the Theory of Com
putation first appeared -and much has remained the same. Computer science
is now a much more mature and established discipline, playing a role of ever in
creasing importance in a world of ubiquitous computing, globalized information,
and galloping complexity -more reasons to keep in touch with its foundations.
The authors of the Elements are now themselves much more mature and busy
-that is why this second edition has been so long in coming. We undertook
it because we felt that a few things could be said better, a few made simpler
-some even omitted altogether. More importantly, we wanted the book to
reflect how the theory of computation, and its students, have evolved during
these years. Although the theory of computation is now taught more widely
in absolute terms, its relative position within the computer science curriculum,
for example vis a vis the subject of algorithms, has not been strengthened. In
fact, the field of the design and analysis of algorithms is now so mature, that
its elementary principles are arguably a part of a basic course on the theory
of computation. Besides, undergraduates today, with their extensive and early
computational experience, are much more aware of the applications of automata
in compilers, for example, and more suspicious when simple models such as the
Turing machine are presented as general computers. Evidently, the treatment
of these subjects needs some updating.

Concretely, these are the major differences from the first edition:

o Rudiments of the design and analysis of algorithms are introduced infor
mally already in Chapter 1 (in connection with closures), and algorith
mic questions are pursued throughout the book. There are sections on
algorithmic problems in connection with finite automata and context-free
grammars in Chapters 2 and 3 (including state minimization and context
free recognition), algorithms for easy variants of NP-complete problems,

Preface

and a section that reviews algorithmic techniques for "coping with NP
completeness" (special case algorithms, approximation algorithms, back
tracking and branch-and-bound, local improvement, and simulated anneal
ing algorithms).

o The treatment of Turing machines in Chapter 4 is more informal, and the
simulation arguments are simpler and more quantitative. A random access
Turing machine is introduced, helping bridge the gap between the clum
siness of Turing machines and the power of computers and programming
languages.

o We included in Chapter 5 On undecidability some recursive function the
ory (up to Rice's Theorem). Grammars and recursive numerical functions
are introduced and proved equivalent to Turing machines earlier, and the
proofs are simpler. The undecidability of problems related to context-free
grammars is proved by a simple and direct argument, without recourse to
the Post correspondence problem. We kept the tiling problem, which we
revisit in the NP-completeness chapter.

o Complexity is done in a rather novel way: In Chapter 6, we define no other
time bounds besides the polynomial ones --thus P is the first complexity
class and concept encountered. Diagonalization then shows that there are
exponential problems not in P. Real-life problems are introduced side-by
side with their language representations (a distinction that is deliberately
blurred), and their algorithmic questions are examined extensively.

o There is a separate NP-completeness chapter with a new, extensive, and,
we think, pedagogically helpful suite of NP-completeness reductions, cul
minating with the equivalence problem for regular expressions --closing
a full circle to the first subject of the book. As mentioned above, the
book ends with a section on algorithmic techniques for "coping with NP
completeness."

o There are no logic chapters in the new edition. This was a difficult decision,
made for two reasons: According to all evidence, these were the least read
and taught chapters of the book; and there are now books that treat this
subject better. However, there is extensive treatment of Boolean logic and
its satisfiability problems in Chapter 6.

o Overall, proofs and exposition have been simplified and made more informal
at some key points. In several occasions, as in the proof of the equivalence
of context-free languages and pushdown automata, long technical proofs of
inductive statements have become exercises. There are problems following
each section.

As a result of these changes, there is now at least one more way of teaching out
of the material of this book (besides the ones outlined in the first edition, and
the ones that emerged from its use): A semester-length course aiming at the

Preface

coverage of the basics of both the theory of computation and algorithms may be
based on a selection of material from Chapters 2 through 7.

We want to express our sincere thanks to all of our students and colleagues
who provided feedback, ideas, errors, and corrections during these fifteen years
it is impossible to come up with a complete list. Special thanks to Martha Sideri
for her help with the revision of Chapter 3. Also, many thanks to our editor,
Alan Apt, and the people at Prentice-Hall-Barbara Kraemer, Sondra Chavez,
and Bayani de Leon- who have been so patient and helpful.

In the present second printing. many errors have been corrected. We are in
debted to Carl Smith. Elaine Rich. Ray Miller. James Grimrnelmann. Rocio Guillen.
Paliath Narendran. Kuo-liang Chung Zhizhang Shen. Hua Ren. Charles Wells. Eric
Thomson. Eric Fried. Jeremy Dawson. and especially Mikkel Nygaard Hansen. for
pointing out errors to us. and to Barbara Taylor-Laino for making sure they were
corrected.

Finally, we would appreciate receiving error reports or other comments.
preferably by electronic mail to the address elements(Olcs.berkeley.edu. Con
firmed errors, corrections. and other information about the book can also be
obtained by writing to this address.

ELEMENTS OF THE
THEORY OF
COMPUTATION

Introduction

Look around you. Computation happens everywhere, all the time, initiated by
everybody, and affecting us all. Computation can happen because computer
scientists over the past decades have discovered sophisticated methods for man
aging computer resources, enabling communication, translating programs, de
signing chips and databases, creating computers and programs that are faster,
cheaper, easier to use, more secure.

As it is usually the case with all major disciplines, the practical successes
of computer science build on its elegant and solid foundations. At the basis
of physical sciences lie fundamental questions such aH what is the nature of
matter? and what is the basis and origin of organic life? Computer science
has its own set of fundamental questions: What is an algorithm? What can and
what cannot be computed? When should an algorithm be considered practically
feasible? For more than sixty years (starting even before the advent of the
electronic computer) computer scientists have been pondering these questions,
and coming up with ingenious answers that have deeply influenced computer
science.

The purpose of this book is to introduce you to these fundamental ideas,
models, and results that permeate computer science, the basic paradigms of our
field. They are worth studying, for many reasons. First, much of modern com
puter science is based more or less explicitly on them -and much of the rest
should ... Also, these ideas and models are powerful and beautiful, excellent
examples of mathematical modeling that is elegant, productive, and of lasting
value. Besides, they are so much a part of the history and the "collective sub
conscious" of our field, that it is hard to understand computer science without
first being exposed to them.

It probably comes as no surprise that these ideas and models are mathemat
ical in nature. Although a computer is undeniably a physical object, it is also

1

2 Introduction

true that very little that is useful can be said of its physical aspects, such as its
molecules and its shape; the most useful abstractions of a computer are clearly
mathematical, and so the techniques needed to argue about them are necessarily
likewise. Besides, practical computational tasks require the ironclad guarantees
that only mathematics provides (we want our compilers to translate correctly,
our application programs to eventually terminate, and so on). However, the
mathematics employed in the theory of computation is rather different from the
mathematics used in other applied disciplines. It is generally discrete, in that
the emphasis is not on real numbers and continuous variables, but on finite sets
and sequences. It is based on very few and elementary concepts, and draws its
power and depth from the careful, patient, extensive, layer-by-Iayer manipula
tion of these concepts -just like the computer. In the first chapter you will
be reminded of these elementary concepts and techniques (sets, relations, and
induction, among others), and you will be introduced to the style in which they
are used in the theory of computation.

The next two chapters, Chapters 2 and 3, describe certain restricted mod
els of computation capable of performing very specialized string manipulation
tasks, such as telling whether a given string, say the word punk, appears in a
given text, such as the collective works of Shakespeare; or for testing whether
a given string of parentheses is properly balanced --like 0 and (())O, but not
)0. These restricted computational devices (called finite-state automata and
pushdown automata, respectively) actually come up in practice as very useful
and highly optimized components of more general systems such as circuits and
compilers. Here they provide fine warm-up exercises in our quest for a formal,
general definition of an algorithm. Furthermore, it is instructive to see how the
power of these devices waxes and wanes (or, more often, is preserved) with the
addition or removal of various features, most notably of non determinism, an in
triguing aspect of computation which is as central as it is (quite paradoxically)
unrealistic.

In Chapter 4 we study general models of algorithms, of which the most ba
sic is the Turing machine,t a rather simple extension of the string-manipulating
devices of Chapters 2 and 3 which turns out to be, surprisingly, a general frame-

t Named after Alan M. Turing (1912~1954), the brilliant English mathematician
and philosopher whose seminal paper in 1936 marked the beginning of the theory
of computation (and whose image, very appropriately, adorns the cover of this
book). Turing also pioneered the fields of artificial intelligence and chess-playing
by computer, as well as that of morphogenesis in biology, and was instrumental
in breaking Enigma, the German naval code during World War II. For more on
his fascinating life and times (and on his tragic end in the hands of official cruelty
and bigotry) see the book Alan Turing: The Enigma, by Andrew Hodges, New
York: Simon Schuster, 1983.

Introduction 3

work for describing arbitrary algorithms. In order to argue this point, known as
the Church- Turing thesis, we introduce more and more elaborate models of com
putation (more powerful variants of the Turing machine, even a random access
Turing machine and recursive definitions of numerical functions), and show that
they are all precisely equivalent in power to the basic Turing machine model.

The following chapter deals with undecidability, the surprising property of
certain natural and well-defined computational tasks to lie provably beyond the
reach of algorithmic solution. For example, suppose that you are asked whether
we can use tiles from a given finite list of basic shapes to tile the whole plane.
If the set of shapes contains a square, or even any triangle, then the answer
is obviously "yes." But what if it consists of a few bizarre shapes, or if some
of the shapes are mandatory, that is, they must be used at least once for the
tiling to qualify? This is surely the kind of complicated question that you would
like to have answered by a machine. In Chapter 5 we use the formalism of
Turing machines to prove that this and many other problems cannot be solved
by computers at all.

Even when a computational task is amenable to solution by some algorithm,
it may be the case that there is no reasonably fast, practically feasible algorithm
that solves it. In the last two chapters of this book we show how real-life com
putational problems can be categorized in terms of their complexity: Certain
problems can be solved within reasonable, polynomial time bounds, whereas
others seem to require amounts of time that grow astronomically, exponentially.
In Chapter 7 we identify a class of common, practical, and notoriously difficult
problems that are called NP-complete (the traveling salesman problem is only
one of them). We establish that all these problems are equivalent in that, if one
of them has an efficient algorithm, then all of them do. It is widely believed that
all NP-complete problems are of inherently exponential complexity; whether
this conjecture is actually true is the famous P -:j; NP problem, one of the most
important and deep problems facing mathematicians and computer scientists
today.

This book is very much about algorithms and their formal foundations.
However, as you are perhaps aware, the subject of algorithms, their analysis
and their design, is considered in today's computer science curriculum quite
separate from that of the theory of computation. In the present edition of this
book we have tried to restore some of the unity of the subject. As a result,
this book also provides a decent, if somewhat specialized and unconventional,
introduction to the subject of algorithms. Algorithms and their analysis are
introduced informally in Chapter 1, and are picked up again and again in the
context of the restricted models of computation studied in Chapters 2 and 3,
and of the natural computational problems that they Hpawn. This way, when
general models of algorithms are sought later, the reader is in a better position
to appreciate the scope of the quest, and to judge its success. Algorithms playa

4 I ntrod uction

major role in our exposition of complexity as well, because there is no better way
to appreciate a complex problem than to contrast it with another, amenable to
an efficient algorithm. The last chapter culminates in a Hection on coping with
NP-completeness, where we present an array of algorithmic techniques that
have been successfully used in attacking NP-complete problems (approximation
algorithms, exhaustive algorithms, local search heuristics, and so on).

Computation is eSHential, powerful, beautiful, challenging, ever-expanding
-and so is its theory. This book only tells the beginning of an exciting Htory.
It is a modest introduction to a few basic and carefully selected topics from the
treasure chest of the theory of computation. We hope that it will motivate its
readerH to seek out more; the references at the end of each chapter point to good
places to start.

1 Sets, Relations, a nd La nguages

1.1 SETS

They say that mathematics is the language of science - it is certainly the lan
guage of the theory of computation, the scientific discipline we shall be studying
in this book. And the language of mathematics deals with sets, and the com
plex ways in which they overlap, intersect, and in fact take part themselves in
forming new sets.

A set is a collection of objects. For example, the collection of the four letters
a, b, c, and d is a set, which we may name L; we write L = {a, b, c, d}. The
objects comprising a set are called its elements or members. For example, b
is an element of the set L; in symbols, bEL. Sometimes we simply say that b
is in L, or that L contains b. On the other hand, z is not an element of L, and
we write z ~ L.

In a set we do not distinguish repetitions of the elements. Thus the set
{red, blue, red} is the same set as {red, blue}. Similarly, the order of the elements
is immaterial; for example, {3, 1, 9}, {9, 3,1}, and {I, 3, 9} are the same set. To
summarize: Two sets are equal (that is, the same) if and only if they have the
same elements.

The elements of a set need not be related in any way (other than happening
to be all members of the same set); for example, {3, red, {d, blue}} is a set with
three clements, one of which is itself a set. A set may have only one element;
it is then called a singleton. For example, {I} is the set with 1 as its only
element; thus {1} and 1 are quite different. There is also a set with no element
at all. Naturally, there can be only one such set: it is called the empty set, and
is denoted by 0. Any set other than the empty set is said to be nonempty.

So far we have specified sets by simply listing all their elements, separated
by commas and included in braces. Some sets cannot be written in this way,

5

6 Chapter 1: SETS. RELATIONS. AND LANGUAGES

because they are infinite. For example, the set N of natural numbers is infinite;
we may suggest its elements by writing N = {D, 1, 2, ... }, using the three dots
and your intuition in place of an infinitely long list. A set that is not infinite is
finite.

Another way to specify a set is by referring to other sets and to properties
that elements mayor may not have. Thus if I = {l, 3, 9} and G = {3,9}, G
may be described as the set of elements of I that are greater than 2. We write
this fact as follows.

G = {x : x E I and x is greater than 2}.

In general, if a set A has been defined and P is a property that elements of A
mayor may not have, then we can define a new set

B = {x: x E A and x has property Pl.

As another example, the set of odd natural numbers is

0= {x : x E N and x is not divisible by 2}.

A set A is a subset of a set B --in symbols, A ~ B- if each element of
A is also an element of B. Thus 0 ~ N, since each odd natural number is a
natural number. Note that any set is a subset of itself. If A is a subset of B
but A is not the same as B, we say that A is a proper subset of B and write
A C B. Also note that the empty set is a subset of every set. For if B is any set,
then 0 ~ B, since each element of 0 (of which there are none) is also an element
of B.

To prove that two sets A and B are equal, we may prove that A ~ Band
B ~ A. Every element of A must then be an element of B and vice versa, so
that A and B have the same elements and A = B.

Two sets can be combined to form a third by various set operations, just
as numbers are eombined by arithmetic operations such as addition. One set
operation is union: the union of two sets is that set having as elements the
objects that are elements of at least one of the two given sets, and possibly of
both. We use the symbol U to denote union, so that

A U B = {x : x E A or x E B}.

For example,
{l, 3, 9} u {3, 5, 7} = {I, 3, 5, 7, 9}.

The intersection of two sets is the eollection of all elements the two sets
have in common; that is,

An B = {x : x E A and x E B}.

1.1: Sets 7

For example,
{I, 3, 9} n {3, 5, 7} = {3},

and
{1,3,9} n {a,b,c,d} = 0.

Finally, the difference of two sets A and B, denoted by A - B, is the set of all
elements of A that are not elements of B.

A - B = {x: x E A and x ~ B}.

For example,
{I, 3, 9} - {3, 5, 7} = {I, 9}.

Certain properties of the set operations follow easily from their definitions.
For example, if A, B, and C are sets, the following laws hold.

Idempotency

Commutativity

Associativity

Distributivity

Absorption

DeMorgan's laws

AUA=A
AnA=A
AUB=BUA
AnB=BnA
(A U B) U C = AU (B U C)
(A n B) n C = An (B n C)
(A U B) n C = (A n C) U (B n C)
(A n B) U C = (A U C) n (B U C)
(A U B) nA = A
(AnB) UA = A
A - (B U C) = (A - B) n (A - C)
A - (B n C) = (A - B) U (A - C)

Example 1.1.1: Let us prove the first of De Morgan's laws. Let

L = A - (B U C)

and
R = (A - B) n (A - C);

we are to show that L = R. We do this by showing (a) L ~ R and (b) R ~ L.

(a) Let x be any element of L; then x E A, but x ~ B and x ~ C. Hence
x is an element of both A - B and A - C, and is thus an element of R.
Therefore L ~ R.
(b) Let x E R; then x is an element of both A - B and A - C, and is
therefore in A but in neither B nor C. Hence x E A but x ~ B U C, so
x E L.

8 Chapter 1: SETS, RELATIONS, AND LANGUAGES

Therefore R ~ L, and we have established that L = R.O

Two sets are disjoint if they have no element in common, that is, if their
intersection is empty.

It is possible to form intersections and unions of more than two sets. If
S is any collection of sets, we write U S for the set whose elements are the
elements of all the sets in S. For example, if S = {{a, b}, {b, c}, {c, d}} then
US = {a, b, c, d}; and if S = {{ n} : n EN}, that is, the collection of all the
singleton sets with natural numbers as elements, then US = N. In general,

u S = {x : x E P for some set PES}.

Similarly, n S = {x : x E P for each set PES}.

The collection of all subsets of a set A is itself a set, called the power set
of A and denoted 2A. For example, the subsets of {c, d} are {c, d} itself, the
singletons {c} and {d} and the empty set 0, so

2{c,d} = {{c,d},{c},{d},0}.

A partition of a non empty set A is a subset II of 2A such that 0 is not an
element of II and such that each element of A is in one and only one set in II.
That is, II is a partition of A if II is a set of subsets of A such that

(1) each element of II is nonempty;
(2) distinct members of II are disjoint;
(3) UII = A.

For example, {{a, b}, {c}, {d}} is a partition of {a, b, c, d}, but {{b, c}, {c, d} }
is not. The sets of even and odd natural numbers form a partition of N.

Problems for Section 1.1

1.1.1. Determine whether each of the following is true or false.
(a) 0 ~ 0
(b) 0 E 0
(c) 0 E {0}
(d) 0 ~ {0}
(e) {a,b} E {a,b,c,{a,b}}
(f) {a, b} ~ {a, b, {a, b}}
(g) {a,b} ~ 2{a,b,{a,b}}

(h) {{a, b}} E 2{a,b,{a,b}}

(i) {a,b,{a,b}}-{a,b}={a,b}

1.2: Relations and Functions 9

1.1.2. '\'hat are these sets? Write them using braces, commas, and numerals only.
(a) ({1,3,5}U{3,1})n{3,5,7}
(b) U{ {3}, {3, 5}, n{ {5, 7}, {7, 9}}}
(c) ({1,2,5} - {5, 7,9})U ({5, 7,9} - {l,2,5})
(d) 2{7,8,9} _ 2{7,9}

(e) 20

1.1.3. Prove each of the following.
(a) AU(BnC)=(AUB)n(AUC)
(b) An (B U C) = (A n B) U (A n C)
(c) A n (A U B) = A
(d) AU(AnB)=A
(e) A - (B n C) = (A - B) U (A - C)

1.1.4. Let S = {a, b, c, d}.
(a) What partition of S has the fewest members? The most members?
(b) List all partitions of S with exactly two members.

liiJ RELATIONS AND FUNCTIONS

Mathematics deals with statements about objects and the relations between
them. It is natural to say, for example, that "less than" is a relation between
objects of a certain kind -namely, numbers- which holds between 4 and 7 but
does not hold between 4 and 2, or between 4 and itself. But how can we express
relations between objects in the only mathematical language we have available
at this point -that is to say, the language of sets? We simply think of a relation
as being itself a set. The objects that belong to the relation are, in essence, the
combinations of individuals for which that relation holds in the intuitive sense.
So the less-than relation is the set of all pairs of numbers such that the first
number is less than the second.

But we have moved a bit quickly. In a pair that belongs to a relation,
we need to be able to distinguish the two parts of the pair, and we have not
explained how to do so. We cannot write these pairs as sets, since {4, 7} is the
same thing as {7, 4}. It is easiest to introduce a new device for grouping objects

called an ordered pair.t
We write the ordered pair of two objects a and b as (a, b); a and b are called

the components of the ordered pair (a, b). The ordered pair (a, b) is not the
same as the set {a,b}. First, the order matters: (a,b) is different from (b,a),

t True fundamentalists would see the ordered pair (a, b) not as a new kind of object,

but as identical to {a, {a,b}}.

10 Chapter 1: SETS, RELATIONS, AND LANGUAGES

whereas {a, b} = {b, a}. Second, the two components of an ordered pair need
not be distinct; (7,7) is a valid ordered pair. Note that two ordered pairs (a, b)
and (c, d) are equal only when a = c and b = d.

The Cartesian product of two sets A and B, denoted by A x B, is the
set of all ordered pairs (a, b) with a E A and b E B. For example,

{ 1, 3, 9} x {b, c, d} = {(1, b), (1, c), (1, d), (3, b), (3 , c), (3, d), (9, b), (9 , c), (9, d)} .

A binary relation on two sets A and B is a subset of Ax B. For example,
{(1,b),(1,c),(3,d),(9,d)} is a binary relation on {1,3,9} and {b,c,d}. And
{(i,j) : i,j EN and i < j} is the less-than relation; it is a subset of N x N
---often the two sets related by a binary relation are identical.

More generally, let n be any natural number. Then if aI, ... , an are any n
objects, not necessarily distinct, (al"'" an) is an ordered tuple; for each
i = 1, ... ,n, ai is the ith component of (al, ... ,an). An ordered m-tuple
(bl, ... ,bm), where m is a natural number, is the same as (al, ... ,an) if and
only ifm = nand ai = bi , for i = 1, ... ,n. Thus (4,4), (4,4,4), ((4,4),4),
and (4, (4,4)) are all distinct. Ordered 2-tuples are the same as the ordered
pairs discussed above, and ordered 3-, 4-, 5-, and 6-tuples are called ordered
triples, quadruples, quintuples, and sextuples, respectively. On the other
hand, a sequence is an ordered n-tuple for some unspecified n (the length of
the sequence). If AI, ... , An are any sets, then the n-fold Cartesian product
Al x '" x An is the set of all ordered n-tuples (al, ... , an), with ai E Ai, for
each i = 1, ... , n. In case all the Ai, are the same set A, the n-fold Cartesian
product A x ... x A of A with itself is also written An. For example, N 2 is the
set of ordered pairs of natural numbers. An n-ary relation on sets AI, ... , An
is a subset of Al x ... x An; 1-, 2-, and 3-ary relations are called unary, binary,
and ternary relations, respectively.

Another fundamental mathematical idea is that of a function. On the intu
itive level, a function is an association of each object of one kind with a unique
object of another kind: of persons with their ages, dogs with their owners, num
bers with their successors, and so on. But by using the idea of a binary relation
as a set of ordered pairs, we can replace this intuitive idea by a concrete defini
tion. A function from a set A to a set B is a binary relation R on A and B
with the following special property: for each element a E A, there is exactly one
ordered pair in R with first component a. To illustrate the definition, let C be
the set of cities in the United States and let 51 be the set of states; and let

RI = {(x,y) : x E C,y E 51, and x is a city in state y},

R2 = {(x,y): x E S,y E C, and y is a city in state x}.

1.2: Relations and Functions 11

Then Rl is a function, since each city is in one and only one state, but R2 is not
a function, since some states have more than one city.t

In general, we use letters such as I, g, and h for functions and we write
I : A I-t B to indicate that I is a function from A to B. We call A the domain
of f. If a is any element of A we write I(a) for that element b of B such that
(a, b) E I; since I is a function, there is exactly one b E B with this property, so
I(a) denotes a unique object. The object I(a) is called the image of a under
f. To specify a function I : A I-t B, it suffices to specify I (a) for each a E A;
for example, to specify the function RI above, it suffices to specify, for each city,
the state in which it is located. If I : A I-t B and AI is a subset of A, then we
define J[A'l = {/(a) : a E A'} (that is, {b: b = I(a) for some a E A'}). We call
J[A'l the image of AI under f. The range of I is the image of its domain.

Ordinarily, if the domain of a function is a Cartesian product, one set of
parentheses is dropped. For example, if I : N x N I-t N is defined so that the
image under I of an ordered pair (m, n) is the sum of m and n, we would write
I(m, n) = m+n rather than I((m, n)) = m+n, simply as a matter of notational
convenience.

If I: Al x A2 X ... x An I-t B is a function, and I(al, ... ,an) = b, where
ai E Ai for i = 1, ... , nand b E B, then we sometimes call al,··., an the
arguments of I and b the corresponding value of I. Thus I may be specified
by giving its value for each n-tuple of arguments.

Certain kinds of functions are of special interest. A function I : A I-t B
is one-to-one if for any two distinct elements a, a' E A, I(a) ::f:- I(a'). For
example, if C is the set of cities in the United States, 5 is the set of states, and
g : 5 I-t C is specified by

g(s) = the capital of state s

for each s E 5, then g is one-to-one since no two states have the same capital.
A function I : A I-t B is onto B if each element of B is the image under I of
some element of A. The function g just specified is not onto C, but the function
RI defined above is onto 5 since each state contains at least one city. Finally
a mapping I : A I-t B is a bijection between A and B if it is both one-to-one
and onto B; for example, if Co is the set of capital cities, then the function
g: 5 I-t Co specified, as before, by

g(s) = the capital of state s

is a bijection between 5 and Co.

t We consider Cambridge, Massachusetts, and Cambridge, Maryland, not the same

city, but different cities that happen to have the same name.

12 Chapter 1: SETS, RELATIONS, AND LANGUAGES

The inverse of a binary relation R t:;;; A x B, denoted R-1 t:;;; B x A, is simply
the relation {(b, a) : (a, b) E R}. For example, the relation R2 defined above is the
inverse of R 1 • Thus, the inverse of a function need not be a function. In the case
of Rl its inverse fails to be a function since some states have more than one city;
that is, there are distinct cities Cl and C2 such that Rl (Cl) = Rl (C2). A function
I : A f-t B may also fail to have an inverse if there is some element b E B such
that I(a) ::f:- b for all a E A. If I: A f-t B is a bijection, however, neither of these
eventualities can occur, and 1-1 is a function -indeed, a bijection between B
and A. Moreover I-l(f(a)) = a for each a E A, and l(f-l(b)) = b for each
bE B.

When a particularly simple bijection between two sets has been specified,
it is sometimes possible to view an object in the domain and its image in the
range as virtually indistinguishable: the one may be seen as a renaming or a
way of rewriting the other. For example, singleton sets and ordered I-tuples are,
strictly speaking, different, but not much harm is done if we occasionally blur
the distinction, because of the obvious bijection I such that I ({ a}) = (a) for
any singleton {a}. Such a bijection is called a natural isomorphism; of course
this is not a formal definition since what is "natural" and what distinctions can
be blurred depend on the context. Some slightly more complex examples should
make the point more clearly.

Example 1.2.1: For any three sets A, B, and C, there is a natural isomorphism
of Ax B x C to (A x B) x C, namely

I(a,b,c) = ((a,b),c)

for any a E A, bE B, and c E C.O

Example 1.2.2: For any sets A and B, there is a natural isomorphism ¢ from

that is, the set of all binary relations on A and B, to the set

{I : I is a function from A to 2B}.

Namely, for any relation R t:;;; A x B, let ¢(R) be that function I : A f-t 2B such
that

I(a) = {b: bE Band (a,b) E R}.

For example, if S is the set of states and R t:;;; S x S contains any ordered
pair of states with a common border, then the naturally associated function
I : S f-t 25 is specified by I (s) = {s' : s' E Sand s' shares a border with s}. 0

1.3: Special Types of Binary Relations 13

Example 1.2.3: Sometimes we regard the inverse of a function I : A f--t B as a
function even when I is not a bijection. The idea is to regard 1-1 t::;; B x A as a
function from B to 2A, using the natural isomorphism described under Example
1.2.2. Thus 1-1 (b) is, for any b E B, the set of all a E A such that I(a) = b.
For example, if Rl is as defined above -the function that assigns to each city
the state in which it is located- then Rll (s), where s is a state, is the set of
all cities in that state.

If Q and R are binary relations, then their composition Q 0 R, or simply
QR, is the relation {(a, b) : for some c, (a, c) E Q and (c, b) E R}. Note that the
composition of two functions I : A f--t Band g : B f--t C is a function h from A
to C such that h(a) = g(f(a)) for each a E A. For example, if I is the function
that assigns to each dog its owner and g assigns to each person his or her age,
then log assigns to each dog the age of its owner.<>

Problems for Sectior 1.2

1.2.1. Write each of the following explicitly.
(a) {I} x {1,2} x {1,2,3}
(b) 0 x {1,2}
(c) 2{1,2} x {I, 2}

1.2.2. Let R = {(a, b), (a, c), (c, d), (a, a), (b, a)}. What is R 0 R, the composition
of R with itself? What is R-1 , the inverse of R? Is R, R 0 R, or R-1 a
function?

1.2.3. Let I : A f--t Band g : B f--t C. Let h : A f--t C be their composition. In
each of the following cases state necessary and sufficient conditions on I
and g for h to be as specified.
(a) Onto.
(b) One-to-one.
(c) A bijection.

1.2.4. If A and B are any sets, we write BA for the set of all functions from A to
B. Describe a natural isomorphism between {O, l}A and 2A.

liiJ SPECIAL TYPES OF BINARY RELATIONS

Binary relations will be found over and over again in these pages; it will be
helpful to have convenient ways of representing them and some terminology
for discussing their properties. A completely "random" binary relation has no
significant internal structure; but many relations we shall encounter arise out

14 Chapter 1: SETS, RELATIONS, AND LANGUAGES

of specific contexts and therefore have important regularities. For example,
the relation that holds between two cities if they belong to the same state has
certain "symmetries" and other properties that are worth noting, discussing,
and exploiting.

In this section we study relattons that exhibit these and similar regularities.
We shall deal only with binary relations on a set and itself. Thus, let A be a
set, and R t::;: A x A be a relation bn A. The relation R can be represented by a
directed graph. Each element of A is represented by a small circle-what we
call a node of the directed graph~ and an arrow is drawn from a to b if and only
if (a, b) E R. The arrows are the edges of the directed graph. For example, the
relation R = {(a,b),(b,a), (a,d),(d,c),(c,c),(c,a)} is represented by the graph
in Figure 1-1. Note in particular the loop from c to itself, corresponding to the
pair (c, c) E R. From a node of a graph to another there is either no edge, or
one edge ~we do not allow "parallel arrows."

a b
~--~

d

Figure 1-1

There is no formal distinction between binary relations on a set A and di
rected graphs with nodes from A. We use the term directed graph when we want
to emphasize that the set on which the relation is defined is of no independent
interest to us, outside the context of this particular relation. Directed graphs,
as well as the undirected graphs soon to be introduced, are useful as models and
abstractions of complex systems (traffic and communication networks, compu
tational structures and processes, etc.). In Section 1.6, and in much more detail
in Chapters 6 and 7, we shall discuss many interesting computational problems
arising in connection with directed graphs.

For another example of a binary relation/directed graph, the less-than-or
equal-to relation::; defined on the natural numbers is illustrated in Figure 1-2.
Of course, the entire directed graph cannot be drawn, since it would be infinite.

A relation R t::;: A x A is reflexive if (a, a) E R for each a E A. The directed
graph representing a reflexive relation has a loop from each node to itself. For
example, the directed graph of Figure 1-2 represents a reflexive relation, but
that of Figure 1-1 does not.

A relation R t::;: A x A is symmetric if (b, a) E R whenever (a, b) E R.

1.3: Special Types of Binary Relations 15

Figure 1-2

In the corresponding directed graph, whenever there is an arrow between two
nodes, there are arrows between those nodes in both directions. For exam
ple, the directed graph of Figure 1-3 represents a symmetric relation. This
directed graph might depict the relation of "friendship" among six people,
since whenever x is a friend of y, y is also a friend of x. The relation of
friendship is not reflexive, since we do not regard a person as his or her own
friend. Of course, a relation could be both symmetric and reflexive; for exam
ple, {(a, b) : a and b are persons with the same father} is such a relation.

a

~: f

Figure 1-3

A symmetric relation without pairs of the form (a, a) is represented as an
undirected graph, or simply a graph. Graphs are drawn without arrowheads,
combining pairs of arrows going back' and forth between the same nodes. For
example, the relation shown in Figure 1-3 could also be represented by the graph
in Figure 1-4.

A relation R is antisymmetric if whenever (a, b) E R and a and bare
distinct, then (b, a) ~ R. For example, let P be the set of all persons. Then

{(a,b) : a,b E P and a is the father of b}

16 Chapter 1: SETS, RELATIONS, AND LANGUAGES ao-r IC

10--1 d

Figure 1-4

is antisymmetric. A relation may be neither symmetric nor antisymmetric; for
example, the relation

{(a, b) ; a, b E P and a is the brother of b}

and the relation represelrted in Figure 1-1 are neither.
A binary relation R is transitive if whenever (a, b) E Rand (b, c) E R,

then (a, c) E R. The relation

{(a, b) ; a, b E P and a is an ancestor of b}

is transitive, since if a is an ancestor of band b is an ancestor of c, then a is
an ancestor of c. So is the less-than-or-equal relation. In terms of the directed
graph representation, transitivity is equivalent to the requirement that whenever
there is a sequence of arrows leading from an element a to an element z, there
is an arrow directly from a to z. For example, the relation illustrated in Figure
1-5 is transitive.

aK77(
b~C

Figure 1-5

A relation that is reflexive, symmetric, and transitive is called an equiva
lence relation. The representation of an equivalence relation by an undirected
graph consists of a number of clusters; within each cluster, each pair of nodes is
connected by a line (see Figure 1-6). The "clusters" of an equivalence relation
are called its equivalence classes. We normally write [aJ for the equivalence
class containing an element a, provided the equivalence relation R is under
stood by the context. That is, [aJ = {b ; (a, b) E R}, or, since R is symmetric,
[aJ = {b ; (b, a) E R}. For example, the equivalence relation in Figure 1-6 has
three equivalence classes, one with four elements, one with three elements, and
one with one element.

1.3: Special Types of Binary Relations 17

Q

Figure 1-6

Theorem 1.3.1: Let R be an equivalence relation on a nonempty set A. Then
the equivalence classes of R constitute a partition of A.

Proof: Let II = {raj : a E A}. We must show that the sets in II are non empty,
disjoint, and together exhaust A. All equivalence classes are nonempty, since
a E [aJ for all a E A, by reflexivity. To show that they are disjoint, consider
any two distinct equivalence classes [aJ and [bJ, and suppose that [aJ n [bJ f::. 0.
Thus there is an element c such that c E [aJ and c E [bJ. Hence (a, c) E Rand
(c, b) E R; since R is transitive, (a, b) E R; and since R is symmetric, (b, a) E R.
But now take any element dE raj; then (d, a) E R and, by transitivity, (d, b) E R.
Hence d E [b], so that [aJ <:;;; [bJ. Likewise [bJ <:;;; raj. Therefore [aJ = [bJ. But this
contradicts the assumption that [aJ and [bJ are distinct.

To see that U II = A, simply notice that each element a of A is in some set
in II -namely, a E [aJ, by reflexivity .•

Thus starting from an equivalence relation R, we can always construct a
corresponding partition II. For example, if

R = {(a, b) : a and b are persons and a and b have the same parents},

then the equivalence classes of R are all groups of siblings. Note that the con
struction of Theorem 1.3.1 can be reversed: from any partition, we can construct
a corresponding equivalence relation. Namely, if II is a partition of A, then

R = {(a, b) : a and b belong in the same set of II}

is an equivalence relation. Thus there is a natural isomorphism between the set
of equivalence relations on a set A and the set of partitions of A.

A relation that is reflexive, antisymmetric, and transitive is called a partial
order. For example,

{ (a, b) : a, b are persons and a is an ancestor of b}

18 Chapter 1: SETS, RELATIONS, AND LANGUAGES

is a partial order (provided we consider eaeh person to be an ancestor of himself
or herself). If R ~ A x A is a partial order, an element a E A is called minimal
if the following is true: (b, a) E R only if a = b. For example, in the ancestor
relation defined above, Adam and Eve are the only minimal elements. A finite
partial order must have at least one minimal element, but an infinite partial
order need not have one.

A partial order R ~ A x A is a total order if, for all a, b E A, either
(a, b) E R or (b, a) E R. Thus the ancestor relation is not a total order since not
any two people are ancestrally related (for example, siblings are not); but the
less-than-or-equal-to relation on numbers is a total order. A total order cannot
have two or more minimal elements.

A path in a binary relation R is a sequence (al, ... , an) for some n ;::: 1
such that (ai, ai+l) E R for i = 1, ... , n - 1; this path is said to be from al to
an. The length of a path (al, ... , an) is n. The path (al, ... , an) is a cycle if
the ai's are all distinct and also (an' al) E R.

Problems for Section 1.3

1.3.1. Let R = {(a, c), (c,e), (e, e), (e, b), (d, b), (d, d)}. Draw directed graphs rep
resenting each of the following.
(a) R
(b) R- I

(c) RUR- I

(d) Rn R- I

1.3.2. Let Rand S be the binary relations on A = {I, ... , 7} with the graphical
representations shown in the next page.
(a) Indicate whether each of Rand S is (i) symmetric, (ii) reflexive, and

(iii) transitive.
(b) Repeat (a) for the relation R U S.

1.3.3. Draw directed graphs representing relations of the following types.
(a) Reflexive, transitive, and antisymmetric.
(b) Reflexive, transitive, and neither symmetric nor antisymmetric.

1.3.4. Let A be a nonempty set and let R ~ A x A be the empty set. Which
properties does R have?
(a) Reflexi vi ty.
(b) Symmetry.
(c) Antisymmetry.
(d) Transitivity.

1.3.5. Let f : A f--t B. Show that the following relation R is an equivalence relation
on A: (a, b) E R if and only if f(a) = f(b).

1.3: Special Types of Binary Relations 19

>------{3

®

1.3.6. Let R <:;:; A x A be a binary relation as defined below. In which cases is R
a partial order'? a total order'?
(a) A = the positive integers; (a, b) E R if and only if b is divisible by a.
(b) A = N x N; ((a, b)(c, d)) E R if and only if a:::: cor b:::: d.
(c) A = N; (a, b) E R if and only if b = a or b = a + l.
(d) A is the set of all English words; (a, b) E R if and only if a is no longer

than b.
(e) A is the set of all English words; (a, b) E R if and only if a is the same

as b or occurs more frequently than b in the present book.

20 Chapter 1: SETS, RELATIONS, AND LANGUAGES

1.3.7. Let Rl and R2 be any two partial orders on the same set.4. Show that
Rl n R2 is a partial order.

1.3.8. (a) Prove that if 5 is any collection of sets, then Rs = {(.4, B) : A, B E
5 and A ~ B} is a partial order.
(b) Let 5 = 2{1,2,3}. Draw a directed graph representing the partial order

Rs defined in (a). Which are the minimal elements of Rs?

1.3.9. Under what circumstances does a directed graph represent a function?

1.3.10. Show that any function from a finite set to itself contains a cycle.

1.3.11. Let 5 be any set, and let P be the set of all partitions of 5. Let R be
the binary relation on P such that (III, II2) E R if and only if for every
51 E III, there is an 52 E II2 such that 51 ~ 52; if (III, II2) E R we say that
III refines II2. Show that R is a partial order on P. What elements of P
are maximal and minimal? Suppose that P were an arbitrary collection of
subsets of 2s , which need not be partitions of 5. Would R necessarily be a
partial order?

G FINITE AND INFINITE SETS

A basic property of a finite set is its size, that is, the number of elements it
contains. Some facts about the sizes of finite sets are so obvious they hardly
need proof. For example, if A ~ B, then the size of A is less than or equal to
that of B; the size of A is zero if and only if A is the empty set.

However, an extension of the notion of "size" to infinite sets leads to dif
ficulties if we attempt to follow our intuition. Are there more multiples of 17
(0,17,34,51,68, ...) than there are perfect squares (0,1,4,9,16, ...)? You are
welcome to speculate on alternatives, but experience has shown that the only
satisfactory convention is to regard these sets as having the same size.

We call two sets A and B equinumerous if there is a bijection I : A f-t

B. Recall that if there is a bijection I : A f-t B, then there is a bijection
1-1 : B f-t A; hence equinumerosity is a symmetrie relation. In fact, as is easily
shown, it is an equivalence relation. For example, {8,red,{0,b}} and {1,2,3}
are equinumerous; let f(8) = 1, I(red) = 2, f({0, b}) = 3. So are the multiples
of17 and the perfect squares; a bijection is given by f(17n) = n 2 for each n E N.

In general, we call a set finite if, intuitively, it is equinumerous with
{I, 2, ... , n} for some natural number n. (For n = 0, {I, ... , n} is the empty set,
so (I) is finite, being equinumerous with itself.) If A and {1, ... ,n} are equinumer-
ous, then we say that the cardinality of A (in symbols, IAI) is n. The cardinality
of a finite set is thus the number of elements in it.

1.4: Finite and Infinite Sets 21

A set is infinite if it is not finite. For example, the set N of natural numbers
is infinite; so are sets such as the set of integers, the set of reals, and the set of
perfect squares. However, not all infinite sets are equinumerous.

A set is said to be countably infinite if it is equinumerous with N, and
countable if it is finite or count ably infinite. A set that is not countable is
uncountable. To show that a set A is count ably infinite we must exhibit a
bijection / between A. and N; equivalently, we need only suggest a way in which
A. can be enumerated as

and so on, since such an enumeration immediately suggests a bijection -just
take /(0) = ao, /(1) = a1,'"

For example, we can show that the union of any finite number of countably
infinite sets is count ably infinite. Let us only illustrate the proof for the case
of three pairwise disjoint, count ably infinite sets; a similar argument works in
general. Call the sets A, B, and C. The sets can be listed as above: A =
{ao, a1, ... }, B = {bo, b1 , ... }, C = {co, C1, ... }, Then their union can be listed
as Au B u C = {ao, bo, Co, a1, b1 , C1, a2, ... }. This listing amounts to a way of
"visiting" all the elements in A U B u C by alternating between different sets,
as illustrated in Figure 1-7. The technique of interweaving the enumeration of
several sets is called "dovetailing" (for reasons that any carpenter can give after
looking at Figure 1-7).

A

B

C

Figure 1-7

The same idea can be used to show that the union of a countably infinite
collection of countably infinite sets is count ably infinite. For example, let us
show that N x N is count ably infinite; note that N x N is the union of {O} x N,
{I} x N, {2} x N, and so on, that is, the union of a count ably infinite collection
of countably infinite sets. Dovetailing must here be more subtle than in the

22 Chapter 1: SETS, RELATIONS, AND LANGUAGES

example above: we cannot, as we did there, visit one element from each set
before visiting the second element of the first set, because with infinitely many
sets to visit we could never even finish the first round! Instead we proceed as
follows (see Figure 1-8).

(1) In the first round, we visit one element from the first set: (0,0).
(2) In the second round, we visit the next element from the first set, (0,1), and

also the first element from the second set, (1,0).
(3) In the third round we visit the next unvisited elements of the first and

second sets, (0,2) and (1,1), and also the first element of the third set,
(2,0).

(4) In general, in the nth round, we visit the nth element of the first set, the
(n - l)st element of the second set, and the first element of the nth set.

(4,3)
{4} x N 0 0 0

{3} x N
(3,3)

0 0

{2} x N
(2,4)

0

{I} x N

{O} x N

(0,0)

Figure 1-8

Another way of viewing this use of dovetailing is to observe that the pair
(i,j) is visited mth, where m = ~[(i + j)2 + 3i + j]; that is to say, the function
f(i,j) = ~[(i + j)2 + 3i + j] is a bijection from N x N to N (see Problem 1.4.4).

At the end of the next section, we present a technique for showing that two
infinite sets are not equinumerous.

1.5: Three Fundamental Proof Techniques 23

Problems for Section 1.4

1.4.1. Prove that the following are countable.
(a) The union of any three countable sets, not necessarily infinite or dis

joint.
(b) The set of all finite subsets of N.

1.4.2. Explicitly give bijections between each of the following pairs.
(a) N and the odd natural numbers.
(b) N and the set of all integers.
(c) Nand N x N x N.

(We are looking for formulas that are as simple as possible and involve only such
operations as addition and multiplication.)

1.4.3. Let C be a set of sets defined as follows,
1.0EC
2. If Sl E C and S2 E C, then {Sl,S2} E C.
3. If Sl E C and S2 E C, then Sl x S2 E C.
4. Nothing is in C except that which follows from (1), (2), and (3).

(a) Explain carefully why it is a consequence of (1-4) that {0, {0}} E C.
(b) Give an example of a set S of ordered pairs such that SEC, and

lSI> 1.
(c) Does C contain any infinite sets? Explain.
(d) Is C countable or uncountable? Explain.

1.4.4. Show that the dovetailing method of Figure 1-8 visits the pair (i, j) mth,
where

1
m= 2[(i+j)2+3i+j].

1.5 THREE FUNDAMENTAL PROOF TECHNIQUES

Every proof is different, since every proof is designed to establish a different
result. But like games of chess or baseball, observation of many leads one to
realize that there are patterns, rules of thumb, and tricks of the trade that
can be found and exploited over and over again. The main purpose of this
section is to introduce three fundamental principles that recur, under various
disguises, in many proofs: mathematical induction, the pigeonhole principle, and
diagonalization.

The Principle of Mathematical Induction: Let A be a set of natural num
bers .mch that

24 Chapter 1: SETS, RELATIONS, AND LANGUAGES

(1) ° E A, and
(2) for each natural number n, if {O, 1, ... , n} ~ A, then n + 1 E A.

Then A = N.

In less formal terms, the principle of mathematical induction states that any
set of natural numbers containing zero, and with the property that it contains
n + 1 whenever it contains all the numbers up to and including n, must in fact
be the set of all natural numbers.

The justification for this principle should be clear intuitively; every natural
number must wind up in A since it can be "reached" from zero in a finite
succession of steps by adding one each time. Another way to argue the same
idea is by contradiction; suppose (1) and (2) hold but A f::. N. Then some
number is omitted from A. In particular, let n be the first number among
0,1,2, ... that is omitted from N.t Then n cannot be zero, since ° E A by (1);
and since 0,1, ... , n - 1 ~ A by the choice of n, then n E A by (2), which is a
contradiction.

In practice, induction is used to prove assertions of the following form: "For
all natural numbers n, property P is true." The above principle is applied to the
set A = {n : P is true of n} in the following way.
(1) In the basis step we show that ° E A, that is, that P is true of 0.
(2) The ind'uction hypothesis is the assumption that for some fixed but arbitrary

n ~ 0, P holds for each natural number 0,1, ... , n.
(3) In the induction step we show, using the induction hypothesis, that P is

true of n + 1. By the induction principle, A is then equal to N, that is, P
holds for every natural number.

Example 1.5.1: Let us show that for any n ~ 0, 1 + 2 + ... + n = n2:tn.
Basis Step. Let n = 0. Then the sum on the left is zero, since there is nothing
to add. The expression on the right is also zero.

Induction Hypothesis. Assume that, for some n ~ 0, 1 + 2 + ... + m = m2:}m
whenever m ~ n.

t This is a use of another principle, called the least number principle, that is ac
tually equivalent to the principle of mathematical induction, so we are not really
"proving" the principle of mathematical induction. The least number principle is:
If A <:;:; N and A i= N, then there is a unique least number n E N - A; that is, a
unique number n such that n 1:. A but 0,1, ... ,n - 1 E A. A somewhat frivolous
example of the least number principle is the fact that there are no uninteresting
numbers. For s:Ippose there were; then there would have to be a least such num
ber, say n. But then n would have the remarkable property of being the least
uninteresting number, which would surely make n interesting. "

1.5: Three Fundamental Proof Techniques 25

Induction Step.

1 + 2 + '" + 71 + (71 + 1) = (1 + 2 + ." + 71) + (71 + 1)

712 +71 = -2- + (71 + 1) (by the induction hypothesis)

712 + 71 + 271 + 2

2
(71+1)2+(71+1)

2

as was to be shown. <>

Example 1.5.2: For any finite set A, 12AI = 21AI; that is, the cardinality of the
power set of A is 2 raised to a power equal to the cardinality of A. We shall
prove this statement by induction on the cardinality of A.

Basis Step. Let A be a set of cardinality 71 = 0. Then A = 0, and 21AI = 2° = 1;
on the other hand, 2A = {0}, and 12AI = 1{0}1 = 1.

Induction Hypothesis. Let 71 > 0, and suppose that 12A I = 21AI provided that
IAI ::;71.

Induction Step. Let A be such that IAI = 71 + 1. Since 71 > 0, A contains at least
one element a. Let B = A - {a}; then IBI = n. By the induction hypothesis,
12BI = 21BI = 2n. Now the power set of A can be divided into two parts, those
sets containing the element a and those sets not containing a. The latter part
is just 2B

, and the former part is obtained by introducing a into each member
of 2B. Thus

2A = 2B U {CU {a}: C E 2B}.

This division in fact partitions 2A into two disjoint equinumerous parts, so the
cardinality of the whole is twice 21B1 , which, by the induction hypothesis, is
2· 2n = 2n +1

, as was to be shown.<>

We next use induction to establish our second fundamental principle, the
pigeonhole principle.

The Pigeonhole Principle: If A and B are finite sets and IAI > IBI, then
there is no one-to-one function from A to B.

In other words, if we attempt to pair off the elements of A (the "pigeons")
with elements of B (the "pigeonholes"), sooner or later we will have to put more
than one pigeon in a pigeonhole.

Proof: Basis Step. Suppose IBI = 0, that is, B = 0. Then there is no function
f : A r-+ B whatsoever, let alone a one-to-one function.

26 Chapter 1: SETS, RELATIONS, AND LANGUAGES

Induction Hypothesis. Suppose that f is not one-to-one, provided that f : A r-+

B, IAI > IBI, and IBI S; n, where n 2 o.
Induction Step. Suppose that f : A r-+ Band IAI > IBI == n + 1. Choose some
a E A (since IAI > IBI = n + 1 2 1, A is nonempty, and therefore such a choice
is possible). If there is another element of A, say a', such that f (a) == f (a'),
then obviously f is not a one-to-one function, and we are done. So, suppose
that a is the only element mapped by f to f (a). Consider then the sets A - { a},
B - {f(a)}, and the function g from A - {a} to B - {f(a)} that agrees with
f on all elements of A - {a}. Now the induction hypothesis applies, because
B - {f(a)} has n elements, and 1..1 - {a}1 = IAI- 1 > IBI- 1 = IB - {f(a)} I·
Therefore, there are two distinct elements of A - {a} that are mapped by g (and
therefore by f) to the same element of B - {b}, and hence f is not one-to-one .•

This simple fact is of use in a surprisingly large variety of proofs. We present
just one simple application here, but point out other cases as they arise in later
chapters.

Theorem 1.5.1: Let R be a binary relation on a finite set A, and let a, bE A.
If there is a path from a to b in R, then there is a path of length at most I AI.

Proof: Suppose that (al' a2, ... ,an) is the shortest path from al = a to an = b,
that is, the path with the smallest length, and suppose that n > IAI. By the
pigeonhole principle, there is an element of A that repeats on the path, say
ai = aj for some 1 S; i < j S; n. But then (al,a2, ... ,ai,aHl, ... ,an) is a
shorter path from a to b, contradicting our assumption that (al, a2, . .. ,an) is
the shortest path from a to b .•

Finally, we come to our third basic proof technique, the diagonalization
principle. Although it is not as widely used in mathematics as the other two
principles we have discussed, it seems particularly well-suited for proving certain
important results in the theory of computation.

The Diagonalization Principle: Let R be a binary relation on a set A, and
let D, the diagonal set for R, be {a: a E A and (a, a) ¢ R}. For each a E A, let
Ra = {b : b E A and (a, b) E R}. Then D is distinct from each Ra.

If A is a finite set, then R can be pictured as a square array; the rows and
columns are labeled with the elements of A and there is a cross in the box with
row labeled a and column labeled b just in case (a, b) E R. The diagonal set D
corresponds to the complement of the sequence of boxes along the main diagonal,
boxes with crosses being replaced by boxes without crosses, and vice versa. The
sets Ra correspond to the rows of the array. The diagonalization principle can
then be rephrased: the complement of the diagonal is different from each row.

1.5: Three Fundamental Proof Techniques 27

Example 1.5.3: Let us consider the relation R {(a, b), (a, d), (b, b), (b, c),
(c, c), (d, b), (d, c), (d, e), (d, I), (e, e), (e, I), (1, a), (1, c), (1, d), (1, e)}; notice that
Ra = {b,d}, Rb = {b,c}, Rc = {c}, Rd = {b,c,e,j},Re = {e./} and RJ =
{a,c,d,e}. All in all, R may be pictured like this:

a b c d e f

a x x

b x x

c x

d x x x x

e x x

f x x x x

The sequence of boxes along the diagonal is

Its complement is

which corresponds to the diagonal set D = {a, d, j}. Indeed, D is different from
each row of the array; for D, because of the way it is constructed, differs from
the first row in the first position, from the second row in the second position,
and so on.O

The diagonalization principle holds for infinite sets as well, for the same
reason: The diagonal set D always differs from the set Ra on the question of
whether a is an element, and hence cannot be the same as Ra for any a.

We illustrate the use of diagonalization by a classic theorem of Georg Cantor
(1845-1918).

28 Chapter 1: SETS, RELATIONS, AND LANGUAGES

Theorem 1.5.2: The set 2N is uncountable.

Proof: . Suppose that 2N is count ably infinite. That is, we assume that that
there is a way of enumerating all members of 2N as

(notice that these are the sets Ra in the statement of the diagonalization prin
ciple, once we consider the relation R = ((i,j) : j E Rd). Now consider the
set

D={nEN:n~Rn}

(this is the the diagonal set). D is a set of natural numbers, and therefore it
should appear somewhere in the enumeration {Ra, R 1 , R 2 , ••• } But D cannot be
Ra, because it differs from it with respect to containing 0 (it does if and only
if Ra does not); and it cannot be Rl because it differs from it with respect to
1; and so on. We must conclude that D does not appear on the enumeration at
all, and this is a contradiction.

To restate the argument a little more formally, suppose that D = Rk for
some k 2: 0 (since D is a set of natural numbers, and {Ra, Rl, R2, ... } was
supposed to be a complete enumeration of all such sets, such a k must exist).
We obtain a contradition by asking whether k E R k :

(a) Suppose the answer is yes, k E Rk. Since D = {n EN: n ~ Rn}, it follows
that k ~ D; but D = Rk, a contradiction.

(b) Suppose the answer is no, k ~ Rk; then kED. But D is R k , so k E Rk,
another contradiction.

We arrived at this contradiction starting from the assumption that 2N is
countably infinite, and continuing by otherwise impeccably rigorous mathemat
ical reasoning; we must therefore conclude that this asumption was in error.
Hence 2N is uncountable .•

For a different rendering of this proof, in terms of establishing that the set
of real numbers in the interval (0,1] is uncountable, see Problem 1.5.11.

Problems for Section 1.5

1.5.1. Show by induction that

n' (n + 1) . (n + 2) . (n + 3)
1·2·3+ 2 ·3·4 + ... + n· (n + 1) . (n + 2) = 4 .

1.6: Closures and Algorithms 29

1.5.2. Show by induction that n4 - 4n2 is divisible by 3 for all n ~ O.

1.5.3. What is wrong with the following purported proof that all horses are the
same color?
Proof by induction on the number of horses:
Basis Step. There is only one horse. Then clearly all horses have the same
color.
Induction Hypothesis. In any group of up to n horses, all horses have the
same color.
Induction Step. Consider a group of n + 1 horses. Discard one horse; by the
induction hypothesis, all the remaining horses have the same color. Now
put that horse back and discard another; again all the remaining horses
have the same color. So all the horses have the same color as the ones that
were not discarded either time, and so they all have the same color.

1.5.4. Show that, if A and B are any finite sets, then there are IBIIAI functions
from A to B.

1.5.5. Prove by induction: Every partial order on a nonempty finite set has at
least one minimal element. Need this statement be true if the requirement
of finiteness is lifted?

1.5.6. Show that in any group of at least two people there are at least two persons
that have the same number of acquaintances within the group. (Use the
pigeonhole principle.)

1.5.7. Suppose we try to prove, by an argument exactly parallel to the proof of
Theorem 1.5.2, that the set of all finite subsets of N is uncountable. What
goes wrong?

1.5.8. Give examples to show that the intersection of two countably infinite sets
can be either finite or countably infinite, and that the intersection of two
uncountable sets can be finite, countably infinite, or uncountable.

1.5.9. Show that the difference of an uncountable set and a countable set is un
countable .

. 5.10. Show that if S is any set, then there is a one-to-one function from S to 25 ,

but not vice versa .

. 5.11. Show that the set of all real numbers in the interval [0,1] is uncountable.
(Hint: It is well known that each such number can be written in binary
notation as an infinite sequence of Os and Is ~such as .0110011100000 ...
Assume that an enumeration of these sequences exists, and create a "diag
onal" sequence by "flipping" the ith bit of the ith sequence.)

30 Chapter 1: SETS, RELATIONS, AND LANGUAGES

B CLOSURES AND ALGORITHMS

Consider the two directed graphs Rand R* in Figure 1-9(a) and (b). R* contains
R; also, R* is reflexive and transitive (whereas R is neither). In fact, it is easy
to see that R* is the smallest possible directed graph that has these properties
--that is, contains R, is reflexive, and is transitive (by "smallest" we mean the
one with the fewest edges). For this reason, R* is called the reflexive transitive
closure of R. We next define this useful concept formally:

(a) (b)

Figure 1-9

Definition 1.6.1: Let R ~ A2 be a directed graph defined on a set A. The
reflexive transitive closure of R is the relation

R* = Ha, b) : a, bE A and there is a path from a to bin R.}

Notice the interesting contrast between the definition "from below" artic
ulated in Definition 1.6.1 and the informal definition "from above" whereby we
introduced the reflexive transitive closure (the smallest relation that contains R
and is reflexive and transitive). It is perhaps intuitively clear that the two defini
tions are equivalent. Towards the end of this section we shall study more closely
such "definitions from above," and the reason why they always correspond to
an alternative definition "from below."

Algorithms

Definition 1.6.1 immediately suggests an algorithm for computing the reflexive
transitive closure R* of any given binary relation R over some finite set A =
{ aI, a2, ... , an} :

1.6: Closures and Algorithms

Initially R* := 0
for i = 1, ... , n do

for each i-tuple (b1 , ... , bi) E Ai do

if (b1 , ... , bi) is a path in R then add (b1 , bi) to R*.

31

The rigorous study of algorithms is in some sense what this book is all
about; but to give a formal definition of an algorithm at this point would be
to spoil the nice story we have to tell. Until a formal general model for algo
rithms is introduced, we shall be treating algorithms informally and somewhat
nonrigorously, gradually increasing our insight and familiarity. It will then be
clear that our definition of an algorithm, when its time comes, indeed captures
correctly this important concept. Accordingly, this section only contains an
intuitive treatment of algorithms and an informal introduction to their analysis.

Fortunately, it is easy to tell an algorithm when you see one. The procedure
we describe above for computing R* is a detailed and unambiguous sequence of
instructions that produces a result -what we call R*. It consists of elementary
steps which we may reasonably assume are easy to carry out: Initializing R* to
0, adding new elements to R*, testing whether (b j , bj+l) E R -this latter has to
be done i-I times in the last line of the algorithm to test whether (b1 , ... ,bi)

is a path of R. We assume that somehow this algorithm operates on elements
of A and R directly, so we need not specify how such sets and relations are
represented for manipulation by the algorithm.

We shall next argue that the relation R* computed by this algorithm is
indeed the reflexive transitive closure of R (that is, the algorithm is correct).
The reason is that our algorithm is just a straightforward implementation of
Definition 1.6.1. It adds to R*, initially empty, all pairs of elements of A that are
connected by a path in R. Possible paths are checked one by one, in increasing
length. We stop at sequences of length n because, by Theorem 1.5.1, if two
nodes of A are connected by a path, then there is a path of length n or less that
connects them.

It is thus clear that our algorithm will eventually terminate with the cor
rect answer. One question that will prove most important and relevant to olir
concerns in this book is, after how many steps will it terminate? In the last part
of the book we shall develop a whole theory of how the answer to such questions
is calculated, and when the result is deemed satisfactory. But let us proceed
informally for now.

What we need is an indication of how many elementary steps, how much
"time," the algorithm requires when presented with a relation R as an input.
As it is reasonable to expect that the algorithm will take more time on larger
input relations, the answer will depend on how large the input relation is -more
concretely, it will depend on the number n of elements in the set A. Thus, we
are seeking a function f : N H N such that, for each n ::::: 1, if the algorithm is

32 Chapter 1: SETS, RELATIONS, AND LANGUAGES

presented with a binary relation R ~ A x A with IAI = n, it will terminate after
at most f(n) steps. As is typical in the analysis of algorithms, we shall allow
I(n) to be a rough overestimate, as long as it has the correct rate 01 growth.
Rates of growth are thus our next topic.

The Growth of Functions
Of these three functions from the set of natural numbers to itself, which is the
largest?

f(n) = 1,000,000· n; g(n) = 10· n3
; h(n) = 2n

Although for all values of n up to about a dozen we have I(n) > g(n) > h(n),
it should be intuitively clear that the correct ranking is the exact opposite; if
we take n large enough we shall eventually have I(n) < g(n) < h(n). In this
subsection we shall develop the concepts necessary for ranking such functions
according to their ultimate potential for producing large values.

Definition 1.6.2: Let I : N f-t N be a function from the natural numbers to
the natural numbers. The order of f, denoted 0U), is the set of all functions
9 : N f-t N with the property that there are positive natural numbers c > 0 and
d > 0 such that, for all n EN, g(n) -:; c· I (n) + d. If in fact this inequality holds
for all n, we say that g(n) E OU(n)) with constants c and d.

If for two functions I,g : N f-t N we have that I E O(g) and 9 E 0U),
then we write 1:0::: g. 1t is clear that the relation :0::: defined on functions is an
equivalence relation: It is reflexive (because always I E 0(1), with constants
1 and 0) and it is symmetric (because the roles of I and 9 are completely
interchangeable in the definition of :0:::). Finally, it is transitive. Because suppose
that IE O(g) with constants c,d, and 9 E O(h) with constants c',d'. Then for
all n,

f(n) -:; c· g(n) + d -:; c· (c' . h(n) + d') + d = (c· c')h(n) + (d + c . d').

Thus I E O(h) with constants c· c' and d + c . d'.
Thus, all functions from the set of natural numbers to itself are partitioned

by :0::: into equivalence classes. The equivalence class of I with respect to :0::: is
called the rate of growth of I.

Example 1.6.1: Consider the polynomial I(n) = 31n2 + 17n + 3. We claim
that I(n) E 0(n2). To see this, notice that n2 ~ n, and so I(n) -:; 48n2 + 3,
and thus I(n) E 0(n2

) with constants 48 and 3. Of course, also n2 E O(l(n))
-with constants 1 and o. Hence n2

:0::: 31n2 + 17n + 3, and the two functions
have the same rate of growth.

Similarly, for any polynomial of degree d with nonnegative coefficients

I() d d-l n = adn + ad-l n + ... + al n + ao

1.6: Closures and Algorithms 33

where ai ~ 0 for all i, and ad > 0, it is easy to prove that fen) E O(nd) -with
constants L~=l ai and ao. All polynomials of the same degree have the same
rate of growth.

Consider then two polynomials with different degrees; do they also have the
same rate of growth? The answer here is negative. Since all polynomials with
the same degree have the same rate of growth, it suffices to consider the two
simplest representatives, namely two polynomials of the form n i and n j , with
0< i < j. Obviously, ni E O(n j) with constants 1 and O. We shall prove that
ni ¢ O(ni).

Suppose for the sake of contradiction that indeed n j E O(ni) with constants
e and d. That is, for all n E N n j -:; eni + d. But this is easily found to be
absurd by trying n = e + d:

To summariz,e, for any two polynomials f and g, if they have the same
degree then f ;;(g. Otherwise, if g has larger degree than f, then f E O(g) but
g ¢ 0(1); that is, g has higher rate of growth than f.0

Example 1.6.2: The previous example suggests that the rate of growth of a
polynomial is captured by its degree. The larger the degree of f the higher the
rate of growth. But there are functions with rate of growth higher than that of
any polynomial. A simple example is the exponential function 2n.

Let us first establish that, for all n EN, n -:; 2n. We shall use induction
on n. The result certainly holds when n = O. So, suppose that it holds for all
natural numbers up to and including n. Then we have

where in the first inequality we used the induction hypothesis, and in the second
we used the fact that 1 -:; 2n for all n.

We shall now extend this easy fact to all polynomials. We shall show that
for any i ~ 1, ni E 0(2n); that is,

(1)

for appropriate constants e and d. Take e = (2i) i and d = (i 2) i. There are
two cases: If n -:; i 2 , then the inequality holds because n; -:; d. If on the other
hand n ~ i 2 , then we shall show that the inequality (1) again holds because now
n i -:; e2n. In proof, let m be the quotient of n divided by i -the unique integer

34 Chapter 1: SETS, RELATIONS, AND LANGUAGES

such that im ::; n < im + i. Then we have

ni ::;(im + ir by thr definition of m

=ii(m + l)i

::;ii(2m+l)i by the inequality n::; 2n applied to n = m + 1

<c2mi by recalling that c = (2i)i

<c2/l again by the definition of m.

Thus the rate of growth of any polynomial is no faster than that of 2n. Can
a polynomial have the same rate of growth as 2n ? If so, then any polynomial
of larger degree would have the same rate of growth as well; and we saw in the
previous example that polynomials of different degrees have different rates of
growth. We conclude that 2n has a higher rate of growth than any polynomial.
Other exponential functions, such as 5n , n n, n!, 2n2 , or, worse, 22n

, have even
higher rates of growth.O

Analysis of Algorithms

Polynomial and exponential rates of growth arise very naturally in the analysis
of algorithms. For example, let us derive a rough estimate of the number of
steps taken by the algorithm for the reflexive transitive closure introduced in
the beginning of this section.

The algorithm examines each sequence (b1 , ... , bi) of length up to n to
determine whether it is a path of R, and, if the answer is "yes," it adds (b1 , bi) tb
R*. Each such repetition can definitely be carried out in n or fewer "elementary
operations" -testing whether (a, b) E R, adding (a, b) to R*. Thus, the total
number of operations can be no more than

which is in O(n/l+l). We have thus detehnined that the rate of growth of the
time requirements of this algorithm is O(nn+l).

This outcome is rather disappointing because it is an exponential function,
with an even higher rate of growth than 2/l. This algorithm is not efficient at
all!

The question then arises, is there a faster algorithm for computing the
reflexive transitive closure? Consider the following:

Initially R* := Ru {(ai,ai) : ai E A}
while there are three elements ai, aj, ak E A such that
(ai, aj), (aj, ak) E R* but (ai, ak) ~ R* do:

add (ai, ak) to R*.

1.6: Closures and Algorithms 35

This algorithm is perhaps even more natural and intuitive than the first
one. It starts by adding to R* all pairs in R and all pairs of the form (ai, ai)
-thus guaranteeing that R* contains R and is reflexive. It then repeatedly looks
for violations of the transitivity property. Presumably this search for violations
proceeds in some organized way not spelled out exactly in the algorithm, say by
running through all values of ai, for each of them through all values of aj, and
finally of ak. If such a violation is discovered then it is corrected by adding an
appropriate pair to R*, and the search for a violation must start all over again.
If at some point all triples are examined and no violation is found, the algorithm
terminates.

When the algorithm terminates, R* will certainly contain R, and it will be
reflexive; besides, since no violation was found in the last iteration of the while
loop, R* must be transitive. Furthermore, R* is the smallest relation that has
all these properties (and it is thus the sought reflexive transitive closure of R).
To see why, suppose that there is a proper subset of R*, call it Ro, that contains
R, and is reflexive and transitive. Consider then the first pair that does not
belong to Ro, and still was added to R* by the algorithm. It cannot be a pair in
R, or a pair of the form (ai, ai), because all these pairs do belong to Ro. Thus,
it must be a pair (ai,ak) such that both (ai,aj) and (aj,ak) belong to R* at
that point -and therefore also to Ro, since (ai, ak) was the first pair in which
the two relations differ. But then Ro, by hypothesis a transitive relation, must
also contain (ai, ak) -a contradiction. Therefore, the result will be the reflexive
transitive closure of R and the algorithm is correct.

But when will the algorithm terminate? The answer is after at most n 2

iterations of the while loop. This is because after each successful iteration a
pair (ai, a k) is added to R* that was not there before, and there are at most
n 2 pairs to be added. Hence the algorithm will terminate after at most n 2

iterations. And since each iteration can be carried out in O(n3) time (all triples
of elements of A need to be searched), the complexity of the new algorithm
is O(n2 x n 3) = O(n5) -a polynomial rate of growth, and thus a spectacular
improvement over our exponential first attempt.

Figure 1-10

Example 1.6.3: Let us see how the new algorithm performs on the graph in
Figure 1-10. We start in the first line with the graph plus all self-loops. Suppose

36 Chapter 1: SETS, RELATIONS, AND LANGUAGES

that the search for triples (ai, aj, ak) that violate transitivity is conducted in the
"natural" order

The first violation thus discovered is (ai, a4, a3), so edge (ai, a3) is added. We
next start checking all triples from the beginning -because the introduction of
(at, a3) may have caused a violation of transitivity in a triple that was examined
in the previous iteration. Indeed, the next violation discovered is (ai, a3, a2),
and so (ai, a2) is added. We start once again from the beginning, this time to
discover a violation for (a4' a3, a2) -edge (a4, a2) is added. In the next iteration
we go through all triples without discovering a violation, and hence we conclude
that we have computed the reflexive transitive closure of the graph.O

This example illustrates the source of our algorithm's relative inefficiency,
reflected in the steep n5 growth of its complexity: A triple (ai,aj,ak) must be
tested again and again for possible violation of transitivity, since a newly inserted
pair may create new violations in triples that have been already checked.

Can we do better? In particular, is there a way to order the triples so that
newly added pairs never introduce transitivity violations in the already examined
triples? Such an ordering would yield an 0(n3

) algorithm, because each triple
would then have to be examined once and only once.

As it turns out, such an ordering is possible: We order all triples (ai, aj, ak)
to be searched in increasing j -the middle index! We first look systematically
for violations of transitivity of the form (ai, ai, ak); those that are found are
corrected by adding the appropriate pairs, and the search continues from the
point it stopped. Once all triples of the form (ai, ai, ak) have been examined,
we look at all triples of the form (ai, a2, ak), then (ai, a3, ak), and so on. The
precise order in which the triples within each group are examined is immaterial.
Once we examine the last group, all triples of the form (ai, an, ak), then we stop,
having computed the reflexive transitive closure. The full algorithm is this:

Initially R*:= RU {(ai,ai): ai E A}
for each j = 1,2, ... , n do

for each i = 1,2, ... ,n and k = 1,2, ... ,n do
if (a;,aj), (aj,ak) E R* but (a;,ak) ~ R* then add (ai,ak) to R*.

Why does this idea work? Consider a path (aio, ai, , ... , aik_l , aik) from
aio to aik, where 1 :S i j :S n for all j. Define the rank of the path to be the
largest integer among il, ... ,ik-l; that is, the largest index appearing in any
intermediate node. Trivial paths, such as edges and self-loops, have rank zero,
as they have no intermediate nodes.

With this terminology we can argue about the correctness of our latest
algorithm. In particular, we can prove the following statement: For each j =

1.6: Closures and Algorithms 37

0, ... , n, immediately after the jth execution of the outer loop, R* contains all
pairs (ai, ak) such that there is a path of rank j or less from ai to ak in R.
Notice that, since all paths have rank at most n, this implies that in the end all
pairs joined by any path will have been added in R*.

The proof of this statement is by induction on j. The result is certainly
true when j = 0 -no iterations yet, and accordingly R* contains only pairs
connected by trivial paths, of rank O. For the induction hypothesis, suppose
that the result holds for j up to some value, say m < n, and consider the
m + 1st iteration. We must show that the m + 1st iteration adds to R* precisely
those pairs that are connected in R by paths of rank equal to m + 1, that is, in
which the highest-indexed node is am+l. If two nodes ai and ak are connected by
such a path, then they must be connected by such a path in which am+l appears
exactly once -if am+l appears more than once, then omit the portion of the path
between the first and the last appearance- while all other intermediate nodes
are indexed m or less. And such a path would consist of a path of rank m or less
from ai to am+l, followed by a path of rank m or less from am+l to ak. By the
induction hypothesis, both pairs (ai, am+d and (am+l' ak) must be in R* at this
point. Therefore, the algorithm will discover that (ai,am+l), (am+l,ak) E R*,
but (ai, ak) i:. R*, and will add the pair (ai, ak) to R*. Conversely, the m + 1st
iteration will add to R* only pairs (ai, aj) that are connected by a path of rank
exactly m + 1. The algorithm is correct.

Example 1.6.3 (continued): If we apply this algorithm to the graph in Figure
1-10, no edges are added when j = 1 and j = 2. Then when j = 3 the edge
(a4, a2) is added, and when j = 4 the edges (al' a3) and (at. a2) are added. <:)

Closure Properties and Closures

The transitive closure of a relation is just one instance of an important style of
defining larger sets (or relations) starting from smaller ones.

Definition 1.6.3: Let D be a set, let n ~ 0, and let R ~ D n +l be a (n + 1)
ary relation on D. Then a subset B of D is said to be closed under R if
bn+l E B whenever bl , ... , bn E Band (b l , ... , bn , bn +l) E R. Any property of
the form "the set B is closed under relations R 1 , R 2, ... , Rm" is called a closure
property of B.

Example 1.6.4: The set of a person's ancestors is closed under the relation

{(a, b) : a and b are persons, and b is a parent of a},

since the parent of an ancestor is also an ancestor.<:)

38 Chapter 1: SETS, RELATIONS, AND LANGUAGES

Example 1.6.5: Let A be a fixed set. We say that set S satisfies the inclusion
property associated with A if A ~ S. Any inclusion property is a closure property,
by taking the relation R to be the unary relation {(a) : a E A} (notice that we
must take n = 0 in Definition 1.6.3).0

Example 1.6.6: We shall occasionally say that a set A ~ D is closed under
a function f : Dk H D. There should be no mystery as to what this means,
since a function is a special kind of relation. For example, we may say that the
natural numbers are closed under addition. 'Ve mean that for any m, n E N we
also have m + n EN-since (m, n, m + n) is a triple in the "addition relation"
over the natural numbers. N is also closed under multiplication, but it is not
closed under subtraction.O

Example 1.6.7: Since relations are sets, we can speak of one relation as being
closed under one or more others. Let D be a set, let Q be the ternary relation
on D2 (that is, a subset of (D x D)3) such that

Q = {((a, b), (b, c), (a, c)) : a, b, c ED}.

Then a relation R ~ D x D is closed under Q if and only if it is transitive. We
conclude that transitivity is a closure property. On the other hand, reflexivity is a
closure property, because it is the inclusion property of the set {(d,d): d E D}.O

A common type of mathematical construction is to pass from a set A to
the minimal set B that contains A and has property P. By "minimal set B" we
mean "a set B that does not properly include any other set B' that also contains
A and has property P." Care must be taken, when a definition of this form is
used, that the set B is well defined, that is, that there exists only one such
minimal set. Since a set of sets can have many minimal elements or none at all,
whether B is well defined depends on the nature of property P. For example, if
P is the property "has either b or c as an element" and A = {a}, then B is not
well defined since both {a, b} and {a, c} are minimal sets with A as a subset and
with property P.

However, as the following result guarantees, if P is a closure property, then
the set B is always well defined:

Theorem 1.6.1: Let P be a closure property defined by relations on a set D,
and let A be a subset of D. Then there is a unique minimal set B that contains
A and has property P.

Proof: Consider the set of all subsets of D that are closed under R 1 , .•• , Rm
and that have A as a subset. We call this set of sets S. We need to show that S

1.6: Closures and Algorithms 39

has a unique minimal element B. It is easy to see that S is non empty, since it
contains the "universe" D -itself trivially closed under each Ri , and certainly
containing A.

Consider then the set B which is the intersection of all sets in S,

B=n S .

First, B is well defined, because it is the intersection of a non-empty collection
of sets. Also, it is easy to see that it contains A -since all sets in S do. We
next claim that B is closed under all Ri'S. Suppose that aI, ... , an; -I E B, and
(al, ... ,an;-I,anJ E R i . Since B is the intersection of all sets in S, it follows
that all sets in S contain aI, ... ,an; -I. But since all sets in S are closed under
R i , they all also contain an;. Therefore B must contain an;, and hence B is
closed under R i . Finally B is minimal, because there can be no proper subset
B' of B that has these properties (B' contains A and is closed under the Ri'S).
Because then B' would be a member of S, and thus it would include B .•

We call B in Theorem 1.6.1 the closure of A under the relations R 1 , •.. , R",.

Example 1.6.8: The set of all your ancestors (where we assume that each person
is an ancestor of her- or himself) is the closure of the singleton set containing only
yourself under the relation {(a, b) : a and b are persons, and b is a parent of a}.<:;

Example 1.6.9: The set of natural numbers N is the closure under addition
of the set {O, I}. N is closed under addition and multiplication, but not under
subtraction. The set of integers (positive, negative, and zero) is the closure of
N under subtraction.<:;

Example 1.6.10: The reflexive, transitive closure of a binary relation Rover
some finite set A defined as

R* = {(a, b) : there is a path in R from a to b}

(recall Definition 1.6.1) richly deserves its name: It turns out that it is the
closure of R under transitivity and reflexivity -both closure properties.

First, R* is reflexive and transitive; for there is a trivial path from a to a
for any element a, and if there is a path from a to b, and a path from b to c,
then there is a path from a to c. Also, clearly R ~ R*, because there is a path
from a to b whenever (a, b) E R.

Finally, R* is minimal. For let (a, b) E R*. Since (a, b) E R*, there is a
path (a = al, ... ,ak = b) from a to b. It follows by induction on k that (a, b)
must belong to any relation that includes R and is transitive and reflexive.

40 Chapter 1: SETS, RELATIONS, AND LANGUAGES

The reflexive, transitive closure of a binary relation is only one of several
possible closures. For example, the transitive closure of a relation R, denoted
R+, is the set of all (a, b) such that there is a nontrivial path from a to b in R
-it need not be reflexive. And the reflexive, symmetric, transitive closure of
any relation (there is no special symbol) is always an equivalence relation. As
we shall show next, there are polynomial algorithms for computing all of these
closures. 0

Any closure property over a finite set can be computed in polynomial time!
Suppose that we are given relations Rl C;;; Dr" ... , Rk C;;; Drk of various arities
over the finite set D, and a set A C;;; D; we are asked to compute the closure A* of
A under R 1 , .•. , R k • This can be carried out in polynomial time by a straightfor
ward generalization of the O(n5) algorithm we devised for the transitive closure
problem in the last subsection:

Initially A* := A
while there is an index i, 1 ~ i S k, and ri elements aj,,"" ajr;_' E A*

and ajr; ED - A* such that (aj,,"" ajr;) E Ri do:
add ajr; to A * .

It is a straightforward extension of our argument for the transitive closure
algorithm, which we leave as an exercise (Problem 1.6.9), to show that the above
algorithm is correct, and that it terminates after O(nr+l) steps, where n = JDJ
and r is the largest integer among rl, ... , rk. It follows that the closure of any
given finite set under any closure property defined in terms of given relations of
fixed arity can be computed in polynomial time. As a matter of fact, in Chapter
7 we shall prove a very interesting converse statement: Any polynomial-time
algorithm can be rendered as the computation of the closure of a set under some
relations of fixed arity. In other words, the polynomial algorithm for closure
shown above is the mother of all polynomial algorithms.

Problems for Section 1.6

1.6.1. Are the following sets closed under the following operations? If not, what
are the respective closures?
(a) The odd integers under multiplication.
(b) The positive integers under division.
(c) The negative integers under subtraction.
(d) The negative integers under multiplication.
(e) The odd integers under division.

1.6.2. What is the reflexive transitive closure R* of the relation R = {(a, b),
(a, c), (a, d), (d, c), (d, e)}? Draw a directed graph representing R* .

1.7: Alphabets and Languages 41

1.6.3. Is the transitive closure of the symmetric closure of a binary relation nec
essarily reflexive? Prove it or give a counterexample.

1.6.4. Let R ~ A x A be any binary relation.
(a) Let Q = {(a,b) : a,b E A and there are paths in R from a to band

from b to a}. Show that Q is an equivalence relation on A.
(b) Let II be the partition of A corresponding to the equivalence relation

Q. Let R be the relation {(S, T) : S, T E II and there is a path in
R from some member of S to some member of T}. Show that R is a
partial order on II.

1.6.5. Give an example of a binary relation that is not reflexive but has a transitive
closure that is reflexive.

1.6.6. Recall the three functions in the beginning of the subsection on rates of
growth:

f(n) = 1,000,000· n; g(n) = 10· n3
; h(n) = 2n.

What are appropriate constants c and d for the inclusions f(n) E O(g(n)),
f(n) E O(h(n)), and g(n) E O(h(n))? What is the smallest integer n such
that the values f(n) .::; g(n) .::; h(n)?

1.6.7. Arrange these functions in order of increasing rate of growth. Identify any
functions with the same rate of growth:

1.6.8. You have five algorithms for a problem, with these running times:

n!

(a) Your computer executes 108 steps per second. What is the largest size n
you can solve by each algorithm in a second?

(b) In a day? (Assume that a day is 105 seconds).
(c) How would the numbers in (a) and (b) change if you bought a computer

ten times faster?

1.6.9. Show that the algorithm given in the end of this section correctly computes
the closure of a set A ~ D under the relations Rl ~ Dr" ... , R~, ~ Dr. in
O(nr) time, where n = IDI, and r is the maximum of the arities rl, ... ,rk.
(Hint: The argument is a straightforward generalization of the one for the
O(n5) transitive closure algorithm.)

42 Chapter 1: SETS, RELATIONS, AND LANGUAGES

B ALPHABETS AND LANGUAGES

The algorithms we studied informally in the last section have much that is
left vague. For example, we have not specified exactly how the relations R
and R* that need to be accessed and modified are represented and stored. In
computational practice, such data are encoded in the computer's memory as
strings of bits or other symbols appropriate for manipulation by a computer.
The mathematical study of the theory of computation must therefore begin by
understanding the mathematics af strings af symbals.

We start with the notion of an alphabet: a finite set of symbols. An ex
ample is, naturally, the Roman alphabet {a, b, ... , z}. An alphabet particularly
pertinent to the theory of computation is the binary alphabet {O, I}. In fact,
any object can be in an alphabet; from a formal point of view, an alphabet is
simply a finite set of any sort. For simplicity, however, we use as symbols only
letters, numerals, and other common characters such as $, or #.

A string over an alphabet is a finite sequence of symbols from the alphabet.
Instead of writing strings with parentheses and commas, as we have written other
sequences, we simply juxtapose the symbols. Thus watermelon is a string over
the alphabet {a,b, ... ,z}, and 0111011 is a string over {O,I}. Also, using the
natural isomorphism, we identify a string of only one symbol with the symbol
itself; thus the symbol a is the same as the string a. A string may have no
symbols at all; in this case it is called the empty string and is denoted bye.
We generally use u, v, x, y, z, and Greek letters to denote strings; for example,
we might use w as a name for the string abc. Of course, to avoid confusion it is
a good practice to refrain from using as symbols letters we also use as names of
strings. The set of all strings, including the empty string, over an alphabet ~ is
denoted by ~*.

The length of a string is its length as a sequence; thus the length of the
string acrd is 4. We denote the length of a string w by Iwl; thus 11011 = 3 and
lei = O. Alternatively (that is, via a natural isomorphism) a string w E ~* can
be considered as a function w : {I, ... , Iwl} H ~; the value of w(j), where 1 ~ j ~
Iwl, is the symbol in the jth position of w. For example, if w = accordion, then
w(3) = w(2) = c, and w(I) = a. This alternative viewpoint brings out a possible
point of confusion. Naturally, the symbol c in the third position is identical to
that in the second. If, however, we need to distinguish identical symbols at
different positions in a string, we shall refer to them as different occurrences
of the symbol. That is, the symbol a E ~ occurs in the jth position of the string
w E ~* if w(j) = a.

Two strings over the same alphabet can be combined to form a third by
the operation of concatenation. The concatenation of strings x and y, written
x 0 y or simply xy, is the string x followed by the string y; formally, w = x 0 y if

1.7: Alphabets and Languages 43

and only if Iwl = Ixl + IYI, w(j) = x(j) for j = 1, ... , lxi, and w(lxl + j) = y(j)
for j = 1, ... , Iyl. For example, 010001 = 01001, and beach 0 boy = beachboy.
Of course, woe = eo w = w for any string w. And concatenation is associative:
(wx)y = w(xy) for any strings w, x, and y. A string v is a substring of a string
w if and only if there are strings x and y such that w = xvy. Both x and y could
be e, so every string is a substring of itself; and taking x = wand v = y = e, we
see that e is a substring of every string. If w = xv for some x, then v is a suffix
of w; if w = vy for some y, then v is a prefix of w. Thus road is a prefix of
roadrunner, a suffix of abroad, and a substring of both these and of broader. A
string may have several occurrences of the same substring; for example, ababab
has three occurrences of ab and two of abab.

For each string wand each natural number i, the string wi is defined as

wO =e, the empty string

W
i +l =w i

0 w for each i 2: 0

Thus w l = w, and do2 = dodo.
This definition is our first instance of a very common type: definition

by induction. We have already seen proofs by induction, and the underlying
idea is much the same. There is a basis case of the definition, here the definition
of Wi for i = 0; then when that which is being defined has been specified for
all j ~ i, it is defined for j = i + 1. In the example above, Wi+l is defined in
terms of wi. To see exactly how any case of the definition can be traced back
to the basis case, consider the example of do2 • According to the definition (with
i = 1), (do)2 = (do)l odo. Again according to the definition (with i = 0) (do)l =
(do)O odo. Now the basis case applies: (do)O = e. So (do)2 = (eodo) odo = dodo.

The reversal of a string w, denoted by w R , is the string "spelled back
wards": for example, reverseR = esrever. A formal definition can be given by
induction on the length of a string:

(1) If w is a string of length 0, then w R = w = e.

(2) If w is a string of length n + 1 > 0, then w = ua for some a E ~, and
w R = auR .

Let us use this definition to illustrate how a proof by induction can depend
on a definition by induction. We shall show that for any strings wand x,
(wx)R = xRw R. For example, (dogcat)R = (cat)R(dog)R = tacgod. We proceed
by induction on the length of x.

Basis Step. Ixl = O. Then x = e, and (wx)R = (we)R = w R = ew R = eRwR =
xRw R.

Induction Hypothesis. If Ixl ~ n, then (wx)R = xRwR .

44 Chapter 1: SETS, RELATIONS, AND LANGUAGES

Induction Step. Let Ixl = n + 1. Then x = ua for some u E ~* and a E ~ such
that lui = n.

(wx)R =(w(ua))R since x = ua

=((wu)a)R since concatenation is associative

=a(wu)R by the definition of the reversal of (wu)a

=auRw R by the induction hypothesis

= (ua) RwR by the definition of the reversal of ua

=xRw R since x = ua

Now we move from the study of individual strings to the study of finite and
infinite sets of strings. The simple models of computing machines we shall soon
be studying will be characterized in terms of regularities in the way they handle
many different strings, so it is important first to understand general ways of
describing and combining classes of strings.

Any set of strings over an alphabet ~ --that is, any subset of ~'- will be
called a language. Thus ~', 0, and ~ are languages. Since a language is simply
a special kind of set, we can specify a finite language by listing all its strings.
For example, {aba, czr, d, f} is a language over {a, b, ... ,z}. However, most
languages of interest are infinite, so that listing all the strings is not possible.
Languages that might be considered are {O,OI,Oll,OIll, ... }, {w E {O,I}* :
w has an equal number of o's and I's}, and {w E ~* : w = w R}. Thus we shall
specify infinite languages by the scheme

L = {w E ~* : w has property P},

following the general form we have used for specifying infinite sets.
If ~ is a finite alphabet, then ~. is certainly infinite; but is it a countably

infinite set? It is not hard to see that this is indeed the case. To construct a bi
jection f : N f-t ~* , first fix some ordering of the alphabet, say ~ = {aI, ... , an},
where aI, ... , an are distinct. The members of ~* can then be enumerated in
the following way.

(1) For each k ~ 0, all strings of length k are enumerated before all strings of
length k + 1.

(2) The n k strings oflength exactly k are enumerated lexicographically, that
is, ai, ... aik precedes aj, ... ajk' provided that, for some Tn, ° :s Tn :s k - 1,
if = if for £ = 1, ... , Tn, and im+l < jrn+l'

For example, if ~ = {a, I}, the order would be as follows:

e,O,I,OO,OI,IO,II,OOO,OOI,OIO,OII, ...

1.7: Alphabets and Languages 45

If ~ is the Roman alphabet and the ordering of ~ = {al, ... , a26} is the usual
one {a, ... , z}, then the lexicographic order for strings of equal length is the
order used in dictionaries; however, the ordering described by (1) and (2) for all
strings in ~* differs from the dictionary ordering by listing shorter strings before
longer ones.

Since languages are sets, they can be combined by the set operations of
union, intersection, and difference. When a particular alphabet ~ is understood
from context, we shall write A -the complement of A- instead of the differ
ence ~. - A.

In addition, certain operations are meaningful only for languages. The first
of these is the concatenation of languages. If LI and L2 are languages over
~, their concatenation is L = LI oL2, or simply L = L 1L 2, where

L = {w E ~* : W = x 0 y for some x E LI and y E L2}.

For example, if ~ = {O, I}, LI = {w E ~* : W has an even number of O's} and
L2 = {w : W starts with a 0 and the rest of the symbols are 1 's}, then LI 0 L2 =
{w : W has an odd number of O's}.

Another language operation is the Kleene star of a language L, denoted
by L *. L * is the set of all strings obtained by concatenating zero or more strings
from L. (The concatenation of zero strings is e, and the concatenation of one
string is the string itself.) Thus,

L * = {w E ~* : W = WI 0 ... 0 Wk for some k ::::: 0 and some WI •... ,Wk E L}.

For example, if L = {01, 1, 100}, then 110001110011 E L*, since 110001110011 =
1 0 100001 0 1 0 1000 1 0 1, and each of these strings is in L.

Note that the use of ~* to denote the set of all strings over ~ is consistent
with the notation for the Kleene star of ~, regarded as a finite language. That
is, if we let L = ~ and apply the definition above, then ~* is the set of all strings
that can be written as WI 0 ... 0 Wk for some k ::::: 0 and some WI, ... ,Wk E ~.
Since the Wi are then simply individual symbols in ~, it follows that ~* is, as
originally defined, the set of all finite strings whose symbols are in ~.

For another extreme example, observe that 0* = {e}. For let L = 0 in the
above definition. The only possible concatenation WI 0 W2 0 ... 0 Wk with k ::::: 0
and WI, ... ,Wk E L is that with k = 0, that is, the concatenation of zero strings;
so the sole member of L' in this case is e!

As a final example, let us show that if L is the language {w E {O, I} * :
W has an unequal number of O's and l's}, then L* = {0,1}*. To see this, first
note that for any languages LI and L 2, if LI ~ L 2, then Li ~ L2 as is evident
from the definition of Kleene star. Second, {O, I} ~ L, since each of 0 and 1,
regarded as a string, has an unequal number of O's and 1 'so Hence {O, 1}* ~ L *;
but L' ~ {O, I}' by definition, so L * = {O, 1}*.

46 Chapter 1: SETS, RELATIONS, AND LANGUAGES

We write L+ for the language LL*. Equivalently, L+ is the language

{w E ~* : W = WI 0 W2 0 ... 0 Wk for some k 2: 1 and some WI, ... , Wk E L}.

Notice that L+ can be considered as the closure of L under the function of
concatenation. That is, L+ is the smallest language that includes L and all
strings that are concatenations of strings in L.

Problems for Section 1.7

1. 7.1. (a) Prove, using the definition of concatenation given in the text, that con
catenation of strings is associative.
(b) Give an inductive definition of the concatenation of strings.
(c) Using the inductive definition from (b), prove that the concatenation

of strings is associative.

1. 7 .2. Prove each of the following using the inductive definition of reversal given
in the text.
(a) (wR)R = W for any string w.

(b) If v is a substring of w, then vR is a substring of w R .

(c) (wi)R = (wR)i for any string wand i 2: O.

1. 7.3. Let ~ = {aI,' .. ,a26} be the Roman alphabet. Carefully define the binary
relation < on ~* such that x < y if and only if x would precede y in a
standard dictionary.

1. 7.4. Show each of the following.
(a) {e}* = {e}
(b) For any alphabet ~ and any L ~ ~*, (L*)* = L*.
(c) Ifa and b are distinct symbols, then {a,b}* = {a}*({b}{a}*)*.
(d) If ~ is any alphabet, e E LI ~~. and e E L2 ~ ~*, then (LI~*L2)* =

~*.

(e) For any language L, 0L = L0 = 0.

1.7.5. Give some examples of strings in, and not in, these sets, where ~ = {a, b}.
(a) {w: for some u E ~~, w = uuRu}

(b) {w: ww = www}
(c) {w: for some u,v E ~*, uvw = wvu}
(d) {w: for some u E ~*, www = uu}

1.7.6. Under what circumstances is L+ = L* - {e}?

1.7.7. The Kleene star of a language L is the closure of L under which relations?

1.8: Finite Representations of Languages 47

1.8 FINITE REPRESENTATIONS OF LANGUAGES

A central issue in the theory of computation is the representation of languages
by finite specifications. Naturally, any finite language is amenable to finite rep
resentation by exhaustive enumeration of all the strings in the language. The
issue becomes challenging only when infinite languages are considered.

Let us be somewhat more precise about the notion of "finite representation
of a language." The first point to be made is that any such representation must
itself be a string, a finite sequence of symbols over some alphabet ~. Second, we
certainly want different languages to have different representations, otherwise
the term representation could hardly be considered appropriate. But these two
requirements already imply that the possibilities for finite representation are
severely limited. For the set ~* of strings over an alphabet ~ is count ably
infinite, so the number of possible representations of languages is count ably
infinite. (This would remain true even if we were not bound to use a particular
alphabet ~, so long as the total number of available symbols was countably
infinite.) On the other hand, the set of all possible languages over a given
alphabet ~ -that is, 2E

* - is uncountably infinite, since 2N , and hence the
power set of any count ably infinite set is not count ably infinite. With only a
countable number of representations and an uncountable number of things to
represent, we are unable to represent all languages finitely. Thus, the most we
can hope for is to find finite representations, of one sort or another, for at least
some of the more interesting languages.

This is our first result in the theory of computation: No matter how pow
erful are the methods we use for representing languages, only countably many
languages can be represented, so long as the representations themselves are fi
nite. There being uncountably many languages in all, the vast majority of them
will inevitably be missed under any finite representational scheme.

Of course, this is not the last thing we shall have to say along these lines.
We shall describe several ways of describing and representing languages, each
more powerful than the last in the sense that each is capable of describing
languages the previous one cannot. This hierarchy does not contradict the fact
that all these finite representational methods are inevitably limited in scope for
the reasons just explained.

We shall also want to derive ways of exhibiting particular languages that
cannot be represented by the various representational methods we study. We
know that the world of languages is inhabited by vast numbers of such unrep
resent able specimens, but, strangely perhaps, it can be exceedingly difficult to
catch one, put it on display, and document it. Diagonalization arguments will
eventually assist us here.

To begin our study of finite representations, we consider expressions -

48 Chapter 1: SETS, RELATIONS, AND LANGUAGES

strings of symbols- that describe how languages can be built up by using the
operations described in the previous section.

Example 1.8.1: Let L = {w E {O,I}*: whastwoorthreeoccurrencesof1,
the first and second of which are not consecu ti ve }. This language can be de
scribed using only singleton sets and the symbols U, 0, and * as

{O}* 0 {l} 0 {O}* 0 {O} 0 {I} 0 {Or 0 «{l} 0 {O}*) U 0*).

It is not hard to see that the language represented by the above expression is
precisely the language L defined above. The important thing to notice is that the
only symbols used in this representation are the braces { and }, the parentheses
(and), 0, 0, 1, *, 0, and U. In fact, we may dispense with the braces and 0 and
write simply

L = 0*10*010*(10* U 0*).

Roughly speaking, an expression such as the one for L in Example 1.8.1 is
called a regular expression. That is, a regular expression describes a language
exclusively by means of single symbols and 0, combined perhaps with the symbols
U and *, possibly with the aid of parentheses. But in order to keep straight the
expressions about which we are talking and the "mathematical English" we are
using for discussing them, we must tread rather carefully. Instead of using U,

*, and 0, which are the names in this book for certain operations and sets, we
introduce special symbols U, *, and 0, which should be regarded for the moment
as completely free of meaningful overtones, just like the symbols a, b, and 0 used
in earlier examples. In the same way, we introduce special symbols (and)
instead of the parentheses (and) we have been using for doing mathematics.
The regular expressions over an alphabet I;* are all strings over the alphabet
I; U {(,), 0, U,*} that can be obtained as follows.

(1) 0 and each member of I; is a regular expression.
(2) If a and f3 are regular expressions, then so is (af3).
(3) If a and f3 are regular expressions, then so is (aUf3).
(4) If a is a regular expression, then so is a*.
(5) Nothing is a regular expression unless it follows from (1) through (4).

Every regular expression represents a language, according to the interpreta
tion of the symbols U and * as set union and Kleene star, and of juxtaposition of
expressions as concatenation. Formally, the relation between regular expressions
and the languages they represent is established by a function £, such that if a
is any regular expression, then £(a) is the language represented by a. That is,
£ is a function from strings to languages. The function £ is defined as follows.

1.8: Finite Representations of Languages

(1) £(0) = 0, and £(a) = {a} for each a E I:.
(2) If a and (3 are regular expressions, then C«O'(3)) = £(O').c((3).
(3) If a and (3 are regular expressions, then C«O'U(3)) = £(0') u C«(3).
(4) If a is a regular expression, then £(0'*) = £(0')*.

49

Statement 1 defines £(0') for each regular expression a that consists of a
single symbol; then (2) through (4) define .c(o') for regular expres
sions of some length in terms of £(0") for one or two regular expressions a' of
smaller length. Thus every regular expression is associated in this way with
some language.

Example 1.8.2: What is £«(aUb)*a))? We have the following.

£«(aUb)*a)) =C«aUb)*)C(a) by(2)

=£«aUb)*){a} by (1)

=£«aUb))*{a} by (4)

=(.c(a) U £(b))*{a} by (3)

=({a} U {b})*{a} by (1) twice

={a,b}*{a}

={w E {a,br : wends with an a}

Example 1.8.3: What language is represented by (c*(aU(bc*))*)? This regular
expression represents the set of all strings over {a, b, c} that do not have the
substring ac. Clearly no string in £((c* (aU (bc*)) *)) can contain the substring
ac, since each occurrence of a in such a string is either at the end of the string,
or is followed by another occurrence of a, or is followed by an occurrence of b.
On the other hand, let w be a string with no substring ac. Then w begins with
zero or more c's. If they are removed, the result is a string with no sub-string
ac and not beginning with c. Any such string is in £«aU(bc*))); for it can
be read, left to right, as a sequence of a's, b's, and c's, with any blocks of c's
immediately following b's (not following a's, and not at the beginning of the
string). Therefore wE C«c*(aU(bc*))*)).O

Example 1.8.4: (O*U«(O*(1U(ll)))«OO*)(1U(ll)))*)O*)) represents the set
of all strings over {O, I} that do not have the substring 111.0

Every language that can be represented by a regular expression can be
represented by infinitely many of them. For example, a and (O'U0) always rep
resent the same language; so do «O'U(3)U,) and (O'U«(3U,)). Since set union

50 Chapter 1: SETS, RELATIONS, AND LANGUAGES

and concatenation are associative operations --that is, since (L1 U L2) U L3 =
L1 U (L2 U L3) for all L1, L2 , L3, and the same for concatenation- we nor
mally omit the extra (and) symbols in regular expressions; for example, we
treat aUbUc as a regular expression even though "officially" it is not. For an
other example, the regular expression of Example 1.8.4 might be rewritten as
O*UO*(lU11)(OO* (lUll))*0*.

Moreover, now that we have shown that regular expressions and the lan
guages they represent can be defined formally and unambiguously, we feel free,
when no confusion can result, to blur the distinction between the regular expres
sions and the "mathematical English" we are using for talking about languages.
Thus we may say at one point that a' b' is the set of all strings consisting of
some number of a's followed by some number of b's -to be precise, we should
have written {a}' 0 {b}*. At another point, we might say that a'b' is a regu
lar expression representing that set; in this case, to be precise, we should have
written (a*b*).

The class of regular languages over an alphabet I; is defined to consist of
all languages L such that L = Lea) for some regular expression a over I;. That is,
regular languages are all languages that can be described by regular expressions.
Alternatively, regular languages can be thought of in terms of closures. The class
of regular languages over I; is precisely the closure of the set of languages

{{O'} : 0' E I;} U {0}

with respect to the functions of union, concatenation, and Kleene star.
We have already seen that regular expressions do describe some nontrivial

and interesting languages. Unfortunately, we cannot describe by regular expres
sions some languages that have very simple descriptions by other means. For
example, {on 1 n : n ~ O} will be shown in Chapter 2 not to be regular. Surely
any theory of the finite representation of languages will have to accommodate at
least such simple languages as this. Thus regular expressions are an inadequate
specification method in general.

In search of a general method for finitely specifying languages, we might
return to our general scheme

L = {w E I;' : w has property P}.

But which properties P should we entail? For example, what makes the pre
ceding properties, "w consists of a number of O's followed by an equal number
of 1 's" and "w has no occurrence of 111" such obvious candidates? The reader
may ponder about the right answer; but let us for now allow algorithmic prop
erties, and only these. That is, for a property P of strings to be admissible as a
specification of a language, there must be an algorithm for deciding whether a
given string belongs to the language. An algorithm that is specifically designed,

1.8: Finite Representations of Languages 51

for some language L, to answer questions of the form "Is string w a member of
L?" will be called a language recognition device. For example, a device for
recognizing the language

L = {w E {O, 1} * : w does not have 111 as a substring}.

by reading strings, a symbol at a time, from left to right, might operate like this:

Keep a count. which starts at zero and is set back to zero every time a 0 is encoun
tered in the input; add one every time a 1 is encountered in the input; stop with a
No answer if the count ever reaches three. and stop with a Yes answer if the whole
string is read without the count reaching three.

An alternative and somewhat orthogonal method for specifying a language
is to describe how a generic specimen in the language is produced. For example,
a regular expression such as (e U b U bb)(a U ab U abb)* may be viewed as a way
of generating members of a language:

To produce a member of L. first write down either nothing. or b. or bb; then write
down a or abo or abb. and do this any number of times, including zero; all and only
members of L can be produced in this way.

Such language generators are not algorithms, since they are not designed
to answer questions and are not completely explicit about what to do (how are we
to choose which of a, ab, or abb is to be written down?) But they are important
and useful means of representing languages all the same. The relation between
language recognition devices and language generators, both of which are types
of finite language specifications, is another major subject of this book.

Problems for Section 1.8

1.8.1. What language is represented by the regular expression ((a*a)b)Ub)?

1.8.2. Rewrite each of these regular expressions as a simpler expression represent
ing the same set.
(a) 0*Ua*Ub*U(aUb)*
(b) ((a*b*)*(b*a*)*)*
(c) (a*b)*U(b*a)*
(d) (aUb)*a(aUb)*

1.8.3. Let I; = {a, b}. Write regular expressions for the following sets:
(a) All strings in I;* with no more than three a's.
(b) All strings in I;* with a number of a's divisible by three.
(c) All strings in I;* with exactly one occurrence of the substring aaa.

1.8.4. Prove that if L is regular, then so is L' = {w : uw E L for some string u}.
(Show how to construct a regular expression for L' from one for L.)

52 Chapter 1: SETS, RELATIONS, AND LANGUAGES

1.8.5. Which of the following are true? Explain.
(a) baa E a*b*a*b*
(b) b*a* n a*b* = a* U b*
(c) a*b*nb*c*=0
(d) abcd E (a(cd)*b)*

1.8.6. The star height h(a) of a regular expression a is defined by induction as
follows.

h(0) =0

h(a) =0 for each a E I;

h(aUj3) =h(a;3) = the maximum of h(a) and h(j3).

h(a*) =h(a) + 1

For example, if a = «(ab)*Ub*)*Ua*), then h(a) = 2. Find, in each case, a
regular expression which represents the same language and has star height
as small as possible.
(a) (abc)*ab)*
(b) (a(ab*c)*)*
(c) (c(a*b)*)*
(d) (a*Ub*Uab) *
(e) (abb*a)*

1.8.7. A regular expression is in disjunctive normal form if it is of the form
(aJ Ua2 U ... Uan) for some n ;::: 1, where none of the ai's contains an oc
currence of U. Show that every regular language is represented by one in
disjunctive normal form.

REFERENCES

An excellent source on informal set theory is the book

o P. Halmos Naive Set Theory, Princeton, N.J.: D. Van Nostrand, 1960.
A splendid book on mathematical induction is

o G. Polya Induction and Analogy in Mathematics, Princeton, N.J.: Princeton
University Press, 1954.

A number of examples of applications of the pigeonhole principle appear in the first
chapter of

o C. L. Liu Topics in Combinatorial Mathematics, Buffalo, N.Y.: Mathematical
Association of America, 1972.

Cantor's original diagonalization argument can be found in

o G. Cantor Contributions to the Foundations of the Theory of Transfinite Num
bers New York: Dover Publications, 1947.

The V-notation and severol variants were introduced in

References 53

o D. E. Knuth "Big omicron and big omega and big theta," ACM SIGACT News,
8 (2), pp. 18-23, 1976.

The O(n3) algorithm for the reflexive-transitive closure is from

o S. Warshall "A theorem on Boolean matrices," Journal of the ACM, 9, 1, pp. 11-
12, 1962.

Two books on algorithms and their analysis are

o T. H. Cormen, C. E. Leiserson, R. L. Rivest Introduction to Algorithms, Cam
bridge, Mass.: The MIT Press., 1990, and

o G. Brassard, P. Bratley Fundamentals of Algorithms, Englewood Cliffs, N.J.:
Prentice Hall, 1996.

Two advanced books on language theory are

o A. Salomaa Formal Languages New York: Academic Press, 1973.

o M. A. Harrison Introduction to Formal Language Theory, Reading, Massach.:
Addison-Wesley, 1978.

Finite Automata

2.1 DETERMINISTIC FINITE AUTOMATA

This book is about mathematical models of computers and algorithms. In this
and the next two chapters we shall define increasingly powerful models of com
putation, more and more sophisticated devices for accepting and generating lan
guages. Seen in the light of the whole development of the book, this chapter will
seem a rather humble beginning: Here we take up a severely restricted model
of an actual computer called a finite automaton,t or finite-state machine.
The finite automaton shares with a real computer the fact that it has a "central
processing unit" of fixed, finite capacity. It receives its input as a string, deliv
ered to it on an input tape. It delivers no output at all, except an indication
of whether or not the input is considered acceptable. It is, in other words, a
language recognition device, as described at the end of Chapter 1. What makes
the finite automaton such a restricted model of real computers is the complete
absence of memory outside its fixed q:mtral processor.

Such a simple computational model might at first be considered too trivial
to merit serious study: of what use is a computer with no memory? But a finite
automaton is not really without memory; it simply has a memory capacity that
is fixed "at the factory" and cannot thereafter be expanded. It can be argued
that the memory capacity of any computer is limited -by budget constraints,
by physical limits, ultimately by the size of the universe. Whether the best
mathematical model for a computer is one that has finite memory or one that
has unbounded memory is an interesting philosophical question; we shall study
both kinds of models, starting with the finite one and later dwelling much more

t An automaton (pronounced: o-to-ma-ton, plural: automata) is a machine de

signed to respond to encoded instructions; a robot.

55

56 Chapter 2: FINITE AUTOMATA

on the unbounded one.
Even if one thinks, as we do, that the correct way to model computers and

algorithms is in terms of an unbounded memory capacity, we should first be
sure that the theory of finite automata is well understood. It turns out that
their theory is rich and elegant, and when we understand it we shall be in a
better position to appreciate exactly what the addition of auxiliary memory
accomplishes in the way of added computational power.

A further reason for studying finite automata is their applicability to the
design of several common types of computer algorithms and programs. For
example, the lexical analysis phase of a compiler (in which program units such
as 'begin' and '+' are identified) is often based on the simulation of a finite
autotnaton. Also, the problem of finding an occurrence of a string within another
--for example, whether any of the strings air', water, earth, and fire occur in the
text of Elements of the Theory of Computation t - can also be solved efficiently
by methods originating from the theory of finite automata.

Input
tape

Finite
control

Figure 2-1

Let us now describe the operation of a finite automaton in more detail.
Strings are fed into the device by means of an input tape, which is divided into
squares, with one symbol inscribed in each tape square (see Figure 2-1). The
main part of the machine itself is a "black box" with innards that can be, at
any specified moment, in one of a finite number of distinct internal states. This
black box -called the finite control- can sense what symbol is written at any
position on the input tape by means of a movable reading head. Initially, the
reading head is placed at the leftmost square of the tape and the finite control is
set in a designated initial state. At regular intervals the automaton reads one
symbol from the input tape and then enters a new state that depends only on the

t All four of them do, three of them outside this page.

2.1: Deterministic Finite Automata 57

current state and the symbol just read -this is why we shall call this device a
deterministic finite automaton, to be contrasted to the nondeterministic version
introduced in the next section. After reading an input symbol, the reading head
moves one square to the right on the input tape so that on the next move it will
read the symbol in the next tape square. This process is repeated again and
again; a symbol is read, the reading head moves to the right, and the state of
the finite control changes. Eventually the reading head reaches the end of the
input string. The automaton then indicates its approval or disapproval of what
it has read by the state it is in at the end: if it winds up in one of a set of final
states the input string is considered to be accepted. The language accepted
by the machine is the set of strings it accepts.

When this informal account is boiled down to its mathematical essentials,
the following formal definition results.

Definition 2.1.1: A deterministic finite automaton is a quintuple M
(K,~, J, s, F) where

K is a finite set of states,
~ is an alphabet,
s E K is the initial state,
F ~ K is the set of final states, and
J, the transition function, is a function from K x ~ to K.

The rules according to which the automaton M picks its next state are
encoded into the transition function. Thus if M is in state q E K and the
symbol read from the input tape is a E ~, then J(q, a) E K is the uniquely
determined state to which K passes.

Having formalized the basic structure of a deterministic finite automaton,
we must next render into mathematical terms the notion of a computation by
an automaton on an input string. This will be, roughly speaking, a sequence
of configurations that represent the status of the machine (the finite control,
reading head, and input tape) at successive moments. But since a deterministic
finite automaton is not allowed to move its reading head back into the part of
the input string that has already been read, the portion of the string to the left
of the reading head cannot influence the future operation of the machine. Thus
a configuration is determined by the current state and the unread part of the
string being processed. In other words, a configuration of a deterministic
finite automaton (K,~, J, s, F) is any element of K x ~*. For example, the
configur ation illustrated in Figure 2-1 is (q2, ababab).

The binary relation I- M holds between two configurations of 111 if and only
if the machine can pass from one to the other as a result of a single move. Thus
if (q,w) and (q',w') are two configurations of M, then (q,w) I-M (q',w') if and
only if w = aw' for some symbol a E ~, and J(q, a) = q'. In this case we say

58 Chapter 2: FINITE AUTOMATA

that (q,w) yields (q',w') in one step. Note that in fact I-M is a function from
K x ~+ to K x ~*, that is, for every configuration except those of the form (q, e)
there is a uniquely determined next configuration. A configuration of the form
(q, e) signifies that M has consumed all its input, and hence its operation ceases
at this point.

We denote the reflexive, transitive closure of I-M by I-~; (q,w) I-~ (q',w')
is read, (q,w) yields (q',w') (after some number, possibly zero, of steps). A
string w E ~* is said to be accepted by M if and only if there is a state q E F
such that (s, w) I-~ (q, e). Finally, the language accepted by M, L(M), is
the set of all strings accepted by M.

Example 2.1.1: Let M be the deterministic finite automaton (K,~, J, s, F),
where

K={qo,qd,

~ = {a,b},

s = qo,

F = {qo},

and J is the function tabulated below.

q (J J(q, (J)

qo a qo
qo b ql
ql a ql
ql b qo

It is then easy to see that L(M) is the set of all strings in {a, b} * that have
an even number of b's. For M passes from state qo to ql or from ql back to qo
when a b is read, but 111 essentially ignores a's, always remaining in its current
state when an a is read. Thus M counts b's modulo 2, and since qo (the initial
state) is also the sole final state, M accepts a string if and only if the number
of b's is even.

If M is given the input aabba, its initial configuration is (qo, aabba). Then

(qo, aabba) I-M (qo, abba)

I-M (qo,bba)

I-M (ql,ba)

I-M (qO, a)

I-M (qo, e)

Therefore (qo, aabba) I-j,{ (qo, e), and so aabba is accepted by M. <:;

2.1: Deterministic Finite Automata 59

Figure 2-2

The tabular representation of the transition function used in this example
is not the clearest description of a machine. We generally use a more convenient
graphical representation called the state diagram (Figure 2-2). The state
diagram is a directed graph, with certain additional information incorporated
into the picture. States are represented by nodes, and there is an arrow labeled
with a from node q to q' whenever J(q, a) = q'. Final states are indicated by
double circles, and the initial state is shown by a >. Figure 2-2 shows the state
diagram of the deterministic finite automaton of Example 2.1.1.

Example 2.1.2: Let us design a deterministic finite automaton M that accepts
the language L(M) = {w E {a, b} * : w does not contain three consecutive b's}.
We let M = (K,"L"J,s,F), where

K = {qo, ql , q2, q3 } ,

"L,={a,b},

s = qo,

F = {qO,ql,q2},

and J is given by the following table.

q (J J(q, (J)

qo a qo
qo b ql
ql a qo
ql b q2
q2 a qo
q2 b q3
q3 a q3
q3 b q3

The state diagram is shown in Figure 2-3. To see that M does indeed accept
the specified language, note that as long as three consecutive b's have not been
read, M is in state qi (where i is 0, 1, or 2) immediately after reading a run of
i consecutive b's that either began the input string or was preceded by an a. In
particular, whenever an a is read and M is in state qo, ql, or q2, M returns to

60 Chapter 2: FINITE AUTOMATA

its initial state qo. States qo, ql, and q2 are all final, so any input string not
containing three consecutive b's will be accepted. However, a run of three b's
will drive AI to state q3, which is not final, and AI will then remain in this state
regardless of the symbols in the rest of the input string. State q3 is said to be
a dead state, and if AI reaches state q3 it is said to be tmpped, since no further
input can enable it to escape from this state.O

Figure 2-3

Problems for Section 2.1

2.1.1. Let M be a deterministic finite automaton. Under exactly what circum
stances is e E L(AI)? Prove your answer.

2.1.2. Describe informally the languages accepted by the deterministic finite au
tomata shown in the next page.

2.1.3. Construct deterministic finite automata accepting each of the following lan
guages.
(a) {w E {a, b}' : each a in w is immediately preceded by a b}.
(b) {w E {a,b}' : w has abab as a substring}.
(c) {w E {a, b}' : w has neither aa nor bb as a substring}.
(d) {w E {a,b}' : w has an odd number of a's and an even number of b's}.
(e) {w E {a,b}' : w has both ab and ba as substrings}.

2.1.4. A deterministic tinite-state transducer is a device much like a deter
ministic finite automaton, except that its purpose is not to accept strings or
languages but to transform input strings into output strings. Informally, it
starts in a designated initial state and moves from state to state, depending
on the input, just as a deterministic finite automaton does. On each step,
however, it emits (or writes onto an output tape) a string of zero or one or
more symbols, depending on the current state and the input symbol. The
state diagram for a deterministic finite-state transducer looks like that for a
deterministic finite automaton, except that the label on an arrow looks like

2.1: Deterministic Finite Automata

a, b
a

a

a

a,b

a

b

61

a

(1....--------~O

b

a,b

a,b
a,b

b a

a,b

b

b

a

62 Chapter 2: FINITE AUTOMATA

I bib

1Faa~
bib ale

alw, which means "if the input symbol is a, follow this arrow and emit out
put w". For example, the deterministic finite-state transducer over {a, b}
shown above transmits all b's in the input string but omits every other a.

(a) Draw state diagrams for deterministic finite-state transducers over {a, b}
that do the following.

(i) On input w, produce output an, where n is the number of occurrences
of the substring ab in w.

(ii) On input w, produce output an, where n is the number of occurrences
of the substring aba in w.

(iii) On input w, produce a string of length w whose ith symbol is an a if
i = 1, or if i > 1 and the ith and (i - l)st symbols of ware different;
otherwise, the ith symbol of the output is a b. For example, on input
aabba the transducer should output ababa, and on input aaaab it should
output abbba.

(b) Formally define
(i) a deterministic finite-state transducer;

(ii) the notion of a configuration for such an automaton;
(iii) the yields in one step relation f- between configurations;
(iv) the notion that such an automaton produces output u on input w;
(v) the notion that such an automaton computes a function.

2.1.5. A deterministic 2-tape finite automaton is a device like a deterministic finite
automaton for accepting pairs of strings. Each state is in one of two sets;
depending on which set the state is in, the transition function refers to the
first or second tape. For example, the automaton shown below accepts all
pairs of strings (Wl,W2) E {a,b}* x {a,b}* such that IW21 = 2lwll·

...... -.. -------- -i r--- -------------------- ..
, , , ,
! a,b! a,b

~~
i ! a,b , , , , , , ___ .. __________ ! L _ .. _ .. _____________ .. __ .. ___ _

States for
first tape

States for
second tape

2.2: Nondeterministic Finite Automata 63

(a) Draw state diagrams for deterministic 2-tape finite automata that accept
each of the following.

(i) All pairs of strings (WI,W2) in {a,b}* x {a,b}* such that IWII = IW21,
and wI(i) i- w2(i) for all i.

(ii) All pairs of strings (WI, W2) in {a, b}' x {a, b} * such that the length of
W2 is twice the number of a's in Wi plus three times the number of b's
in Wi.

(iii) {(anb,anbm) : n,m;:::: O}.
(iv) {(anb, ambn) : n, m ;:::: O}.

(b) Formally define
(i) a deterministic 2-tape finite automaton;

(ii) the notion of a configuration for such an automaton;
(iii) the yields in one step relation f- between configurations;
(iv) the notion that such an automaton accepts an ordered pair of strings;
(v) the notion that such an automaton accepts a set of ordered pairs of

strings.

2.1.6. This problem refers to Problems 2.1.5 and 2.1.6. Show that if f : ~* f-t ~* is
a function that can be computed by a deterministic finite-state transducer,
then {(w, f (w)) : W E ~*} is a set of pairs of strings accepted by some
deterministic two-tape finite automaton.

2.1. 7. We say that state q of a deterministic finite automaton M = (K, ~,J, qo, F)
is reachable if there exists W E ~* such that (qo, w) f-M (q, e). Show that
if we delete from NI any nonreachable state, an automaton results that
accepts the same language. Give an efficient algorithm for computing the
set of all reachable states of a deterministic finite automaton.

liiJ NONDETERMINISTIC FINITE AUTOMATA

In this section we add a powerful and intriguing feature to finite automata.
This feature is called nondeterminism, and is essentially the ability to change
states in a way that is only partially determined by the current state and input
symbol. That is, we shall now permit several possible "next states" for a given
combination of current state and input symbol. The automaton, as it reads the
input string, may choose at each step to go into anyone of these legal next states;
the choice is not determined by anything in our model, and is therefore said to
be nondeterministic. On the other hand, the choice is not wholly unlimited
either; only those next states that are legal from a given state with a given input
symbol can be chosen.

64 Chapter 2: FINITE AUTOMATA

Such nondeterministic devices are not meant as realistic models of com
puters. They are simply a useful notational generalization of finite automata,
as they can greatly simplify the description of these automata. Moreover, we
shall see below that nondeterminism is an inessential feature of finite automata:
every nondeterministic finite automaton is equivalent to a deterministic finite
automaton. Thus we shall profit from the powerful notation of nondeterministic
finite automata, always knowing that, if we must, we can always go back and
redo everything in terms of the lower-level language of ordinary, down-to-earth
determipistic automata.

a

Figure 2-4

To see that a nondeterministic finite automaton can be a much more con
venient device to design than a deterministic finite automaton, consider the
language L = (ab U aba)*, which is accepted by the deterministic finite automa
ton illustrated in Figure 2-4. Even with the diagram, it takes a few moments to
ascertain that a deterministic finite automaton is shown; one must check that
there are exactly two arrows leaving each node, one labeled a and one labeled b.
And some thought is needed to convince oneself that the language accepted by
this fairly complex device is the simple language (ab U aba) *. One might hope to
find a simpler deterministic finite automaton accepting I,; unfortunately, it can
be shown that no deterministic finite automaton with fewer than five states can
accept this language (later in this chapter we develop methods for minimizing
the number of states of deterministic finite automata).

However, L is accepted by the simple nondeterministic device shown in
Figure 2-5. When this device is in state ql and the input symbol is b, there
are two possible next states, qo and q2' Thus Figure 2-5 does not represent a
deterministic finite automaton. Nevertheless, there is a natural way to interpret
the diagram as a device accepting L. A string is accepted if there is some way
to get from the initial state (qo) to a final state (in this case, qo) while following
arrows labeled with the symbols of the string. For example ab is accepted by
going from qo to ql, to qo; aba is accepted by going from qo to ql to q2, to qo.
Of course, the device might guess wrong and go from qo to ql to qo to ql on

2.2: Nondeterministic Finite Automata 65

b

Figure 2-5

input aba, winding up in a nonfinal state; but this does not matter, since there
is some way of getting from the initial to a final state with this input. On the
other hand, the input abb is not accepted, since there is no way to get from qo
back to qo while reading this string.

Indeed, you will notice that from qo there is no state to be entered when the
input is b. This is another feature of nondeterministic finite automata: just as
from some states with some inputs there may be several possible next states, so
with other combinations of states and input symbols there may be no possible
moves.

We also allow in the state diagram of a nondeterministic automaton arrows
that are labeled by the empty string e. For example, the device of Figure 2-6
accepts the same language L. From q2 this machine can return to qo either by
reading an a or immediately, without consuming any input.

Figure 2-6

The devices illustrated in Figures 2-5 and 2-6 are instances of the following
general type:

Definition 2.2.1: A nondeterministic finite automaton is a quintuple M =
(K,~, Ll, s, F), where

K is a finite set of states,
~ is an alphabet,

66 Chapter 2: FINITE AUTOMATA

s E K is the initial state,

F <:;:. K is the set of final states, and

Ll, the transition relation, is a subset of K x (~ U {e}) x K.

Each triple (q, u,p) ELlis called a transition of 111 -the formal counter
part of an arrow labeled a from q to p in the state diagram of M. If M is in
state q and the next input symbol is a, then M may next follow any transition
of the form (q, a,p) or (q, e,p); if a transition (q, e,p) is followed, then no input
symbol is read.

The formal definitions of computations by nondeterministic finite automata
are very similar to those for deterministic finite automata. A configuration of
M is, once again, an element of K x ~'. The relation f-!vJ between configurations
(yields in one step) is defined as follows: (q, w) f-!vJ (q', w') if and only if there
is au E ~ U {e} such that w = uw' and (q,u,q') E Ll. Note that f-!vJ need not
be a function; for some configurations (q,w), there may be several pairs (q',w')
-or none at all- such that (q,w) f-!vJ (q',w'). As before, f-M is the reflexive,
transitive closure of f-!vJ and a string w E ~. is accepted by M if and only if
there is a state q E F such that (s,w) f-M (q,e). Finally L(M), the language
accepted by M, is the set of all strings accepted by M.

Example 2.2.1: Figure 2-7 shows one of several possible nondeterministic fi
nite automata that accept the set of all strings containing an occurrence of the
pattern bb or of the pattern bab (see Section 2.5 for a systematic study of au
tomata for detecting patterns in the input string). Formally, this machine is
(K,~, Ll, s, F), where

and

K = {qO,ql,q2,q3,q4},

~ = {a,b},

s = qo,

Ll = {(qo,a,qo), (qo,b,qo), (qO,b,ql),

(ql, b, q2), (ql , a, q3), (q2, e, q4),

(q3, b, q4), (q4, a, q4), (q4, b, q4)}.

When M is given the string bababab as input, several different sequences of
moves may ensue. For example, III may wind up in the nonfinal state qo in case

2.2: Nondeterministic Finite Automata

a,b

b b

a e

b

Figure 2-7

the only transitions used are (qO, a, qo) and (qO, b, qo):

(qo, bababab) f- M (qo, ababa b)

f- M (qO, babab)

f- M (qO, abab)

f- M (qO, e)

67

a,b

The same input string may drive M from state qo to the final state q4, and
indeed may do so in three different ways. One of these ways is the following.

(qo, bababab) f- M (ql, ababab)

f- M (q3, babab)

f- M (q4, abab)

f- M (q4, bab)

f- M (q4, ab)

f-M (q4, b)

f-M (q4, e)

Since a string is accepted by a nondeterministic finite automaton if and only if
there is at least one sequence of moves leading to a final state, it follows that
bababab E L(M).\;

Example 2.2.2: Let ~ be the alphabet ~ = {al,"" an}, containing n symbols,
where n ~ 2, and consider the following language:

L = {w : there is a symbol a; E ~ not appearing in w}.

68 Chapter 2: FINITE AUTOMATA

That is, L contains all those strings in ~* that fail to contain occurrences of
all symbols in~. For example, if n = 3, then e,al,a2,alala3al E L, but
a3al a3al a2 ~ L.

It is relatively easy to design a nondeterministic finite automaton M =
(K, ~,6., s, F) that accepts this rather sophisticated language. Here K contains
n + 1 states K = {s, ql, q2, ... , qn}, all accepting (F = K). 6. has two kinds
of transitions (see Figure 2-8 for an illustration of the case n = 3). The initial
transitions are those of the form (s, e, qi) for all i, 1 ::; i ::; n, and the main
transitions are all triples of the form (qi,aj,qi), where if- j. This completes the
list of transitions in 6..

Figure 2-8

Intuitively, M starts its operation on an input by guessing the symbol miss
ing from the input, and passing to the corresponding state. If the symbol selected
is ai, then state qi is visited. At this state the automaton checks that indeed
the symbol guessed does not occur in the string. If so, it ends up accepting.
This automaton illustrates vividly the remarkable power of nondeterministic de
vices: they can guess and always be right, since one successful computation is
all that is required for acceptance. As we shall see later in Section 2.5, any
deterministic finite automaton that accepts the same language must be far more
complicated. <>

A deterministic finite automaton is just a special type of a nondeterministic
finite automaton: In a deterministic finite automaton, it so happens that the
transition relation 6. is in fact a function from K x ~ to K. That is, a nonde
terministic finite automaton (K,~, 6, s, F) is deterministic if and only if there
are no transitions of the form (q,e,p) in 6., and for each q E K and a E ~ there
is exactly one p E K such that (q, a, p) E 6.. It is therefore evident that the
class of languages accepted by deterministic automata is a subset of the class
of languages accepted by nondeterministic automata. Rather surprisingly, these
classes are in fact equal. Despite the apparent power and generality enjoyed by
nondeterministic automata, they are no more powerful than the deterministic

2.2: Nondeterministic Finite Automata 69

ones in terms of the languages they accept: A nondeterministic finite automaton
can always be converted into an equivalent deterministic one.

Formally, we say that two finite automata Ml and M2 (deterministic or
nondeterministic) are equivalent if and only if L(M1) = L(M2). Thus two
automata are considered to be equivalent if they accept the same language, even
though they may "use different methods" to do so. For example, the three
automata in Figures 2-4-2-6 are all equivalent.

Theorem 2.2.1: For each nondeterministic finite automaton, there is an equiv
alent deterministic finite automaton.

Proof: Let M = (K,~, 6., s, F) be a nondeterministic finite automaton. We
shall construct a deterministic finite automaton M' = (K',~, 8: s', F') equivalent
to M. The key idea is to view a nondeterministic finite automaton as occupying,
at any moment, not a single state but a set of states: namely, all the states that
can be reached from the initial state by means of the input consumed thus far.
Thus if M had five states {qO, ... , q4} and, after reading a certain input string,
it could be in state qo, q2, or q3, but not ql, or q4, its state could be considered
to be the set { qo, q2, q3}, rather than an undetermined member of that set. And
if the next input symbol could drive M from qo to either ql or q2, from q2 to qo,
and from q3 to q2, then the next state of M could be considered to be the set
{ qo, ql , q2} .

The construction formalizes this idea. The set of states of M' will be K' =
2K , the power set of the set of states of M. The set of final states of M' will
consist of all those subsets of K that contain at least one final state of M. The
definition of the transition function of M' will be slightly more complicated. The
basic idea is that a move of M' on reading an input symbol a E ~ imitates a
move of M on input symbol a, possibly followed by any number of e-moves of
M. To formalize this idea we need a special definition.

For any state q E K, let E(q) be the set of all states of M that are reachable
from state q without reading any input. That is,

E(q) = {p E K: (q, e) I-~ (p, e)}.

To put it otherwise, E(q) is the closure of the set {q} under the relation

{ (p, r) : there is a transition (p, e, r) E 6.}.

Thus, E(q) can be computed by the following algorithm:

Initially set E(q) := {q};
while there is a transition (p, e, r) E 6. with p E E(q)
and r ~ E(q) do: E(q) := E(q) U {r}.

70 Chapter 2: FINITE AUTOMATA

This algorithm is a specialization of our general algorithm for closure com
putations (recall the last algorithm in Section 1.6) to the situation in hand. It
is guaranteed to terminate after at most IKI iterations, because each execution
of the while loop adds another state to E(q), and there are at most IKI states
to be added. We shall see many instances of such closure algorithms later.

e

Figure 2-9

Example 2.2.3: In the automaton of Figure 2-9, we have E(qo) = {qO, ql, q2, q3},
E(qt) = {ql,q2,q3}, and E(q2) = {q2}'O

We are now ready to define formally the deterministic automaton M'
(K', ~, <5', s', F') that is equivalent to M. In particular,

K' =2K,

s' = E(s),

F' = {Q ~ K: Q n F i= 0},

and for each Q ~ K and each symbol a E ~, define

<5'(Q, a) = U{E(p) : p E K and (q, a,p) E 6. for some q E Q}.

That is, <5' (Q, a) is taken to be the set of all states of M to which M can go by
reading input a (and possibly following several e transitions). For example, if
M is the automaton of Figure 2-9. then S' = {qQ. qt. q2. q3}' Since the only transitions
from ql on input a are (ql,a,qo) and (ql,a,q4), it follows that <5'({qd,a) =
E(qo) U E(q4) = {QO,Ql,Q2,q3,q4}.

It remains to show that M' is deterministic and equivalent to M. The
demonstration that M' is deterministic is straightforward: we just notice that
<5' is single-valued and well defined on all Q E K' and a E ~, by the way it was
constructed. (That <5'(Q,a) = 0 for some Q E K' and a E ~ does not mean <5' is
not well defined; 0 is a member of K'.)

2.2: Nondeterministic Finite Automata 71

We now claim that for any string w E ~* and any states p. q E K.

(q,w) I-iw (p,e) if and only if (E(q),w) I-iw' (P,e)

for some set P containing p. From this the theorem will follow easily: To show
that M and M' are equivalent, consider any string w E ~*. Then w E L(M)
if and only if (s, w) I-iw (f, e) for some f E F (by definition) if and only if
(E(s),w) I-iw' (Q,e) for some Q containing f (by the claim above); in other
words, if and only if (s',w) I-iw' (Q,e) for some Q E F'. The last condition is
the definition of w E L(M').

We prove the claim by induction on Iwl.

Basis Step. For Iwl = 0 -that is, for w = e- we must show that (q, e) I-iw (p, e)
if and only if (E(q), e) I-iw' (P, e) for some set P containing p. The first statement
is equivalent to saying that p E E(q). Since M' is deterministic, the second
statement is equivalent to saying that P = E(q) and P contains p; that is,
p E E(q). This completes the proof of the basis step.

Induction Hypothesis. Suppose that the claim is true for all strings w of length
k or less for some k ~ O.

Induction Step. We prove the claim for any string w of length k + 1. Let w = va,
where a E ~, and v E ~*.

For the only if direction, suppose that (q, w) I-iw (p, e). Then there are
states rl and r2 such that

(q,w) I-iw (rl,a) I-M (r2,e) I-iw (p,e).

That is, M reaches state p from state q by some number of moves during which
input v is read, followed by one move during which input a is read, followed by
some number of moves during which no input is read. Now (q,va) I-iw (rl,a) is
tantamount to (q,v) I-iw (rl,e), and since Ivl = k, by the induction hypothesis
(E(q),v) I-iw' (RI,e) for some set RI containing rl· Since (rl,a) I-M (r2,e),
there is a triple (rl,a,r2) E 6., and hence by the construction of M', E(r2) <:;;
15'(R1 , a). But since (r2,e) I-iw (p,e), it follows that p E E(r2), and therefore
p E 15'(R1,a). Therefore (Rl,a) I-M' (P,e) for some P containing p, and thus
(E(q), va) I-iw' (Rl,a) I-M' (P,e).

To prove the other direction, suppose that (E(q), va) I-iw' (RI, a) I- M' (P, e)
for some P containing p and some Rl such that 15'(R1 , a) = P. Now by the
definition of 15', 15'(RI ,a) is the union of all sets E(r2), where, for some state
rl E R1 , (rl,a,r2) is a transition of M. Since pEP = 15'(R1 , a), there is
some particular r2 such that p E E(r2), and, for some rl E R1 , (rl,a,r2) is
a transition of M. Then (r2, e) I-iw (p, e) by the definition of E(r2)' Also, by
the induction hypothesis, (q,v) I-iw (ri • e) and therefore (q,va) I-iw (rl,a) I-M

(r2,e) I-iw (p,e).

72 Chapter 2: FINITE AUTOMATA

This completes the proof of the claim and the theorem .•

Example 2.2.4: The proof of Theorem 2.2.1 has the salutary property of being
constructive, in that it provides an actual algorithm for constructing, starting
from any nondeterministic finite automaton M, an equivalent deterministic M'.

Let us apply this algorithm then to the nondeterministic automaton in
Figure 2-9. Since M has 5 states, M' will have 25 = 32 states. However, only a
few of these states will be relevant to the operation of M' -namely, those states
that can be reached from state s' by reading some input string. Obviously, any
state in K' that is not reachable from s' is irrelevant to the operation of M'
and to the language accepted by it. We shall build this reachable part of M' by
starting from s' and introducing a new state only when it is needed as the value
of J'(q, a) for some state q E K' already introduced and some a E ~.

We have already defined E(q) for each state q of M. Since s' = E(qo) =
{ qo, ql , q2, (j3 },

(ql,a,qO), (ql,a,q4), and (q3,a,q4)

are all the transitions (q, a,p) for some q E s'. It follows that

Similarly,

are all the transitions of the form (q, b,p) for some q E s', so

Repeating this calculation for the newly introduced states, we have the following.

Next,

and finally

J' ({ qo, ql , q2, q3, q4}, a) = {qo, ql , q2, q3, q4},

J'({qO, ql, q2, q3, q4}, b) = {q2, q3, q4},

J'({q2,q3,q4},a) = E(q4) = {q3,q4},

J'({q2,q3,q,J},b) = E(q4) = {q3,q4}.

J'({q3,q4},a) = E(q4) = {q3,q4},

J'({q3,q4},b) = 0,

J'(0,a) = J'(0,b) = 0.

The relevant part of M' is illustrated in Figure 2.10. F', the set of final states,
contains each set of states of which (j4 is a member, since q4 is the sole member

2.2: Nondeterministic Finite Automata 73

b

Figure 2-10

of F; so in the illustration, the three states {qo, ql, q2, q3, q4}, {q2, Q3, Q4}, and
{Q3,Q4} of M' are final.O

Example 2.2.5: Recall the n + I-state nondeterministic finite automaton in
Example 2.2.2 with ~ = {aI, ... ,an} for accepting the language L = {w E ~* :

there is a symbol ai E ~ that does not occur in w}. Intuitively, there is no way
for a deterministic finite automaton to accept the same language with so few
states.

Indeed, the construction is in this case exponential. The equivalent deter
ministic automaton M' has as initial state the set s' = E(s) = {s, Ql, Q2, ... , Qn}.

Even in this case, M' has several irrelevant states -in fact, half of the states
in 2K are irrelevant. For example, state {s} cannot be reached from s'; neither
can any state that contains some Qi but not s. Alas, these are all the irrelevant
states: as it turns out, all the remaining 2n states of K' -that is to say, all
states of the form {s} U Q for some nonernpty subset Q of {Ql, ... ,Qn}- are
reachable from s'.

One might hope, of course, that other kinds of optimizations may reduce
the number of states in M'. Section 2.5 contains a systematic study of such
optimizations. Unfortunately, it follows from that analysis that in the present
case of automaton M', the exponential number of states in M' is the absolute
minimum possible.O

Problems for Section 2.2

2.2.1. (a) Which of the following strings are accepted by the nondeterministic
finite automaton shown on the left below?

(i) a
(ii) aa

74

(iii) aab
(iv) e

Chapter 2: FINITE AUTOMATA

~ISlb 0
b a

a

(b) Repeat for the following strings and the nondeterministic finite automa
ton on the right above:

(i) e
(ii) ab

(iii) abab
(iv) aba
(v) abaa

2.2.2. Write regular expressions for the languages accepted by the nondeterminis
tic finite automata of Problem 2.2.1.

2.2.3. Draw state diagrams for nondeterministic finite automata that accepts these
languages.
(a) (ab)* (ba)* U aa*
(b) ((ab U aab)*a*)*
(c) ((a*b*a*)*b)*
(d) (baUb)*U(bbUa)*

2.2.4. Some authors define a nondeterministic finite automaton to be a quintuple
(K,~, 6., S, F), where K,~, 6." and F are as defined and S is a finite set
of initial states, in the same way that F is a finite set of final states. The
automaton may nondeterministically begin operating in any of these initial
states.
(a) Show that the language L ~ {a 1, ... , an} * consisting of all strings

that are missing at least one symbol (recall Example 2.2.2) would be
accepted by such an automaton with n states ql, ... , qn, all of which
are both final and initial, and the transition relation 6. = {(qi,aj,qi) :
ii=j}.

(0) Explain why this definition is not more general than ours in any signif
icant way.

2.2.5. Dy what sequences of steps, other than the one presented in Example 2.2.1,
ran the nondeterministic finite automaton of Figure 2-7 accept the input
bababab?

2.2.6. (a) Find a simple nondeterministic finite automaton accepting (ab U aab U
aba)* .

2.3: Finite Automata and Regular Expressions 75

(b) Convert the nondeterministic finite automaton of Part (a) to a deter
ministic finite automaton by the method in Section 2.2.
(c) Try to understand how the machine constructed in Part (b) operates.
Can you find an equivalent deterministic machine with fewer states?

2.2.7. Repeat Problem 2.2.6 for the language (a U b)*aabab.

2.2.8. Repeat Problem 2.2.6 for the language (a U b)*a(a U b)(a U b)(a U b)(a U b).

2.2.9. Construct deterministic finite automata equivalent to the nondeterministic
automata shown below.

2.2.10. Describe exactly what happens when the construction of this section is
applied to a finite automaton that is already deterministic.

2.3 FINITE AUTOMATA AND REGULAR EXPRESSIONS

The main result of the last section was that the class of languages accepted
by finite automata remains the same even if a new and seemingly powerful
feature ~nondeterminism~ is allowed. This suggests that the class of languages
accepted by finite automata has a sort of stability: Two different approaches,
one apparently more powerful than the other, end up defining the same class.
In this section we shall prove another important characterization of this class of
languages, further evidence of how remarkably stable it is: The class oflanguages
accepted by finite automata, deterministic or nondeterministic, is the same as the
class of regular languages ~those that can be described by regular expressions,
recall the discussion in Section 1.8.

We have introduced the class of regular languages as the closure of certain
finite languages under the language operations of union, concatenation, and
Kleene star. We must therefore start by proving similar closure properties of
the class of languages accepted by finite automata:

Theorem 2.3.1: The class of languages accepted by finite automata is closed
under

76

(a) union;
(b) concatenation;
(c) Kleene star;
(d) complementation;
(e) intersection.

Chapter 2: FINITE AUTOMATA

Proof: In each case we show how to construct an automaton M that accepts
the appropriate language, given two automata Ml and M2 (only Ml in the cases
of Kleene star and complementation).

(a) Union. Let Ml = (Kl,~,6.1,Sl,Fd and M2 = (K2,~,6.2,S2,F2) be non
deterministic finite automata; we shall construct a nondeterministic finite au
tomaton M such that L(M) = L(MdUL(M2). The construction of M is rather
simple and intuitively clear, illustrated in Figure 2-11. Basically, Muses non
determinism to guess whether the input is in L(Ml) or in L(M2), and then
processes the string exactly as the corresponding automaton would; it follows
that L(M) = L(Md U L(M2). But let us give the formal details and proof for
this case.

@

M

Figure 2-11

Without loss of generality, we may assume that Kl and K2 are disjoint sets.
Then the finite automaton M that accepts L(Ml) U L(M2) is defined as follows

2.3: Finite Automata and Regular Expressions 77

(see Figure 2-11): M = (K,~,~, s, F), where s is a new state not in K1 or K 2 ,

K = K1 U K2 U is},

F = F1 U F2 ,

~ = ~1 U ~2 U {(s,e,sl),(s,e,s2)}'

That is, M begins any computation by nondeterministically choosing to enter
either the initial state of M1 or the initial state of M 2 ,and thereafter, M imitates
either M1 or M2. Formally, ifw E ~*, then (s,w) ~M (q,e) for some q E F if
and only if either (Sl'W) ~Ml (q,e) for some q E Fl , or (S2> w) ~M2 (q,e) for
some q E F2. Hence M accepts w if and only if M1 accepts w or M2 accepts w,
and L(M) = L(Md U L(M2).

(b) Concatenation. Again, let M1 and M2 be nondeterministic finite automata;
we construct a nondeterministic finite automaton M such that L(M) = L(Md 0

L(M"2) The construction is shown schematically in Figure 2-12; M now operates
by simulating M1 for a while, and then "jumping" nondeterministically from a
final state of M1 to the initial state of M2. Thereafter, M imitates M2. We omit
the formal definition and proof.

@

@

@

M

Figure 2-12

(c) Kleene star. Let M1 be a nondeterministic finite automaton; we construct a
nondeterministic finite automaton M such that L(M) = L(Md*. The construc
tion is similar to that for concatenation, and is illustrated in Figure 2-13. M
consists of the states of M1 and all the transitions of M l ; any final state of M1
is a final state of M. In addition, M has a new initial state s. This new initial
state is also final, so that e is accepted. From s there is an e-transition to the
initial state Sl of M1, so that the operation of M1 can be initiated after M has
been started in state s. Finally, e-transitions are added from each final state of

78 Chapter 2: FINITE AUTOMATA

Fl
F

@
SI

>0 @

@

M

Figure 2-13

Ml back to SI; this way, once a string in L(M 1) has been read, computation can
resume from the initial state of MI.

(d) Complementation. Let M = (K,~, J, s, F) be a deterministic finite automa
ton. Then the complementary language L = ~* - L(M) is accepted by the
deterministic finite automaton M = (K,~, J, s, K - F). That is, M is identical
to M except that final and non final states are interchanged.

(e) Intersection. Just recall that

and so closedness under intersection follows from closedness under union and
complementation ((a) and (d) above) .•

We now come to the main result of this section, the identification of two
important techniques for finitely specifying languages ~in fact, of a language
generator and a language acceptor:

Theorem 2.3.2: A language is regular if and only if it is accepted by a finite
automaton.

Proof: Only if. Recall that the class of regular languages is the smallest class
of languages containing the empty set 0 and the singletons a, where a is a
symbol, and closed under union, concatenation, and Kleene star. It is evident
(see Figure 2-14) that the empty set and all singletons are indeed accepted by
finite automata; and by Theorem 2.3.1 the finite automaton languages are closed
under union, concatenation, and Kleene star. Hence every regular language is
accepted by some finite automaton.

Example 2.3.1: Consider the regular expression (abUaab)*. A nondeterministic
finite automaton accepting the language denoted by this regular expression can

2.3: Finite Automata and Regular Expressions 79

be built up using the methods in the proof of the various parts of Theorem 2.3.1,
as illustrated in Figure 2-14.0

stage 1

a; b

stage 2

ab; aab

stage 3

ab U aab

stage 4

(ab U aab)*

a e ~tr::\
~O------~

• O>-_b -l __ @

e

O--~O - Of------I-
a e

Figure 2-14

If. Let M = (K,~,~, s, F) be a finite automaton (not necessarily deter
ministic). We shall construct a regular expression R such that L(R) = L(M).
We shall represent L(M) as the union of many (but a finite number of) simple
languages. Let K = {ql, ... , qn} and s = ql. For i,j = 1, ... , nand k = 0, ... ,n,
we define R(i, j, k) as the set of all strings in ~. that may drive M from state
qi to state qj without passing through any intermediate state numbered k + 1
or greater -the endpoints qi and qj are allowed to be numbered higher than
k. That is, R(i,j, k) is the set of strings spelled by all paths from qi to qj of
rank k (recall the similar maneuver in the computation of the reflexive-transitive

80 Chapter 2: FINITE AUTOMATA

closure of a relation in Section 1.6, in which we again considered paths with pro
gressively higher and higher-numbered intermediate nodes). When k = n, it
follows that

R(i,j,n) = {w E ~*: (qi'W) ~M (qj,e)}.

Therefore
L(M) = U{R(l,j, n) : qj E F}.

The crucial point is that all of these sets R(i,j, k) are regular, and hence so is
L(M).

The proof that each R(i,j, k) is regular is by induction on k. For k = 0,
R(i,j,O) is either {a E ~ U {e} : (qi,a,qj) E Ll} if i f.: j, or it is {e} U {a E
~ U {e} : (qi, a, qj) Ell} if i = j. Each of these sets is finite and therefore
regular.

For the induction step, suppose that R(i, j, k-1) for all i, j have been defined
as regular languages for all i, j. Then each set R(i, j, k) can be defined combining
previously defined regular languages by the regular operations of union, Kleene
star, and concatenation, as follows:

R(i,j, k) = R(i,j, k - 1) U R(i, k, k - l)R(k, k, k - 1)* R(k,j, k - 1).

This equation states that to get from qi to qj without passing through a state
numbered greater than k, M may either

(1) go from qi to qj without passing through a state numbered greater than
k - 1; or

(2) go (a) from qi to qk; then (b) from qk to qk zero or more times; then (c)
from qk to qj; in each case without passing through any intermediate states
numbered greater than k - 1.

Therefore language R(i,j, k) is regular for all i, j, k, thus completing the
induction .•

Example 2.3.2: Let us construct a regular expression for the language accepted
by the deterministic finite automaton of Figure 2-15. This automaton accepts
the language

{w E {a, b}* : w has 3k + 1 b's for some kEN}.

Carrying out explicitly the construction of the proof of the if part can be very
tedious (in this simple case, thirty-six regular expressions would have to be
constructed!). Things are simplified considerably if we assume that the nonde
terministic automaton M has two simple properties:

2.3: Finite Automata and Regular Expressions 81

a
a

b

Figure 2-15

(a) It has a single final state, F = {f}.
(b) Furthermore, if (q,u,p) E ~, then q -::j:. f and p -::j:. s; that is, there are no

transitions into the initial state, nor out of the final state.

This "special form" is not a loss of generality, because we can add to any automa
ton M a new initial state s and a new final state f, together with e-transitions
from s to the initial state of M and from all final states of M to f (see Fig
ure 2-16(a), where the automaton of Figure 2-15 is brought into this "special
form"). Number now the states of the automaton ql, q2, ... , qn, as required by
the construction, so that s = qn-l and f = qn' Obviously, the regular expression
sought is R(n - I, n, n).

We shall compute first the R(i,j,O)'s, from them the R(i,j, l)'s, and so on,
as suggested by the proof. At each stage we depict each R(i, j, k) 's as a label
on an arrow going from state qi to state qj. We omit arrows labeled by 0, and
self-loops labeled {e}. With this convention, the initial automaton depicts the
correct values of the R(i,j, O)'s -see Figure 2-16(a). (This is so because in our
initial automaton it so happens that, for each pair of states (qi, qj) there is at
most one transition of the form (qi, u, qj) in~. In another automaton we might
have to combine by union all transitions from qi to qj, as suggested by the proof.)

Now we compute the R(i,j, l)'s; they are shown in Figure 2-16(b). Notice
immediately that state ql need not be considered in the rest of the construction;
all strings that lead M to acceptance passing through state ql have been consid
ered and taken into account in the R(i,j, l)'s. We can say that state ql has been
eliminated. In some sense, we have transformed the finite automaton of Figure
2-16(a) to an equivalent generalized finite automaton, with transitions that may
be labeled not only by symbols in ~ or e, but by entire regular expressions. The
resulting generalized finite automaton has one less state than the original one,
since ql has been eliminated.

82

q4
>O~----~-C~~--~--~_

e
a

(a)

aU ba*ba*b

q4
>0

a*b .g e

q3

(c)

Chapter 2: FINITE AUTOMATA

(b)

q4 a*b(a U ba*ba*b)*
q5

.@ .@ >0

q5

(d)

Figure 2-16

Let us examine carefully what is involved in general in eliminating a state
q (see Figure 2-17). For each pair of states qi -::j:. q and qj -::j:. q, such that there
is an arrow labeled 0: from qi to q and an arrow labeled (3 from q to qj, we add
an arrow from qi to qj labeled 0:')'* (3, where,), is the label of the arrow from q
to itself (if there is no such arrow, then,), = 0, and thus ')'* = {e}, so the label
becomes 0:(3). If there was already an arrow from qi to qj labeled J, then the
new arrow is labeled J U 0:')'* (3.

Figure 2-17

qi
o

Continuing like this, we eliminate state q2 to obtain the R(i, j, 2) 's in Figure
2-17(c), and finally we eliminate q3. We have now deleted all states except the

2.3: Finite Automata and Regular Expressions 83

initial and final ones, and the generalized automaton has been reduced to a single
transition from the initial state to the final state. We can now read the regular
expression for M as the label of this transition:

R = R(4, 5, 5) = R(4, 5, 3) = a*b(ba*ba*b U a)*,

which is indeed {w E {a,b}* : w has 3k + 1 b's for some k E N}.O

Problems for Section 2.3

2.3.1. In part (d) of the proof of Theorem 2.3.1 why did we insist that M be
deterministic? What happens if we interchange the final and nonfinal states
of a nondeterministic finite automaton?

2.3.2. What goes wrong in the proof of Part (c) of Theorem 2.3.1 if we simply
make SI final, and add arrows from all members of Fl back to SI (without
introducing a new starting state)?

2.3.3. Give a direct construction for the closure under intersection of the languages
accepted by finite automata. (Hint: Consider an automaton whose set of
states is the Cartesian product of the sets of states of the two original
automata.) \Vhich of the two constructions, the one given in the text or
the one suggested in this problem, is more efficient when the two languages
are given in terms of nondeterministic finite automata?

2.3.4. Using the construction in the proofs of Theorem 2.3.1, construct finite au
tomata accepting these languages.
(a) a*(abUbaUe)b*
(b) ((aU b)*(e U c)*)*
(c) ((ab)* U (bc)*)ab

2.3.5. Construct a simple nondeterministic finite automaton to accept the lan
guage (ab U aba) * a. Then apply to it the constructiOll of Part (c) of the
proof of Theorem 2.3.1 to obtain a nondeterministic finite automaton ac
cepting ((ab U aba)*a)*.

2.3.6. Let L, L' ~ ~*. Define the following languages.
1. Pref(L) = {w E ~* : x = wy for some x E L,y E ~'} (the set of pre

fixes of L).
1. Suf(L) = {w E ~* : x = yw for some x E L,y E ~*} (the set of suf

fixes of L).
3. Subseq(L) = {WI W2 .•• Wk : kEN, Wi E ~* for i = 1, ... , k, and there

is a string x = XOWIXI W2X2 .•• WkXk E L} (the set of subsequences
of L).

84 Chapter 2: FINITE AUTOMATA

4. Lj L' = {w E ~* : wx E L for some x E L'} (the right quotient of L
by L').

5. Max(L) = {w E L : if x -::j:. e then wx ¢:. L}.
6. LR = {wR : w E L}.

Show that if L is accepted by some finite automaton, then so is each of the
following.
(a) Pref(L)
(b) Suf(L)
(c) Subseq(L)
(d) Lj L', where L' is accepted by some finite automaton.
(e) Lj L', where L' is any language.
(f) Max(L)
(g) LR

b

(a)

b

b a

b a

(b)

b

a

(c)

a

(d)

a

2.3.7. Apply the construction in Example 2.3.2 to obtain regular expressions cor
responding to each of the finite automata above. Simplify the resulting
regular expressions as much as you can.

2.3.8. For any natural number n ~ 1 define the nondeterministic finite automaton
Mn = (Kn'~n,Lln,sn,Fn) with Kn = {Ql,q2, ... ,qn}, Sn = Ql, Fn = {QI},
~n = {aij: i,j = 1, ... ,n}, and Lln = {(i,aij,j): i,j = 1, ... ,n}.

(a) Describe L(Mn) in English.

2.3: Finite Automata and Regular Expressions

(b) Write a regular expression for L(M3).
(c) Write a regular expression for L(M5).

85

It is conjectured that, for all polynomials p there is an n such that no regular
expression for L(Mn) has length smaller than p(n) symbols.

2.3.9. (a) By analogy with Problem 2.1.5, define a nondeterministic 2-tape
finite automaton, and the notion that such an automaton accepts a par
ticular set of ordered pairs of strings.
(b) Show that {(amb,anbP): n,m,p ~ 0, and n = m or n = p} is accepted
by some nondeterministic 2-tapc finite automaton.
(c) We shall see (Problem 2.4.9) that nondeterministic 2-tape finite au
tomata cannot always be converted into deterministic ones. This being the
case, which of the constructions used in the proof of Theorem 2.3.1 can be
extended to demonstrate closure properties of the following?

(i) The sets of pairs of strings accepted by nondeterministic 2-tape finite
automata.

(ii) The sets of pairs of strings accepted by deterministic 2-tape finite au
tomata.

Explain your answers.

2.3.10. A language L is definite if there is some k such that, for any string w,
whether w E L depends only on the last k symbols of w.
(a) Rewrite this definition more formally.
(b) Show that every definite language is accepted by a finite automaton.
(c) Show that the class of definite languages is closed under union and

complementation.
(d) Give an example of a definite language L such that L * is not definite.
(e) Give an example of definite languages L1 , L2 such that Ll L2 is not

definite.

2.3.11. Let ~ and ~ be alphabets. Consider a function h from ~ to ~*. Extend h
to a function from ~* to ~ * as follows.

h(e) =e.

h(w) =h(w)h(a) for any w E ~*,a E~.

For example, if ~ = ~ = {a, b}, h(a) = ab, and h(b) = aab, then

h(aab) =h(aa)h(b)

=h(a)h(a)h(b)

=ababaab.

Any function h : ~* I--T ~ * defined in this way from a function h : ~ I--T ~ *

is called a homomorphism.

86 Chapter 2: FINITE AUTOMATA

Let h be a homomorphism from ~* to Ll * .
(a) Show that if L ~ ~* is accepted by a finite automaton, then so is h[L].
(b) Show that if L is accepted by a finite automaton, then so is {w E ~* :

h(w) E L}. (Hint: Start from a deterministic finite automaton M
accepting L, and construct one which, when it reads an input symbol
a, tries to simulate what M would do on input h(a).)

2.3.12. Deterministic finite-state transducers were introduced in Problem 2.1.4.
Show that if L is accepted by a finite automaton, and 1 is computed by a
deterministic finite-state transducer, then each of the following is true.
(a) j[L] is accepted by a finite automaton.
(b) 1-1 [L] is accepted by a finite automaton.

2.4 LANGUAGES THAT ARE AND ARE NOT REGULAR

The results of the last two sections establish that the regular languages are closed
under a variety of operations and that regular languages may be specified either
by regular expressions or by deterministic or nondeterministic finite automata.
These facts, used singly or in combinations, provide a variety of techniques for
showing languages to be regular.

Example 2.4.1: Let ~ = {O, 1, ... , 9} and let L ~ ~* be the set of decimal
representations for nonnegative integers (without redundant leading O's) divisible
by 2 or 3. For example, 0,3,6,244 E L, but 1,03, 00 ~ L. Then L is regular.
We break the proof into four parts.

Let Ll be the set of decimal representations of nonnegative integers. Then
it is easy to see that

Ll =OU{1,2, ... ,9}~*,

which is regular since it is denoted by a regular expression.
Let L2 be the set of decimal representations of nonnegative integers divisible

by 2. Then L2 is just the set of members of L, ending in 0, 2, 4, 6, or 8; that is,

L2 = Ll n~*{0,2,4,6,8},

which is regular by Theorem 2.3.1(e).
Let L3 be the set of decimal representations of nonnegative integers divisible

by 3. Recall that a number is divisible by 3 if and only if the sum of its digits
is divisible by 3. We construct a finite automaton that keeps track in its finite
control of the sum modulo 3 of a string of digits. L3 will then be the intersection

2.4: Languages That Are and Are Not Regular 87

0,3,6,9

0,3,6,9

0,3,6,9

Figure 2-18

with L1 of the language accepted by this finite automaton. The automaton is
pictured in Figure 2-18.

Finally, L = L2 U L3 , surely a r~gular language.\'>

Although we now have a variety of powerful techniques for showing that
languages are regular, as yet we have none for showing that languages are not
regular. We know on fundamental principles that nonregular languages do exist,
since the number of regular expressions (or the number of finite automata) is
countable, whereas the number of languages is uncountable. But to demonstrate
that any particular language is not regular requires special tools.

Two properties shared by all regular languages, but not by certain nonreg
ular languages, may be phrased intuitively as follows:

(1) As a string is scanned left to right, the amount of memory that is required
in order to determine at the end whether or not the string is in the language
must be bounded, fixed in advance and dependent on the language, not the
particular input string. For example, we would expect that {anbn : n 2: O}
is not regular, since it is difficult to imagine how a finite-state device could
be constructed that would correctly remember, upon reaching the border
between the a's and the b's, how many a's it had seen, so that the number
could be compared against the number of b's.

(2) Regular languages with an infinite number of strings are represented by au
tomata with cycles and regular expressions involving the Kleene star. S~ch
languages must have infinite subsets with a certain simple repetitive struc
ture that arises from the Kleene star in a corresponding regular expression
or a cycle in the state diagram of a finite automaton. This would lead us to

88 Chapter 2: FINITE AUTOMATA

expect, for example, that {an: n 2 1 is a prime} is not regular, since there
is no simple periodicity in the set of prime numbers.

These intuitive ideas are accurate but not sufficiently precise to be used in
formal proofs. We shall now prove a theorem that captures some of this intuition
and yields the nonregularity of certain languages as an easy consequence.

Theorem 2.4.1: Let L be a regular language. There is an integer n 2 1 such
that any string W E L with iwi 2 n can be rewritten as W = xyz such that y -I- e,
ixyi <::: n, and xyi z E L for each i 2 o.

Proof: Since L is regular, L is accepted by a deterministic finite automaton M.
Suppose that n is the number of states of M, and let W be a string of length n
or greater. Consider now the first n steps of the computation of M on w:

where qo is the initial state of M, and WI ... Wn are the n first symbols of w.
Since Jvl has only n states, and there are n + 1 configurations (qi, Wi+1 ... , w n)

appearing in the computation above, by the pigeonhole principle there exist i
and j, 0 <::: i < j <::: n, such that qi = qj. That is, the string y = WiWi+I ... Wj
drives M from state qi back to state qi, and this string is nonempty since i < j.
But then this string could be removed from w, or repeated any number of times
in W just after the jth symbol of w, and M would still accept this string. That
is, Jvl accepts xyi z E L for each i 20, where x = WI ... Wi, and z = Wj+1 ... Wm.
Notice finally that the length of xy, the number we called j above, is by definition
at most n, as required .•

This theorem is one of a general class called pumping theorems, because they
assert the existence of certain points in certain strings where a substring can be
repeatedly inserted without affecting the acceptability of the string. In terms
of its structure as a mathematical statement, the pumping theorem above is by
far the most sophisticated theorem that we have seen in this book, because its
assertion, however simple to prove and apply, involves five alternating quantifiers.
Consider again what it says:

for each regular language L,
there exists an n 2 1, such that
for each string W in L longer than n,
there exist strings x, y, z with W = xyz, y -I- e, and ixyi <::: n, such that
for each i 2 0 xyi z E L.

Applying the theorem correctly can be subtle. It is often useful to think of the
application of this result as a game between yourself, the prover, who is striving
to establish that the given language L is not regular, and an adversary who is
insisting that L is regular. The theorem states that, once L has been fixed, the

2.4: Languages That Are and Are Not Regular 89

adversary must start by providing a number n; then you come up with a string
w in the language that is longer than n; the adversary must now supply an
appropriate decomposition of w into xyz; and, finally, you triumphantly point
out i for which xyi z is not in the language. If you have a strategy that always
wins, no matter how brilliantly the adversary plays, then you have established
that L is not regular.

It follows from this theorem that each of the two languages mentioned earlier
in this section is not regular.

Example 2.4.2: The language L = {aibi : i ~ O} is not regular, for if it were
regular, Theorem 2.4.1 would apply for some integer n. Consider then the string
w = an b11 E L. By the theorem, it can be rewritten as w = xyz such that
IxYI .s; nand y -I- e -that is, y = ai for some i > O. But then xz = an-ibn ~ L,
contradicting the theorem.O

Example 2.4.3: The language L = {an: n is prime} is not regular. For suppose
it were, and let x, y, and z be as specified in Theorem 2.4.1. Then x = aP , y = aq

,

and and z = aT, where p, r ~ 0 and q > O. By the theorem, xyn z E L for each
n ~ 0; that is, p + nq + r is prime for each n 2 o. But this is impossible; for let
n = p + 2q + r + 2; then p + nq + l' = (q + 1) . (p + 2q + r), which is a product
of two natural numbers, each greater than 1.0

Example 2.4.4: Sometimes it pays to use closure properties to show that a
language is not regular. Take for example

L = {w E {a, b}* : w has an equal number of a's and b's}.

L is not regular, because if L were indeed regular, then so would be L n a*b*
-by closure under intersection; recall Theorem 2.3.1(e). However, this latter
language is precisely {anbn : n ~ O}, which we just showed is not regular.O

In fact, Theorem 2.4.1 can be strengthened substantially in spveral ways
(see Problem 2.4.11 for one of them).

Problems for Section 2.4

2.4.1. An arithmetic progression is the set {p + qn : n = 0,1,2, ... } for some
p,q E N.
(a) (Easy) Show that if L ~ {a}* and {n : an E L} is an arithmetic

progression, then L is regular.
(b) Show that if L ~ {a} * and {n : (l n E L} is a union of finitely many

arithmetic progressions, then L is regular.

90 Chapter 2: FINITE AUTOMATA

(c) (Harder) Show that if L ~ {a}' is regular, then {n : an E L} is a union
of finitely many arithmetic progressions. (This is the converse of Part
(b).)

(d) Show that if ~ is any alphabet and L ~ ~* is regular, then {Iwl : wE
L} is a union of finitely many arithmetic progressions. (Hint: Use Part
(c).)

2.4.2. Let D = {O, I} and let T = D x D x D. A correct addition of two numbers in
binary notation can be pictured as a string in T* if we think of the symbols
in T as vertical columns. For example,

010 1
+ 0 1 1 0

101 1

would be pictured as the following string of four symbols.

Show that the set of all strings in T* that represent correct additions is a
regular language.

2.4.3. Show that each of the following is or is not a regular language. The decimal
notation for a number is the number written in the usual way, as a string
over the alphabet {O, 1, ... , 9}. For example, the decimal notation for 13 is
a string of length 2. In unary notation, only the symbol I is used; thus 5
would be represented as I I I I I in unary notation.
(a) {w: w is the unary notation for a number that is a multiple of 7}.
(b) {w: w is the decimal notation for a number that is a multiple of 7}
(c) {w: w is the unary notation for a number n such that there is a pair

p, p + 2 of twin primes, both greater than n}
(d) {w: w is, for some n 2: 1, the unary notation for IOn}
(e) {w: w is, for some n 2: 1, the decimal notation for IOn}
(f) {w: w is a sequence of decimal digits that occurs in the infinite decimal

expansion of 1/7} (For example, 5714 is such a sequence, since 1/7 =
0.14285714285714 ...)

2.4.4. Prove that {anbambam+n : n, m 2: I} is not regular.

2.4.5. Using the pumping theorem and closure under intersection, show that the
following are not regular.
(a) {ww R : w E {a,b}'}
(b) {ww: w E {a, b} *}
(c) {wID: w E {a, b}'}, where ID stands for w with each occurrence of a

replaced by b, and vice versa.

2.4: Languages That Are and Are Not Regular 91

2.4.6. Call a string x over the alphabet {(,)} balanced if the following hold: (i) in
any prefix of x the number of ('S is no smaller than the number of)'s; (ii)
the number of ('S in x equals that of)'s. That is, x is balanced if it could be
derived from a legal arithmetic expression by omitting all variables, num
bers, and operations. (See the next chapter for a less awkward definition.)
Show that the set of all balanced strings in {(,)} * is not regular.

2.4.7. Show that for any deterministic finite automaton M = (K,Y:;,r5,s,F), M
accepts an infinite language if and only if M accepts some string of length
greater than or equal to IKI and less than 21KI.

2.4.8. Are the following statements true or false? Explain your answer in each
case. (In each case, a fixed alphabet y:; is assumed.)
(a) Every subset of a regular language is regular.
(b) Every regular language has a regular proper subset.
(c) If L is regular, then so is {xy : x ELand y ~ L}.
(d) {1lJ: W = llJR} is regular.
(e) If L is a regular language, then so is {1lJ : w ELand llJR E L}.
(f) If C is any set of regular languages, then U C is a regular language.
(g) {xyx R : x,y E Y:;*} is regular.

2.4.9. The notion of a deterministic 2-tape finite automaton was defined in Prob
lem 2.1.5. Show that {(anb,ambP) : n,m,p > O,n = m or n = p} is not
accepted by any deterministic 2-tape finite automaton. (Hint: Suppose this
set were accepted by some deterministic 2-tape finite automaton AI. Then
lIf accepts (anb, an+1bn) for every n. Show by a pumping argument that it
also accepts (anb, an+1bTlH) for some n 2: 0 and q > 0, a contradiction.) By
Problem 2.3.9, then, nondeterministic 2-tape finite automata cannot always
be converted to deterministic ones, and by Problem 2.1.5, the sets accepted
by deterministic 2-tape finite automata are not closed under union .

.4.10. A 2-head finite automaton is a finite automaton with two tape heads
that may move independently, but from left to right only, on the input tape.
As with a 2-tape finite automaton (Problem 2.1.5), the state set is divided
into two parts; each part corresponds to reading and moving one tape head.
A string is accepted if both heads wind up together at the end of the string
with the finite control in a final state. 2-head finite automata may be either
deterministic or nondeterministic. Using a state-diagram notation of your
own design, show that the following languages are accepted by 2-head finite
automata.
(a) (anbn : n ;?: OJ
(b) {llJCllJ: 1lJ E {a, b}'}
(c) {a 1ba2 ba3 b ... bak b: k 2: I}

In which cases can you make your machines deterministic?

92 Chapter 2: FINITE AUTOMATA

2.4.11. This problem establishes a stronger version of the Pumping Theorem 2.4.1;
the goal is to make the "pumped" part as long as possible. Let M =
(K, ~,6, s, F) be a deterministic finite automaton, and let w be any string
in L(/o.1) of length at least IKI. Show that there are strings x, y, and z such
that w = xyz, Iyl ~ (Iwl - IKI + l)/IKI, and xynz E L(M) for each n ~ O.

2.4.12. Let D = {O, I} and let T = D x D x D. A correct multiplication of two
numbers in binary notation can also be represented as a string in T*. For
example, the multiplication 10 x 5 = 50, or

o 0 1 0 1 0
x000101

1 100 1 0

would be pictured as the following string of six symbols.

Show that the set of all strings in T* that represent correct multiplications
is not a regular language. (Hint: Consider the multiplication (2n + 1) x
(2n + 1).)

2.4.13. Let L <;;; ~* be a language, and define Ln = {x E L: Ixl :::; n}. The density
of L is the function dL(n) = ILnl.
(a) What is the density of (a U b)*?
(b) What is the density of ab*ab * ab*a?
(c) What is the density of (ab U aab)*?
(d) Show that the density of any regular language is either bounded from

above by a polynomial, or bounded from below by an exponential (a
function of the form 2cn for some n). In other words, densities of regular
languages cannot be functions of intermediate rate of growth such as
n iogn . (Hint: Consider a deterministic finite automaton accepting L,
and all cycles -closed paths without repetitions of nodes- in the
state diagram of this automaton. What happens if no two cycles share
a node? What happens if there are two cycles that share a node?)

liiJ STATE MINIMIZATION

In the last section our suspicion that deterministic finite automata are poor
models of computers was verified: Computation based on finite automata cannot

2.5: State Minimization 93

achieve such trivial computational tasks as comparing the number of a's and the
number of b's in a string. However, finite automata are useful as basic parts
of computers and algorithms. In this regard, it is important to be able to
minimize the number of states of a given deterministic finite automaton, that is,
to determine an equivalent deterministic finite automaton that has as few states
as possible. We shall next develop the necessary concepts and results that lead
to such a state minimization algorithm.

Figure 2-19

Given a deterministic finite automaton, there may be an easy way to get rid
of several states. Let us take, for example, the deterministic automaton in Figure
2-19, accepting the language L = (ab U ba)* (as it is not very hard to check).
Consider state q7. It should be clear that this state is unreachable, because
there is no path from the start state to it in the state diagram of the automaton.
This is the simplest kind of optimization one can do on any deterministic finite
automaton: Remove all unreachable states and all transitions in and out of them.
In fact, this optimization was implicit in our conversion of a nondeterministic
finite automaton to its equivalent deterministic one (recall Example 2.2.4): We
omitted from consideration all states (sets of states of the original automaton)
that are not reachable from the start state of the resulting automaton.

Identifying the reachable states is easy to do in polynomial time, because
the set of reachable states can be defined as the closure of {s } under the relation
{(p, q) : 6(p, a) = q for some a E ~}. Therefore,the set of all reachable states
can be computed by this simple algorithm:

R:={s};
while there is a state pER and a E ~ such that 6(p, a) ~ R do

add 6(p, a) to R.

However, the remaining automaton after the deletion of unreachable states
(Figure 2-20) still has more states than are really needed, this time for subtler
reasons. For example, states q4 and q6 are equivalent, and therefore they can be

94 Chapter 2: FINITE AUTOMATA

Figure 2-20

merged into one state. What does this mean, exactly? Intuitively, the reason we
call these states equivalent is that, from either state, precisely the same strings
lead the automaton to acceptance.

Our next definition captures a similar relation between strings that have "a
common fate" with respect to a language.

Definition 2.5.1: Let L ~ ~* be a language, and let x, y E ~*. We say that x
and yare equivalent with respect to L, denoted x ~L y, iffor all z E ~*, the
following is true: xz E L if and only if yz E L. Notice that ~L is an equivalence
relation.

That is, x ~L y if either both strings belong to L or neither is in L; and
moreover, appending any fixed string to both x and y results in two strings that
are either both in L or both not in L.

Example 2.5.1: If x is a string, and when L is understood by context, we
denote by [x] the equivalence class with respect to L to which x belongs. For
example, for the language L = (ab U ba)* accepted by the automaton in Figure
2-20, it is not hard to see that ~L has four equivalence classes:

(1) [c] = L,
(2) [a] = La,
(3) [b] = Lb,
(4) [a a] = L(aa U bb)~*.

In (1), for any string x E L, including x = e, the z's that make xz E L
are precisely the members of L. In (2), any x E La needs a z of the form bL in
order for xz to be in L. Similarly, for (3) the z's are of the form aL. Finally, in
(4) there is no z that can restore to L a string with a prefix in L(aa U bb). In
other words, all strings in set (1) have the same fate with respect to inclusion in
L; and the same for (2), (3), and (4). Finally, it is easy to see that these four
classes exhaust all of~·. Hence these are the equivalence classes of ~L.O

2.5: State Minimization 95

Notice that ~L relates strings in terms of a language, not in terms of an
automaton. Automata provide another, somewhat less fundamental, relation,
described next.

Definition 2.5.2: Let AI = (K, 2:;, d, s, F) be a deterministic finite automaton.
We say that two strings x, y E 2:;* are equivalent with respect to M, denoted
x '" MY, if, intuitively, they both drive 111 from s to the same state. Formally,
x "'M y if there is a state q such that (s, x) f-~[(q, e) and (s,y) f-M (q, e).

Again, '" M is an equivalence relation. Its equivalence classes can be iden
tified by the states of M -more precisely, with those states that are reachable
from 8 and therefore have at least one string in the corresponding equivalence
class. We denote the equivalence class corresponding to state q of M as Eq •

Example 2.5.1 (continued): For example, for the automaton M in Figure 2-
20, the equivalence classes of "'M are these (where L = (abUba)* is the language
accepted by M)

(1) Eq, = (ba)*,
(2) Eq2 = La U a
(3) Eq3 = abL,
(4) Eq4 = b(ab)*,
(5) Eq5 = L(bbUaa)2:;*,
(6) Eq6 = abLb.

Again, they form a partition of 2:;*.0

These two important equivalence relations, one associated with the lan
guage, the other with the automaton, are related as follows:

Theorem 2.5.1: For any deterministic finite automaton M
and any strings X,Y E 2:;*, if x "'M y, then x ~L(M) y.

(K, 2:;, d, s, F)

Proof: For any string x E 2:;*, let q(x) E K be the unique state such that
(s,x) f-M (q(x),e). Notice that, for any X,Z E 2:;*, xz E L(M) if and only if
(q(x),z) f-M (I,e) for some f E F. Now, if X "'M Y then, by the definition of
"'M, q(x) = q(y), and thus x "'M y implies that the following holds:

xz E L(M) if and only if yz E L(M) for all Z E 2:;*},

which is the same as x ~L(M) y .•

A very suggestive way of expressing Theorem 2.5.1 is to say that "'M is
a refinement of ~ L(M)' In general, we say that an equivalence relation '"
is a refinement of another ~ if for all x, y x '" y implies x ~ y. If '" is a

96 Chapter 2: FINITE AUTOMATA

refinement of ~, then each equivalence class with respect to ~ is contained in
some equivalence class of ~; that is, each equivalence class of ~ is the union
of one or more equivalence classes of~. For example, the equivalence relation
that relates any two cities of the United States that are in the same county is a
refinement of the equivalence relation that relates any two cities that are in the
same state.

Example 2.5.1 (continued): For an example that is more to the point, the
equivalence classes of ~ M for the automaton M in Figure 2-20 "refine" in this
sense the equivalence classes of ~L(M), exactly as predicted by Theorem 2.5.l.
For example, classes Eq5 and [a a] coincide, while classes Eql and Eq3 are both
subsets of [e].<>

Theorem 2.5.1 implies something very important about M and any other
automaton M accepting the same language L(M): Its number of states must be
at least as large as the number of equivalence classes of L(M) under ~. In other
words, the number of equivalence classes of L(M) is a natural lower bound on
the number of states of any automaton equivalent to M. Can this lower bound
be achieved? We next show that indeed it can.

Theorem 2.5.2 (The Myhill-Nerode Theorem): Let L ~ ~* be a regular
language. Then there is a deterministic finite automaton with precisely as many
states as there are equivalence classes in ~ L that accepts L.

Proof: As before, we denote the equivalence class of string x E ~* in the
equivalence relation ~L by [x]. Given L, we shall construct a deterministic
finite automaton (the standard automaton for L) M = (K,~, 6, s, F) such
that L = L(M). M is defined as follows:

K = {[x] : x E ~*}, the set of equivalence classes under ~ L.

S = [e], the equivalence class of e under ~L.
F = {[x] : x E L}.
Finally, for any [x] E K and any a E ~, define 6([x], a) = [xa].

How do we know that the set K is finite, that is, that ~L has finitely many
equivalent classes? L is regular, and so it is surely accepted by some deterministic
finite automaton M'. By the previous theorem, ~M' is a refinement of ~L, and
so there are fewer equivalence classes in L than there are equivalence classes of
~ M' -that is to say, states of M'. Hence K is a finite set. We also have to
argue that 6 is well defined, that is, 6 ([x], a) = [x a] is independent of the string
x E [x]. But this is easy to see, because x ~ L x' if and only if xa ~ L x' a.

We next show that L = L(M). First we show that for all x, y E ~*, we
have

([x], y) f-M ([xy], e). (1)

2.5: State Minimization 97

This is established by induction on IYI. It is trivial when y = e, and, if it
holds for all y's of length up to nand y = yla, then by induction ([x],yla) f-M
([xyl], a) f-M ([xy], e).

Now (1) completes the proof: For all x E ~., we have that x E L(M) if
and only if ([e],x) f- *(q,e)forsome q E F, which is by (1) the same as saying
[x] E F, or, by the definition of F, [x E L] .•

Example 2.5.1 (continued): The standard automaton corresponding to the
language L = (ab U ba)· accepted by the six-state deterministic finite automaton
in Figure 2-20 is shown in Figure 2-21. It has four states. Naturally, it is the
smallest deterministic finite automaton that accepts this language.O

{q4, q6} o---~o {q5}
[b] [aa]

Figure 2-21

Incidentally, Theorems 2.5.2 immediately imply the following characteriza
tion of regular languages, sometimes itself called the Myhill-Nerode Theorem:

Corollary: A language L is regular if and only if ~L has finitely many equiv
alence classes.

Proof: If L is regular, then L = L(M) for some deterministic finite automaton
M, and M has at least as many states as ~L has equivalence classes. Hence
there are finitely many equivalence classes in ~L'

Conversely, if ~ L has finitely many equivalence classes, then the standard
deterministic finite automaton ML (recall the proof of Theorem 2.5.2) accepts
L .•

Example 2.5.2: The corollary just proved is an interesting alternative way
of specifying what it means for a language L to be regular. Furthermore, it
provides another useful way for proving that a language is not regular -besides
the Pumping Theorem.

For example, here is an alternative proof that L = {anbn : n ~ I} is not
regular: No two strings ai and a j , with i f. j, are equivalent under ~L, simply

98 Chapter 2: FINITE AUTOMATA

because there is a string (namely, bi) which, when affixed ai gives a string in
L, but when affixed to aj produces a string not in L. Hence ~ L has infinitely
many equivalence classes [e], [aJ, [aaJ, [aaaJ, ... , and hence by the corollary L is
not regular.O

For any regular language L the automaton constructed in the proof of The
orem 2.5.2 is the deterministic automaton with the fewest states that accepts
L ~an object of obvious practical importance. Unfortunately, this automaton
is defined in terms of the equivalence classes of ~ I" and it is not clear how
these equivalence classes can be identified for any given regular language L -
especially if L is given in terms of a deterministic automaton M. We shall next
develop an algorithm for constructing this minimal automaton, starting from
any deterministic finite automaton M such that L = L(M).

Let M = (K,~, 8, s, F) be a deterministic finite automaton. Define a rela
tion AM ~ K x ~*, as follows: (q, w) E AM if and only if (q, w) f-M (1, e) for
some f E F; that is, (q, w) E AM means that w drives M from q to an accepting
state. Let us call two states q, p E K equivalent, denoted q = p, if the following
holds for all z E ~': (q,z) E AM if and only if (p,z) E AM. Thus, if two states
are equivalent, then the corresponding equivalence classes of '" M are subsets of
the same equivalence class of ~L. In other words, the equivalence classes of =
are precisely those sets of states of M that must be clumped together in order
to obtain the standard automaton of L(M)t.

We shall develop an algorithm for computing the equivalence classes of =.
Our algorithm will compute = as the limit of a sequence of equivalence relations
=0, =1 , =2, ... , defined next. For two states q, p E K, q =n P if the following is
true: (q, z) E AM if and only if (p, z) E AM for all strings z such that Izl ~ n.
In other words, =n is a coarser equivalence relation than =, only requiring that
states q and p behave the same with respect to acceptance when driven by strings
of length up to n.

Obviously, each equivalence relation in =0, =1, =2, ... is a refinement of the
previous one. Also, q =0 p holds if q and p are either both accepting, or both
non-accepting. That is, there are precisely two equivalence classes of =0: F
and K - F (assuming they are both nonempty). ILremains to show how =n+l
depends on =n. Here is how:

t The relation == can be called the quotient of '" M by ~ L. If '" is a refinement of
~, then the quotient of ~ by"', denoted ~ I "', is an equivalence relation on
the equivalence classes of "'. Two classes [x] and [y] of'" are related by ~ I '" if
x ~ y ~it is easy to see that this is indeed an equivalence relation. To return to
our geographic example, the quotient of the "same state" relation by the "same
county" relation relates any two counties (each with at least one city in it) that
happen to be in the same state.

2.5: State Minimization 99

Lemma 2.5.1: For any two states q,p E K and any integer n ~ 1, q =n P if
and only if (a) q =n-l p, and (b) for all a E ~, 8(q,a) =n-l 8(p, a).

Proof: By definition of =n, q =n P if and only if q =n-l p, and furthermore
any string w = av of length precisely n drives either both q and p to acceptance,
or both to nonacceptance. However, the second condition is the same as saying
that 8(q, a) =n-l 8(p, a) for any a E ~ .•

Lemma 2.5.1 suggests that we can compute =, and from this the standard
automaton for L, by the following algorithm:

Initially the equivalence classes of =0 are F and K - F;
repeat for n := 1,2, ...

compute the equivalence classes of =n from those =n-l

until =n is the same as =n-l.

Each iteration can be carried out by applying Lemma 2.5.1: For each pair of
states of M we test whether the conditions of the lemma hold, and if so we put
the two states in the same equivalence class of =n- But how do we know that
this is an algorithm, that the iteration will eventually terminate? The answer
is simple: For each iteration at which the termination condition is not satisfied,
=n]i=n-l, =n is a proper refinement of =n-l, and thus has at least one more
equivalence class than =n-l. Since the number of equivalence classes cannot
become more than the number of states of M, the algorithm will terminate after
at most IKI - 1 iterations.

When the algorithm terminates, say at the nth iteration and having com
puted =n==n-l, then the lemma implies that =n==n+l ==n+2==n+3= ...
Hence the relation computed is precisely =. In the next section we give a more
careful analysis of the complexity of this important algorithm, establishing that
it is polynomial.

Example 2.5.3: Let us apply the state minimization algorithm to the deter
ministic finite automaton M in Figure 2-20 (of course, by the previous example,
we know what to expect: the four-state standard automaton for L(M)). At the
various iterations we shall have these equivalence classes of the corresponding

Initially, the equivalence classes of =0 are {ql, q3} and {q2, q4, q5, q6}.
After the first iteration, the classes of =1 are {ql,q3}, {qd, {q4,q6}, and
{q5}. The splitting happened because 8(q2,b) ~o 8(q4,b),8(q5,b), and
8(q4,a) ~o 6(q5,a).
After the second iteration, there is no further splitting of classes. The
algorithm thus terminates, and the minimum-state automaton is shown in

100 Chapter 2: FINITE AUTOMATA

Figure 2-22

Figure 2-22. As expected, it is isomorphic with the standard automaton
shown in Figure 2-21.0

Example 2.5.4: Recall the language L ~ {al,' .. ,an }* of all strings that do not
contain occurrences of all n symbols, and the corresponding deterministic finite
automaton with 2n states (Example 2.2.5). We can now show that these states
are all necessary. The reason is that ~L has 2n equivalence classes. Namely, for
each subset A of ~, let LA be the set of all strings containing occurrences of all
symbols in A, and of no symbols in ~ - A (for example, L0 = {e}). Then it is
not hard to see that the 2n sets LA are precisely the equivalence classes of ~L.
Because if x E LA and y E LB for two distinct subsets A and B of ~, then for
any Z E Lr,-B, XZ E L, and yz ~ L (here we assumed that B is not contained
in A; otherwise, reverse the roles of A and B). 0

Recall that there is a nondeterministic finite automaton with n + 1 states
that accepts the same language (Example 2.2.2). Although deterministic au
tomata are exactly as powerful as nondeterministic ones in principle, determin
ism comes with a price in the number of states which is, at worst, exponential.
To put it in a different way, and in fact a way that anticipates the important
issues of computational complexity discussed in Chapters 6 and 7: When the
number of states is taken into account, non determinism is exponentially more
powerful than determinism in the domain of finite automata.

Problems for Section 2.5

2.5.1. (a) Give the equivalence classes under ~L for these languages:
(i) L = (aabUab)*.

(ii) L = {x: x contains an occurrence of aababa}.
(iii) L = {xx R : x E {a, b}*}.
(iv) L = {xx: x E {a,b}*}.
(v) Ln = {a,b}*a{a,b}n, where n > 0 is a fixed integer.

(vi) The language of balanced parentheses (Problem 2.4.6).

2.5: State Minimization 101

(b) For those languages in (a) for which the answer is finite, give a deterministic
finite automaton with the smallest possible number of states that accepts
the corresponding language.

2.5.2. Call a string x E I:* square-free if it cannot be written as x = uvvw for
some u, v, w E I:*, vi-e. For example, lewis and christos are square-free,
but harry and papadimitriou are not. Show that, if II:I > 1, then the set
of all square-free strings in I:* is not regular.

2.5.3. For each of the finite automata (deterministic or nondeterministic) consid
ered in Problems 2.1.2 and 2.2.9, find the minimum-state equivalent deter
ministic finite automaton.

2.5.4. A two-way finite automaton is like a deterministic finite automaton,
except that the reading head can go backwards as well as forwards on the
input tape. If it tries to back up off the left end of the tape, it stops operat
ing without accepting the input. Formally, a two-way finite automaton M
is a quintuple (K, I:, 8, s, F), where K, I:, s, and F are as defined for deter
ministic finite automata, and 8 is a function from K x I: to K x {f-, --+};
the f- or --+ indicates the direction of head movement. A configuration is
a member of K x I:* x I:*; configuration (p, u, v) indicates that the machine
is in state p with the head on the first symbol of v and with u to the left of
the head. If v = e, configuration (p, u, e) means that M has completed its
operation on u, and ended up in state p.

We write (PI, Ul, vd f- M (P2, U2, 1)2) if and only if VI = av for some a E I:,
8(Pl,a) = (P2,E), and either

1. E =--+ and U2 = Ula,V2 = v, or
2. E =f-, Ul = ua' for some u E I:*, and V2 = a'vl.

As usual, f-'M is the reflexive, transitive closure of f- M. M accepts w if and
only if (s, e, w) f-'M (1, w, e) for some f E F. In this problem you will use
the Myhill-Nerode Theorem (Theorem 2.5.2 and its corollary) to show that a
language accepted by a two-way finite automaton is accepted by a one-way
finite automaton. Thus, the apparent power to move the head to the left does
not enhance the power of finite automata.

Let M be a two-way finite automaton as just defined.
(a) Let q E K and w E I:*. Show that there is at most one p E K such

that (q,e,w) f-~1 (p,w,e).
(b) Let t be some fixed element not in K. For any wEI: *, define a function

Xw: K I-t KU {t} as follows.

Xw(q) = {p,
t,

if (q,e,w) f-'M (p,w,e)
otherwise

102 Chapter 2: FINITE AUTOMATA

By Part (a), XW is well defined. Also, for any W E ~*, define Ow :
K x ~ f-t Ku {t} as follows:

{

P'
Ow(q, a) =

t,

if (q,w,a) f-t (p,w,a) but it is not the case that
(q,w,a) f-!f (r,w,a) f-!f (p,w,a) for any r i- p,

if there is no p E K such that (q, w, a) f-t (p, w, a)

(Here by f-t we mean the transitive (not reflexive) closure of f- M, that
is, the "yields in one or more steps" relation on configurations.) Now
suppose that w, v E ~*, Xw = Xv, and Ow = Ov. Show that, for any
u E ~*, M accepts wu if and only if M accepts vu.

(c) Show that, if L(M) is the language accepted by a deterministic two
way automaton, then L(M) is accepted by some ordinary (one-way)
deterministic finite automaton. (Hint: Use (b) above to show that
';:;;;£(M) has finitely many equivalence classes.)

(d) Conclude that there is an exponential algorithm which, given a deter
ministic two-way automaton M, constructs an equivalent deterministic
finite automaton. (Hint: How many different functions XW and Ow can
there be, as a function of IKI and I~I?)

(e) Design a deterministic two-way finite automaton with O(n) states ac
cepting the language Ln = {a, b }*a{ a, b}n (recall Problem 2.5.1(a)(v)).
Comparing with Problem 2.5.1(b)(v), conclude that the exponential
growth in (d) above is necessary.

(f) Can the argument and construction in this problem be extended to
nondeterministic two-way finite automata?

B ALGORITHMS FOR FINITE AUTOMATA

Many of the results in this chapter were concerned with different ways of rep
resenting a regular language: as a language accepted by a finite automaton,
deterministic or nondeterministic, and as a language generated by a regular ex
pression. In the previous section we saw how, given any deterministic finite
automaton, we can find the equivalent deterministic finite automaton with the
fewest possible states. All these results are constructive, in that their proofs im
mediately suggest algorithms which, given a representation of one kind, produce
a representation of anyone of the others. In this subsection we shall make such
algorithms more explicit, and we shall analyze roughly their complexity.

We start from the algorithm for converting a nondeterministic finite au
tomaton to a deterministic one (Theorem 2.2.1); let us pinpoint its complex
ity. The input to the algorithm is a nondeterministic finite automaton M =

2.6: Algorithms for Finite Automata 103

(K,~, 6., s, F); thus, we must calculate its complexity as a function of the car
dinalities of K, ~, and 6.. The basic challenge is to compute the transition
function of the deterministic automaton, that is, for each Q ~ K, and each
a E ~, to compute

8'(Q, a) = U{ E(p) : p E K and (q, a,p) E 6. for some q E Q}.

It is more expedient to precompute all E(P)'s once and for all, using the closure
algorithm explained in that proof. It is easy to see that this can be done in total
time O(IKI3) for all E(p)'s. Once we have the E(p)'s, the eomputation ofr5' (Q, a)
can be carried out by first collecting all states p such that (q, a,p) E 6., and then
taking the union of all E(p)'s -a total of O(I6.IIKI2) elementary operations such
as adding an element to a subset of K. The total complexity of the algorithm is
thus O(2IKIIKI31~116.IIKI2). It is no surprise that our complexity estimate is an
exponential function of the size of the input (as manifested by the 21K1 factor);
we have seen that the output of the algorithm (the equivalent deterministic finite
automaton) may in the worst case be exponential.

Converting a regular expression R into an equivalent nondeterministic finite
automaton (Theorem 2.3.2) is in comparison efficient: It is very easy to show
by induction on the length of R that the resulting automaton has no more than
21RI states, and therefore no more than 41RI2 transitions -a polynomial.

Turning a given finite automaton M = (K,~, 6., s, F) (deterministic or
not) into a regular expression generating the same language (Theorem 2.3.2)
involves computing IKI3 regular expressions R(i,j, k). However, the length of
these expressions is in the worst case exponential: During each iteration on
the index k, the length of each regular expression is roughly tripled, as it is
the concatenation of three regular expressions from the previous iteration. The
resulting regular expressions may have length as large as 31K1 -an exponential
function of the size of the automaton.

The minimization algorithm in the previous section which, given any deter
ministic automaton M = (K,~, 8, s, F), computes an equivalent deterministic
finite automaton with the smallest number of states, is polynomial. It proceeds
in at most IKI - 1 iterations, with each iteration involving the determination,
for each pair of states, whether they are related by =n; this test only takes
O(I~I) elementary operations such as testing whether two states are related by
a previously computed equivalence relation =n-l. Thus the total complexity of
the minimization algorithm is O(I~IIKI:l) -a polynomial.

Given two language generators or two language acceptors, one natural and
interesting question to ask is whether they are equivalent that is, whether they
generate or accept the same language. If the two acceptors are deterministic
finite automata, the state minimization algorithm also provides a solution to
the equivalence problem: Two deterministic finite automata are equivalent if

104 Chapter 2: FINITE AUTOMATA

and only if their standard automata are identical. This is because the standard
automaton only depends on the language accepted, and is therefore a useful
standardization for testing equivalence. To check whether two deterministic
automata are identical is not a difficult isomorphism problem, because states
can be identified starting from the initial states, with the help of the labels on
the transitions.

In contrast, the only way we know how to tell whether two nondeterministic
automata, or two regular expressions, are equivalent is by converting them into
two deterministic finite automata, and then testing them for equivalence. The
algorithm is, of course, exponential.

We summarize our discussion of the algorithmic problems related to regular
languages and their representations as follows:

Theorem 2.6.1: (a) There is an exponential algorithm which, given a nonde
terministic finite automaton, constructs an equivalent deterministic finite au
tomaton.
(b) There is a polynomial algorithm which, given a r·egular expression, con

structs an equivalent nondeterministic finite automaton.
(c) There is an exponential algorithm which, given a nondeterministic finite

automaton, constructs an equivalent regular expression.
(d) There is a polynomial algorithm which, given a deterministic finite automa

ton, constructs an equivalent deterministic finite automaton with the small
est possible number of states.

(e) There is a polynomial algorithm which, given two deterministic finite au
tomata, decides whether they are equivalent.

(I) There is an exponential algorithm which, given two nondeterministic finite
automata, decides whether they are equivalent; similarly for the equivalence
of two regular expressions.

We know that the exponential complexity in (a) and (c) above is neces
sary, because, as Example 2.2.5 and Problem 2.3.8 indicate, the output of the
algorithm (in (a), the deterministic automaton; in (c), the equivalent regular
expression) may have to be exponential. There are, however, three important
questions that remain unresolved in Theorem 2.6.1:

(1) Is there a polynomial algorithm for determining whether two given nonde
terministic finite automata are eqUivalent, or is the exponential complexity
in (f) inherent?

(2) Can we find in polynomial time the nondeterministic automaton with the
fewest states that is equivalent to a given nondeterministic automaton? We
can certainly do so in exponential time: Try all possible nondeterministic
automata with fewer states than the given one, testing equivalence in each
case using the exponential algorithm in (f).

2.6: Algorithms for Finite Automata 105

(3) More intriguingly, suppose that we are given a nondeterministic finite au
tomaton and we wish to find the equivalent deterministic finite automaton
with the fewest states. This can be accomplished by combining the algo
rithms for (a) and (d) above. However, the number of steps may be expo
nential in the size of the given nondeterministic automaton, even though
the end result may be small -simply because the intermediate result, the
unoptimized deterministic automaton produced by the subset construction,
may have exponentially more states than necessary. Is there an algorithm
that produces directly the minimum-state equivalent deterministic automa
ton in time which is bounded by a polynomial in the input and the final
output?

As we shall see in Chapter 7 on NP-completeness, we strongly suspect that
all three of these questions have negative answers although at present nobody
knows how to prove it.

Finite Automata as Algorithms

There is something very basic that can be said about deterministic finite au
tomata in connection with algorithms: A deterministic finite automaton M is
an efficient algorithm for deciding whether a given string is in L(M). For ex
ample, the deterministic finite automaton in Figure 2-23 can be rendered as the
following algorithm:

ql: Let a := get-next-symbol;
if a = end-of-file then reject;
else if a = a then goto ql;
else if a = b then goto q2;

q2: Let a := get-next-symbol;
if a = end-of-file then reject;
else if a = a then goto q2;
else if a = b then goto q3;

q3: Let a := get-next-symbol;

a

a

Figure 2-23

106

if a = end-of-file then accept;
else if a = a then goto q3;
else if a = b then goto ql;

Chapter 2: FINITE AUTOMATA

To render a deterministic finite automaton M = (K,~, 8, s, F) as an algo
rithm, for each state in K we have I ~ I + 2 instructions, of which the first obtains
the next input symbol, and each of the others is responsible for performing the
correct action for a particular value of the input symbol -or for the case in which
we have reached the end of the input string, an event that we call "end-of-file."
We can express formally the discussion above as follows:

Theorem 2.6.2: If L is a regular language, then there is an algorithm which,
given W E ~*, tests whether it is in L in O(lwl) time.

But how about nondeterministic finite automata? They are definitely a
powerful notational simplification, and they are the most natural and direct
way of rendering regular expressions as automata (recall the constructions in the
proof of Theorem 2.3.1), but they do not obviously correspond to algorithms.
Of course, we can always transform a given nondeterministic finite automaton
to the equivalent deterministic one by the subset construction in the proof of
Theorem 2.2.1, but the construction itself (and the ensuing automaton) may
be exponential. The question arises, can we "run" a nundeterministic finite
automaton directly, very much the same way we run deterministic ones? We
next point out that, with a modest loss in speed, we can.

Recall the idea behind the subset construction: After having read part of
the input, a nondeterministic automaton can be in anyone of a set of states.
The subset construction computes all these possible sets of states. But when we
are only interested in running a single string through the automaton, perhaps a
better idea is this: We can calculate the sets of states "on the fly," as needed
and suggested by the input string.

Concretely, suppose that M = (K,~, 6., s, F) is a nondeterministic finite
automaton, and consider the following algorithm:

50 := E(s), n := 0;
repeat the following

set n := n + 1, and let a be the nth input symbol;
if a f end-of-file then

5n := U{E(q): for some p E 5 n - 1 , (p, a, q) E 6.}
until a = end-af-file
if 5 n - 1 n F f 0 then accept else reject

Here E(q) stands for the set {p: (q, e) f-M (p, e)}, as in the subset construc
tion.

2.6: Algorithms for Finite Automata

a q2

qO>Cr----b~,e--_+-jq~I~---a------~a,b

b b
a,b

Figure 2-24

107

Example 2.6.1: Let us "run," using this algorithm, the nondeterministic finite
automaton in Figure 2-24 on the input string aaaba. The various values for the
set 5n are shown below.

50 ={qO, qd,

51 ={ qo, qI, q2},

52 ={qO,ql,q2},

53 ={QO,qI,q2},

54 = { qi , Q2, Q3, Q4 } •

55 ={Q2,Q3,Q4}'

The machine ends up accepting the input aaaba, because 55 contains a final
state.<)

It is easy to prove by induction on the length of the input string that
this algorithm maintains the set 5n of all states of M that could be reached
by reading the first n symbols of the input. In other words, it simulates the
equivalent deterministic finite automaton without ever constructing it. And its
time requirements are quite modest, as the following theorem states (for a proof
of the time bound, as well as an improvement, see Problem 2.6.2).

Theorem 2.6.3: If M = (K,~,~, s, F) is a nondeterministic finite automaton,
then there is an algorithm which, given w E ~', tests whether it is in L(M) in
time O(IKI2Iwl).

Suppose next that we are given a regular expression a over the alphabet
~, and we wish to determine whether a given string w E ~. is in L[a], the
language generated by a. Since a can be easily transformed into an equivalent
nondeterministic finite automaton M, of size comparable to that of a (recall the

108 Chapter 2: FINITE AUTOMATA

constructions in Theorem 2.3.1), the algorithm above is also useful for answering

such questions. t
A related computational problem, which also can be solved by methods

based on finite automata, is that of string matching, a most central problem
in computer systems and their applications. Let us fix a string x E ~', which
we shall call the pattern. We wish to devise an efficient algorithm which, given
any string w, the text (presumably much longer than x), determines whether x
occurs as a substring of w. Notice that we are not interested in an algorithm
that takes both x and w as inputs and tells us if x occurs in w; we want our
algorithm, call it Ax) to specialize in discovering the pattern x in all possible
longer strings. Our strategy is, naturally enough, to design a finite automaton
that accepts the language Lx = {w E ~. : x is a substring of w}.

• 0 "0
b a 0?

a,b

.. O~--b-"""-<O)----"-<O)-----I"~~ 0
a a b

(a)

a

(b)

Figure 2-25

In fact, it is trivial to design a nondeterministic finite automaton for ac
cepting Lx. For example, if ~ = {a, b} and x = ababaab, the corresponding
nondeterministic finite automaton is shown in Figure 2-25(a). But in order to
turn this into a useful algorithm we would have to resort to the direct simulation
of Theorem 2.6.3 -with its running time O(\X\2\W\), polynomial but very slow
for this application- or convert it into an equivalent deterministic automaton

t For the reader familiar with the Unix operating system, this algorithm lies at the

basis of the commands grep and egrep.

2.6: Algorithms for Finite Automata 109

-a construction which we know is potentially exponential. Fortunately, in the
case of nondeterministic automata arising in string-matching applications, the
subset construction is always efficient, and the resulting deterministic automa
ton Mx has exactly the same number of states as the original nondeterministic
one (see Figure 2-25(b)). It is clearly the minimal equivalent automaton. This
automaton Mx is therefore an algorithm for testing whether w E Lx in time
O(lwl), for any string w E ~*.

Still, this algorithm has a drawback that makes it unsuitable for the many
practical applications of string matching. In real applications, the underlying
alphabet ~ has several dozens, often hundreds, of symbols. A deterministic
finite automaton rendered as an algorithm must execute for each input symbol
a long sequence of if statements, one for each symbol of the alphabet (recall the
first algorithm in this subsection). In other words, the 0 notation in the O(lwl)
running time of the algorithm "hides" a potentially large constant: the running
time is in fact O(I~llwl). For a clever remedy, see Problem 2.6.3.

Problems for Section 2.6

2.6.1. Show that these two regular expressions do not represent the same language:
aa(a U b)* U (bb)*a* and (ab U ba U a)*. Do so
(a) by subjecting them to a general algorithm; and
(b) by finding a string generated by one and not by the other.

2.6.2. (a) What is the sequence of S;'s produced if the nondeterministic finite
automaton in Example 2.6.1 is presented with input bbabbabba?
(b) Prove that the algorithm for running a nondeterministic finite automa

ton with m states on an input of length n takes time O(m2 n).
(c) Suppose that the given nondeterministic finite automaton has at most

p transitions from each state. Show that an O(mnp) algorithm is pos
sible.

2.6.3. Let ~ be an alphabet, x = al ... an E ~*, and consider the nondeterministic
finite automaton Mx = (K,~, Ll, s, F), where K = {qo, ql,'''' qn}, Ll =
{(qi-l,ai,qi) : i = O, ... ,n -I} U {(qi,a,qi) : a E ~,i E {O,n}} (recall
Figure 2-25) .
(a) Show that L(Mx) = {w E ~* : x is a substring of w}.
(b) Show that the deterministic finite automaton M~ with the fewest states

that is equivalent to Mx also has n + 1 states. What is the worst-case
time required for its construction, as a function of n?

(c) Show that there is a nondeterministic finite automaton M~ equivalent
to M x, also with n + 1 states {qo, ql , ... , qn}, and with the following
important property: Each state except qo and qn has exactly two tran
sitions out of it, of which one is an e-transition. (Hint: Replace each

110 Chapter 2: FINITE AUTOMATA

backwards transition in the deterministic finite automaton on Figure
2-25 by an appropriate e-transition; generalize.)

(d) Argue that M~ remedies the problem of the hidden constant I~I dis
cussed in the last paragraph of the text.

(e) Give an algorithm for constructing M~ from x. What is the complexity
of your algorithm as a function of n?

(f) Devise an O(n) algorithm for the problem in (e) above. (Hint: Suppose
that the e-transitions of M~ are (q;,e,qf(;)),i = 1, ... ,n - 1. Show
how to compute f(i), based on the values f(j) for j < i. A clever
"amortized" analysis of this computation gives the O(n) bound.)

(g) Suppose that ~ = {a, b} and x = aabbaab. Construct M x, M~, and
M~/. Run each of these automata on the input aababbaaabbaaabbaabb.

REFERENCES

Some of the first papers on finite automata were

o G. H. Mealy "A method for synthesizing sequential circuits," Bell System Tech
nical Journal, 34, 5 , pp. 1045-1079, 1955, and

o E. F. Moore "Gedanken experiments on sequential machines," Automata Stud
ies, ed. C. E. Shannon and J. McCarthy, pp. 129-53. Princeton: Princeton
University Press, 1956.

The classical paper on finite automata (containing Theorem 2.2.1) is

o M. O. Rabin and D. Scott "Finite automata and their decision problems," IBM
Journal of Research and Development, 3, pp. 114-25, 1959.

Theorem 2.3.2, stating that finite automata accept regular languages, is due to Kleene:

o S. C. Kleene "Representation of events by nerve nets," in Automata Studies,
ed. C. E. Shannon and J. McCarthy, pp. 3-42. Princeton: Princeton University
Press, 1956.

Our proof of this theorem follows the paper

o R. McNaughton and H. Yamada "Regular expressions and state graphs for au
tomata," IEEE Transactions on Electronic Computers, EC-9, 1 pp. 39-47, 1960.

Theorem 2.4.1 (the "pumping lemma") is from

o V. Bar-Hillel, M. Perls, and E. Shamir "On formal properties of simple phrase
structure grammars," Zeitschrijt fur Phonetik, Sprachwissenschajt, und Kommu
nikationsforschung, 14, pp. 143-172, 1961.

Finite-state transducers (Problem 2.1.4) were introduced in

o S. Ginsburg "Examples of abstract machines," IEEE Transactions on Electronic
Computers, EC-11, 2, pp. 132-135, 1962.

Two-tape finite state automata (Problems 2.1.5 and 2.4.7) are examined in

o M. Bird "The equivalence problem for deterministic two-tape automata," Jour
nal of Computer and Systems Sciences, 7, pp. 218-236, 1973.

The Myhill-Nerode Theorem (Theorem 2.5.2) is from

References 111

o A. Nerode "Linear automaton transformations," Proc. AMS, g, pp.541-544,
1958.

The algorithm for minimizing finite automata is from Moore's paper cited above. A
more efficient algorithm is given in

oJ. E. Hopcroft "An n log n algorithm for minimizing the states in a finite au
tomaton," in The Theory of Machines and Computations, ed. Z. Kohavi. New
York: Academic Press, 1971.

The simulation of nondeterministic automata (Theorem 2.6.3) is based on

o K. Thompson "Regular expression search algorithms," Communications of the
ACM, 11,6, pp. 419-422, 1968.

The fast pattern matching algorithm in Problem 2.6.3 is from

o D. E. Knuth, J. H. Morris, Jr, V. R. Pratt "Fast pattern matching in strings,"
SIAM J. on Computing, 6, 2, pp. 323-350, 1976.

The equivalence of one-way and two-way finite automata (Problem 2.5.4) is shown in

o J. C. Shepherdson "The reduction of two-way automata to one-way automata,"
IBM Journal of Research and Development, 3. pp. 198-200, 1959.

Context-Free Languages

3.1 CONTEXT-FREE GRAMMARS

Think of yourself as a language processor. You can recogllize a legal English
sentence when you hear one; "the cat is in the hat" is at least syntactically
correct (whether or not it says anything that happens to be the truth), but
"hat the the in is cat" is gibberish. However you manage to do it, you can
immediately tell when reading such sentences whether they are formed according
to generally accepted rules for sentence structure. In this respect you are acting
as a language recognizer: a device that accepts valid strings. The finite
automata of the last chapter are formalized types of language recognizers.

You also, however, are capable of producing legal English sentences. Again,
why you would want to do so and how you manage to do it are not our concern;
but the fact is that you occasionally speak or write sentences, and in general
they are syntactically correct (even when they are lies). In this respect you are
acting as a language generator. In this section we shall study certain types
of formal language generators. Such a device begins, when given some sort of
"start" signal, to construct a string. Its operation is not completely determined
from the beginning but is nevertheless limited by a set of rules. Eventually this
process halts, and the device outputs a completed string. The language defined
by the device is the set of all strings that it can produce.

Neither a recognizer nor a generator for the English language is at all easy
to produce; indeed, designing such devices for large subsets of natural languages
has been a challenging research front for several decades. Nevertheless the idea
of a language generator has some explanatory force in attempts to discuss human
language. More important for us, however, is the theory of generators of formal,
"artificial" languages, such as the regular languages and the important class of
"context-free" languages illtroduced below. This theory will neatly complement

113

114 Chapter 3: CONTEXT-FREE LANGUAGES

the study of automata, which recognize languages, and is also of practical value
in the specification and analysis of computer languages.

Regular expressions can be viewed as language generators. For example,
consider the regular expression a(a* U b*)b. A verbal description of how to
generate a string in accordance with this expression would be the following

First output an a. Then do one of the following two things:
Either output a number of a's or output a number of b's.
Finally output a b.

The language associated with this language generator -that is, the set of
all strings that can be produced by the process just described -is, of course,
exactly the regular language defined in the way described earlier by the regular
expression a(a* U b*)b.

In this chapter we shall study certain more complex sorts of language gen
erators, called context-free grammars, which are based on a more complete
understanding of the structure of the strings belonging to the language. To take
again the example of the language generated by a(a* U b*)b, note that any string
in this language consists of a leading a, followed by a middle part -generated
by (a* U b*)- followed by a trailing b. If we let S be a new symbol interpreted
as "a string in the language," and AJ be a symbol standing for "middle part,"
then we can express this observation by writing

S --+ aMb,

where --+ is read "can be." We call such an expression a rule. What can ArI,
the middle part, be? The answer is: either a string of a's or a string of b's. We
express this by adding the rules

M --+ A and M --+ B,

where A and B are new symbols that stand for strings of a's and b's, respectively.
Now, what is a string of a's? It can be the empty string

A --+ e,

or it may consist of a leading a followed by a string of a's:

A --+ aA.

Similarly, for B:
B --+ e and B --+ bB.

The language denoted by the regular expression a(a* U b*)b can then be defined
alternatively by the following language generator.

3.1: Context-Free Grammars 115

Start with the string consisting of the single symbol 5. Find a symbol in the
current string that appears to the left of ---+ in one of the rules above. Replace
an occurrence of this symbol with the string that appears to the right of ---+ in
the same rule. Repeat this process until no such symbol can be found.

For example, to generate the string aaab we start with 5, as specified; we
then replace 5 by aMb according to the first rule, 5 ---+ aMbo To aMb we apply
the rule M ---+ A and obtain aAb. We then twice apply the rule A ---+ aA to get
the string aaaAb. Finally, we apply the rule A ---+ e. In the resulting string, aaab,
we cannot identify any symbol that appears to the left of ---+ in some rule. Thus
the operation of our language generator has ended, and aaab was produced, as
promised.

A context-free grammar is a language generator that operates like the
one above, with some such set of rules. Let us pause to explain at this point why
such a language generator is called context-free. Consider the string aaAb, which
was an intermediate stage in the generation of aaab. It is natural to call the
strings aa and b that surround the symbol A the context of A in this particular
string. Now, the rule A ---+ aA says that we can replace A by the string aA
no matter what the surrounding strings are; in other words, independently of
the context of A. In Chapter 4 we examine more general grammars, in which
replacements may be conditioned on the existence of an appropriate context.

In a context-free grammar, some symbols appear to the left of ---+ in rules
--5, M, A, and B in our example- and some --a and b--- do not. Symbols of
the latter kind are called terminals, since the production of a string consisting
solely of such symbols signals the termination of the generation process. All
these ideas are stated formally in the next definition.

Definition 3.1.1: A context-free grammar G is a quadruple (V,~, R, 5),
where

V is an alphabet,
~ (the set of terminals) is a subset of V,
R (the set of rules) is a finite subset of (V - ~) x V', and
5 (the start symbol) is an element of V - L

The members of V - ~ are called nonterminals. For any A E V - ~ and
u E V', we write A ---+0 u whenever (A, u) E R. For any strings u, v E V',
we write u =?c v if and only if there are strings x, y E V' and A E V - ~

such that u = xAy, v = xv'y, and A ---+0 v'. The relation =?'G is the reflexive,
transitive closure of =?c. Finally, L(G), the language generated by G, is
{w E ~. : 5 =?'G w}; we also say that G generates each string in L(G).
A language L is said to be a context-free language if L = L(G) for some
context-free grammar G.

116 Chapter 3: CONTEXT-FREE LANGUAGES

When the grammar to which we refer is obvious, we write A ---+ wand u => v
instead of A ---+c wand u =>c v.

We call any sequence of the form

Wo =>c WI =>c ... =>c Wn

a derivation in G of Wn from W00 Here Wo,···, Wn may be any strings in V*,
and n, the length of the derivation, may be any natural number, including zero.
We also say that the derivation has n steps.

Example 3.1.1: Consider the context-free grammar G = (V,~, R, S), where
V = {S,a,b}, ~ = {a,b}, and R consists of the rules S ---+ aSb and S ---+ e. A
possible derivation is

S => aSb => aaSbb => aabb.

Here the first two steps used the rule S ---+ aSb, and the last used the rule
S ---+ e. In fact, it is not hard to see that L(G) = {anbn : n 2 O}. Hence some
context-free languages are not regular.<)

We shall soon see, however, that all regular languages are context-free.

Example 3.1.2: Let G be the grammar (W,~, R, S,), where

W = {S,A,N, V,P} U~,

~ = {Jim, big, green, cheese, ate},

R={P---+N,

P ---+ AP,

S ---+ PVP,

A ---+ big,

A ---+ green,

N ---+ cheese,

N ---+ Jim,

V ---+ ate}

Here G is designed to be a grammar for a part of English; S stands for sentence,
A for adjective, N for noun, V for verb, and P for phrase. The following are
some strings in L(G).

Jim ate cheese
big Jim ate green cheese
big cheese ate Jim

Unfortunately, the following are also strings in L(G):

3.1: Context-Free Grammars

big cheese ate green green big green big cheese
green Jim ate green big Jilll

117

Example 3.1.3: Computer programs written in any programming language
must satisfy some rigid criteria in order to be syntactically correct and there
fore amenable to mechanical interpretation. Fortunately, the syntax of most
programming languages can, unlike that of human languages, be captured by
context-free grammars. We shall see in Section 3.7 that being context-free is
extremely helpful when it comes to parsing a program, that is, analyzing it to
understand its syntax. Here, we give a grammar that generates a fragment of
many common programming languages. This language consists of all strings
over the alphabet {(,), +, *, id} that represent syntactically correct arithmetic
expressions involving + and *. id stands for any identifier, that is to say, variable

name.t Examples of such strings are id and id * (id * id + id), but not *id + (or
+ * id.

Let G = (V,:E, R, E) where V, :E, and R are as follows.

V = {+,*, (,),id,T,F,E},

:E = {+, *, (,), id},

R = {E -+ E +T,

E-+ T,

T-+T*F,

T-+F,

F -+ (E),

F -+ id}.

(Rl)

(R2)

(R3)

(R4)
(R5)

(R6)

The symbols E, T, and F are abbreviations for expression, term, and factor,
respectively.

The grammar G generates the string (id * id + id) * (id + id) by the following
deri vation.

E~T

~T*F

~T* (E)

~T* (E +T)

by Rule R2

by Rule R3

by Rule R5

by Rule Rl

t Incidentally, discovering such identifiers (or reserved words of the language, or
numerical constants) in the program is accomplished at the earlier stage of lexical
analysis, by algorithms based on regular expressions and finite automata.

118 Chapter 3: CONTEXT-FREE LANGUAGES

*T * (T + T) by Rule R2

T (F + T) by Rule R4

T (id + T) by Rule R6

T (id + F) by Rule R4

*T * (id + id) by Rule R6

*F * (id + id) by Rule R4

*(E) * (id + id) by Rule R5

*(E + T) * (id + id) by Rule Rl

(E+F)(id+id) by Rule R4

*(E + id) * (id + id) by Rule R6

*(T + id) * (id + id) by Rule R2

*(T * F + id) * (id + id) by Rule R3

*(F * F + id) * (id + id) by Rule R4

*(F * id + id) * (id + id) by Rule R6

*(id * id + id) * (id + id) by Rule R6

See Problem 3.1.8 for context-free grammars that generate larger subsets of
programming languages.O

Example 3.1.4: The following grammar generates all strings of properly bal
anced left and right parentheses: every left parenthesis can be paired with a
unique subsequent right parenthesis, and every right parenthesis can be paired
with a unique preceding left parenthesis. Moreover, the string between any such
pair has the same property. We let G = (V, 2;, R, S), where

V = {S,(,)},

2; = {C)},

R = {S -+ e,

S -+ SS,

S -+ (S)}.

Two derivations in this grammar are

S * SS * S(S) * S((S)) * S(()) * OW)

and

S * SS * (S)S * OS * O(S) * O(())

3.1: Context-Free Grammars 119

Thus the same string may have several derivations in a context-free grammar;
in the next subsection we discuss the intricate ways in which such derivations
may be related.

Incidentally, L(G) is another context-free language that is not regular (that
it is not regular was the object of Problem 2.4.6).0

EXaIllple 3.1.5: Obviously, there are context-free languages that are not regular
(we have already seen two examples). However, all regular languages are context
free. In the course of this chapter we shall encounter several proofs of this fact.
For example, we shall see in Section 3.3 that context-free languages are precisely
the languages accepted by certain language acceptors called pushdown automata.
Now we shall also point out that the pushdown acceptor is a generalization of
the finite automaton, in the sense that any finite automaton can be trivially
considered as a pushdown automatoIl. Hence all regular languages are context
free.

For another proof, we shall see in Section 3.5 that the class of context
free languages is closed under union, concatenation, and Kleene star (Theorem
3.5.1); furthermore, the trivial languages 0 and {a} are definitely context-free
(generated by the context-free grammars with no rules, or with only the rule
S -+ a, respectively). Hence the class of context-free languages must contain all
regular languages, the closure of the trivial languages under these operations.

S

Figure 3-1

But let us now show that all regular languages are context-free by a direct
construction. Consider the regular language accepted by the deterministic finite
automaton M = (K, 2;, <5, s, F). The same language is generated by the grammar
G(M) = (V, 2;, R, S), where V = K U 2;, S = s, and R consists of these rules:

R = {q -+ ap : <5 (q, a) = p} U {q -+ e : q E F}.

That is, the nonterminals are the states of the automaton; as for rules, for each
transition from q to p on input a we have in R the rule q -+ ap. For example,
for the automaton in Figure 3-1 we would construct this grammar:

S -+ as,S -+ bA,A -+ aE,A -+ bA,E -+ as,E -+ bA,E -+ e.

120 Chapter 3: CONTEXT-FREE LANGUAGES

It is left as an exercise to show that the resulting context-free grammar gener
ates precisely the language accepted by the automaton (see Problem 3.1.10 for
a general treatment of context-free grammars such as G(M) above, and their
relationship with finite automata).O

Problems for Section 3.1

3.1.1. Consider the grammar G = (V, I:, R, S), where

V = {a,b,S,A},

I: = {a, b},
R = {S --+ AA,

A --+ AAA,.

A --+ a,

A --+ bA,

A --+ Ab}.

(a) Which strings of L(G) can be produced by derivations of four or fewer
steps?
(1)) Give at least four distinct derivations for the string babbab,
(c) For any 111, n,p > 0, describe a derivation in G of the string blnab"abP.

3.1.2. Consider the grammar (V, I:, R, S), where V, I:, and R are defined as fol
lows:

V = {a,b,S,A},

I: = {a, b},

R = {S --+ aAa,

S --+ bAb,

S --+ e,

A --+ SS}.

Give a derivation of the string baabbb in G. (Notice that, unlike all other
context-free languages we have seen so far, this one is very difficult to de
scribe in English.)

3.1.3. Construct context-free grammars that generate each of these languages.
(a) {wcw R : w E {a,b}*}
(1)) {ww R : w E {a, b}'}
(c) {w E {a,b}': w = w R }

3.1: Context-Free Grammars 121

3.1.4. Consider the alphabet 2; = {a,b,(,),U,*,0}. Construct a context-free
grammar that generates all strings in 2;* that are regular expressions over
{a, b}.

3.1.5. Consider the context-free grammar G = (V, 2;, R, S), where

V = {a,b,S,A,B},

2; = {a, b},

R = {S -+ aB,

S -+ bA,

A -+ a,

A -+ as,

(a) Show that ababba E L(G).

A -+ BAA,

B -+ b,

B -+ bS,

B -+ ABB}.

(b) Prove that L(G) is the set of all nonempty strings in {a, b} that have equal
numbers of occurrences of a and b.

3.1.6. Let G be a context-free grammar and let k > o. We let Lk(G) <:;;; L(G) be
the set of all strings that have a derivation in G with k or fewer steps.
(a) What is L 5 (G), where G is the grammar of Example 3.1.4
(b) Show that, for all context-free grammars G and all k > 0, L d G) is
finite.

3.1.7. Let G = (V,2;,R,S), where V = {a,b,S}, 2; = {a,b}, and R = {S-+
aSb, S -+ aSa, S -+ bSa, S -+ bSb, S -+ e}. Show that L(G) is regular.

3.1.8. A program in a real programming language, such as C or Pascal, consists
of statements, where each statement is one of several types:
(1) assignment statement, of the form id := E, where E is any arithmetic

expression (generated by the grammar of Example 3.1.3).
(2) conditional statement, of the form, say, if E < E then statement, or a

while statement of the form while E < E do statement.
(3) goto statement; furthermore, each statement could be preceded by a

label.
(4) compound statement, that is, many statements preceded by a begin,

followed by an end, and separated by a";".
Give a context-free grammar that generates all possible statements in the
simplified programming language described above.

122 Chapter 3: CONTEXT-FREE LANGUAGES

3.1.9. Show that the following languages are context-free by exhibiting context
free grammars generating each.
(a) {ambn : m::::: n}
(b) {ambnd'dq : m + n = p + q}

(c) {w E {a,b}*: w has twice as many b's as a's}
(d) {uawb: u, wE {a, b}*, lui = Iwl}
(e) WICW2C . .. cWkccwf : k ::::: 1, 1 ~ j ~ k, Wi E {a, b} + for i = 1, ... ,k}
(f) {ambn : m ~ 2n}

3.1.10. Call a context-free grammar G = (V,~, R, S) regular (or right-linear) if
R ~ (V - ~) x ~* (V - ~ U {e}); that is, if each transition has a right
hand side that consists of a string of terminals followed by at most one
nonterminal.

(a) Consider the regular grammar G = (V,~, R, S), where

V = {a,b,A,B,S}

~ = {a,b}

R = {S -+ abA,S -+ B,S -+ baB,S -+ e,

A -+ bS,B -+ as,A -+ b}.

Construct a nondeterministic finite automaton M such that L(M) = L(G).
Trace the transitions of M that lead to the acceptance of the string abba,
and compare with a derivation of the same string in G.

(b) Prove that a language is regular if and only if there is a regular grammar
that generates it. (Hint: Recall Example 3.1.5.)

(c) Call a context-free grammar G = (V,~, R, S) left-linear if and only if
R ~ (V - ~) x (V - ~) U {e})~*. Show that a language is regular if and
only if it is the language generated by some left-linear grammar.

(d) Suppose that G = (V,~, R, S) is a context-free grammar such that each rule
in R is either of the form A -+ wB or of the form A -+ Bw or of the form
A -+ w, where in each case A, BE V - ~ and w E ~*. Is L(G) necessarily
regular? Prove it or give a counter-example.

liiJ PARSE TREES

Let G be a context-free grammar. A string w E L(G) may have many deriva
tions in G. For example, if G is the context-free grammar that generates the
language of balanced parentheses (recall Example 3.1.4), then the string 00 can
be derived from S by at least two distinct derivations, namely,

S =} S S =} (S)S =} OS =} 0 (S) =} 00

3.2: Parse Trees 123

and
S::::} SS ::::} S(S) ::::} (S)(S) ::::} (S)O ::::} 00

However, these two derivations are in a sense "the same." The rules used are
the same, and they are applied at the same places in the intermediate string.
The only difference is in the order in which the rules are applied. Intuitively,
both derivations can be pictured as in Figure 3-2.

S ------S S
~~

(S) (S)
I I
e e

Figure 3-2

We call such a picture a parse tree. The points are called nodes; each
node carries a label that is a symbol in V. The topmost node is called the
root, and the nodes along the bottom are called leaves. All leaves are labeled
by terminals, or possibly the empty string e. By concatenating the labels of
the leaves from left to right, we obtain the derived string of terminals, which is
called the yield of the parse tree.

More formally, for an arbitrary context-free grammar G = (V, 1:, R, S), we
define its parse trees and their roots, leaves, and yields, as follows.

1. o a

This is a parse tree for each a E 1:. The single node of this parse tree is both
the root and a leaf. The yield of this parse tree is a.

2. If A --+ e is a rule in R, then

[
is a parse tree; its root is the node labeled A, its sole leaf is the node labeled e,
and its yield is e.

124 Chapter 3: CONTEXT-FREE LANGUAGES

3. If

Are parse trees, where n > 1, with roots labeled AI, . .. ,An respectively, and
with yields YI, ... , Yn, and A -+ Al ... An is a rule in R, then

is a parse tree. Its root is the new node labeled A, its leaves are the leaves of its
constituent parse trees, and its yield is YI ... Yn.

4. Nothing else is a parse tree.

Example 3.2.1: Recall the grammar G that generates all arithmetic expressions
over id (Example 3.1.3). A parse tree with yield id * (id + id) is shown in Figure
3-3.0

Intuitively, parse trees are ways of representing derivations of strings in
L(G) so that the superficial differences between derivations, owing to the order
of application of rules, are suppressed. To put it otherwise, parse trees represent
equivalence classes of derivations. We make this intuition precise below.

Let G = (V, 2;, R, S) be a context-free grammar, and let D = Xl =} X2 =}

... =} Xn and D' = x~ =} x~ =} ... =} x~ be two derivations in G, where
Xi, X~ E V* for i = 1, ... ,n, Xl, xi E V - 2;, and Xn, x~ E 2;*. That is, they are
both derivations of terminal strings from a single nonterminal. We say that D
precedes D', written D -< D', if n > 2 and there is an integer k, 1 < k < n
such that

(1) for all i -:P k we have Xi = x~;

(2) Xk-I = X~_I = uAvBw, where u, v, w E V*, and A, B, E V - 2;;

3.2: Parse Trees

E
I
T
~

F * T
I I

id F
~

(E)
~

T + E
I I
F T
I I

id F
I
id

Figure 3-3

(3) Xk = uyvBw, where A -+ y E R;
(4) x~ = uAvzw where B -+ z E R;
(5) Xk+l = X~+l = uyvzw.

125

In other words, the two derivations are identical except for two consecutive
steps, during which the same two nonterminals are replaced by the same two
strings but in opposite orders in the two derivations. The derivation in which
the leftmost of the two nonterminals is replaced first is said to precede the other.

Example 3.2.2: Consider the following three derivations D1 , D2 , and D3 in
the grammar G generating all strings of balanced parentheses:

Dl =8 :::} 88 :::} (8)8 :::} ((8))8 :::} (())8 :::} (())(8) :::} (())O
D2 =8 :::} 88 :::} (8)8 :::} ((8))8 :::} ((8))(8) :::} (())(8) :::} (())O

D3 =8 :::} 88 :::} (8)8 :::} ((8))8 :::} ((8))(8) :::} ((8))0 :::} (())O

We have that Dl -< D2 and D2 -< D3. However, it is not the case that Dl -< D3,
since the two latter derivations differ in more than one intermediate string.
Notice that all three derivations have the same parse tree, the one shown in
Figure 3-4.0

We say that two derivations D and D' are similar if the pair (D, D')
belongs in the reflexive, symmetric, transitive closure of -<. Since the reflexive,

126 Chapter 3: CONTEXT-FREE LANGUAGES

5

~
5 5

~ ~
(5) (5)

~ I
(5) e

I
e

Figure 3-4

symmetric, transitive closure of any relation is by definition reflexive, symmetric,
and transitive, similarity is an equivalence relation. To put it otherwise, two
derivations are similar if they can be transformed into another via a sequence
of "switchings" in the order in which rules are applied. Such a "switching" can
replace a derivation either by one that precedes it, or by one that it precedes.

Example 3.2.2 (continued): Parse trees capture exactly, via a natural isomor
phism, the equivalence classes of the "similarity" equivalence relation between
derivations of a string defined above. The equivalence class of the derivations of
(()) 0 corresponding to the tree in Figure 3-4 contains the derivations D1 , D2 , D3
shown above, and also these seven:

D4 =5 => 55 => (5)5 => (5)(5) => ((5))(5) => (())(5) => (())O

D5 =5 => 55 => (5)5 => (5)(5) => ((5))(5) => ((5))0 => (())O

D6 =5 => 55 => (5)5 => (5)(5) => (5)0 => ((5))0 => (())O

D7 =5 => 55 => 5(5) => (5)(5) => ((5))(5) => (())(5) => (())O

DB =5 => 55 => 5(5) => (5)(5) => ((5))(5) => ((5))0 => (())O

Dg =5 => 55 => 5(5) => (5)(5) => (5)0 => ((5))0 => (())O

DlO =5 => 55 => 5(5) => 50 => (5)0 => ((5))0 => (())O

These ten derivations are related by -< as shown in Figure 3-5.

Figure 3-5

3.2: Parse Trees 127

All these ten derivations are similar, because, informally, they represent
applications of the same rules at the same positions in the strings, only differing
in the relative order of these applications; equivalently, one can go from anyone
of them to any other by repeatedly following either a -<, or an inverted -<. There
are no other derivations similar to these.

There are, however, other derivations of (())() that are not similar to the
ones above -and thus are not captured by the parse tree shown in Figure 3-
4. An example is the following derivation: S * SS * SSS * S(S)S *
S((S))S * S(())S * S(())(S) * S(())() * (())O. Its parse tree is shown in
Figure 3-6 (compare with Figure 3-4).0

S

-----------S S

~ ~
S S (S)

I ~ I
e (S) e

~
(S)

I
e

Figure 3-6

Each equivalence class of derivations under similarity, that is to say, each
parse tree, contains a derivation that is maximal under -<; that is, it is not
preceded by any other derivation. This derivation is called a leftmost deriva
tion. A leftmost derivation exists in every parse tree, and it can be obtained as
follows. Starting from the label of the root A, repeatedly replace the leftmost
nonterminal in the current string according to the rule suggested by the parse
tree. Similarly, a rightmost derivation is one that does not precede any other
derivation; it is obtained from the parse tree by always expanding the rightmost
nonterminal in the current string. Each parse tree has exactly one leftmost and
exactly one rightmost derivation. This is so because the leftmost derivation of a
parse tree is uniquely determined, since at each step there is one nonterminal to
replace: the leftmost one. Similarly for the rightmost derivation. In the example
above, DJ is a leftmost derivation, and DIO is a rightmost one.

It is easy to tell when a step of a derivation can be a part of a leftmost

derivation: the leftmost nonterminal must be replaced. We write x ~ y if and

128 Chapter 3: CONTEXT-FREE LANGUAGES

only if x = wA,8, y = wo:,8, where wE I;*, 0:,,8 E V', A E V-I;, and A -+ 0:
is a rule of G. Thus, if Xl * X2 * ... * Xn is a leftmost derivation, then in

fact Xl i X2 i ... i Xn- Similarly for rightmost derivations (the notation is
R

X *y).
To summarize our insights into parse trees and derivations in this section,

we state without formal proof the following theorem.

Theorem 3.2.1: Let G = (V,I;,R,S) be a context-free grammar, and let A E
V - I;, and w E I;*. Then the following statements are equivalent:

(a) A ** w.
(b) There is a parse tree with root A and yield w.

(c) There is a leftmost derivation A i * w.

(d) There is a rightmost derivation A Jt * w.

Ambiguity

We saw in Example 3.2.2 that there may be a string in the language generated
by a context-free grammar with two derivations that are not similar -that is to
say, with two distinct parse trees, or, equivalently, with two distinct rightmost
derivations (and two distinct leftmost derivations). For a more substantial ex
ample, recall the grammar G that generates all arithmetic expressions over id
in Example 3.1.3, and consider another grammar, G', that generates the same
language, with these rules:

E -+ E + E, E -+ E * E, E -+ (E), E -+ id.

It is not hard to see that L(G') = L(G). Still, there are important differences
between G and G'. Intuitively, the variant G', by "blurring the distinction"
between factors (F) and terms (T) "risks getting wrong" the precedence of
multiplication over addition. Indeed, there are two parse trees for the expression
id + id * id in G', both shown in Figure 3-7. One of them, 3-7(a), corresponds
to the "natural" meaning of this expression (with * taking precedence over +),
the other is "wrong."

Grammars such as G', with strings that have two or more distinct parse
trees, are called ambiguous. As we shall see extensively in Section 3.7, assigning
a parse tree to a given string in the language -that is to say, parsing the string-
is an important first step towards understanding the structure of the string, the
reasons why it belongs to the language --ultimately its "meaning." This is of
course of special importance in the case of grammars such as G and G' above
that generate fragments of programming languages. Ambiguous grammars such

3.3: Pushdown Automata

E
~

E + E
I ~
id E * E

I I
id id

(a)

Figure 3-7

129

E
~

E * E
~ I

E + E id
I I
id id

(b)

as G' are of no help in parsing, since they assign no unique parse tree -no
unique "meaning" - to each string in the language.

Fortunately, in this case there is a way to "disambiguate" G' by introduc
ing the new nonterminals T and F (recall the grammar G of Example 3.1.3).
That is, there is an unambiguous grammar that generates the same language
(namely, the grammar G defined in Example 3.1.3; for a proof that the gram
mar G is indeed unambiguous see Problem 3.2.1). Similarly, the grammar given
in Example 3.1.4 for generating balanced strings of parentheses, which is also
ambiguous (as discussed at the end of Example 3.2.2, can be easily made unam
biguous (see Problem 3.2.2). In fact, there are context-free languages with the
property that all context-free grammars that generate them must be ambiguous.
Such languages are called inherently ambiguous. Fortunately, programming
languages are never inherently ambiguous.

Problems for Section 3.2

3.2.1. Show that the context-free grammar G given in Example 3.1.3, which gen
erates all arithmetic expressions over id, is unambiguous.

3.2.2. Show that the context-free grammar given in Example 3.1.4, which gener
ates all strings of balanced parentheses is ambiguous. Give an equivalent
unambiguous grammar.

3.2.3. Consider the grammar of Example 3.1.3. Give two derivations of the string
id * id + id, one which is leftmost and one which is not leftmost.

3.2.4. Draw parse trees for each of the following.
(a) The grammar of Example 3.1.2 and the string "big Jim ate green cheese."

(b) The grammar of Example 3.1.3 and the strings id + (id + id) * id and
(id * id + id * id).

130 Chapter 3: CONTEXT-FREE LANGUAGES

liiJ PUSHDOWN AUTOMATA

Not every context-free language can be recognized by a finite autom~ton, since,
as we have already seen, some context-free languages are not regular. What
sort of more powerful device could be used for recognizing arbitrary context-free
languages? Or, to be a bit more specific, what extra features do we need to add
to the finite automata so that they accept any context-free language?

To take a particular example, consider {ww R : w E {a, b}·}. It is context
free, since it is generated by the grammar with rules S ~ aSa, S ~ bSb, and
S ~ e. It would seem that any device that recognizes the strings in this language
by reading them from left to right must "remember" the first half of the input
string so that it can check it -in reverse order- against the second half of the
input. It is not surprising that this function cannot be performed by a finite
automaton. If, however, the machine is capable of accumulating its input string
as it is read, appending symbols one at a time to a stored string (see Figure
3-8), then it could nondeterministically guess when the center of the input has
been reached and thereafter check the symbols off from its memory one at a
time. The storage device need not be a general-purpose one. A sort of "stack"
or "pushdown store," allowing read and write access only to the top symbol,
would do nicely.

Input

Finite
control

Figure 3-8

a

b

b

a

"Stack"
or
"Pushdown
store"

To take another example, the set of strings of balanced parentheses (Exam
ple 3.1.4) is also nonregular. However, computer programmers are familiar with
a simple algorithm for recognizing this language: Start counting at zero, add one
for every left parenthesis, and subtract one for every right parenthesis. If the
count either goes negative at any time, or ends up different from zero, then the
string should be rejected as unbalanced; otherwise it should be accepted. Now,

3.3: Pushdown Automata 131

a counter can be considered as a special case of a stack, on which only one kind
of symbol can be written.

To address this question from yet another point of view, rules such as A -+
aB are easy to simulate by a finite automaton, as follows: "If in state A reading
a, go to state B." But what about a rule whose right-hand side is not a terminal
followed by a nonterminal, say the rule A -+ aBb? Certainly the machine must
again go from state A to state B reading a, but what about b? What further
action would allow us to remember the presence of b in this rule? A stack would
be handy here: By pushing b on the top of a stack, we resolve to remember it
and act upon it when it resurfaces again -presumably to be checked against a
b in the input.

The idea of an automaton with a stack as auxiliary storage can be formalized
as follows.

Definition 3.3.1: Let us define a pushdown automaton to be a sextuple
M = (K,I:,r,~,s,F), where

K is a finite set of states,
I: is an alphabet (the input symbols),
r is an alphabet (the stack symbols),
s E K is the initial state,
F ~ K is the set of final states, and
~, the transition relation, is a finite subset of (K x (I: U {e}) x r*) x
(K x r*).

Intuitively, if ((p, a, (3), (q, ,)) E ~, then M, whenever it is in state p with f3
at the top of the stack, may read a from the input tape (if a = e, then the input
is not consulted), replace f3 by , on the top of the stack, and enter state q. Such
a pair ((p, a, (3), (q, ,)) is called a transition of M; since several transitions of M
may be simultaneously applicable at any point, the machines we are describing
are nondeterministic in operation. (We shall later alter this definition to define
a more restricted class, the deterministic pushdown automata.)

To push a symbol is to add it to the top of the stack; to pop a symbol is to
remove it from the top of the stack. For example, the transition ((p, u, e), (q, a))
pushes a, while ((p,u,a),(q,e)) pops a.

As is the case with finite automata, during a computation the portion of the
input already read does not affect the subsequent operation of the machine. Ac
cordingly, a configuration of a pushdown automaton is defined to be a member
of K x I:* x r*: The first component is the state of the machine, the second is the
portion of the input yet to be read, and the third is the contents of the pushdown
store, read top-down. For example, if the configuration were (q, W, abc), the a
would be on the top of the stack and the c on the bottom. If (p, x, Cl:) and (q, y, ()

132 Chapter 3: CONTEXT-FREE LANGUAGES

are configurations of M, we say that (p,x,a) yields in one step (q,y,() (no
tation: (p,x,a) f-M (q,y,()) if there is a transition ((p,a,(3),(q,,)) E ~ such
that x = ay, a = (3T], and (= ,T] for some T] E r*. We denote the reflexive,
transitive closure of f- M by f- M. We say that M accepts a string w E ~*
if and only if (s, w, e) f-M (p, e, e) for some state p E F. To put it another
way, M accepts a string w if and only if there is a sequence of configurations
CO,Cl, ... ,Cn (n > 0) such that CO f-M Cl f-M ... f-M Cn , Co = (s,w,e), and
Cn = (p, e, e) for some p E F. Any sequence of configurations Co, C l , ... , Cn

such that Ci f- M CHI for i = 0, ... , n - 1 will be called a computation by M;
it will be said to have length n, or to have n steps. The language accepted
by M, denoted L(M), is the set of all strings accepted by M.

When no confusion can result, we write f- and f-* instead of f- M and f-M.

Example 3.3.1: Let us design a pushdown automaton M to accept the language
L = {wcw R : w E {a, b } *}. For example, ababcbaba E L, but abcab ~ L, and
cbc ~ L. We let M = (K,~,r,~,s,F), where K = {s,f}, ~ = {a,b,c},
r = {a, b}, F = {f}, and ~ contains the following five transitions.

(1) ((s,a,e),(s,a))
(2) ((s,b,e),(s,b))
(3) ((s, c, e), (f, e))
(4) ((f,a,a),(f,e))
(5) ((f,b,b),(f,e))

This automaton operates in the following way. As it reads the first half
of its input, it remains in its initial state s and uses transitions 1 and 2 to
transfer symbols from the input string onto the pushdown store. Note that
these transitions are applicable regardless of the current content of the pushdown
store, since the "string" to be matched on the top of the pushdown store is the
empty string. When the machine sees a c in the input string, it switches from
state s to state f without operating on its stack. Thereafter only transitions 4
and 5 are operative; these permit the removal of the top symbol on the stack,
provided that it is the same as the next input symbol. If the input symbol
does not match the top symbol on the stack, no further operation is possible. If
the automaton reaches in this way the configuration (f, e, e) -final state, end
of input, empty stack -then the input was indeed of the form wcwR , and the
automaton accepts. On the other hand, if the automaton detects a mismatch
between input and stack symbols, or if the input is exhausted before the stack
is emptied, then it does not accept.

To illustrate the operation of M, we describe a sequence of transitions for
the input string abbcbba.

Example 3.3.2: Now we construct a pushdown automaton to accept L =
{ww R : w E {a, b}*}. That is, the strings accepted by this machine are the

3.3: Pushdown Automata 133

State Unread Input Stack Transition Used

s abbcbba e -
s bbcbba a 1
s bcbba ba 2
s cbba bba 2
j bba bba 3
j ba ba 5

f a a 5
j e e 4

same as those accepted by the machine of the previous example, except that the
symbol c that marked the center of the strings is missing. Therefore the machine
must "guess" when it has reached the middle of the input string and change from
state s to state f in a nondeterministic fashion. Thus M = (K, I:, r,~, s, F),
where K = {s,f}. I: = {a, b}, F = {f}, and ~ is the set of the following five
transitions.

(1) ((s,a,e), (s,a))
(2) ((s, b, e), (s, b))
(3) ((s,e,e),(j,e))
(4) ((f,a,a),(f,e))
(5) ((j,b,b),(j,e))

Thus this machine is identical to that of the last example, except for tran
sition 3. Whenever the machine is in state s, it can nondeterministically choose
either to push the next input symbol onto the stack, or to switch to state j
without consuming any input. Therefore even starting from a string of the form
wwR , M has computations that do not lead it to the accepting configuration
(f, e, e)j but there is some computation that leads M to this configuration if and
only if the input string is of this form.O

Example 3.3.3: This pushdown automaton accepts the language {w E {a, b}· :
w has the same number of a's and b's}. Either a string of a's or a string of b's is
kept by M on its stack. A stack of a's indicates the excess of a's over b's thus far
read, if in fact M has read more a's than b'sj a stack of b's indicates the excess
of b's over a's. In either case, M keeps a special symbol c on the bottom of the
stack as a marker. Let M = (K, I:, r,~, s, F), where K = {s, q, f}, I: = {a, b},
r = {a,b,c}, F = {f}, and ~ is listed below.

(1) ((s,e,e),(q,c))
(2) ((q,a,c),(q,ac))
(3) ((q, a, a), (q, aa))

134

(4) ((q,a,b), (q,e))
(5) ((q,b,e),(q,be))
(6) ((q,b,b),(q,bb))
(7) ((q,b,a),(q,e))
(8) ((q,e,e), (i,e))

Chapter 3: CONTEXT-FREE LANGUAGES

Transition 1 puts M in state q while placing a e on the bottom of the stack.
In state q, when M reads an a, it either starts up a stack of a's from the bottom,
while keeping the bottom marker (transition 2), or pushes an a onto a stack of
a's (transition 3), or pops a b from a stack of b's (transition 4). When reading a
b from the input, the machine acts analogously, pushing a b onto a stack of b's
or a stack consisting of just a bottom marker, and popping an a from a stack of
a's (transitions 5, 6, and 7). Finally, when e is the topmost (and therefore the
only) symbol on the stack, the machine may remove it and pass to a final state
(transition 8). If at this point all the input has been read, then the configuration
(j, e, e) has been reached, and the input string is accepted.

The following table contains an illustration of the operation of M.

State Unread Input Stack Transition Comments

s abbbabaa e Initial configuration.
q abbbabaa e 1 Bottom marker.
q bbbabaa ac 2 Start a stack of a's.
q bbabaa e 7 Remove one a.
q babaa be 5 Start a stack of b's.
q abaa bbc 6
q baa be 4
q aa bbc 6
q a be 4
q e e 4

f e e 8 Accepts.

0

Example 3.3.4: Every finite automaton can be trivially viewed as a push
down automaton that never operates on its stack. To be precise, let M =
(K, I:,~, s, F) be a nondeterministic finite automaton, and let M' be the push
down automaton (K, I:, 0,~', s, F), where~' = {((p, '11" e), (q, e)) : (p, '11" q) E ~}.
In other words, M' always pushes and pops an empty string on its stack, and
otherwise simulates the transitions of M. Then it is immediate that M and M'
accept precisely the same language.O

3.3: Pushdown Automata

Problems for Section 3.3

3.3.1. Consider the pushdown automaton M = (K,~, r, 6, s, F), where

K={s,f},

F = {f},
~ = {a, b},

r = {a},

6 = {((s, a, e), (s, a)), « s, b, e), (s, a)), « s, a, e), (f , e)),

«(f, a, a), (f, e)), «(f, b, a), (f, e))}.

(it) Thace all possible sequences of transitions of M on input aba.
(b) Show that aba, aa, abb ~ L(!vI), but baa, bab, baaaa E L(M).
(c) Describe L(M) in English.

3.3.2. Construct pushdown automata that accept each of the following.
(a) The language generated by the grammar G = (V,~, R, S), where

v = {S, (,), [,]},
~ = {(,),[,]},

R = {S --+ e,

S --+ SS,

S --+ [S],
S --+ (S)}.

(b) The language {ambn : m ~ n ~ 2m}.
(c) The language {w E {a, b}* : w = wR }.

(d) The language {w E {a, b}*: w has twice as many b's as a's}.

135

3.3.3. Let M = (K,~, r, 6, s, F) be a pushdown automaton. The language ac
cepted by M by final state is defined as follows:

L,(M) = {w E ~* : (s,w,e) f-~ (f,e,a) for some f E F,a E r*}.

a) Show that there is a pushdown automaton M' such that L(M') = L,(M).
b) Show that there is a pushdown automaton M" such that L,(M")
L(M).

136 Chapter 3: CONTEXT-FREE LANGUAGES

3.3.4. Let M = (K" I:, r,~, s, F) be a pushdown automaton. The language
accepted by M by empty store is defined as follows:

Le(M) = {w E I:* : (s, w, e) f-M (q, e, e) for some q E K}.

(a) Show that there is a pushdown automaton M' such that Le(M')
L(M).
(b) Show that there is a pushdown automaton M" such that L(M")
Le(M).
(c) Show by a counterexample that it is not necessarily the case that
Le(M) = L(M) U {e}.

3.4 PUSHDOWN AUTOMATA AND CONTEXT-FREE GRAMMARS

In this section we show that the pushdown automaton is exactly what is needed
to accept arbitrary context-free languages. This fact is of mathematical and
practical significance: mathematical, because it knits together two different for
mal views of the same class of languages; and practical, because it lays the
foundation for the study of syntax analyzers for "real" context-free languages
such as programming languages (more on this in Section 3.7).

Theorem 3.4.1: The class of languages accepted by pushdown automata is ex
actly the class of contel:t-free languages.

Proof: We break this proof into two parts.

Lemma 3.4.1: Each context-free language is accepted by some pushdown au
tomaton.

Proof: Let G = (V, I:, R, S) be a context-free grammar; we must construct a
pushdown automaton M such that L(M) = L(G). The machine we construct
has only two states, p and q, and remains permanently in state q after its first
move. Also, M uses V, the set of terminals and nonterminals, as its stack
alphabet. We let M = ({p, q}, I:, V, ~,p, {q}), where ~ contains the following
transitions:

(1) ((p, e, e), (q, S))
(2) ((q, e, A), (q, x)) for each rule A -+ x in R.
(3) ((q,a,a),(q,e)) for each aE I:.

The pushdown automaton M begins by pushing S, the start symbol of G,
on its initially empty pushdown store, and entering state q (transition 1). On
each subsequent step, it either replaces the topmost symbol A on the stack,

3.4: Pushdown Automata and Context-Free Grammars 137

provided that it is a nonterminal, by the right-hand side x of some rule A -+ x
in R (transitions of type 2), or pops the topmost symbol from the stack, provided
that it is a terminal symbol that matches the next input symbol (transitions of
type 3). The transitions of M are designed so that the pushdown store during
an accepting computation mimics a leftmost derivation of the input string; M
intermittently carries out a step of such a derivation on the stack, and between
such steps it strips away from the top of the stack any terminal symbols and
matches them against symbols in the input string. Popping the terminals from
the stack has in turn the effect of exposing the leftmost nonterminal, so that the
process can continue.

Example 3.4.1: Consider the grammar G = (V,L,R,S) with V = {S,a,b,c},
L = {a, b, e}, and R = {S -+ aSa, S -+ bSb, S -+ e), which generates the
language {wcw R : w E {a, b}*}. The corresponding pushdown automaton, ac
cording to the construction above, is M = ({p, q}, L, V, b., p, { q}), with

b. = {((p, e, e), (q, S)),

((q, e, S), (q, aSa)),

((q, e, S), (q, bSb)),

((q, e, S), (q, e)),

((q, a, a), (q, e)),

((q, b, b), (q, e)),

((q, c,c), (q,e))}

(Tl)

(T2)

(T3)

(T4)

(T5)

(T6)

(T7).

The string abbebba is accepted by M through the following sequence of moves.

State Unread Input Stack Transition Used

p abbebba e -
q abbebba S Tl
q abbcbba aSa T2
q bbebba Sa T5
q bbebba bSba T3
q bcbba Sba T6
q bebba bSbba T3
q ebba Sbba T6
q ebba ebba T4
q bba bba T7
q ba ba T6
q a a T6
q e e T5

138 Chapter 3: CONTEXT-FREE LANGUAGES

Compare this to the operation, on the same string, of the pushdown au
tomaton of Example 3.3.1.0

To continue the proof of the Lemma, in order to establish that L(M)
L(G), we prove the following claim.

Claim. Let w E L* and 0: E (V - L)V* U {e}. Then S ~ * wo: if and only if
(q,w,S) f-M (q,e,o:).

This claim will suffice to establish Lemma 3.4.1, since it will follow (by

taking 0: = e) that S ~ * w if and only if (q, e, S) f-M (q, e, e) ~in other words,
w E L(G) if and only if wE L(M).

(Only if) Suppose that S ~ * wo:, where w E L*, and 0: E (V - L)V* U {e}.
We shall show by induction on the length of the leftmost derivation of w from
S that (q,w,S) f-M (q,e,o:).

Basis Step. If the derivation is of length 0, then w = e, and 0: = S, and hence
indeed (q,w,S) f-M (q,e,o:).

Induction Hypothesis. Assume that if S ~ * wo: by a derivation of length n or
less, n 2 0, then (q,w,S) f-M (q,e,o:).

Induction Step. Let

S = Uo :i Ul ~ ... ~ Un ~ Un+l = wo:

be a leftmost derivation of wo: from S. Let A be the leftmost nonterminal of
Un. Then Un = xA,8, and Un+l = x,,8, where x E L*, ,8" E V*, and A --+ , is
a rule in R. Since there is a leftmost derivation of length n of Un = xA,8 from
S, by the induction hypothesis

(q, x, S) f-M (q, e, A,8). (2)

Since A --+ , is a rule in R,

(q,e,A,8) f-M (q,e",8), (3)

by a transition of type 2.
Now notice that Un+l is wo:, but it is also x,,8. Hence, there is a string

y E L* such that w = xy and yo: = ,,8. Thus, we can rewrite (2) and (3) above
as

(q, w, S) f-M (q, y, ,,8). (4)

However, Since yo: = ,,8,

(q,y",8) f-M (q,e,o:), (5)

by a sequence of Iyl transitions of type 3. Combining (4) and (5) completes the
induction step.

3.4: Pushdown Automata and Context-Free Grammars 139

(If) Now suppose that (q, w, S) f-'M (q, e, 0'.) with W E L* and 0'. E (V - L)V* U

{e}; we show that S ~ * WO'.. Again, the proof is by induction, but this time on
the number of transitions of type 2 in the computation by M.

Basis Step. Since the first move in any computation is by a transition of type 2,
if (q,w,S) f-'M (q,e,O'.) with no type-2 transitions, then w =:: e and 0: =:: S, and
the result is true.

Induction Hypothesis. If (q,w,S) f-'M (q,e,O'.) by a computation with n type 2

steps or fewer, n ? 0, then S ~ * WO'..

Induction Step. Suppose that (q,w,S) f-'M (q,e,O'.) in n + 1 type-2 transitions,
and consider the next-to-Iast such transition, say,

(q,w,S) f-'M (q,y,A(3) f-M (q,y,,(3) f-'M (q,e,O'.),

where w = xy for some x, y E L*, and A ---+, is a rule of the grammar. By

the induction hypothesis we have that S ~. xA(3, and thus S ~ * x,(3. Since
however (q,y,,(3) f-'M (q,e,O'.), presumably by transitions of type 3, it follows

that yO'. =:: ,(3, and thus S ~ * xyO'. = WO'.. This completes the proof of Lemma
3.4.1, and with it half the proof of Theorem 3.4.1. •

We now turn to the proof of the other half of Theorem 3.4.1.

Lemma 3.4.2: If a language is accepted by a pushdown automaton, it is a
context-free language.

Proof: It will be helpful to restrict somewhat the pushdown automata under
consideration. Call a pushdown automaton simple if the following is true:

Whenever ((q, a, (3), (p, ,)) is a transition of the pushdown automaton and
q is not the start state, then (3 E r, and hi ::; 2.

In other words, the machine always consults its topmost stack symbol (and
no symbols below it), and replaces it either with e, or with a single stack symbol,
or with two stack symbols. Now it is easy to see that no interesting pushdown
automaton can have only transitions of this kind, because then it would not be
able to operate when the stack is empty (for example, it would not be able to
start the computation, since in the beginning the stack is empty). This is why
we do not restrict transitions from the start state.

We claim that if a language is accepted by an unrestricted pushdown au
tomaton, then it is accepted by a simple pushdown automaton. To see this, let
fl.1 = (K, L, r,~, s, F) be any pushdown automaton; we shall construct a simple
pushdown automaton M' = (KI, L, ru {Z}, ~/, Sl, {f}) that also accepts L(M);

140 Chapter 3: CONTEXT-FREE LANGUAGES

here s' and f' are new states not in K, and Z is a new stack symbol, the stack
bottom symbol, also not in r. We first add to ~ the transition ((s' , e, e), (s, Z));
this transition starts the computation by placing the stack bottom symbol in
the bottom of the stack, where it will remain throughout the computation. No
rule of t1 will ever push a Z in the stack -except to replace it at the bottom
of the stack. We also add to t1 the transitions (if. e. Z). (/', e)) for each f E F.
These transitions end the computation by removing Z from the bottom of the
stack and accepting the input seen so far.

Initially, ~' consists of the start and final transitions described above, and
all transitions of ~. We shall next replace all transitions in ~' that violate the
simplicity condition by equivalent transitions that satisfy the simplicity condi
tion. We shall do this in three stages: First we shall replace transitions with
1,81 2 2. Then we shall get rid of transitions with hi > 2, without introducing
any transitions with 1,81 2 2. Finally, we shall get rid of transitions with ,8 = e,
without introducing any transitions with 1,81 2 2 or hi > 2.

Consider any transition ((q,a,,8),(p,,)) E ~', where,8 = B1 ···Bn with
n > 1. It is replaced by new transitions that pop sequentially the individual
symbols in Bl ... B n , rather than removing them all in a single step. Specifically,
we add to ~' these transitions:

((q, e, B1), (qB1, e)),

((qB1, e,B2),(qB1B2· e)),

((qBI B, ... B._." e, Bn-d, (qB1B, ... B,,_I, e)),

((qB1B2 .. B._I' a, B n), (p, ,)),

where, for i = 1, ... ,n - 1, qB1B2 ... Bi is a new state with the intuitive meaning
"state q after symbols B 1B 2 ••• Bi have been popped. We repeat this with all
transitions ((q,u,,8), (p,,)) E ~' with 1,81 > 1. It is clear that the resulting
pushdown automaton is equivalent to the original one.

Similarly, we replace transitions ((q,u,,8), (p,,)) with, = C1 ... ,Cm and
m 2 2 by the transitions

((q, a, ,8), (rl' Cm)),

(h, e, e), (r2' Cm-d),

((rm -2, e, e), (rm -l, C2)),

((rm -l, e, e), (p, Cd),

where rl,.'" r m -l are new states. Notice that all transitions ((q, a, ,8), (p, ,)) E

t{ have now hi ::; I-a more stringent requirement than simplicity (and actually

3.4: Pushdown Automata and Context-Free Grammars 141

one that would be a loss of generality). It will be restored to hi ::; 2 in the next
stage. Also, no transitions ((q, u, ,8), (p, ,)) with 1,81 > 1 were added.

Finally, consider any transition ((q, a, e), (p, ,)) with q i- s' ~the only possi
ble remaining violations of the simplicity condition. Replace any such transition
by all transitions of the form ((q,a,A), (p"A)), for all A E r U {Z}. That is,
if the automaton could move without consulting its stack, it can also move by
consulting the top stack symbol, whatever it may be, and replace it immedi
ately. And we know that there i8 at least one symbol in the stack: throughout
the main computation ~apart from the start and final transitions~ the stack
never becomes empty. Notice also that at this stage we may introduce ,'s of
length two ~this does not violate the simplicity eondition, but is necessary for
obtaining general pushdown automata.

It is easy to see that this construction results in a simple pushdown automa
ton M' such that L(M) = L(M'). To continue the proof of the lemma, we shall
exhibit a context-free grammar G such that L(G) = L(M'); this would conclude
the proof of the lemma, and with it of Theorem 3.4.l.

We let G = (V,~, R, S), where V contains, in addition to a new symbol
S and the symbols in ~, a new symbol (q, A.,p) for all q,p E K' and each A E
r U ie, Z}. To understand the role of the nonterminals (q, A,p), remember that
G is supposed to generate all strings accepted by M~ Therefore the nonterminals
of G stand for different parts of the input strings that are accepted by M~ In
particular, if A E r, then the nonterminal (q,A.,p) represents any portion of the
input string that might be read between a point in time when M'is in state q
with A. on top of its stack, and a point in time when M'removes that occurrence
of A from the stack and enters state p. If A = e, then (q, e,p) denotes a portion
of the input string that might be read between a time when M'is in state q and
a time when it is in state p with the same stack, without in the interim changing
or consulting that part of the stack.

The rules in R are of four types.

(1) The rule S , (8, Z, 1'), where 8 is the start state of the original pushdown
automaton M and I' the new final state.

(2) For each transition ((q,a,B), (r.C». where q,r E K: a E ~ U {e}, B,C E
r U {e}, and for each p E K~ we add the rule (q, B,p) , a(r, C,p).

(3) For each transition ((q,a,B), (r,C1 C2)), where q,r E K~ a E ~ U {e},
B E r U {e}, and C1 ,C2 E r and for each p,p' E K~ we add the rule
(q, B,p) , a(r, C1 ,p')(p', C2 ,p).

(4) For each q E K: the rule (q, e, q) , e.

Note that, because M'is simple, either type 2 or type 3 applies to each
transition of M~

A rule of type 1 states essentially that any input string which can be read
by M' passing from state s to the final state, while at the same time the net

142 Chapter 3: CONTEXT-FREE LANGUAGES

effect on the stack is that the stack bottom symbol was popped, is a string in
the language L(l'vIj. A rule of type 4 says that no computation is needed to go
from a state to itself without changing the stack. Finally, a rule of type 2 or 3
says that, if ((q,a,B),(p,,» Ell', then one of the possible computations that
lead from state q to state p while consuming B (possibly empty) from the top
of the stack, starts by reading input a, replacing B by " passing to state r. and
then going on to consume, and end up in state p --reading whatever input is
appropriate during such computation. If, = C1 C2 , this last computation can
in principle pass through any state p' immediately after C1 is popped (this is a
type-3 rule).

These intuitive remarks are formalized in the following claim.

Claim. For any q,p E K: A E r u {e}, and x E ~*,

(q, A,p) =}a x if and only if (q, x, A) f-iwi (p, e, e).

Lemma 3.4.2, and with it Theorem 3.4.1, follows readily from the claim,
since then (8, e, f) =}a x for some f E F if and only if (8, x, e) f-M-' (f, e, e); that
is, x E L(G) if and only if x E L(l'vIj.

Both directions of the claim can be proved by induction on the length either
of the derivation of G or the eomputation of M; they are left as an exercise
(Problem 3.4.5) .•

Problems for Section 3.4

3.4.1. Carry out the construction of Lemma 3.4.1 for the grammar of Example
3.1.4. Trace the operation of the automaton you have constructed on the
in pu t string (() 0) .

3.4.2. Carry out the construction of Lemma 3.4.2 for the pushdown automaton
of Example 3.3.2, and let G be the resulting grammar. What is the set
{w E {a, b}* : (q, a,p) =}a w}? Compare with the proof of Lemma 3.4.2.

3.4.3. Carry out the construction of Lemma 3.4.2 for the pushdown automaton of
Example 3.3.3. The resulting grammar will have 25 rules, but many can
be eliminated as useless. Show a derivation of the string aababbba in this
grammar. (You may change the names of the nonterminals for clarity.)

3.4.4. Show that if M = (K,~, r, Ll, s, F) is a pushdown automaton, then there
is another pushdown automaton M' = (K',~, r, Ll', s, F) such that (M') =
L(M) and for all ((q, u, ,8), (p, ,» E Ll', 1,81 + hi :=:; 1.

3.4.5. Complete the proof of Lemma 3.4.2.

3.5: Languages that Are and Are Not Context-Free 143

3.4.6. A context-free grammar is linear if and only if no rule has as its right
hand side a string with more than one nonterminal. A pushdown automa
ton (K,~, r,~, s, F) is said to be single-turn if and only if whenever
(s. w. e) 1-*(qI' WI' Yt) I- (qu W2. Yz) I-*(q:y w:y y:0 and I y21 < I yII then I y31 < I Y21.
(That is, once the stack starts to decrease in height, it never again increases
in height.) Show that a language is generated by a linear context-free gram
mar if and only if it is accepted by a single-turn pushdown automaton.

3.5 LANGUAGES THAT ARE AND ARE NOT CONTEXT-FREE

Closure Properties

In the last section, two views of context-free languages -as languages generated
by context-free grammars and as languages accepted by pushdown automata-~
were shown to be equivalent. These characterizations enrich our understand
ing of the context-free languages, since they provide two different methods for
recognizing when a language is context-free. For example, the grammatical
representation is more natural and compelling in the case of a programming
language fragment such as that of Example 3.1.3; but the representation in
terms of pushdown automata is easier to see in the case of {w E {a, b}' :
w has equal numbers of a's and b's} (see Example 3.3.3). In this subsection we
shall provide further tools for establishing context-freeness: we show some clo
sure properties of the context-free languages under language operations -very
much in the spirit of the closure properties of regular languages. In the next
subsection we shall prove a more powerful pumping theorem which enables us to
show that certain languages are not context-free.

Theorem 3.5.1: The context-free languages are closed under union, concatena
tion, and Kleene star.

Proof:. Let G I = (VI, ~I' R I , St) and G2 = (V2, ~2' R2, S2) be two context-free
grammars, and without loss of generality assume that they have disjoint sets of
nonterminals --that is, VI - ~I and V2 ~ ~2 are qisjoint.

Union. Let S be a new symbol and let G = (VI U V2 U {S}, ~I u ~2, R, S),
where R = RI U R2 U {S --+ SI, S --+ S2}. Then we claim that L(G) = L(Gt} U
L(G2). For the only rules involving S are S --+ SI and S --+ S2, so S =}a w if and
only if either SI =}a w or 8 2 =}a W; and since G I and G2 have disjoint sets of
nonterminals, the last disjunction is equivalent to saying that wE L(GduL(G2).

Concatenation. The construction is similar: L(Gt}L(G2) is generated by
the grammar

G = (VI U V2 U {S}, ~I U ~2, RI U R2 U {S --+ SlSd,S).

144 Chapter 3: CONTEXT-FREE LANGUAGES

Kleene Star. L(Gd* is generated by

•
As we shall see shortly, the class of context-free languages is not closed under

intersection or complementation. This is not very surprising: Recall that our
proof that regular languages are closed under intersection depended on closure
under complementation; and that construction required that the automaton be
deterministic. And not all context-free languages are accepted by deterministic
pushdown automata (see the corollary to Theorem 3.7.1).

There is an interesting direct proof of the closure under intersection of
regular languages, not relying on closure under complement, but on a direct
construction of a finite automaton whose set of states is the Cartesian product
of the sets of states of the constituent finite automata (recall Problem 2.3.3).
This construction cannot of course be extended to pushdown automata -the
product automaton would have needed two stacks. However, it can be made to
work when one of the two automata is finite:

Theorem 3.5.2: The intersection of a context-free language with a regular lan
guage is a context-free language.

Proof: If L is a context-free language and R is a regular language, then L =
L(Md for some pushdown automaton Ml = (K1 ,I:,f1 ,6.1 ,SI,F1), and R =
L(M2) for some deterministic finite automaton M2 = (K2, I:, 6, S2, F2)' The
idea is to combine these machines into a single pushdown automaton M that
carries out computations by Ml and M2 in parallel and accepts only if both
would have accepted. Specifically, let M = (K, I:, f, 6., s, F), where

K = Kl X K 2, the Cartesian product of the state sets of Ml and M2;
f = f 1 ;

s = (Sl, S2);
F = Fl X F2, and
6., the transition relation, is defined as follows. For each transition of the
pushdown automaton ((ql,a,,B), (Pl,'Y)) E 6. 1 , and for each state q2 E K 2,
we add to 6. the transition (((ql, q2), a, 13), ((PI, 6(q2, a)), 'Y)); and for each
transition of the form ((Ql, e, (3), (PI ,'Y)) E 6.1 and each state Q2 E K 2, we
add to 6. the transition (((Ql , Q2), e, ,8), UPI , Q2), 'Y))' That is, M passes from
state (Ql, Q2) to state (Pl,P2) in the same way that Ml passes from state Ql
to PI, except that in addition M keeps track of the change in the state of
M2 caused by reading the same input.

3.5: Languages that Are and Are Not Context-Free 145

It is easy to see that indeed w E L(M) if and only if w E L(M1) n L(M2)' •

Example 3.5.1: Let L consist of all strings of a's and b's with equal numbers
of a's and b's but containing no substring abaa or babb. Then L is context-free,
since it is the intersection of the language accepted by the pushdown automaton
in Example 3.3.3 with the regular language {a, b} * - {a, b}*(abaaUbabb){ a, b}*.<)

A Pumping Theorem

Infinite context-free languages display periodicity of a somewhat subtler form
than do regular languages. To understand this aspect of context-freeness we
start from a familiar quantitative fact about parse trees. Let G = (V, L, R, S)
be a context-free grammar. The fanout of G, denoted ¢(G), is the largest
number of symbols on the right-hand side of any rule in R. A path in a parse
tree is a sequence of distinct nodes, each connected to the previous one by a line
segment; the first node is the root, and the last node is a leaf. The length of
the path is the number of line segments in it. The height of a parse tree is the
length of the longest path in it.

Lemma 3.5.1: The yield of any parse tree of G of height h has length at most
¢(G)h.

Proof: The proof is by induction on h. When h = 1, then the parse tree is a
rule of the grammar (this is Case 2 of the definition of a parse tree), and thus
its yield has at most ¢(G)h = ¢(G) symbols.

Suppose then that the result is true for parse trees of height up to h 2 1.
For the induction step, any parse tree of height h+ 1 consists of a root, connected
to at most d>(G) smaller parse trees of height at most h (this is Case 3 of the
definition of a parse tree). By induction, all these parse "subtrees" have yields
of length at most ¢(G)h each. It follows that the total yield of the overall parse
tree is indeed at most ¢(G)h+1, completing the induction .•

To put it another way, the parse tree of any string w E L(G) with Iwl >
¢(G)h must have a path longer than h. This is crucial in proving the following
pumping theorem for context-free languages.

Theorem 3.5.3: Let G = (V, L, R, S) be a context-free gr·ammar. Then any
string w E L(G) of length greater than 1>(G) II" -I;I can be rewritten as w = uvxyz
in such a way that either v or y is nonempty and uvnxynz is in L(G) for every
n 2 O.

Proof: Let w be such a string, and let T be the parse tree with root labeled S
and with yield w that has the smallest number of leaves among all parse trees

146 Chapter 3: CONTEXT-FREE LANGUAGES

with the same root and yield. Since T's yield is longer than 4>(G) IV -EI, it follows
that T has a path of length at least IV - ~I + 1, that is, with at least IV - ~I + 2
nodes. Only one of these nodes can be labeled by a terminal, and thus the
remaining are labeled by nonterminals. Since there are more nodes in the path
than there are nonterminals, there are two nodes on the path labeled with the
same member A of V - L. Let us look at this path in more detail (see Figure
3-9).

S

Figure 3-9

Let us call u, v, x, y, and z the parts of the yield of T as they are shown
in the figure. That is, x is the yield of the subtree Til whose root is the lower
node labeled A; v is the part of the yield of the tree T' rooted at the higher A
up to where the yield of Til starts; u is the yield of T up to where the yield of
T' starts; and z is the rest of the yield of T.

It is now clear that the part of T' excluding Til can be repeated any number
of times, including zero times, to produce other parse trees of G, whose yield is
any string of the form uvnxynz , n 2 O. This completes the proof, except for the
requirement that vy f::- e. But if vy = e, then there is a tree with root Sand
yield w with fewer leaves than that of T ~namely, the one that results if we
omit from T the part of T' that excludes T"- contrary to our assumption that
T is the smallest tree of this kind .•

E;xample 3.5.2: Just like the pumping theorem for regular languages (Theorem
2.4.1), this theorem is useful for showing that certain languages are not context
free. For example, L = {anbncn : n 2 O} is not. For suppose that L = L(G)

¢(G)IV-EI
for some context-free grammar G = (V,~, R, S). Let n >3 . Then
w = anbncn is in L(G) and has a representation w = uvxyz such that v or

3.5: Languages that Are and Are Not Context-Free 147

y is nonempty and 1wnxyn;; is in L(G) for each n = 0,1,2, ... There are two
cases, both leading to a contradiction. If vy contains occurrences of all three
symbols a, b, c, then at least one of v, y must contain occurrences of at least two
of them. But then uv2xy2 z contains two occurrences out of their correct order
--a b before an a, or a c before an a or b. If vy contains occurrences of some but
not all of the three symbols, then uv2xy2 z has unequal numbers of a's, b's, and
c's.¢

Example 3.5.3: L = {an: n 2 1 is a prime} is not context-free. To see this,
take a prime p greater than ¢(G) I v -EI, where G = (V,~, R, S) is the context
free grammar allegedly generating L. Then w = aP can be written as prescribed
by the theorem, w = uvxyz, where all components of ware strings of a's and
vy :J:. e. Suppose that vy = aq

, and uxz = a", where q and r are natural numbers,
and q > O. Then the theorem states that r + nq is a prime, for all n 2 O. This
was found absurd in Example 2.4.3.

It was no accident that, in our proof that {an: n 2 1 is a prime} is not
context-free, we resorted to an argument very similar to that in Example 2.4.3,
showing that the same language is not regular. It turns out that any context-free
language over a single-letter alphabet is regular; thus, the result of the present
example follows immediately from this fact and Example 2.4.3.¢

Example 3.5.4: We shall next show that the language L = {w E {a, b, c}'
w has an equal number of a's, b's, and c's} is not context-free. This time we
need both Theorems 3.5.3 and 3.5.2: If L were context-free, then so would be its
intersection with the regular set a*b'c'. But this language, {anbncn : n 2 A},
was shown to be non-context-free in Example 3.5.2 above.¢

These negative facts also expose the POVE'Ity in closure properties of the
class of context-free languages:

Theorem 3.5.4: The context-free languages are not closed under intersection
or complementation.

Proof: Clearly {anbncm : m,n 2 O} and {ambncn : m,n 2 O} are both
context-free. The intersection of these two context-free languages is the lan
guage {an bn c71

: n 2 O} just shown not to be context-free. And, since

if the context-free languages were closed under complementation, they would
also be closed under intersection (we know they are closed under union, Theorem
3.5.1) .•

148 Chapter 3: CONTEXT-FREE LANGUAGES

Problems for Section 3.5

3.5.1. Use closure under union to show that the following languages are context
free.
(a) {ambn : m ¥- n}
(b) {a, b}* - {anbn : n ~ O}
(c) {ambncPdQ:n=q, ormsporm+n=p+q}
(d) {a, b}* - L, where L is the language

L = {babaabaaab ... ban- 1ban b: n ~ I}
(e) {w E {a,b}*: w = wR }

3.5.2. Use Theorems 3.5.2 and 3.5.3 to show that the following languages are not
context-free.
(a) {aP : p is a prime}
(b){an2:n~O}
(c) {www : wE {a, b}*}
(d) {w E {a, b, c}* : w has equal numbers of a's, b's, and c's}

3.5.3. Recall that a homomorphism is a function h from strings to strings such
thatfor any two strings v andw, h(vw) = h(v)h(w). Thus a homomorphism
is determined by its values on single symbols: if w = a1 ... an with each
ai a symbol, then h(w) = h(ad ... h(an). Note that homomorphisms can
"erase": h(w) may be e, even though w is not. Show that if L is a context
free language and h is a homomorphism, then
(a) h[L] is context-free;
(b) h-l[L] (that is, {w E ~* : h(w) E L}) is context-free. (Hint: Start
from a pushdown automaton M accepting L. Construct another pushdown
automaton, similar to M, except that it reads its input not from the input
tape, but from a finite buffer that is occasionally replenished in some way.
You supply the rest of the intuition and the formal details.)

3.5.4. In the proof of Theorem 3.5.2, why did we assume that M2 was determin
istic?

3.5.5. Show that the language L = {babaabaaab ... ban-1banb : n ~ I} is not
context-free
(a) by applying the Pumping Theorem (3.5.3);
(b) by applying the result of Problem 3.5.3. (Hint: What is h[L], where
h(a) = aa, and h(b) = a?)

3.5.6. If L1, L2 ~ ~* are languages, the right quotient of L1 by L2 is defined
as follows.

Lt/L2 = {w E ~* : there is au E L2 such that wu E Lt}

3.5: Languages that Are and Are Not Context-Free 149

(a) Show that if L1 is context-free and R is regular, then LJ / R is context
free.
(b) Prove that {aPbn : p is a prime number and n > p} is not context-free.

3.5.7. Prove the following stronger version of the Pumping Theorem (Theorem
3.5.3): Let G be a context-free grammar. Then there are numbers K and k
such that any string w E L(G) withlwl2. K can be rewritten as w = uvxyz
with vxy skin such a way that either v or y is non empty and UV71 xy" z E
L(G) for every n 2. O.

3.5.8. Use Problem 3.5.7 to show that the language {ww : w E {a,b}"} is not
context-free.

3.5.9. Let G = (V,~, R, S) be a context-free grammar. A nonterminal A of G is
called self-embedding if and only if A::::}~ uAv for some u,v E V".
(a) Give an algorithm to test whether a specific nonterminal of a given
context-free grammar is self.·embedding.
(b) Show that if G has no self-embedding Ilonterminal, then L(G) is a
regular language.

3.5.10. A context-free grammar G = (i-T,~, R, S) is said to be in Greibach normal
form if every rule is of the form or A --+ w for some w E ~(V - ~)*.

(a) Show that for every context-free grammar G, there is a context-free
grammar G' in Greibach normal form such that L(G') = L(G') - {e}.
(b) Show that if M is constructed as in the proof of Lemma 3.4.1 from a
grammar in Greibach normal form, then the number of steps in any com
putation of M on an input w can be bounded as a function of the length of
w.

3.5.11. Deterministic finite-state transducers were introduced in Problem 2.1.4.
Show that if L is context-free and I is computed by a deterministic finite
state transducer, then
(a) I[L] is context-free;
(b) r 1 [L 1 is context-free.

3.5.12. Develop a version of the Pumping Theorem for context-free languages in
which the length of the "pumped part" is as long as possible.

3.5.13. Let M1 and M2 be pushdown automata. Show how to construct push
down automata accepting L(M1) UL(M2), L(M1)L(M2), and L(Md", thus
providing another proof of Theorem 3.5.1.

3.5.14. Which of the following languages are context-free? Explain briefly in each
case.
(a) {ambncp : m = nor n = p or m = p}
(b) {ambncp : m ¥- nor n ¥- p or m ¥- p}

150 Chapter 3: CONTEXT-FREE LANGUAGES

(c) {ambncp : Tn = nand n = p and Tn = p}
(d) {w E {a, b, c}': W does not contain equal numbers of occurrences of

a, b, and c}
(e) {w E {a, b}' : W = WI W2 ... Wm for some Tn ? 2 and WI, ... ,Wm such

that IWII = IW21 = ... = Iwml? 2}

3.5.15. Suppose that L is context-free and R is regular. Is L-R necessarily context
free? What about R - L? Justify your answers.

3.6 ALGORITHMS FOR CONTEXT-FREE GRAMMARS

In this section we consider the computational problems related to context-free
languages, we develop algorithms for these problems, and we analyze their com
plexity. All in all, we establish the following results.

Theorem 3.6.1: (a) There is a polynomial algorithm which, given a context-free
grammar, constructs an equivalent pushdown automaton.
(b) There is a polynomial algorithm which, given a pushdown automaton, con

structs an equivalent context-free grammar.
(c) There is a polynomial algorithm which, given a context-free grammar G and

a string x, decides whether x E L(G).

It is instructive to compare Theorem 3.6.1 with the corresponding statement
summarizing the algorithmic aspects of finite automata (Theorem 2.6.1). To be
sure, there are certain similarities: in both cases there are algorithms which
transform acceptors to generators and vice versa -then finite automata to reg
ular expressions and back, now pushdown automata to context-free grammars
and back. But the differences are perhaps more striking. First, in Theorem 2.6.1
there was no need for an analog of part (c) above, since regular languages are rep
resented in terms of an efficient algorithm for deciding precisely the membership
question in (c): a deterministic finite automaton. In contrast, for context-free
languages we have so far introduced only non-algorithmic, nondeterministic ac
ceptors -pushdown automata. In order to establish part (c), we show in the
next subsection that for any context-free language we can construct a deter
ministic acceptor; the construction is rather indirect and sophisticated, and the
resulting algorithm, although polynomial, is no longer linear in the length of the
input.

A second major difference between Theorem 2.6.1 and Theorem 3.6.1 is
that in the present case we do not mention any algorithms for testing whether
two given context-free grammars (or two pushdown automata) are equivalent;
neither do we claim that there are algorithms for minimizing the number of states
in a pushdown automaton. We shall see in Chapter 5 that such questions about

3.6: Algorithms for Context-Free Grammars 151

context-free grammars and pushdown automata are not amenable to solution by
any algorithm -however inefficient!

The Dynamic Programming Algorithm

We turn now to proving part (c) of the Theorem (parts (a) and (b) are straight
forward consequences of the constructions in the proofs of the Lemmata 3.4.1
and 3.4.2). Our algorithm for deciding context-free languages is based on a
useful way of "standardizing" context-free grammars.

Definition 3.6.1: A context-free grammar G = (V,~, R, S) is said to be in
Chomsky normal form if R ~ (V - ~) X V 2

.

In other words, the right-hand side of a rule in a context-free grammar
in Chomsky normal form must have length two. Notice that no grammar in
Chomsky normal form would be able to produce strings of length less than two,
such as a, b, or e; therefore, context-free languages containing such strings cannot
be generated by grammars in Chomsky normal form. However, the next result
states that this is the only loss of generality that comes with Chomsky normal
form:

Theorem 3.6.2: For any context-free grammar G there is a context-free gram
mar G' 'in Chomsky normal form such that L(G') = L(G) - (~ U {e }). Further
more, the construction of G' can be carried out in time polynomial in the size of
G.

In other words, G' generates exactly the strings that G does, with the
possible exception of strings of length less than two -since G' is in Chomsky
normal form, we know that it cannot generate such strings.

Proof: We shall show how to transform any given context-free grammar G =
(V,~, R, S) into a context-free grammar in Chomsky normal form. There are
three ways in which the right-hand side of a rule A --+ x may violate the con
straints of Chomsky normal form: long rules (those whose right-hand side has
length three or more), e-rules (of the form A --+ e), and short rules (of the form
A --+ a or A --+ B). We shall show how to remove these violations one by one.

We first deal with the long rules of G. Let A --+ B 1 B2 •.. Bn E R, where
B 1, ... ,Bn E V and n 2. 3. We replace this rule with n - 1 new rules, namely:

152 Chapter 3: CONTEXT-FREE LANGUAGES

where AI, ... ,An - 2 are new nonterminals, not used anywhere else in the gram
mar. Since the rule A --+ B 1 B2 •.. Bn can be simulated by the newly inserted
rules, and this is the only way in which the newly added rules can be used,
it should be clear that the resulting context-free grammar is equivalent to the
original one. We repeat this for each long rule of the grammar. The resulting
grammar is equivalent to the original one, and has rules with right-hand sides
of length two or less.

Example 3.6.1: Let us take the grammar generating the set of balanced paren
theses, with rules S --+ SS,S --+ (S), S --+ e. There is only one long rule,
S --+ (S). It is replaced by the two rules S --+ (SI and SI --+ S).¢

We must next take on the e-rules. To this end, we first determine the set
of erasable nonterminals

E = {A E V - ~ : A::::}* e},

that is, the set of all nonterminals that may derive the empty string. This is
done by a simple closure calculation:

E:= 0
while there is a rule A --+ a with Q E E* and

A ~ E do add A to E.

Once we have the set E, we delete from G all e-rules, and repeat the follow
ing: For each rule of the form A --+ Be or A --+ e B with BEE and e E V, we
add to the grammar the rule A --+ e. Any derivation in the original grammar
can be simulated in the new, and vice versa -with one exception: e cannot be
derived in the language any longer, since we may have omitted the rule S --+ e
during this step. Fortunately, the statement of the Theorem allows for this
exclusion.

Example 3.6.1 (continued): Let us continue from the grammar with rules

S --+ SS, S --+ (SI, SI --+ S), S --+ e.

We start by computing the set E of vanishing nonterminals: Initially E = 0;
then E = is}, because of the rule S --+ e; and this is the final value of E. We
omit from the grammar the e-rules (of which there is only one, S --+ e), and add
variants of all rules with an occurrence of S, with that occurrence omitted. The
new set of rules is

3.6: Algorithms for Context-Free Grammars 153

The rule 5 --+ 5 was added because of the rule 5 --+ 55 with 5 E E; it is of
course useless and can be omitted. The rule 51 --+) was added because of the
rule 51 --+ 5) with 5 E E.

For example, the derivation in the original grammar

5::::} 55 => 5(5) => 50 => ()

can now simulated by

-omitting the 5 => 55 part, since the first 5 would be eventually erased- and
finally

-using the 51 =» rule to anticipate the erasing of the 5 in the rule 51 => 5).¢

Our grammar now has only rules whose right-hand sides have length one
and two. We must next get rid of the short rules, those with right-hand sides
with length one. We accomplish this as follows: For each A E V we compute,
again by a simple closure algorithm, the set D(A) of symbols that can be derived
from A in the grammar, D(A) = {B E v: A =>* B}, as follows:

D(A) := {A}
while there is a rule B -+ G with B E D(A) and

G ~ D(A) do add G to D(A).

Notice that for all symbols A, A E D(A); and if a is a terminal, then
D(a) = {a}.

In our third and final step of the transformation of our grammar to one in
Chomsky normal form, we omit all short rules from the grammar, and we replace
each rule of the form A --+ BG with all possible rules of the form A --+ B'G'
where B' E D(B) and G' E D(G). Such a rule simulates the effect of the original
rule A --+ BG, with the sequence of short rules that produce B' from B and G'
from G. Finally, we add the rules 5 --+ BG for each rule A --+ BG such that
A E D(5) - {5}.

Again, the resulting grammar is equivalent to the one before the omission
of the short rules, since the effect of a short rule is simulated by "anticipating"
its use when the left-hand side first appears in the derivation (if the left-hand
side is 5, and thus it starts the derivation, the rules 5 --+ BG added in the last
part of the construction suffice to guarantee equivalence). There is again only
one exception: we may have removed a rule 5 --+ a, thus omitting the string
a from the language generated by G. Once again, fortunately this omission is
allowed by the statement of the theorem.

154 Chapter 3: CONTEXT-FREE LANGUAGES

Example 3.6.1 (continued): In our modified grammar with rules

we have D(Sd = {S1,)}, and D(A) = {A} for all A E V - {Sd. We omit all
length-one rules, of which there is only one, S1 -+). The only nonterminal with
a nontrivial set '0, Sl, appears on the right-hand side of only the second rule.
This rule is therefore replaced by the two rules S -+ (Sl, S -+ 0, corresponding
to the two elements of D(Sd. The final grammar in Chomsky normal form is

S -+ SS, S -+ (Sl, S1 -+ S), S -+ o.

After the three steps, the grammar is in Chomsky normal form, and, except
for the possible omission of strings of length less than two, it generates the same
language as the original one.

In order to complete the proof of the theorem, we must establish that the
whole construction can be carried out in time polynomial in the size of the
original grammar G. By "size of G" we mean the length of a string that suffices
to fully describe G -that is to say, the sum of the lengths of the rules of G.
Let n be this quantity. The first part of the transformation (getting rid of
long rules) takes time O(n) and creates a grammar of size again O(n). The
second part, getting rid of e-rules, takes 0(n2

) time for the closure computation
(O(n) iterations, each doable in O(n) time), plus O(n) for adding the new rules.
Finally, the third part (taking care of short rules) can also be carried out in
polynomial time (O(n) closure computations, each taking time 0(n2

)). This
completes the proof of the theorem .•

The advantage of Chomsky normal form is that it enables a simple polyno
mial algorithm for deciding whether a string can be generated by the grammar.
Suppose that we are given a context-free grammar G = (V, ~,R, S) in Chomsky
normal form, and we are asked whether the string x = Xl •.• X n , with n ~ 2, is in
L(G). The algorithm is shown below. It decides whether X E L(G) by analyzing
all substrings of x. For each i and s such that 1 ::::: i ::::: i + s ::::: n, define N[i, i + s]
to be the set of all symbols in V that can derive in G the string Xi··· Xi+8.

The algorithm computes these sets. It proceeds computing N[i, i + s] from short
strings (s small) to longer and longer strings. This general philosophy of solving
a problem by starting from minuscule subproblems and building up solutions
to larger and larger subproblems until the whole problem is solved is known as
dynamic programming.

3.6: Algorithms for Context-Free Grammars

for i := 1 to n do N[i, i] := {xil; all other N[i, j] are initially empty
for s := 1 to n - 1 do

for i := 1 to n - s do
for k : = i to i + s - 1 do

155

if there is a rule A --+ BC E R with B E N[i, k] and C E N[k + 1, i + s]
then add A to N[i, i + s].

Accept x if S E N[l, n].

In order to establish that the algorithm above correctly determines whether
x E L(G), we shall prove the following claim.

Claim: For each nat'ural number s with 0 S s S n, after the sth iteration of the
algorithm, for all i = 1, ... , n - s,

N[i,i + s] = {A E V: A::::}* Xi" 'Xi+S}'

Proof of the Claim: The proof of this claim is by induction on s.

Basis Step. When s = 0 -where by "the zeroth iteration of the algorithm" we
understand the first (initialization) line- the statement is true: since G is in
Chomsky normal form, the only symbol that can generate the terminal Xi is Xi

itself.

Induction Step: Suppose that the claim is true for all integers less than s > O.
Consider a derivation of the substring Xi" . Xi+s, say from a nonterminal A.
Since G is in Chomsky normal form, the derivation starts with a rule of the
form A --+ BC, that is,

where B, C E V. Therefore, for some k with i < k S i + s,

We conclude that A E {A E V : A ::::} * Xi'" Xi+s} if and only if there is an
integer k, i S k < i + s, and two symbols B E {A E V: A ::::}* Xi" .xd and
C E {.4 E V : A ::::}* Xk+l ... Xi+s} such that A --+ BC E R. We can rewrite the
string Xi' .. Xk as Xi' .. Xi+s', where Sf = k - i, and the string Xk+l ... Xi+s as
Xk+l ... Xk+l+s", where s" = i + s - k - 1. Notice that, since i S k < i + s, we
must have Sf, S" < s. Hence, the induction hypothesis applies!

By the induction hypothesis, {A E V : A ::::}* Xi'" xd = N[i, k], and
{A E V: A::::}* Xk+l" 'Xi+s} = N[k + 1,i + s]. We conclude that A E {A E
V : A :=} * Xi'" Xi+s} if and only if there is an integer k, i S k < i + s, and
two symbols B E N[i, k] and C E N[k + 1, i + s] such that A --+ BC E R.

156 Chapter 3: CONTEXT-FREE LANGUAGES

But these are precisely the circumstances under which our algorithm adds A to
N[i, i + s]. Therefore the claim holds for s as well, and this concludes the proof
of the induction hypothesis -and of the claim .•

It follows immediately from the claim that the algorithm above correctly
decides whether x E L(G): At the end, the set N[l, n] will contain all symbols
that derive the string Xl··· Xn = x. Therefore, X E L(G) if and only if S E
N[l,n].

To analyze the time performance of the algorithm, notice that it consists of
three nested loops, each with a range bounded by Ixl = n. At the heart of the
loop we must examine for each rule of the form A -+ BC whether B E N[i, j]
and C E N[j + 1, i + s]; this can be carried out in time proportional to the size
of the grammar G -the length of its rules. We conclude that the total number
of operations is O(lx1 3 1GI) -a polynomial in both the length of X and the size of
G. For any fixed grammar G (that is, when we consider IGI to be a constant),
the algorithm runs in time O(n3) .•

Example 3.6.1 (continued): Let us apply the dynamic programming algo
rithm to the grammar for the balanced parentheses, as was rendered in Chomsky
normal form with rules

S -+ SS,S -+ (Sl,Sl -+ S),S -+ o.
Suppose we wish to tell whether the string (()(())) can be generated by G. We
display in Figure 3.10 the values of N[i, i + s] for 1 SiS j S n = 8, resulting
from the iterations of the algorithm. The computation proceeds along parallel
diagonals of the table. The main diagonal, corresponding to s = 0, contains the
string being parsed. To fill a box, say [2,7], we look at all pairs of boxes of the
form N[2, k] and N[k + 1,7] with 2 S k < 7. All these boxes lie either on the
left of or above the box being filled. For k = 3, we notice that S E N[2, 3],
S E N[4, 7], and S -+ SS is a rule; thus we must add the left-hand side S to the
box N[2, 7]. And so on. The lower-right corner is N[l, n], and it does contain
S; therefore the string is indeed in L(G). In fact, by inspecting this table it is
easy to recover an actual derivation of the string (()(())) in G. The dynamic
programming algorithm can be easily modified to produce such a derivation; see
Problem 3.6.2.0

Part (c) of Theorem 3.6.1 now follows by combining Theorems 3.6.2 and
the claim above: Given a context-free grammar G and a string x, we determine
whether x E L(G) as follows: First, we transform G into an equivalent context
free grammar G' in Chomsky normal form, according to the construction in
the proof of Theorem 3.6.2, in polynomial time. In the special case in which
Ixl S 1, we can already decide whether x E L(G): It is if and only if during

3.7: Determinism and Parsing 157

-
8)

7) 0

6) 0 0

5 (8 81 0

4 (0 0 8 81

3) 0 0 0 0 0

2 (8 0 0 0 8 8 1

1 l (0 0 0 0 0 0 8

1 2 345 678

Figure 3-10

the transformation we had to delete a rule 8 --+ x. Otherwise, we run the
dynamic programming algorithm described above for the grammar G' and the
string x. The total number of operations used by the algorithm is bounded by
a polynomial in the size of the original grammar G and the length of the string
x .•

Problems for Section 3.6

3.6.1. Convert the context-free grammar G given in Example 3.1.3 generating
arithmetic expressions into an equivalent context-free grammar in Chom
sky normal form. Apply the dynamic programming algorithm for deciding
whether the string x = (id + id + id) * (id) is in L(G).

3.6.2. How would you modify the dynamic programming algorithm in such a way
that, when the input x is indeed in the language generated by G, then the
algorithm produces an actual derivation of x in G?

3.6.3. (a) Let G = (V,~, R, 8) be a context-free language. Call a nonterminal
A E V - ~ productive if A ~G x for some x E ~'. Give a polynomial
algorithm for finding all productive nonterminals of G. (Hint: It is a closure
algorithm.)
(b) Give a polynomial algorithm which, given a context-free grammar G,
decides whether L(G) = 0.

3.6.4. Describe an algorithm which, given a context-free grammar G, decides
whether L(G) is infinite. (Hint: One approach uses the Pumping Theorem.)
What is the complexity of your algorithm? Can you find a polynomial-time
algorithm?

158 Chapter 3: CONTEXT-FREE LANGUAGES

B DETERMINISM AND PARSING

Context-free grammars are used extensively in modeling the syntax of program
ming languages, as was suggested by Example 3.1.3. A compiler for such a
programming language must then embody a parser, that is, an algorithm to
determine whether a given string is in the language generated by a given context
free grammar, and, if so, to construct the parse tree of the string. (The compiler
would then go on to translate this parse tree into a program in a more ba
sic language, such as assembly language.) The general context-free parser we
have developed in the previous section, the dynamic programming algorithm,
although perfectly polynomial, is far too slow for handling programs with tens
of thousands of instructions (recall its cubic dependence on the length of the
string). Many approaches to the parsing problem have been developed by com
piler designers over the past four decades. Interestingly, the most successful
ones among them are rooted in the idea of a pushdown automaton. After all,
the equivalence of pushdown automata and context-free grammars, which was
proved in Section 3.4, should be put to work. However, a pushdown automaton
is not of immediate practical use in parsing, because it is a nondeterministic de
vice. The question then arises, can we always make pushdown automata operate
deterministically (as we were able to do in the case of finite automata)?

Our first objective in this section is to study the question of deterministic
pushdown automata. We shall see that there are some context-free languages
that cannot be accepted by deterministic pushdown automata. This is rather dis
appointing; it suggests that the conversion of grammars to automata in Section
3.4 cannot be the basis for any practical method. Nevertheless, all is not lost. It
turns out that for most programming languages one can construct deterministic
pushdown automata that accept all syntactically correct programs. Later in this
section we shall give some heuristic rules ~rules of thumb~ that are useful for
constructing deterministic pushdown automata from suitable context-free gram
mars. These rules will not invariably produce a useful pushdown automaton
from any context-free grammar; we have already said that that would be impos
sible. But they are typical of the methods actually used in the construction of
compilers for programming languages.

Deterministic Context-free Languages
A pushdown automaton Al is deterministic if for each configuration there is
at most one configuration that can succeed it in a computation by M. This con
dition can be rephrased in an equivalent way. Call two strings consistent if the
first is a prefix of the second, or vice versa. Call two transitions ((p, a, 13), (q, ,))
and ((p, a', 13'), (q', ,')) compatible if a and a' are consistent, and 13 and 13' are
also consistent-in other words, if there is a situation in which both transitions

3.7: Determinism and Parsing 159

are applicable. Then M is deterministic if it has no two distinct compatible
transitions.

For example, the machine we constructed in Example 3.3.1 to accept the
language {wcwR : w E {a, b} *} is deterministic: For each choice of state ahd
input symbol, there is only one possible transition. On the other hand, the
machine we constructed in Example 3.3.2 to accept {wwR : w E {a, b} *} is not
deterministic: Transition 3 is compatible with both Transitions 1 and 2; notice
that these are the transitions that "guess" the middle of the string -an action
which is intuitively nondeterministic.

Deterministic context-free languages are essentially those that are accepted
by deterministic pushdown automata. However, for reasons that will become
clear very soon, we have to modify the acceptance convention slightly. A lan
guage is said to be deterministic context-free if it is recognized by a deterministic
pushdown automaton that also has the extra capability of sensing the end of the
input string. Formally, we call a language L ~ ~* deterministic context-free
if L$ = L(M) for some deterministic pushdown automaton M. Here $ is a new
symbol, not in ~, which is appended to each input string for the purpose of
marking its end.

Every deterministic context-free language, as just defined, is a context-free
language. To see this, suppose a deterministic pushdown automaton M accepts
L$. Then a (nondeterministic) pushdown automaton M' that accepts L can be
constructed. At any point, M' may "imagine" a $ in the input and jump to a
new set of states from which it reads no further input.

If, on the other hand, we had not adopted this special acceptance conven
tion, then many context-free languages that are deterministic intuitively would
not be deterministic by our definition. One example is L = a* U {anbn : n ~ I}.
A deterministic pushdown automaton cannot both remember how many a's it
has seen, in order to check the string of b's that may follow, and at the same
time be ready to accept with empty stack in case no b's follow. However, one
can easily design a deterministic pushdown automaton accepting L$: If a $ is
met while the machine is still accumulating a's, then the input was a string in
a*. If this happens, the stack is emptied and the input accepted.

The natural question at this point is whether every context-free language
is deterministic -just as every regular language is accepted by a deterministic
finite automaton. It would be surprising if this were so. Consider, for example,
the context-free language

L = {anbmd' : m, n,p ~ 0, and m "I- nor m "I- pl·

It would seem that a pushdown automaton could accept this language only by
guessing which two blocks of symbols to compare: the a's with the b's, or the
b's with the c's. Without so using nondeterminism, it would seem, the machine

160 Chapter 3: CONTEXT-FREE LANGUAGES

could not compare the b's with the a's, while at the same time preparing to
compare the b's with the c's. However, to prove that L is not deterministic
requires a more indirect argument: The complement of L is not context-free.

Theorem 3.7.1: The class of deterministic context-free languages is closed un
der complement.

Proof: Let L ~ ~. be a language such that L$ is accepted by the deterministic
pushdown automaton M = (K,~, r,~, s, F). It will be convenient to assume,
as in the proof of Lemma 3.4.2, that M is simple, that is, no transition of M
pops more than one symbol from the stack, while an initial transition places a
stack bottom symbol Z on the stack that is removed just before the end of the
computation; it is easy to see that the construction employed to this end in the
proof of Lemma 3.4.2 does not affect the deterministic nature of M.

Since M is deterministic, it would appear that all that is required in order to
obtain a device that accepts (~. - L)$ is to reverse accepting and non-accepting
states -as we have done with deterministic finite automata in the proof of
Theorem 2.3.1(d), and will do again in the next chapter with more complex
deterministic devices. In the present situation, however, this simple reversal will
not work, because a deterministic pushdown automaton may reject an input not
only by reading it and finally reaching a non-accepting state, but also by never
finishing reading its input. This intriguing possibility may arise in two ways:
First, 111 may enter a configuration C at which none of the transitions in ~ is
applicable. Second, and perhaps more intiguingly, 111 may enter a configuration
from which M executes a never-ending sequence of e-moves (transitions of the
form (q, e, a)(p, {3)).

Let us call a configuration C = (q, w, a) of M a dead end if the following
is true: If C f-'M C' for some other configuration C' = (q', w', a'), then w' = w
and la'i 2: lal. That is, a configuration is said to be a dead end if no progress
can be made starting from it towards either reading more input, or reducing the
height of the stack. Obviously, if AI is at a dead-end configuration, then it will
indeed fail to read its input to the end. Conversely, it is not hard to see that, if
M has no dead-end configurations, then it will definitely read all its input. This
is because, in the absence of dead-end configurations, at all times there is a time
in the future in which either the next input symbol will be read, or the height of
the stack will be decreased -and the second option can only be taken finitely
many times, since the stack length cannot be decreased infinitely many times.

\Ve shall show how to transform any simple deterministic pushdown automa
ton M into an equivalent deterministic pushdown automaton without dead-end
configurations. The point is that, since M is assumed to be simple, whether a
configuration is or is not a dead end only depends on the current state, the next
input symbol, and the top stack symbol. In particular, let q E K be a state, a E ~

3.7: Determinism and Parsing 161

an input symbol, and A Era stack symbol. We say that the triple (q, a, A) is a
dead end if there is no state p and stack symbol string 0 such that the configu
ration (q, a, A.) yields either (p, e, a) or (p, a, e). That is, a triple (q, a, A) is dead
end if it is a dead end when considered as a configuration. Let D ~ K x ~ x r
denote the set of all dead-end triples. Notice that we are not claiming that we
can effectively tell by examining a triple whether it is in D or not (although it
can be done); all we are saying is that the set D is a well-defined, finite set of
triples.

Our modification of M is the following: For each triple (q, a, A) E D we
remove from ~ all transitions compatible with (q, a, A.), and we add to ~ the
transition ((q, a, A), (r, e)), where r is a new, non-accepting state. Finally, we
add to ~ these transitions: ((r,a,e),(r,e)) for all a E~, ((r,$,e),(r',e)), and
(r', e, A), (r' , e)) for each A E r u {Z}, where r' is another new, non-accepting
state. These transitions enable M', when in state r, to read the whole input
(without consulting the stack), and, upon reading a $, to empty the stack and
reject. Call the resulting pushdown automaton M'.

lt is easy to check that M' is deterministic, and accepts the same language
as M (M' simply rejects explicitly whenever M would have rejected implicitly
by failing to read the rest of the input). Furthermore, AI' was constructed so
that it has no dead end configurations -and hence, it will always end up reading
its whole input. Now reversing the role of accepting and non-accepting states of
M' produces a deterministic pushdown autom&ton that accepts (~* - L)$, and
the proof is complete. •

Theorem 3.71 indeed establishes that the context-free language L = {anbmcp

m "I- nor m "I- p} above is not deterministic: If L were deterministic, then its
complement, L would also be deterministic context-free - and therefore certainly
context-free. Hence, the intersection ofL with the regular language a*b*c* would
be context-free, by Theorem 3.5.2. But it is easy to see that L n a*b*c* is pre
cisely the language {anbncn : n 2: O}, which we know is not context-free. We
conclude that the context-free language L is not deterministic context-free:

Corollary: The class of deterministic context free languages is properly con
tained in the class of context-free languages

In other words, nondeterminism is more powerful than determinism in the
con ted of pushdown automata. In contrast, we saw in the last chapter that non
determinism adds nothing to the power of finite automata -unless the number
of states is taken into account, in which case it is exponentially more powerful.
This intriguing issue of the power of nondeterminism in various computational
contexts is perhaps the single most important thread that runs through this
book.

162 Chapter 3: CONTEXT-FREE LANGUAGES

Top-Down Parsing

Having established that not every context-free language can be accepted by a
deterministic pushdown automaton, let us now consider some of those that can.
Our ovetall goal for the remainder of this chapter is to study cases in which
context-free grammars can be converted into deterministic pushdown automata
that can actually be used for "industrial grade" language recognition. However,
our style here is rather different from that of the rest of this book; there are
fewer proofs, and we do not attempt to tie up all the loose ends of the ideas we
introduce. We present some guidelines ~-what we call "heuristic rules" - that
will not be useful in all cases, and we do not even attempt to specify exactly when
they will be useful. That is, we aim to introduce some suggestive applications
of the theory developed earlier in this chapter, but this venture should not be
taken as anything more than an introduction.

Let us begin with an example. The language L = {anbn } is generated by
the context-free grammar G = ({ a, b, S}, {a, b}, R, S), where R contains the two
rules S --+ aSb and S --+ e. We know how to construct a pushdown automaton
that accepts L: just carry out the construction of Lemma 3.4.1 for the grammar
G. The result is

where

M1 = ({p,q},{a,b},{a,b,S},~1,P,{q}),

~1 =((p, e, c), (q, S)), ((q, e, S), (q, aSb)),((q, e, S), (q, e)),

((q, a, a), (q, e)), ((q, b, b), (q, e))}.

Since M1 has two different transitions with identical first components -the ones
corresponding to the two rules of G that have identical left-hand sides- it is
not deterministic.

Nevertheless, L is a deterministic context-free language, and M1 can be
modified to become a deterministic pushdown automaton M2 that accepts L$.
Intuitively, all the information that M1 needs at each point in order to decide
which of the two transitions to follow is the next input symbol. If that symbol
is an a, then M1 should replace S by aSb on its stack if hope of an accepting
computation is to be retained. On the other hand, if the next input symbol is
a b, then the machine must pop S. M2 achieves this required anticipation or
lookahead by consuming an input symbol ahead of time and incorporating that
information into its state. Formally,

where ~2 contains the following transitions.

3.7: Determinism and Parsing

(1) ((p, e, e), (q, S))
(2) ((q,a,e), (qa,e))
(3) ((qa,e,a),(q,e))
(4) ((q, b, e), (qb" e))
(5) ((qb,e,b), (q,e))
(6) ((q,$,e), (q$, e))
(7) ((qa, e, S), (qa, aSb))
(8) ((qb,e,S),(qb,e))

163

From state q, ~M2 reads one input symbol and, without changing the stack,
enters one of the three new states qa, qb, or q$. It then uses that information
to differentiate between the two compatible transitions ((q, e, S), (q, aSb)) and
((q, e, S), (q, e)): The first transition is retained only from state qa and the second
only from state qb. So M2 is deterministic. It accepts the input ab$ a'i follows.

Step State Unread Input Stack Transition Used Rule of G

0 p ab$ e -

1 q ab$ S 1
2 qa b$ S 2
3 qa b$ aSb 7 S --+ aSb
4 q b$ Sb 3
5 qb $ Sb 4
6 qb $ b 8 S--+e
7 q $ e 5
8 q$ e e 6

So M2 can serve as a deterministic device for recognizing strings of the
form anbn. Moreover, by remembering which transitions of M2 were derived
from which rules of the grammar (this is the last column of the table above),
we can use a trace of the operation of M2 in order to reconstruct a leftmost
derivation of the input string. Specifically, the steps in the computation where
a nonterminal is replaced on top of the stack (Steps 3 and 6 in the example)
correspond to the construction of a parse tree from the root towards the leaves
(see Figure 3-1l(a)).

Devices such as M 2 , which correctly decide whether a string belongs in a
context-free language, and, in the case of a positive answer, produce the corre
sponding parse tree are called parsers. In particular, M2 is a top-down parser
because tracing its operation at the steps where nonterminals are replaced on
the stack reconstructs a parse tree in a top-down, left-to-right fashion (see Figure
3-1l(b) for a suggestive way of representing how progress is made in a top-down
parser). We shall see a more substantial example shortly.

Naturally, not all context-free languages have deterministic acceptors that
can he derived from the standard nondeterministic one via the lookahead idea.
For example, we saw in the previous subsection that some context-free languages
are not deterministic to begin with. Even for certain deterministic context-free
languages, lookahead of just one symbol may not be sufficient to resolve all
uncertainties. Some languages, however, are not directly amenable to parsing
by lookahead for reasons that are superficial and can he removed by slightly
modifying the grammar. We shall focus on these next.

Recall the grammar G that generates arithmetic expressions with operations
+ and * (Example 3.1.3). In fact, let us enrich this grammar by another rule,

F -+ id(E), (R7)

designed to allow Junction calls -such as sqrt(x * x + 1) and J(z)- to appear
in our arithmetic expressions.

Let us try to construct a top-down parser for this grammar. Our construc
tion of Section 3.4 would give the pushdown automaton

with

and ~ as given below.

(0) ((p,e,e),(q,E))
(1) ((q, e, E), (q, E + T))
(2) ((q, e, E), (q, T))

M3 = ({p,q},~,r,~,p,{q}),

~ ={(,), +, *, id},

r=~U{E,T,F},

3.7: Determinism and Parsing

(3) ((q, e, T), (q, T * F))
(4) ((q, e, T), (q, F))
(5) ((q,e,F),(q,(E)))
(6) ((q, e, F), (q, id))
(7) ((q, e, F), (q, id(E)))

165

Finally, ((q, a, a), (q, e)) E ~ for all a E ~. The nondeterminism of M3 is
manifested by the sets of transitions 1-2,3-4, and 5-6-7 that have identical first
components. R'hat is worse, these decisions cannot be made based on the next
input symbol. Lets us examine more closely why this is so.

Transitions 6 and 7. Suppose that the configuration of J..h is (q, id, F). At
this point M3 could act according to anyone of transitions 5, 6, or 7. By
looking at the next input symbol -id- M3 could exclude transition 5, since
this transition requires that the next symbol be (. Still, M3 would not be able
to decide between transitions 6 and 7, since they both produce a top of the stack
that can be matched to the next input symbol -id. The problem arises because
the rules F --+ id and F --+ id(E) of G have not only identical left-hand sides,
but also the same first symbol on their right-hand sides.

There is a very simple way around this problem: Just replace the rules
F --+ id and F --+ id(E) in G by the rules F --+ idA, A --+ e, and A --+ (E), where
A is a new nonterminal (A for argument). This has the effect of "procrastinating"
on the decision between the rules F --+ id and F --+ id(E) until all needed
information is available. A modified pushdown automaton M~ now results from
this modified grammar, in which transitions 6 and 7 are replaced by the following.

(6') ((q,e,F),(q,idA))
(7') ((q,e,A),(q,e))
(8') ((q,e,A), (q, (E)))

Now looking one symbol ahead is enough to decide the correct action.
For example, configuration (q, id(id), F) would yield (q, id(id), idA), (q, (id), A),
(q, (id), (E)), and so on.

This technique of aVOiding nondeterminism is known as left factoring. It
can be summarized as follows.

Heuristic Rule 1: Whenever A --+ af31' A --+ a/h, ... , A --+Ci/3n are rules with
a f:. e and n :::: 2, then replace them by the rules A --+ aA' and A' --+ f3i for
i = 1, ... , n, where A' is a new nonterminal.

It is easy to see that applying Heuristic Rule 1 does not change the language
generated by the grammar.

We now move to examining the second kind of anomaly that prevents us
from transforming]}h into a deterministic parser.

166 Chapter 3: CONTEXT-FREE LANGUAGES

Transitions 1 and 2. These transitions present us with a more serious problem. If
the automaton sees id as the next input symbol and the contents of the stack are
just E, it could take a number of actions. It could perform transition 2, replacing
E by T (this would be justified in case the input is, say, id). Or it could replace
E by E + T (transition 1) and then the top E by T (this should be done if the
input is id + id). Or it could perform transition 1 twice and transition 2 once
(input id + id + id), and so on. It seems that there is no bound whatsoever on how
far ahead the automaton must peek in order to decide on the right action. The
culprit here is the rule E --+ E + T, in which the nonterminal on the left-hand
side is repeated as the first symbol of the right-hand side. This phenomenon
is called left recursion, and can be removed by some further surgery on the
grammar.

To remove left recursion from the rule E --+ E + T, we simply replace it by
the rules E --+ T E', E' --+ + T E', and E' --+ e, where E' is a new nonterminal. It
can be shown that such transformations do not change the language produced by
the grammar. The same method must also be applied to the other left recursive
rule of G, namely T --+ T * F. We thus arrive at the grammar G' = (F',~, R', E)
where V' = ~ U {E, E', T, T', F, A}, and the rules are as follows.

(1) E --+ T E'
(2) E' --+ +T E'
(3) E' --+ e
(4) T --+ FT'
(5) T' --+ *FT'
(6) T' --+ e
(7) F --+ (E)
(8) F --+ idA
(9) A --+ e

(10) A --+ (E)

The above technique for removing left recursion from a context-free gram
mar can be expressed as follows. t

Heuristic Rule 2: Let A --+ Aal, ... , A --+ Aan and A --+ (31, ... , A --+ (3m
be all rules with A on the left-hand side, where the (3i's do not start with an A
and n > 0 (that is, there is at least one left-recursive rule). Then replace these
rules by A --+ (3lA', ... , A --+ (3m,A' and A' --+ alA', ... , A' --+ anA', and A' --+ e,
where A' is a new nonterminal.

Still the grammar G' of our example has rules with identical left-hand sides,
only now all uncertainties can be resolved by looking ahead at the next input

t We assume here that there are no rules of the form A --+ A.

3.7: Determinism and Parsing 167

symbol. We can thus construct the following deterministic pushdown automaton
M4 that accepts L(G)$.

where

and ~ is listed below.

((p,e,e),(q,E))

((q, a, e), (qa, e))

((qa, e, a), (q, e))

((qa, e, E), (qa, T E'))

for each a E ~ U {$}

for each a E ~

for each a E ~ U {$}

((q+, e, E'), (q+, +TE'))

((qa,e,E'),(qa,e)) foreachaE O,$}

((qa, e, T), (qa, FT')) for each a E ~ U {$}

((q., e, T'), (q., *FT'))

((qa, e, T'), (qa, e)) for each a E {+,), $}

((q(, e, F), (q(, (E)))

((qid,e, F), (qid, idA))

((q(, e, A), (q(, (E)))

((qa,e,A), (qa,e)) for each a E {+,*,),$}

Then M4 is a parser for G'. For example, the input string id * (id)$ would be
accepted as shown in the table in the next page.

Here we have indicated the steps in the computation where a nonterminal
has been replaced on the stack in accordance with a rule of G'. By applying
these rules of G' in the last column of this table in sequence, we obtain a leftmost
derivation of the input string:

E => T E' => FT' E' => idT' E' => id * FT' E' => id * (E)T' E' =>

id * (T E')T' E' => id * (FT' E')T' E' => id * (idT' E')T' E' =>

id * (idE')T' E' => id * (id)T' E' => id * (id)E' => id * (id)

In fact, a parse tree of the input can be reconstructed (see Figure 3-12; the step
of the pushdown automaton corresponding to the expansion of each node of the
parse tree is also shown next to the node). Notice that this parser constructs
the parse tree of the input in a top-down, left-first manner, starting from E
and repeatedly applying an appropriate rule to the leftmost nonterminal.

168 Chapter 3: CONTEXT-FREE LANGUAGES

Step State Unread Input Stack Rule of G'

0 p id * (id)$ e
1 q id * (id)$ E
2 qid * (id) $ E
3 qid * (id)$ TE' 1
4 qid *(id)$ FT'E' 4
5 qid *(id)$ idAT'E' 8
6 q *(id)$ AT'E'
7 q* (id)$ AT'E'
8 q* (id)$ T'E' 9
9 q* (id)$ *FT'E' 5
10 q (id)$ FT'E'
11 q(id)$ FT'E'
12 q(id)$ (E)T'E' 7
13 q id)$ E)T'E'
14 qid)$ E)T'E'
15 qid)$ TE')T'E' 1
16 qid)$ FT'E')T'E' 4
17 qid)$ idAT' E')T' E' 8
18 q)$ AT'E')T'E'
19 q) $ AT'E')T'E'
20 q) $ T'E')T'E' 10
21 q) $ E')T'E' 6
22 q) $)T'E' 3
23 q $ T'E' 6
24 q$ e T'E'
25 q$ e E' 6
26 q$ e e 3

In general, given a grammar G, one may try to construct a top-down parser
for G as follows: Eliminate left recursion in G by repeatedly applying Heuristic
Rule 2 to all left-recursive nonterminals A of G. Apply Heuristic Rule 1 to left
factor G whenever necessary. Then examine whether the resulting grammar has
the property that one can decide among rules with the same left-hand side by
looking at the next input symbol. Grammars with this property are called LL(I).
Although we have not specified exactly how to determine whether a grammar is
indeed LL(l) -nor how to construct the corresponding deterministic parser if
it is LL(I)-- there are systematic methods for doing so. In any case, inspection
of the grammar and some experimentation will often be all that is needed.

3.7: Determinism and Parsing 169

E (step 3) ----------
T (step 4) E' (step 26)

--------- I
F (step 5) T'(step 9) e

~ ~
id A (step 8) * F T' (step 25)

~ I
e (E (step 15) e

~
T (step 16) E' (step 22)

~ I
F(step 17) T' (step 21) e

~ I
id A (step 20) e

I
e

Figure 3-12

Bottom-Up Parsing

There is no one best way to parse context-free languages, and different methods
are sometimes preferable for different grammars. We close this chapter by briefly
considering methods quite dissimilar from those of top-down parsing. Neverthe
less they, too, find their genesis in the construction of a pushdown automaton.

In addition to the construction of Lemma 3.4.1, there is a quite orthogonal
way of constructing a pushdown automaton that accepts the language generated
by a given context-free grammar. The automata of that construction (from
which the top-down parsers studied in the last subsection are derived) operate
by carrying out a leftmost derivation on the stack; as terminal symbols are
generated, they are compared with the input string. In the construction given
below, the automaton attempts to read the input first and, on the basis of the
input actually read, deduce what derivation it should attempt to carry out. The
general effect, as we shall see, is to reconstruct a parse tree from the leaves to
the root, rather than the other way around, and so this class of methods is called
bottom-up.

The bottom-up pushdown automaton is constructed as follows. Let G =
(F,~, R, S) be any context-free grammar; then let M = (K. 4, .1, p, F). where
K=(p. q}. r = F, F = {q}, and ~ contains the following.

170 Chapter 3: CONTEXT-FREE LANGUAGES

(1) ((p, a, e), (p, a)) for each a E ~.

(2) ((p, e, oR), (p, A)) for each rule A -+ 0 in R.
(3) ((p, e, S), (q, e)).

Before moving to the proof itself, compare these types of transitions with
those of the automaton constructed in the proof of Lemma 3.4.1. Transitions
of type 1 here move input symbols onto the stack; transitions of type 3 in
Lemma 3.4. pop terminal symbols off the stack when they match input symbols.
Transitions of type 2 here replace the right-hand side of a rule on the stack by
the corresponding left-hand side, the right-hand side being found reversed on
the stack; those of type 2 of Lemma 3.4.1 replace the left-hand side of a rule on
the stack by the corresponding right-hand side. Transitions of type 3 here end
a computation by moving to the final state when only the start symbol remains
on the stack; transitions of type 1 of Lemma 3.4.1 start off the computation by
placing the start symbol on the initially empty stack. So the machine of this
construction is in a sense perfectly orthogonal to the one of Lemma 3.4.1.

Lemma 3.7.1: Let G and M be as just presented. Then L(M) = L(G).

Proof: . Any string in L(G) has a rightmost derivation from the start symbol.
Therefore proof of the following claim suffices to establish the lemma.

Claim: For any x E ~* and "(E r', (p,x,,,() f-~f (p,e,S) if and only if S J!,a
"(Rx.

For if we let x be an input to M and "(= e, then since q is the only final state
and it can be entered only via transition 3, the claim implies that M accepts x
if and only if G generates x. The only if direction of the claim can be proved by
an induction on the number of steps in the computation of M, whereas the if
direction can be proved by an induction on the number of steps in the rightmost
derivation of x from S .•

Let us consider again the grammar for arithmetic expressions (Example
3.1.3, without the rule F -+ id(E) of the previous subsection). The rules of this
grammar are the following.

E-+E+T (Rl)

E-+T (R2)

T-+T*F (R3)

T-+F (R4)

F -+ (E) (R5)

F -+ id (R6)

3.7: Determinism and Parsing 171

If our new construction is applied to this grammar, the following set of transitions
is obtained.

(p,a,e),(p,a)) foreachaE~

(p, e, T + E), (p, E)

(p, e, T), (p, E)

(p, e, F * T), (p, T)

(p, e, F), (p, T)

(p, e,)E(), (p, F)

(p, e, id), (p, F)

(p,e,E),(q,e)

(~O)

(~1)

(~2)

(~3)

(~4)

(~5)

(~6)

(~7)

Let us call this pushdown automaton M. The input id * (id) is accepted by M
as shown in the table below.

Step State Unread Input Stack Transition Used Rule of G

0 p id * (id) e
1 p *(id) id ~O

2 p *(id) F ~6 R6
3 p *(id) T ~4 R4
4 p (id) *T ~O

5 p id) (*T ~O

6 p) id(*T ~O

7 p) F(*T ~6 R6
8 p) T(*T ~4 R4
9 p) E(*T ~2 R2
10 p e)E(*T ~O

11 p e F*T ~5 R5
12 p e T ~3 R3
13 p e E ~2 R2
14 q e e 67

We see that M is certainly not deterministic: Transitions of type ~O are
compatible with all the transitions of type ~1 through ~8. Still, its overall
"philosophy" of operation is suggestive. At any point, M may shift a terminal
symbol from its input to the top of the stack (transitions of type ~O, used in
the sample computation at Steps 1, 4, 5, 6, and 10). On the other hand, it
may occasionally recognize the top few symbols on the stack as (the reverse
of) the right-hand side of a rule of G, and may then reduce this string to the
corresponding left-hand side (transitions of types ~2 through ~6, used in the

172 Chapter 3: CONTEXT-FREE LANGUAGES

sample computation where a "rule of G" is indicated in the rightmost column).
The sequence of rules corresponding to the reduction steps turns out to mirror
exactly, in reverse order, a rightmost derivation of the input string. In our
example, the implied rightmost derivation is as follows.

E~T

~T*F

~ T * (E)

~ T * (T)

~ T * (F)

~ T * (id)

~ F * (id)

~ id * (id)

This derivation can be read from the computation by applying the rules men
tioned in the right-hand column, from bottom to top, always to the rightmost
nonterminal. Equivalently, this process can be thought of as a bottom-to-top,
left-to-right reconstruction of a parse tree (that is, exactly orthogonal to Figure
3-11 (b».

In order to construct a practically useful parser for L(G), we must turn M
into a deterministic device that accepts L(G)$. As in our treatment of top-down
parsers, we shall not give a systematic procedure for doing so. Instead, we carry
through the example of G, pointing out the basic heuristic principles that govern
this construction.

First, we need a way of deciding between the two basic kinds of moves,
namely, shifting the next input symbol to the stack and reducing the few top
most stack symbols to a single nonterminal according to a rule of the grammar.
One possible way of deciding this is by looking at two pieces of information:
the next input symbol -call it b~ and the top stack symbol --call it a. (The
symbol a could be a nonterminal.) The decision between shifting and reducing is
then done through a relation P ~ V x (~U {$}) called a precedence relation
P. If (a, b) E P, then we reduce; otherwise we shift b. The correct precedence
relation for the grammar of our example is given in the table below. Intuitively,
(a, b) E P means that there exists a rightmost derivation of the form

R* R
S ~G f3Abx ~G f3,),abx.

Since we are reconstructing rightmost derivations backwards, it makes sense
to undo the rule A --+ ')'a whenever we observe that a immediately precedes
b. There are systematic ways to calculate precedence relations, as well as to
find out when, as is the case in this example, a precedence relation suffices to

3.7: Determinism and Parsing 173

I () id + * $

(
) v' v' v' v'

id v' v' v' v'

+
*
E
T v' v' v'

F v' v' v' v'

decide between shifting and reducing; however, in many cases inspection and
experimentation will lead to the right table.

Now we must confront the other source of nondeterminism: when we decide
to reduce, how do we choose which of the prefixes of the pushdown store to
replace with a nonterminal? For example, if the pushdown store contains the
string F * T + E and we must reduce, we have a choice between reducing F to
T (Rule R4) or reducing F * T to T (Rule R3). For our grammar, the correct
action is always to choose the longest prefix of the stack contents that matches
the reverse of the right-hand side of a rule and reduce it to the left-hand side of
that rule. Thus in the case above we should take the second option and reduce
F * T to T.

With these two rules (reduce when the top of the stack and the next in
put symbol are related by P, otherwise shift; and, when reducing, reduce the
longest possible string from the top of the stack) the operation of the push
down automaton M becomes completely deterministic. In fact, we could design
a deterministic pushdown automaton that "implements" these two rules (see
Problem 3.7.9).

Once again, bear in mind that the two heuristic rules we have described
-namely, (1) use a precedence relation to decide whether to shift or reduce,
and (2) when in doubt, reduce the longest possible string- do not work in all
situations. The grammars for which they do work are called weak precedence
grammars; in practice, many grammars related to programming languages are
or can readily be converted into weak precedence grammars. And there are many,
even more sophisticated methods for constructing top-down parsers, which work
for larger classes of grammars.

Problems for Section 3.7

3.7.1. Show that the following languages are deterministic context-free.
(a) {ambn : m =1= n}
(b) {wcw R : wE {a, b}*}

174 Chapter 3: CONTEXT-FREE LANGUAGES

(c) {cambn : m i=- n} U {damb2m : m 2: O}
(d) {amcbn : m i=- n} U {amdb2m : m 2: O}

3.7.2. Show that the class of deterministic context-free languages is not closed
under homomorphism.

3.7.3. Show that if L is a deterministic context-free language, then L is not inher
ently ambiguous.

3.7.4. Show that the pushdown automaton M' constructed in Section 3.7.1 accepts
the language L, given that M accepts L$.

3.7.5. Consider the following context-free grammar: G = (V, I;, R, S), where V =
{C),.,a,S,A}, I; = {(,),.,}, and R = {S --+ D,S --+ a,S --+ (A),A--+
S, A --+ A.S} (For the reader familiar with the programming language LISP,
L(G) contains all atoms and lists, where the symbol a stands for any non
null atom.)
(a) Apply Heuristic Rules 1 and 2 to G. Let G' be the resulting grammar.
Argue that G' is LL(l). Construct a deterministic pushdown automaton M
accepting L(G)$. Study the computation of M on the string ((()).a).
(b) Repeat Part (a) for the grammar resulting from G if one replaces the
first rule by A --+ e.
(c) Repeat Part (a) for the grammar resulting from G if one replaces the
last rule by A --+ S.A in G.

3.7.6. Consider again the grammar G of Problem 3.7.5. Argue that G is a weak
precedence grammar, with the precedence relation shown below. Construct
a deterministic pushdown automaton that accepts L(G)$.

la () $

a ..; ..; ..;

(
) ..; ..; ..;

A
S ..; ..;

3.7.7. Let G' = (V,I;,R',S) be the grammar with rules S --+ (A),S --+ a,A --+
S.A, A --+ e. Is G' weak precedence? If so, give an appropriate precedence
relation; otherwise, explain why not.

3.7.8. Acceptance by final state is defined in Problem 3.3.3. Show that L is de
terministic context-free if and only if L is accepted by final state by some
deterministic pushdown automaton.

References 175

3.7.9. Give explicitly a deterministic pushdown automaton that accepts the lan
guage of arithmetic expressions, based on the nondeterministic pushdown
automaton M and the precedence table P of the last subsection. Your au
tomaton should look ahead in the input by absorbing the next input symbol,
very much like the pushdown automaton M4 of the previous section.

3.7.10. Consider the following classes of languages:
(a) Regular
(b) Context-free
(c) The class of the complements of context-free languages
(d) Deterministic context-free
Give a Venn diagram of these classes; that is, represent each class by a "bub
ble," so that inclusions, intersections, etc. of classes are reflected accurately.
Can you supply a language for each non-empty region of your diagram?

REFERENCES

Context-free grammars are a creation of Noam Chomsky; see

a N. Chomsky "Three models for the description of languages," IRE Transactions
on Information Theory, 2,3, pp. 113-124, 1956, and also

a N. Chomsky "On certain formal properties of grammars," Information and Con-
trol, 2,137167, 1959.

In the last paper, Chomsky normal form was also introduced. A closely r-elated notation
for the syntax of programming languages, called BNF (for Backus Normal Form or
Backus-Naur Form), was also invented in the late 1950s; see

a P. Naur, ed. "Revised report on the algorithmic language Algol 60," Communi
cations of the ACM, 6, 1, pp. 1-17, 1963, reprinted in S. Rosen, ed., Programming
Systems and Languages New York: McGraw-Hill, pp. 79-118, 1967.

Problem 3.1.9 on the equivalence of regular grammars and finite automata is from

a N. Chomsky, G. A. Miller "Finite-state languages," Information and Control, 1,
pp. 91-112, 1958.

The pushdown automaton was introduced in

a A. G. Oettinger "Automatic syntactic analysis and the pushdown store," Pro
ceedings of Symposia on Applied Mathematics, Vol. 12, Providence, R.L: Ameri
can Mathematical Society, 1961.

Theorem 3.4.1 on the equivalence of context-free languages and pushdown automata
was proved independently by Schutzenberger, Chomsky, and Evey.

a M. P. Schutzenberger "On context-free languages and pushdown automata," In
formation and Control, 6, 3, pp. 246-264, 1963.

oN. Chomsky "Context-free grammar and pushdown storage," Quarterly Progress
Report, 65, pp. 187-194, M.LT. Research Laboratory in Electronics, Cambridge,
Mass., 1962

176 Chapter 3: CONTEXT-FREE LANGUAGES

o .T. Evey "Application of pushdown store machines," Proceedings of the 1963 Fall
Joint Computer Conference, pp. 215-217. Montreal: AFIPS Press, 1963.

The closure proper·ties presented in subsection 3.5.1, along with many others, were
pointed out in

o V. Bar-Hillel, M. Perles, and E. Shamir "On formal properties of simple phrase
structure grammars," Zeitschrijt for Phonetik, Sprachwissenschajt und Kommu
nikationsforschung, 14, pp. 143-172, 1961.

In the same paper one finds a stronger version of Theorem 3.5.3 (the Pumping Theorem
for context-free grammars; see also Problem 3.5.7). An even stronger version of that
theorem appears in

o W. G. Ogden "A helpful result for proving inherent ambiguity," Mathematical
Systems Theory, 2. pp. 191194, 1968.

The dynamic progr'amming algorithm for context-free language recognition was discov
ered by

o T. Kasami "An efficient recognition and syntax algorithm for context-free lan
guages," Report AFCRL-65-758 (1965), Air Force Cambridge Research Labora
tory, Cambridge, Mass., and independently by

o D. H. Younger "Recognition and parsing of context-free languages in time n 3
,"

Information and Control, 10, 2, pp. 189-208, 1967.
A variant of this algorithm is faster when the underlying grammar is unambiguous

o .T. Earley "An efficient context-free parsing algorithm," Communications of the
ACM, 13, pp. 94-102, 1970.

The most efficient general context-free recognition algorithm known is due to Valiant.
It runs in time proportional to the time required for multiplying two n x n matrices,
currently O(n2 .3 ...).

o L. G. Valiant "General context-free recognition in less than cubic time," Journal
of Computer and Systems Sciences, 10, 2, pp. 308-315, 1975.

LL (1) parsers were introduced in

o P. M. Lewis II, R. E. Stearns "Syntax-directed transduction," Journal of the
ACM, 15, 3, pp. 465-488, 1968, and also in

o D. E. Knuth "Top-down syntax analysis," Acta Informatica, 1, 2, pp. 79-110,
1971.

Weak precedence parsers were proposed in

o .T. D. Ichbiah and S. P. Morse "A technique for generating almost optimal Floyd
Evans productions for precedence grammars," Communications of the ACM, 13,
8, pp. 501-508, 1970.

The following is a standard book on compilers

o A. V. Aho, R. Sethi, .T. D. Ullman Pr'inciples of Compiler Design, Reading,
Mass.: Addison-Wesley, 1985.

Ambiguity and inherent ambiguity were first studied in

o N. Chomsky and M. P. Schutzenberger "The algebraic theory of context free
languages," in Computer Programming and Formal Systems (pp. 118-161), ed.
P. Braffort, D. Hirschberg. Amsterdam: North Holland, 1963, and

References 177

o S. Ginsburg and J. S. Ullian "Preservation of unambiguity and inherent ambi
guity in context-free languages," Journal of the ACM, 13, 1, pp. 62-88, 1966,

respective/yo Greibach normal form (Problem 3.5) is from

o S. Greibach "A new normal form theorem for context-free phrase structure gram
mars," Journal of the ACM, 12, 1, pp. 42-52, 1965.

Two advanced books on context-free languages are

o S. Ginsburg The Mathematical Theory of Context-free Languages, New York:
McGraw-Hill, 1966, and

o M. A. Harrison Introduction to Formal Language Theory, Reading, Massach.:
Addison-Wesley, 1978.

Turing Machines

4.1 THE DEFINITION OF A TURING MACHINE

We have seen in the last two chapters that neither finite automata nor pushdown
automata can be regarded as truly general models for computers, since they are
not capable of recognizing even such simple languages as {anbncn : n ~ O}. In
this chapter we take up the study of devices that can recognize this and many
more complicated languages. Although these devices, called Turing machines
after their inventor Alan Turing (1912-1954), are more general than the au
tomata previously studied, their basic appearance is similar to those automata.
A Turing machine consists of a finite control, a tape, and a head that can be
used for reading or writing on that tape. The formal defiuitions of Turing ma
chines and their operation are in the same mathematical style as those used for
finite and pushdown automata. So in order to gain the additional computa
tional power and generality of function that Turing machines possess, we shall
not move to an entirely new sort of model for a computer.

Nevertheless, Turing machines are not simply one more class of automata,
to be replaced later on by a yet more powerful type. We shall see in this chapter
that, as primitive as Turing machines seem to be, attempts to strengthen them
do not have any effect. For example, we also study Turing machines with many
tapes, or machines with fancier memory devices that can be read or written
in a random access mode reminiscent of actual computers; significantly, these
devices turn out to be no stronger in terms of computing power than basic Turing
machines. We show results of this kind by simulation methods: We can convert
any "augmented" machine into a standard Turing machine which functions in
an analogous way. Thus any computation that can be carried out on the fancier
type of machine can actually be carried out on a Turing machine of the standard
variety. Furthermore, towards the end of this chapter we define a certain kind of

179

180 Chapter 4: TURING MACHINES

language generator, a substantial generalization of context-free grammars, which
is also shown to be equivalent to the Turing machine. From a totally different
perspective, we also pursue the question of when to regard a numerical function
(such as 2x + x 2) as computable, and end up with a notion that is once more
equivalent to Turing machines!

So the Turing machines seem to form a stable and maximal class of com
putational devices, in terms of the computations they can perform. In fact, in
the next chapter we shall advance the widely accepted view that any reasonable
way of formalizing the idea of an "algorithm" must be ultimately equivalent to
the idea of a Turing machine.

But this is getting ahead of our story. The important points to remem
ber by way of introduction are that Turing machines are designed to satisfy
simultaneously these three criteria:

(a) They should be automata; that is, their construction and function should
be in the same general spirit as the devices previously studied.

(b) They should be as simple as possible to describe, define formally, and reason
about.

(c) They should be as general as possible in terms of the computations they
can carry out.

Now let us look more closely at these machines. In essence, a Turing machine
consists of a finite-state control unit and a tape (see Figure 4-1). Communication
between the two is provided by a single head, which reads symbols from the tape
and is also used to change the symbols on the tape. The control unit operates
in discrete steps; at each step it performs two functions in a way that depends
on its current state and the tape symbol currently scanned by the read/write
head:

(1) Put the control unit in a new state.
(2) Either:

(a) Write a symbol in the tape square currently scanned, replacing the one
already there; or

(b) Move the read/write head one tape square to the left or right.

The tape has a left end, but it extends indefinitely to the right. To prevent
the machine from moving its head off the left end of the tape, we assume that the
leftmost end of the tape is always marked by a special symbol denoted by 1>; we
assume further that all of our TUring machines are so designed that, whenever
the head reads a 1>, it immediately moves to the right. Also, we shall use the
distinct symbols +- and -+ to denote movement of the head to the left or right;
we assume that these two symbols are not members of any alphabet we consider.

A Turing machine is supplied with input by inscribing that input string
on tape squares at the left end of the tape, immediately to the right of the I>

4.1: The definition of a Turing Machine

Read/write head
(moves in both directions)

h

-ql

Figure 4-1

181

Finite control

symbol. The rest of the tape initially contains blank symbols, denoted U. The
machine is free to alter its input in any way it sees fit, as well as to write on the
unlimited blank portion of the tape to the right. Since the machine can move its
head only one square at a time, after any finite computation only finitely many
tape squares will have been visited.

We can now present the formal definition of a Turing machine.

Definition 4.1.1: A Turing machine is a quintuple (K,~, J, s, H), where
K is a finite set of states;
~ is an alphabet, containing the blank symbol U and the left end symbol
c>, but not containing the symbols f- and -+;
s E K is the initial state;
H ~ K is the set of halting states;
J, the transition function, is a function from (K - H) x ~ to K x (~U {f

, -+ }) such that,
(a) for all q E K - H, if J(q, c» = (p, b), then b =-+
(b) for all q E K - H and a E ~, if J(q, a) = (p, b) then b ¥- c>.

If q E K - H, a E ~, and J(q, a) = (p, b), then M, when in state q and
scanning symbol a, will enter state p, and (1) if b is a symbol in ~, M will
rewrite the currently scanned symbol a as b, or (2) if b is f- or -+, M will move
its head in direction b. Since J is a function, the operation of M is deterministic
and will stop only when M enters a halting state. Notice the requirement (a)
on J: When it sees the left end of the tape c>, it must move right. This way the
leftmost C> is never erased, and M never falls off the left end of its tape. By (b),
M never writes a c>, and therefore C> is the unmistakable sign of the left end of

182 Chapter 4: TURING MACHINES

the tape. In other words, we can think of c> simply as a "protective barrier" that
prevents the head of M from inadvertently falling off the left end, which does
not interfere with the computation of M in any other way. Also notice that J is
not defined on states in H; when the machine reaches a halting state, then its
operation stops.

Example 4.1.1: Consider the Turing machine M = (K,~, J, s, {h}), where

K ={qo,ql,h},

~ ={a,u,c>},

s =qo,

and J is given by the following table.

q, a J(q,a)

qo a (ql, u)
qo u (h,u)
qo c> (qo, -+)
ql a (qo, a)
ql U (qo, -+)
ql c> (ql, -+)

When M is started in its initial state qo, it scans its head to the right,
changing all a's to u's as it goes, until it finds a tape square already containing
u; then it halts. (Changing a nonblank symbol to the blank symbol will be
called erasing the nonblank symbol.) To be specific, suppose that M is started
with its head scanning the first of four a's, the last of which is followed by a u.
Then M will go back and forth between states qo and ql four times, alternately
changing an a to a U and moving the head right; the first and fifth lines of the
table for J are the relevant ones during this sequence of moves. At this point,
M will find itself in state qo scanning U and, according to the second line of
the table, will halt. Note that the fourth line of the table, that is, the value
of J(ql,a), is irrelevant, since M can never be in state ql scanning an a if it is
started in state qo. Nevertheless, some value must be associated with J(ql, a)
since J is required to be a function with domain (K - H) x ~.¢

Example 4.1.2: Consider the Turing machine M = (K,~, J, s, H), where

K ={qo,h},

~ ={a,u,c>},

s =qo,

H ={h},

4.1: The definition of a Turing Machine 183

q, (J J(q, (J)

qo a (qo, f-)
qo U (h,u)
qo C> (qO, -+)

and 15 is given by this table.
This machine scans to the left until it finds a U and then halts. If every

tape square from the head position back to the left end of the tape contains an
a, and of course the left end of the tape contains a c>, then M will go to the left
end of the tape, and from then on it will indefinitely go back and forth between
the left end and the square to its right. Unlike other deterministic devices that
we have encountered, the operation of a Turing machine may never stop.O

We now formalize the operation of a Turing machine.
To specify the status of a Turing machine computation, we need to specify

the state, the contents of the tape, and the position of the head. Since all
but a finite initial portion of the tape will be blank, the contents of the tape
can be specified by a finite string. We choose to break that string into two
pieces: the part to the left of the scanned square, including the single symbol
in the scanned square; and the part, possibly empty, to the right of the scanned
square. Moreover, so that no two such pairs of strings will correspond to the
same combination of head position and tape contents, we insist that the second
string not end with a blank (all tape squares to the right of the last one explicitly
represented are assumed to contain blanks anyway). These considerations lead
us to the following definitions.

Definition 4.1.2: A configuration of a Turing machine M = (K,~, 15, s, H) is
a member of K x C>~* x (~'(~ - {u}) U {e}).

That is, all configurations are assumed to start with the left end symbol,
and never end with a blank -unless the blank is currently scanned. Thus
(q, c>a, aba), (h, C> U UU, Ua), and (q, C> U a U U, e) are configurations (see Figure
4-2), but (q, c>baa, a, bcU) and (q, Uaa, ba) are not. A configuration whose state
component is in H will be called a halted configuration.

We shall use a simplified notation for depicting the tape contents (including
the position of the head): We shall write WQU for the tape contents of the
configuration (q, wa, u); the underlined symbol indicates the head position. For
the three configurations illustrated in Figure 4-2, the tape contents would be
represented as C>Qaba, C> U U1J U a, and C> U a U 1J. Also, we can write configurations
by including the state together with the notation for the tape and head position.
That is, we can write (q,wa,u) as (q,wQu). {)sing this convention, we would

~ I
184 Chapter 4: TURING MACHINES

a I b a I U U I { ~ I U U I U I U I a I U

\
q q

h t q' h_ q'

q" q"

(q, ~,a, aba) (h. [> UU, U, Ua)

U

f

q

h t q'

q"

(q, ~UaU, U, e)

Figure 4-2

write the three configurations shown in Figure 4-2 as (q, ~Qaba), (h, ~ U U!J U a),
and (q,~UaU!J).

Definition 4.1.3: Let M = (K,~, 0, s, H) be a Thring machine and consider
two configurations of M, (ql, wialud and (q2, W2a2u2), where al,a2 E ~. Then

(ql, WI al UI) f- M (q2, W2 a2u:!)

if and only if, for some b E ~ U {+-, -+}, O(ql, ad = (q2, b), and either

U I i

4.1: The definition of a Turing Machine

1. b E ~, WI = W2, U1 = U2, and a2 = b, or
2. b =f-, WI = W2a2, and either

(a) U2 = a1U1, if a1 i: U or U1 i: e, or
(b) U2 = e, if a1 = U and U1 = e: or

3. b =-+, W2 = W1a1, and either
(a) U1 = a2U2, or
(b) U1 = U2 = e, and a2 = U.

185

In Case 1, M rewrites a symbol without moving its head. In Case 2, M
moves its head one square to the left; if it is moving to the left off blank tape,
the blank symbol on the square just scanned disappears from the configuration.
In Case 3, M moves its head one square to the right; if it is moving onto blank
tape, a new blank symbol appears in the configuration as the new scanned
symbol. Notice that all configurations, except for the halted ones, yield exactly
one configuration.

Example 4.1.3: To illustrate these cases, let w, U E ~*, where U does not end
with a U, and let a, b E ~.

Case 1. J(q1,a) = (q2,b).

Example: (q1,WqU) f-M (q2,WQU).

Case 2. J(q1,a) = (q2,f-).

Example for (a): (Q1, wbqu) f- M (Q2, w!2.au).

Example for (b): (Q1,wbU) f-M (Q2,W!2.).

Case 3. J(Q1, a) = (Q2, -+).
Example for (a): (Q1,wqbu) f-M (Q2,waQu).

Example for (b): (Q1, wq) f- M (Q2, wa1J). 0

Definition 4.1.4: For any Thring machine M, let, f-'M be the reflexive, transitive
closure of f- M; we say that configuration C1 yields configuration C2 if C1 f-'M C2 •

A computation by M is a sequence of configurations Co, C1 , ... , Cn, for some
n 2: 0 such that

We say that the computation is of length n or that it has n steps, and we write
CO f-M Cn.

Example 4.1.4: Consider the Thring machine M described in Example 4.1.1. If
M is started in configuration (Ql, C>Uaaaa), its computation would be represented

186 Chapter 4: TURING MACHINES

formally as follows.

(ql, c>!:!aaaa) f- M (qo, c> U Qaaa)

The computation has ten steps.<>

..

f- M (ql , c> U !:!aaa)

f- M (qo, c> U UQaa)

f- M (qI, C> U U!:!aa)

f- M(qO, C> U U U Qa)

f- M (qI, C> U U U !:!a)

f- M(qO, C> U U U UQ)

f- M (qI, C> U U U U!:!)

f- M (qo, C> U U U U U !:!)

f-M(h, C> U U U U U!:!)

A Notation for Turing Machines

The TUring machines we have seen so far are extremely simple -at least when
compared to our stated ambitions in this chapter- and their tabular form is
already quite complex and hard to interpret. Obviously, we need a notation for
Thring machines that is more graphic and transparent. For finite automata, we
used in Chapter 2 a notation that involved states and arrows denoting transi
tions. We shall next adopt a similar notation for Thring machines. However, the
things joined by arrows will in this case be themselves Turing machines. In other
words, we shall use a hierarchical notation, in which more and more complex
machines are built from simpler materials. To this end, we shall define a very
simple repertoire of basic machines, together with rules for combining machines.

The Basic Machines. We start from very humble beginnings: The symbol-writing
machines and the head-moving machines. Let us fix the alphabet ~ of our
machines. For each a E ~ U { -+, +- } - {c>}, we define a Thring machine M a =
({s,h},~,J,s,{h}), where for each b E ~ - {C>}, J(s,b) = (h,a). Naturally,
J(s,c» is still always (s, -+). That is, the only thing this machine does is to
perform action a -writing symbol a if a E ~, moving in the direction indicated
by a if a E {+-, -+}- and then to immediately halt. Naturally, there is a unique
exception to this behavior: If the scanned symbol is a c>, then the machine will
dutifully move to the right.

Because the symbol-writing machines are used so often, we abbreviate their
names and write simply a instead of Ma. That is, if a E ~, then the a-writing
machine will be denoted simply as a. The head-moving machines Mf- and M-+
will be abbreviated as L (for "left") and R (for "right").

4.1: The definition of a Turing Machine 187

The Rules for Combining Machines. Turing machines will be combined in a way
suggestive of the structure of a finite automaton. Individual machines are like
the states of a finite automaton, and the machines may be connected to each
other in the way that the states of a finite automaton are connected together.
However, the connection from one machine to another is not pursued until the
first machine halts; the other machine is then started from its initial state with
the tape and head position as they were left by the first machine. So if M 1 ,

M2, and M3 are Turing machines, the machine displayed in Figure 4-3 operates
as follows: Start in the initial state of M1 ; operate as Ml would operate until
Ml would halt; then, if the currently scanned symbol is an a, initiate M2 and
operate as A-12 would operate; otherwise, if the currently scanned symbol is a b,
then initiate A-13 and operate as M3 would operate.

Ml ~ M2

M3

Figure 4-3
It is straightforward to give an explicit definition of the combined Turing

machine from its constituents. Let us take the machine shown in Figure 4-3
above. Suppose that the three Turing machines M1 , M2, and M3 are Ml =
(Kl,~,(h,Sl,Hl)' M2 = (K2,~,J2,S2,H2)' and M3 = (K3,~,J3,S:3,H3). We
shall assume, as it will be most convenient in the context of combining machines,
that the sets of states of all these machines are disjoint. The combined machine
shown in Figure 4-3 above would then be M = (K,~, 15, s, H), where

K=K1 UK2uK3,
s = Sl,
H=H2 UH3·
For each u E ~ and q E K - H, J(q, u) is defined as follows:
(a) If q E KJ - HI, then J(q, u) = 151 (q, u).
(b) If q E K 2 - H 2, then 15 (q, u) = 152 (q, u) .
(c) If q E K3 - H3, then J(q, u) = J3(q, u).
(d) Finally, if q E HI -the only case remaining- then J(q, u) S2 if

u = a, J(q, u) = S3 if u = b, and J(q, u) E H otherwise.

All the ingredients of our notation are now in place. We shall be building
machines by combining the basic machines, and then we shall further combine
the combined machines to obtain more complex machines, and so on. We know
that, if we wished, we could come up with a quintuple form of every machine we
thus describe, by starting from the quintuples of the basic machines and carrying
out the explicit construction exemplified above.

188 Chapter 4: TURING MACHINES

Example 4.1.5: Figure 4-4(a) illustrates a machine consisting of two copies of
R. The machine represented by this diagram moves its head right one square;
then, if that square contains an a, or a b, or a 1>, or a U, it moves its head one
square further to the right.

a

>R~R
~

(a)

>R a,b,U ,". R

(b)

Figure 4-4

It will be convenient to represent this machine as in Figure 4-4(b). That is,
an arrow labeled with several symbols is the same as several parallel arrows, one
for each symbol. If an arrow is labeled by all symbols in the alphabet 1: of the
machines, then the labels can be omitted. Thus, if we know that 1: = {a, b, 1>, U},
then we can display the machine above as

R~R,

where, by convention, the leftmost machine is always the initial one. Sometimes
an unlabeled arrow connecting two machines can be omitted entirely, by jux
taposing the representations of the two machines. Under this convention, the
above machine becomes simply RR, or even R2.<;

Example 4.1.6: If a E 1: is any symbol, we can sometimes eliminate multiple
arrows and labels by using Ii to mean "any symbol except a." Thus, the machine
shown in Figure 4-5(a) scans its tape to the right until it finds a blank. We shall
denote this most useful machine by Ru.

(a)

;)af u
>R

(b)

Figure 4-5

Another shorthand version of the same machine as in Figure 4-5 (a) is shown
in Figure 4-5(b). Here a -I- U is read "any symbol a other than U." The advantage
of this notation is that a may then be used elsewhere in the diagram as the name
of a machine. To illustrate, Figure 4-6 depicts a machine that scans to the right

4.1: The definition of a Turing Machine

(a) Ru

(c) Ru

u

A"f u
>RJ~La

Figure 4-6

Figure 4-7

189

(b) Lu

(d) Lu

until it finds a nonblank square, then copies the symbol in that square onto the
square immediately to the left of where it was found.O

Example 4.1.7: Machines to find marked or unmarked squares are illustrated
in Figure 4-7. They are the following.
(a) R u , which finds the first blank square to the right of the currently scanned

square.
(b) L u , which finds the first blank square to the left of the currently scanned

square.
(c) Rrr, which finds the first nonblank square to the right of the currently

scanned square.
(d) Lrr, which finds the first nonblank square to the left of the currently scanned

square.O

Example 4.1.8: The copying machine C performs the following function: If C
starts with input w, that is, if string 'UJ, containing only nonblank symbols but
possibly empty, is put on an otherwise blank tape with one blank square to its

190 Chapter 4: TURING MACHINES

left, and the head is put on the blank square to the left of w, then the machine
will eventually stop with w U w on an otherwise blank tape. We say that C
transforms UwlJ into UwUwld.

A diagram for C is given in Figure 4-8.0

Figure 4-8

Example 4.1.9: The right-shifting machine S-7' transforms UwlJ., where w con
tains no blanks, into UU w.1d· It is illustrated in Figure 4-9.0

Figure 4-9

Example 4.1.10: Figure 4-10 is the machine defined in Example 4.1.1, which
erases the a's in its tape.

~
>R~u

Figure 4-10

As a matter of fact, the fully developed transition table of this machine
will differ from that of the machine given in Example 4.1.1 in ways that are
subtle, inconsequential, and explored in Problem 4.1.8 -namely, the machine
in Figure 4-10 will also contain certain extra states, which are final states of its
constituents machines.O

4.1: The definition of a Turing Machine

Problems for Section 4.1

4.1.1. Let M = (K, 1:, J, s, {h}), where

K ={qo,ql,h},

1: ={a,b,U,I>},

s =qo,

and J is given by the following table.

q, u J(q, u)

qo a (qI, b)
qo b (qI, a)
qo U (h,u)
qo I> (qo, -+)
qI a (qo, -+)
qI b (qo, -+)
qI U (qO, -+)
qI I> (qI, -+)

191

(a) Trace the computation of M starting from the configuration (qo,I>Qabbba).
(b) Describe informally what M does when started in qo on any square of a

tape.

4.1.2. Repeat Problem 4.1.1 for the machine M = (K, 1:, J, s, {h}), where

K ={ qo, qI, q2, h},

1: ={a,b,U,I>},

s =qo,

and J is given by the following table (the transitions on I> are J (q, 1» = (q, I>),

and are omitted).

q, (J J(q, u)

qo a (qI, t-)
qo b (qo, -+)
qo U (qo, -+)
qI a (qI, t-)
qI b (q2,-+)
qI U (qI, t-)
q2 a (q2,-+)
q2 b (q2,-+)
q2 U (h,U)

192 Chapter 4: TURING MACHINES

Start from the configuration (qo, r>al!.b U bb U U U abn).

4.1.3. Repeat Problem 4.1.1 for the machine M = (K, 1:,15, s, {h}), where

K ={qO,ql,q2,q3,q4,h},

1: ={a,b,U,r>},

and 15 is given by the following table.

q, u J(q, u)

qo a (q2, -t)
qo b (q3, a)
qo U (h,U)
qo r> (qo, -t)
qi a (q2, -t)
qi b (q2, -t)
qi U (q2, -t)
qi r> (ql, -t)
q2 a (qi , b)
q2 b (q3, a)
q2 U (h,U)
q2 r> (q2, -t)
q3 a (q4,-t)
q3 b (q4, -t)
q3 U (q4, -t)
q3 r> (q3, -t)
q4 a (q2, -t)
q4 b (q4, -t)
q4 U (h,u)
q4 r> (q4, -t)

Start from the configuration (qo, r>gaabbbaa).

4.1.4. Let M be the Turing machine (K, 1:,15, s, {h}), where

K ={qO,ql,q2,h},

1: ={a,U,r>},

and 15 is given by the following table.
Let n 2: O. Describe carefully what M does when started in the configura

tion (qo, r> U ang).

4.1: The definition of a Turing Machine 193

q, u J(q, u)

fJo a (qi, +-)
fJo U (qo,U)
fJo I> (qo, --+)
fJi a (q2, U)
fJi U (h,U)
fJi I> (qi, --+)
([2 a (q2, a)
([2 U (qo, +-)
fJ2 I> (q2, --+)

4.1.5. In the definition of a Turing machine, we allow rewriting a tape square
without moving the head and moving the head left or right without rewriting
the tape square. What would happen if we also allowed to leave the head
stationary without rewriting the tape square?

4.1.6. (a) Which of the following could be configurations?
(i) (q, I>a U aU, U, Ua)

(ii) (q, abc, b, abc)
(iii) (p, I>abc, a, e)
(iv) (h,l>,e,e)
(v) (q, I>a U ab, b, UaaU)

(vi) (p, I>a, ab, Ua)
(vii) (q, 1>, e, Uaa)

(viii) (h, I>a, a, U U U U U U a)
(b) Rewrite those of Parts (i) through (viii) that are configurations using the

abbreviated notation.
(c) Rewrite these abbreviated configurations in full.

(i) (q,l>a!!.cd)
(ii) (q,I>Q)

(iii) (p, I>aa U U)
(iv) (h, I>Uabc)

4.1. 7. Design and write out in full a Turing machine that scans to the right until
it finds two consecutive a's and then halts. The alphabet of the Turing
machine should be {a, b, U, I> }.

4.1.8. Give the full details of the Turing machines illustrated.

>LL.

194 Chapter 4: TURING MACHINES

4.1.9. Do the machines LR and RL always accomplish the same thing? Explain.

4.1.10. Explain what this machine does.

4.1.11. Trace the operation of the Thring machine of Example 4.1.8 when started
on I>Uaabb.

4.1.12. Trace the operation of the Thring machine of Example 4.1.9 on I> U aabbU.

B COMPUTING WITH TURING MACHINES

We introduced Turing machines with the promise that they outperform, as lan
guage acceptors, all other kinds of automata we introduced in previous chapters.
So far, however, we have presented only the "mechanics" of Thring machines,
without any indication of how they are to be used in order to perform computa
tional tasks -to recognize languages, for example. It is as though a computer
had been delivered to you without a keyboard, disk drive, or screen -that is,
without the means for getting information into and out of it. It is time, therefore,
to fix some conventions for the use of Turing machines.

First, we adopt the following policy for presenting input to Turing machines:
The input string, with no blank symbols in it, is written to the right of the
leftmost symbol 1>, with a blank to its left, and blanks to its right; the head is
positioned at the tape square containing the blank between the I> and the input;
and the machine starts operating in its initial state. If M = (K,~, 15, s, H) is a
Thring machine and w E (~ - {U, I>})*, then the initial configuration of M
on input w is (s,I>Uw). With this convention, we can now define how Thring
machines are used as language recognizers.

Definition 4.2.1: Let M = (K,~, 15, s, H) be a Thring machine, such that H =
{y, n} consists of two distinguished halting states (y and n for "yes" and "no").
Any halting configuration whose state component is y is called an accepting
configuration, while a halting configuration whose state component is n is
called a rejecting configuration. We say that M accepts an input w E
(~- {U, I> }) * if (s, I>Uw) yields an accepting configuration; we say that M rejects
w if (s,I>Uw) yields a rejecting configuration.

Let ~o ~ ~ - {U, I>} be an alphabet, called the input alphabet of M; by
fixing ~o to be a subset of ~ - {U, I>}, we allow our Thring machines to use extra
symbols during their computation, besides those appearing in their inputs. We

4.2: Computing with Turing Machines 195

say that M decides a language L ~ I:~ if for any string 111 E I:~ the following is
true: If 111 E L then M accepts 111; and if w ~ L then M rejects 111.

Finally, call a language L recursive if there is a TUring machine that decides
it.

That is, a Turing machine decides a language L if, when started with input
111, it always halts, and does so in a halt state that is the correct response to the
input: y if w E L, n if w ~ L. Notice that no guarantees are given about what
happens if the input to the machine contains blanks or the left end symbol.

Example 4.2.1: Consider the language L = {anbncn : n 2: O}, which has
heretofore evaded all types of language recognizers. The Turing machine whose
diagram is shown in Figure 4-11 decides L. In this diagram we have also utilized
two new basic machines, useful for deciding languages: Machine y makes the
new state to be the accepting state y, while machine n moves the state to n.

y n

Figure 4-11

The strategy employed by M is simple: On input anbncn it will operate in
n stages. In each stage M starts from the left end of the string and moves to
the right in search of an a. When it finds an a, it replaces it by a d and then
looks further to the right for a b. When a b is found, it is replaced by a d, and
the machine then looks for a c. When a c is found and is replaced by a d, then
the stage is over, and the head returns to the left end of the input. Then the
next stage begins. That is, at each stage the machine replaces an a, a b, and a
c by d's. If at any point the machine senses that the string is not in a*b*c', or
that there is an excess of a certain symbol (for example, if it sees a b or c while
looking for an a), then it enters state n and rejects immediately. If however it
encounters the right end of the input while looking for an a, this means that all
the input has been replaced by d's, and hence it was indeed of the form anbncn,
for some n 2: O. The machine then accepts.O

There is a subtle point in relation to TUring machines that decide languages:
With the other language recognizers that we have seen so far in this book (even
the nondeterministic ones), one of two things could happen: either the machine
accepts the input, or it rejects it. A Turing machine, on the other hand, even if

196 Chapter 4: TURING MACHINES

it has only two halt states y and n, always has the option of evading an answer
("yes" or "no"), by failing to halt. Given a Turing machine, it might or it might
not decide a language -and there is no obvious way to tell whether it does.
The far-reaching importance -and necessity- of this deficiency will become
apparent later in this chapter, and in the next.

Recursive Functions
Since Turing machines can write on their tapes, they can provide more elaborate
output than just a "yes" or a "no:"

Definition 4.2.2: Let M = (K, I:, 15, s, {h}) be a Turing machine, let I:o ~
I: - {u, I>} be an alphabet, and let w E I:~. Suppose that M halts on input w,
and that (s,l>lJw) f-M (h,I>Uy) for some y E I:~. Then y is called the output
of M on input w, and is denoted M(w). Notice that M(w) is defined only if
M halts on input w, and in fact does so at a configuration of the form (h,I>Uy)
with y E I:~.

Now let f be any function from I:o to I:o. We say that M computes
function f if, for all w E I:o, M(w) = f(111). That is, for all w E I:~ M
eventually halts on input w, and when it does halt, its tape contains the string
I> U f (w). A function f is called recursive, if there is a Turing machine M that
computes f.

Example 4.2.2: The function 1'0, : I:* r--+ I:* defined as K,(w) = ww can be
computed by the machine C S+--, that is, the copying machine followed by the
left-shifting machine (both were defined towards the end of the last section). 0

Strings in {O, 1}* can be used to represent the nonnegative integers in the
familiar binary notation. Any string w = ala2 ... an E {0,1}* represents the
number

() 2n-l 2n-2 num w = al . + a2 . + ... + an-

And any natural number can be represented in a unique way by a string in ° U 1(0 U 1)* -that is to say, without redundant O's in the beginning.
Accordingly, Turing machines computing functions from {O, 1}* to {O, 1}*

can be thought of as computing functions from the natural numbers to the
natural numbers. In fact, numerical functions with many arguments -such as
addition and multiplication- can be computed by Turing machines computing
functions from {O, 1,;}* to {O, 1}*, where ";" is a symbol used to separate binary
arguments.

Definition 4.2.3: Let M = (K, I:, 15, s, {h}) be a Turing machine such that
0,1,; E I:, and let f be any function from N k to N for some k 2' 1. We say

4.2: Computing with Turing Machines 197

that M computes function J if for all WI,' .. ,Wk E ° U 1 {O, 1}' (that is, for
any k strings that are binary encodings of integers), num(M(wI; ... ;Wk)) =
J(num(wt}, ... , num(wk)). That is, if M is started with the binary representa
tions of the integers nl, ... ,nk as input, then it eventually halts, and when it
does halt, its tape contains a string that represents number J(nl' ... ,nd -the
value of the function. A function J : Nk H N is called recursive if there is a
Turing machine M that computes J.

In fact, the term recursive used to describe both functions and languages
computed by Turing machines originates in the study of such numerical func
tions. It anticipates a result we shall prove towards the end of this chapter,
namely that the numerical functions computable by Turing machines coincide
with those that can be defined recursively from certain basic functions.

Example 4.2.3: We can design a machine that computes the successor function
succ(n) = n + 1 (Figure 4.12; SR is the right-shifting machine, the rightward
analog of the machine in Example 4.1. 9). This machine first finds the right end
of the input, and then goes to the left as long as it sees 1 's, changing all of them
to O's. When it sees a 0, it changes it into a 1 and halts. If it sees a U while
looking for a 0, this means that the input number has a binary representation
that is all 1 's (it is a power of two minus one), and so the machine again writes a
1 in the place of the U and halts, after shifting the whole string one position to
the right. Strictly speaking, the machine shown does not compute n + 1 because
it fails to always halt with its head to the left of the result; but this can be
fixed by adding a copy of Ru (Figure 4-5). <)

Figure 4-12

The last remark of the previous subsection, on our inability to tell whether
a Turing machine decides a language, also applies to function computation. The
price we must pay for the very broad range of functions that Turing machines
can compute, is that we cannot tell whether a given Turing machine indeed
computes such a function -that is to say, whether it halts on all inputs.

198 Chapter 4: TURING MACHINES

Recursively Enumerable Languages

If a Turing machine decides a language or computes a function, it can be rea
sonably thought of as an algorithm that performs correctly and reliably some
computational task. We next introduce a third, subtler, way in which a Turing
machine can define a language:

Definition 4.2.4: Let M = (K,~, 5, s, H) be a Turing machine, let ~o <;;;
~ - {U, ~} be an alphabet, and let L <;;; ~o be a language. We say that M
semi decides L if for any string w E ~o the following is true: w E L if and only
if M halts on input w. A language L is recursively enumerable if and only
if there is a Turing machine M that semidecides L.

Thus when M is presented with input w E L, it is required to halt eventually.
We do not care precisely which halting configuration it reaches, as long as it does
eventually arrive at a halting configuration. If however w E ~o - L, then M
must never enter the halting state. Since any configuration that is not halting
yields some other configuration (5 is a fully defined function), the machine must
in this case continue its computation indefinitely.

Extending the "functional" notation of Turing machines that we introduced
in the previous subsection (which allows us to write equations such as M (w) =
v), we shall write M(w) =/ if M fails to halt on input w. In this notation,
we can restate the definition of semi decision of a language L <;;; ~o by Turing
machine M as follows: For all w E ~o, M(w) =/ if and only if w ¢ L.

Example 4.2.4: Let L = {w E {a,b}* : w contains at least one a}. Then L is
semi decided by the Turing machine shown in Figure 4-13.

Figure 4-13

This machine, when started in configuration (qO, ~jJl1J) for some w E {a, b}',
simply scans right until an a is encountered and then halts. If no a is found,
the machine goes on forever into the blanks that follow its input, never halting.
So L is exactly the set of strings w in {a, b}' such that M halts on input w.
Therefore M semidecides L, and thus L is recursively enumerable.O

"Going on forever into the blanks" is only one of the ways in which a Turing
machine may fail to halt. For example, any machine with 5(q,a) = (q,a) will
"loop forever" in place if it ever encounters an a in state q. Naturally, more
complex looping behaviors can be designed, with the machine going indefinitely
through a finite number of different configurations.

4.2: Computing with Turing Machines 199

The definition of semidecision by Turing machines is a rather straightfor
ward extension of the notion of acceptance for the deterministic finite automaton.
There is a major difference, however. A finite automaton always halts when it
has read all of its input -the question is whether it halts on a final or a non final
state. In this sense it is a useful computational device, an algorithm from which
we can reliably obtain answers as to whether an input belongs in the accepted
language: We wait until all of the input has been read, and we then observe the
state of the machine. In contrast, a Turing machine that semidecides a language
L cannot be usefully employed for telling whether a string w is in L, because,
if w ~ L, then we will never know when we have waited enough for an answer.t
Turing machines that semidecide languages are no algorithms.

We know from Example 4.2.1 that {anbncn : n ~ O} is a recursive language.
But is it recursively enumerable? The answer is easy: Any recursive language is
also 1'ecursively enumerable. All it takes in order to construct another Turing ma
chine that semidecides, instead of decides, the language is to make the rejecting
state n a nonhalting state, from which the machine is guaranteed to never halt.
Specifically, given any Turing machine M = (K,~, 5, s, {y, n}) that decides L, we
can define a machine M' that semidecides L as follows: M = (K,~,5',s,{y}),
where 5' is just 5 augmented by the following transitions related to n -no longer
a halting state: 5' (n, a) = (n, a) for all a E ~. It is clear that if M indeed decides
L, then]I.,£' semidecides L, because M' accepts the same inputs as]I.,f; further
more, if]I.,f rejects an input w, then M' does not halt on 'IV (it "loops forever" in
state n). In other words, for all inputs w, M'(w) =/ if and only if M(w) = n.

We have proved the following important result:

Theorem 4.2.1: If a language is recursive, then it is recursively enumerable.

Naturally, the interesting (and difficult) question is the opposite: Can we
always transform every Turing machine that semidecides a language (with our
one-sided definition of semidecision that makes it virtually useless as a computa
tional device) into an actual algorithm for deciding the same language? We shall
see in the next chapter that the answer here is negative: There are recursively
enumerable languages that are not recursive.

An important property of the class of recursive languages is that it is closed
under complement:

Theorem 4.2.2: If L is a recursive language, then its complement L is also

t We have already encountered the same difficulty with pushdown automata (recall
Section 3.7). A pushdown automaton can in principle reject an input by manip
ulating forever its stack without reading any further input -in Section 3.7 we
had to remove such behavior in order to obtain computationally useful pushdown
automata for certain context-free languages.

200 Chapter 4: TURING MACHINES

recursive.

Proof: If L is decided by Turing machine M = (K,~, 5, s, {y, n}), then L is
decided by the Turing machine M' = (K,~, 5', s, {y, n}) which is identical to M
except that it reverses the roles of the two special halting states y and n. That
is, 5' is defined as follows:

5'(q,a) = {~
5(q, a)

if 5(q, a) =]f,
if 5(q, a) = n,
otherwise.

It is clear that M' (w) = y if and only if M (w) = n, and therefore M' decides
L .•

Is the class of recursively enumerable languages also closed under comple
ment? Again, we shall see in the next chapter that the answer is negative.

Problems for Section 4.2

4.2.1. Give a Turing machine (in our abbreviated notation) that computes the
following function from strings in {a, b} * to strings in {a, b} *: f (w) = ww R .

4.2.2. Present Turing machines that decide the following languages over {a, b}:
(a) 0
(b) {e}
(c) {a}
(d) {a}*

4.2.3. Give a Turing machine that semidecides the language a*ba*b.

4.2.4. (a) Give an example of a Turing machine with one halting state that does
not compute a function from strings to strings.
(b) Give an example of a Turing machine with two halting states, y and n,

that does not decide a language.
(c) Can you give an example of a Turing machine with one halting state

that does not semidecide a language?

B EXTENSIONS OF THE TURING MACHINE

The examples of the previous section make it clear that Turing machines can
perform fairly powerful computations, albeit slowly and clumsily. In order to
better understand their surprising power, we shall consider the effect of extending
the Turing machine model in various directions. We shall see that in each case

4.3: Extensions of the Turing Machine 201

the additional features do not add to the classes of computable functions or
decidable languages: the "new, improved models" of the Turing machine can
in each instance be simulated by the standard model. Such results increase our
confidence that the Turing machine is indeed the ultimate computational device,
the end of our progression to more and more powerful automata. A side benefit
of these results is that we shall feel free subsequently to use the additional
features when designing Turing machines to solve particular problems, secure
in the knowledge that our dependency on such features can, if necessary, be
eliminated.

Multiple Tapes

One can think of Turing machines that have several tapes (see Figure 4-14).
Each tape is connected to the finite control by means of a read/write head (one
on each tape). The machine can in one step read the symbols scanned by all its
heads and then, depending on those symbols and its current state, rewrite some
of those scanned squares and move some of the heads to the left or right, in
addition to changing state. For any fixed integer k ~ 1, a k-tape Thring machine
is a Turing machine equipped as above with k tapes and corresponding heads.
Thus a "standard" Turing machine studied so far in this chapter is just a k-tape
Turing machine, with k = 1.

Definition 4.3.1: Let k ~ 1 be an integer. A k-tape Turing machine is a
quintuple (K,~, 5, s, H), where K, ~, s, and H are as in the definition of the
ordinary Turing machine, and 5, the transition function, is a function from
(K - H) x ~k to K x (~U {+-, -+})k. That is, for each state q, and each k-tuple
of tape symbols (al, ... ,ak), 5(q,(al, ... ,ak)) = (p,(bl, ... ,bk)), wherep is, as
before, the new state, and bj is, intuitively, the action taken by M at tape j.
Naturally, we again insist that if aj = ~ for some j ~ k, then bj =-+.

Computation takes place in all k tapes of a k-tape Turing machine. Ac
cordingly, a configuration of such a machine must include information about all
tapes:

Definition 4.3.2: Let M = (K,~, 5, s, H) be a k-tape Turing machine. A
configuration of M is a member of

K X (L>~' X (~'(~ - {u}) U {e}))k.

That is, a configuration identifies the state, the tape contents, and the head
position in each of the k tapes.

If (q, (WI al UI, ... , Wkakuk)) is a configuration of a k-tape Turing machine
(where we have used the k-fold version of the abbreviated notation for configu
rations), and if 5(p,(al, ... ,ak)) = (bl, ... ,bk), then in one move the machine

202 Chapter 4: TURING MACHINES

Tape 1 I i

Tape 2

Tape k

Finite control h

Figure 4-14

would move to configuration (p, (w~ a~ u~ , ... , w~ a~ u~)), where, for i = 1, ... , k,
w~a~u~ is WiaiUi modified by action bi , precisely as in Definition 4.1.3. We
saJthat configuration (q, (WI aIUI, ... ,Wkakuk)) yields in one step configuration
((

I I I I I I)) - -p, wIaIuI,···,wkakuk .

Example 4.3.1: A k-tape Turing machine can be used for computing a function
or deciding or semi deciding a language in any of the ways discussed above for
standard Turing machines. We adopt the convention that the input string is
placed on the first tape, in the same way as it would be presented to a standard
Turing machine. The other tapes are initially blank, with the head on the
leftmost blank square of each. At the end of a computation, a k-tape Turing
machine is to leave its output on its first tape; the contents of the other tapes
are ignored.

Multiple tapes often facilitate the construction of a Turing machine to per
form a particular function. Consider, for example, the task of the copying ma
chine C given in Example 4.1.8: to transform L> U wb[into L> U w U wb[, where
w E {a, b}·. A 2-tape Turing machine can accomplish this as follows.

(1) ~1ove the heads on both tapes to the right, copying each symbol on the first

4.3: Extensions of the Turing Machine 203

tape onto the second tape, until a blank is found on the first tape. The first
square of the second tape should be left blank.

(2) Move the head on the second tape to the left until a blank is found.
(3) Again move the heads on both tapes to the right, this time copying symbols

from the second tape onto the first tape. Halt when a blank is found on the
second tape.

This sequence of actions can be pictured as follows.

At the beginning: First tape c>k!w
Second tape c>k!

After (1): First tape L> U wk!
Second tape c> U wl,!

After (2): First tape c> U wU

Second tape c>l,!w
After (3): First tape c> U w U wU

Second tape L> U wl,!

Turing machines with more than one tape can be depicted in the same way
that single-tape Turing machines were depicted in earlier sections. We simply
attach as a superscript to the symbol denoting each machine the number of the
tape on which it is to operate; all other tapes are unaffected. For example, U2

writes a blank on the second tape, L~ searches to the left for a blank on the first
tape, and R 1,2 moves to the right the heads of both the first and the second tape.
A label a 1 on an arrow denotes an action taken if the symbol scanned in the
first tape is an a. And so on. (When representing multi-tape Turing machines,
we refrain from using the shorthand M2 for MM.) Using this convention, the
2-tape version of the copying machine might be illustrated as in Figure 4-15. We
indicate the submachines performing Functions 1 through 3 above.O

T '-.,-J \ -~T---'

(1) (2) (3)

Figure 4-15

Example 4.3.2: We have seen (Example 4.2.3) that Turing machines can add
1 to any binary integer. It should come as no surprise that Turing machines

204 Chapter 4: TURING MACHINES

can also add arbitrary binary numbers (recall Problem 2.4.3, suggesting that
even finite automata, in a certain sense, can). With two tapes this task can be
accomplished by the machine depicted in Figure 4-16. Pairs of bits such as 01
on an arrow label are a shorthand for, in this case, a 1 = 0, a2 = 1.

Figure 4-16

This machine first copies the first binary integer in its second tape, writing
zeros in its place (and in the place of the ";" separating the two integers) in the
first tape; this way the first tape contains the second integer, with zeros added
in front. The machine then performs binary addition by the "school method,"
starting from the least significant bit of both integers, adding the corresponding
bits, writing the result in the first tape, and "remembering the carry" in its
state·O

What is more, we can build a 3-tape Turing machine that multiplies two
numbers; its design is left as an exercise (Problem 4.3.5).

Evidently, k-tape Turing machines are capable of quite complex compu
tational tasks. We shall show next that any k-tape Turing machine can be
simulated by a single-tape machine. By this we mean that, given any k-tape
Turing machine, we can design a standard Turing machine that exhibits the
same input-output behavior -decides or semidecides the same language, com
putes the same function. Such simulations are important ingredients of our
methodology in studying the power of computational devices in this and the
next chapters. Typically, they amount to a method for mimicking a single step
of the simulated machine by several steps of the simulating machine. Our first
result of this sort, and its proof, is quite indicative of this line of reasoning.

4.3: Extensions of the Turing Machine 205

Theorem 4.3.1: Let M = (K, ~,b, s, H) be a k-tape Turing machine for some
k :::: 1. Then there is a standard Thring machine M' = (K', ~', b', s', H), where
~ ~ ~', and such that the following holds: For any input string x E ~', M on
input x halts with output y on the first tape if and only if M' on input x halts
at the same halting state, and with the same output y on its tape. Furthermore,
if M halts on input x after t steps, then M' halts on input x after a number of
steps which is O(t· (Ixl + t)).

~ I a I U b a I U U I i
t

~ I b b b I u I u I u I i
t

(a)

~ a U b a u u

0 0 0 1 0 0 0
~ u u

~ b b b u u u

0 0 1 0 0 0 0
~

(b)

Figure 4-17

Proof: The tape of M' must somehow contain all information in all tapes of M.
A simple way of achieving this is by thinking that the tape of M' is divided into
several tracks (see Figure 4-18(b)), with each "track" devoted to the simulation
of a different tape of M. In particular, except for the leftmost square, which
contains as usual the left end symbol ~, and the infinite blank portion of the
tape to the right, the single tape of M' is split horizontally into 2k tracks.
The first, third, ... , (2k - l)st tracks of the tape of M' correspond to the first,
second, ... ,kth tapes of lv!. The second, fourth, ... ,2kth tracks of the tape of

206 Chapter 4: TURING MACHINES

M' are used to record the positions of the heads on the first, second, ... , kth
tapes of M in the following way: If the head on the ith tape of M is positioned
over the nth tape square, then the 2ith track of the tape of M' contains a 1 in
the (n + l)st tape square and a ° in all tape squares except the (n + l)st. For
example, if k = 2, then the tapes and heads of M shown in Figure 4-18(a) would
correspond to the tape of M' shown in Figure 4-18(b).

Of course, the division of the tape of M' into tracks is a purely conceptual
device; formally, the effect is achieved by letting

~'=~U(~x{O,l})k.

That is, the alphabet of M' consists of the alphabet of M (this enables M' to
receive the same inputs as M and deliver the same output), plus all 2k-tuples
of the form (al,bl, ... ,ak,bk) with al, ... ,ak E ~ and bl, ... ,bk E {0,1}. The
translation from this alphabet to the 2k-track interpretation is simple: We read
any such 2k-tuple as saying that the first track of M' contains aI, the second
bl , and so on up to the 2kth track containing bk . This in turn means that the
corresponding symbol of the ith tape of M contains ai, and that this symbol is
scanned by the ith head if and only if bi = 1 (recall Figure 4-17(b)).

When given an input w E ~', M' operates as follows.

(1) Shift the input one tape square to the right. Return to the square imme
diately to the right of the ~, and write the symbol (~, 0, L>, 0, ... ,~, 0) on
it -this will represent the left end of the k tapes. Go one square to the
right and write the symbol (u, 1, U, 1, ... , U, 1) -this signifies that the first
squares of all k tapes contain a U, and are all scanned by the heads. Pro
ceed to the right. At each square, if a symbol a ¥- U is encountered, write
in its position the symbol (a, 0, U, 0, ... , U, 0). If a U is encountered, the
first phase is over. The tape contents of M' faithfully represent the initial
configuration of M.

(2) Simulate the computation by M, until M would halt (if it would halt). To
simulate one step of the computation of M, M' will have to perform the
following sequence operations (we assume that it starts each step simulation
with its head scanning the first "true blank," that is, the first square of its
tape that has not yet been subdivided into tracks):
(a) Scan left down the tape, gathering information about the symbols

scanned by the k tape heads of M. After all scanned symbols have
been identified (by the l's in the corresponding even tracks), return to
the leftmost true blank. No writing on the tape occurs during this part
of the operation of M', but when the head has returned to the right
end, the state of the finite control has changed to reflect the k-tuple of
symbols from ~, in the k tracks at the marked head positions.

(b) Scan left and then right down the tape to update the tracks in accor
dance with the move of M that is to be simulated. On each pair of

4.3: Extensions of the Turing Machine 207

tracks, this involves either moving the head position marker one square
to the right or left, or rewriting the symbol from ~.

(3) When M would halt, M' first converts its tape from tracks into single
symbol format, ignoring all tracks except for the first; it positions its head
where M w~)Uld have placed its first head, and finally it halts in the same
state as M would have halted.

l1any details have been omitted from this description. Phase 2, while by
no means conceptually difficult, is rather messy to specify explicitly, and indeed
there are several choices as to how the operations described might actually be
carried out. One detail is perhaps worth describing. Occasionally, for some n >
Iwl, M may have to move one of its heads to the nth square of the corresponding
tape for the first time. To simulate this, M' will have to extend the part of its
tape that is divided into 2k tracks, and rewrite the first u to the right as the
2k-tuple (W, 0, u, 0, ... , U, 0) E ~'.

It is clear that M' can simulate the behavior of M as indicated in the
statement of the theorem. It remains to argue that the number of steps required
by M' for simulating t steps of M on input x is O(t . (Ixl + t)). Phase 1 of
the simulation requires O(lxi) steps of M'. Then, for each step of M, M' must
carry out the maneuver in Phase 2, (a) and (b). This requires M' to scan the
2k-track part of its tape twice; that is, it requires a number of steps by M' that
is proportional to the length of the 2k-track part of the tape of M'. The question
is, how long can this part of M"s tape be'? It starts by being Ixl + 2 long, and
subsequently it increases in length by no more than one for each simulated step
of M. Thus, if t steps of M are simulated on input x, the length of the 2k-track
part of the tape of M' is at most Ixl + 2 + t, and hence each step of M can be
simulated by O(lxl + t) steps of M', as was to be shown .•

By using the conventions described for the input and output of a k-tape
Turing machine, the following result is easily derived from the previous theorem.

Corollary: Any function that is computed or language that is decided or
semidecided by a k-tape Turing machine is also computed, decided, or semide
cided, respectively, by a standard Turing machine.

Two-way Infinite Tape

Suppose now that our machine has a tape that is infinite in both directions. All
squares are initially blank, except for those containing the input; the head is
initially to the left of the input, say. Also, our convention with the t> symbol
would be unnecessary and meaningless for such machines.

It is not hard to see that, like multiple tapes, two-way infinite tapes do not
add substantial power to Thring machines. A two-way infinite tape can be easily
simulated by a 2-tape machine: one tape always contains the part of the tape to

208 Chapter 4: TURING MACHINES

the right of the square containing the first input symbol, and the other contains
the part of the tape to the left of this in reverse. In turn, this 2-tape machine
can be simulated by a standard Thring machine. In fact, the simulation need
only take linear, instead of quadratic, time, since at each step only one of the
tracks is active. Needless to say, machines with several two-way infinite tapes
could also simulated in the same way.

Multiple Heads
What if we allow a Thring machine to have one tape, but several heads on
it? In one step, the heads all sense the scanned symbols and move or write
independently. (Some convention must be adopted about what happens when
two heads that happen to be scanning the same tape square attempt to write
different symbols. Perhaps the head with the lower number wins out. Also, let
us assume that the heads cannot sense each other's presence in the same tape
square, except perhaps indirectly, through unsuccessful writes.)

It is not hard to see that a simulation like the one we used for k-tape
machines can be carried out for Turing machines with several heads On a tape.
The basic idea is again to divide the tape into tracks, all but one of which are
used solely to record the head positions. To simulate one computational step
by the multiple-head machine, the tape must be scanned twice: once to find
the symbols at the head positions, and again to change those symbols or move
the heads as appropriate. The number of steps needed is again quadratic, as in
Theorem 4.3.1.

The use of multiple heads, like multiple tapes, can sometimes drastically
simplify the construction of a Thring machine. A 2-head version of the copying
machine C in Examph~ 4.1.8 could function in a way that is much more natural
than the one-head version (or even the two-tape version, Example 4.3.1); see
Problem 4.3.3.

Two-Dimensional Tape
Another kind of generalization of the Thring machine would allow its "tape" to
be an infinite two-dimensional grid. (One might even allow a space of higher
dimension.) Such a device could be much more useful than standard Turing
machines to solve problems such as "zigsaw puzzles" (see the tiling problem in
the next chapter). We leave it as an exercise (Problem 4.3.6) to define in detail
the operation of such machines. Once again, however, no fundamental increase
in power results. Interestingly, the number of steps needed to simulate t steps of
the two-dimensional Thring machine on input x by the ordinary Turing machine
is again polynomial in t and Ixl.

The above extensions on the Thring machine model can be combined: One
can think of Thring machines with several tapes, all or some of which are two-way
infinite and have more than one head on them, or are even multidimensional.

4.4: Random Access Turing Machines 209

Again, it is quite straightforward to see that the ultimate capabilities of the
Turing machine remain the same.

We summarize our discussion of the several variants of Turing machines
discussed so far as follows.

Theorem 4.3.2: Any language decided or semidecided, and any function com
puted by Turing machines with several tapes, heads, two-way infinite tapes, or
multi-dimensional tapes, can be decided, semidecided, or computed, respectively,
by a standard Turing machine.

Problems for Section 4.3

4.3.1. Formally define:
(a) M semidecides L, where M is a two-way infinite tape Thring machine;
(b) M computes f, where M is a k-tape Turing machine and f is a function

from strings to strings.

4.3.2. Formally define:
(a) a k-head Turing machine (with a single one-way infinite tape);
(b) a configuration of such a machine;
(c) the yields in one step relation between configurations of such a machine.

(There is more than one correct set of definitions.)

4.3.3. Describe (in an extension of our notation for k-tape Turing machines) a
2-head Turing machine that compute the function f(w) = ww.

4.3.4. The stack of a pushdown automaton can be considered as a tape that can be
written and erased only at the right end; in this sense a Turing machine is
a generalization of the deterministic pushdown automaton. In this problem
we consider a generalization in another direction, namely the deterministic
pushdown automaton with two stacks.

(a) Define informally but carefully the operation of such a machine. Define
what it means for such a machine to decide a language.

(b) Show that the class of languages decided by such machines is precisely the
class of recursive languages.

4.3.5. Give a three-tape Turing machine which, when started with two binary
integers separated by a ';' on its first tape, computes their product. (Hint:
Use the adding machine of Example 4.3.2 as a "subroutine."

4.3.6. :Formally define a Turing machine with a 2-dimensional tape, its configu
rations, and its computation. Define what it means for such a machine to
decide a language L. Show that t steps of this machine, starting on an input
of length n, can be simulated by a standard Turing machine in time that is
polynomial in t and n.

210 Chapter 4: TURING MACHINES

B RANDOM ACCESS TURING MACHINES

Despite the apparent power and versatility of the variants of the Turing ma
chines we have discussed so far, they all have a quite limiting common feature:
Their memory is sequential; that is, in order to access the information stored at
some location, the machine must first access, one by one, all locations between
the current and the desired one. In contrast, real computers have random access
memories, each element of which can be accessed in a single step, if appropri
ately addressed. What would happen if we equipped our machines with such a
random access capability, enabling them to access any desired tape square in a
single step? To attain such a capability, we must also equip our machines with
registers, capable of storing and manipulating the addresses of tape squares. In
this subsection we define such an extension of the Turing machine; significantly,
we see that it too is equivalent in power to the standard Turing machine, with
only a polynomial loss in efficiency.

Registers

IR31

IR21

[ED
IRO I

o Program counter

I T[ll l T[2ll T[3ll T[4ll T[5ll· ..

Figure 4-18

A random access Turing machine has a fixed number of registers and a one
way infinite tape (see Figure 4-18; we continue to call the machine's memory a
"tape" for compatibility and comparison with the standard model, despite the
fact that, as we shall see, it behaves much more like a random access memory
chip). Each register and each tape square is capable of containing an arbi
trary natural number. The machine acts on its tape squares and its registers as
dictated by a fixed program -the analog of the transition function of ordinary
Turing machines. The program of a random access Turing machine is a sequence
of instructions, of a kind reminiscent of the instruction set of actual computers.
The kinds of instructions allowed are enumerated in Figure 4-19.

Initially the register values are 0, the program counter is 1, and the tape
contents encode the input string in a simple manner that will be specified shortly.
Then the machine executes the first instruction of its program. This will change
the contents of the registers or of the tape contents as indicated in Figure 4-19;

4.4: Random Access Turing Machines 211

Instruction Operand Semantics

read j Ro:= T[Rj]

write j T[Rj]:= Ro
store j Rj := Ro
load j Ro:= R j

load =c Ro:= c
add j Ro:= Ro + R j

add =c Ro:= Ro + c
sub j Ro := ma.x{Ro - R j , O}
sub =c Ro:= max{Ro - c,O}
half R .- l B.o. J 0·- .)

jump s K:= s
jpos s if Ro > 0 then K := s
jzero s if Ro = 0 then K := s
halt K:= 0

Notes: j stands for a register number, 0 ~ j < k. T[i] denotes the current contents
of tape square i. Rj denotes the current contents of Register j. s ~ p denotes any
instruction number in the program. c is any natural number. All instructions change
K to K + 1, unless explicitly stated otherwise.

Figure 4-19

also, the value of the program counter K, an integer identifying the instruction
to be executed next, will be computed as indicated in the figure. Notice the
special role of Register 0: it is the accumulator, where all arithmetic and logical
computation takes place. The Kth instruction of the program will be executed
next, and so on, until a halt instruction is executed --at this point the operation
of the random access Turing machine ends.

We are now ready to define formally a random access Turing machine, its
configurations, and its computation.

Definition 4.4.1: A random access 'lUring machine is a pair AI = (k, ll),
where k > 0 is the number of registers, and II = (1fl' 1f2, ... ,1f p), the program,
is a finite sequence of instructions, where each instruction 1fi is of one of the
types shown in Figure 4-19. We assume that the last instruction, 1fp, is always
a halt instruction (the program may contain other halt instructions as well).

A configuration of a random access Turing machine (k, ll) is a k + 2-tuple
(K, Ro, R 1 ,·· ., Rk - 1 , T), where

KEN is the program counter, an integer between 0 and p. The configu
ration is a halted configuration if K is zero.
For each j, 0 ~ j < k, Rj EN is the current value of Register j.
T, the tape contents, is a finite set of pairs of positive integers ~that is,

212 Chapter 4: TURING MACHINES

a finite subset of (N - {O}) x (N - {O})- such that for all i 2: 1 there is at
most one pair of the form (i, m) E T.

Intuitively, (i, m) E T means that the ith tape square currently contains
the integer m > O. All tape squares not appearing as first components of a pair
in T are assumed to contain O.

Definition 4.4.1 (continued): Let M = (k,II) be a random access machine.
We say that configuration C = ("', Ro, Rl, ... , Rk-l, T) of M yields in one step
configuration C' = (",I, m, R~, . .. ,Rk_1 , T'), denoted C I- M C' , if, intuitively,
the values of ",I, the Rj's and T' correctly reflect the application to "', the Rj's,
and T of the "semantics" (as in Figure 4-19) of the current instruction IrK' We
shall indicate the precise definition for a only a few of the fourteen kinds of
instructions in Figure 4-19.

If IrK is of the form read j, where j < k, then the execution ofthis instruction
has the following effect: The value contained in Register 0 becomes equal to
the value stored in tape square number Rj -the tape square "addressed" by
Register j. That is, R~ = T[Rj], where T[Rj) is the unique value m such that
(Rj,m) E T, if such an m exists, and 0 otherwise. Also, ",' = "'+ 1. All other
components of the configuration C' are identical to those of C.

If IrK is of the form add = c, where c 2: 0 is a fixed integer such as 5, then
we have R~ = Ro + c, and ",' = '" + 1, with all other components remaining the
same.

If IrK is of the form write j, where j < k, then we have ",' = '" + 1, T' is T
with any pair of the form (Rj, m), if one exists, deleted, and, if Ro > 0, the pair
(Rj, Ro) added; all other components remain the same.

If IrK is of the form jpos s, where 1 :::; s :::; p, then we have ",' = s if Ro > 0,
and ",' = C + 1 otherwise; all other components remain the same.

Similarly for the other kinds of instructions. The relation yields, I-M' is
the reflexive transitive closure of I- M.

Example 4.4.1: The instruction set of our random access Thring machine (recall
Figure 4-19) has no multiplication instruction mply. As it happens, if we allowed
this instruction as a primitive, our random access Thring machine, although still
equivalent to the standard Thring machine, would be much more time-consuming
to simulate (see Problem 4.4.4).

The omission of the multiplication instruction is no great loss, however,
because this instruction can be emulated by the program shown in Figure 4-
20. Ift Register 0 initially contains a natural number x and Register 1 initially

t The computation of a random access Turing machine starts with all registers O.

4.4: Random Access Turing Machines 213

contains y, then this random access Thring machine will halt, and Register ° will
contain the product x· y. Multiplication is done by successive additions, where
the instruction half is used to reveal the binary representation of y (actually, our
instruction set contains this unusual instruction precisely for this use).

l. store 2
2. load 1
3. jzero 19
4. half
5. store 3
6. load 1
7. sub 3
8. sub 3
9. jzero 13
10. load 4
11. add 2
12. store 4
13. load 2
14. add 2
15. store 2
16. load 3
17. store 1
19. load 4
18. jump 2
19. load 4
20. halt

Figure 4-20

Here is a typical sequence of configurations (since this machine does not
interact with tape squares, the T part of these configurations is empty; there
are k = 5 registers):

(1;5,3,0,0,0;0) f-- (2;5,3,5,0,0;0) f-- (3;3,3,5,0,0;0) f-- (4;3,3,5,0,0;0) f-
(5; 1,3,5,0,0; 0) f-- (6; 1,3,5,1,0; 0) f-- (7; 3, 3, 5,1,0; 0) f-- (8; 2,3,5,1,0; 0) f-
(9; 1,3,5,1,0; 0) f-- (10; 1, 3, 5,1,0; 0) f-- (11; 0,3,5,1,0; 0) f--
(12; 5, 3, 5, 1, 0; 0) f-- (13; 5,3,5,1,5; 0) f-- (14; 5, 3, 5,1,5; 0) f--
(15; 10,3,5,1,5; 0) f-- (16; 10,3,10,1,5; 0) f-- (17; 1,3,10,1,5; 0) f-
(18; 1, 1, 10, 1, 5; 0) f-- (2; 1, 1, 10, 1, 5; 0) f--* (18; 0, 0, 20, 0,15; 0) f-
(2; 0, 0, 20, 0, 15; 0) f-- (3; 0, 0, 20, 0, 15; 0) f-- (19; 0, 0, 20, 0, 15; 0) f-
(20;15,0,20,0,15;0) 1

However, since the present program is intended to be used as a part of other
random access Turing machines, it makes sense to explore what would happen if
it were started at an arbitrary configuration.

214 Chapter 4: TURING MACHINES

Let x and y be the nonnegative integers stored in Registers 0 and 1, re
spectively, at the beginning of the execution of this program. We claim that the
machine eventually halts with the product x· y stored in Register O-as if it had
executed the instruction "mply 1." The program proceeds in several iterations.
An iteration is an execution of the sequence of instructions 71'2 through 71'18. At
the kth iteration, k 2: 1, the following conditions hold:

(a) Register 2 contains x2k,
(b) Register 3 contains ly /2k J ,
(c) Register 1 contains ly /2 k -

1 J ,
(d) Register 4 contains the "partial result" x· (y mod 2k).

The iteration seeks to maintain these "invariants." So, instructions 71'2

through 71'5 enforce Invariant (b), assuming (c) held in the previous iteration.
Instructions 71'6 through 71'8 compute the kth least significant bit of y, and, if this
bit is not zero, instructions 71'9 through 71'12 add x2 k

-
1 to Register 4, as man

dated by Invariant (d). Then Register 2 is doubled by instructions 71'13 through
71'15, enforcing Invariant (a), and finally Register 3 is transferred to Register 1,
enforcing (c). The iteration is then repeated. If at some point it is seen that
ly /2 k -

1 J = 0, then the process terminates, and the final result is loaded from
Register 4 to the accumulator.

We can abbreviate this program as "mply 1," that is, an instruction with
semantics Ro := Ro . R1 . We shall therefore feel free to use the instruction "mply
j" or "mply = e" in our programs, knowing that we can simulate them by the
above program. Naturally, the instruction numbers would be different, reflecting
the program of which this mply instruction is a part. If a random access Turing
machine uses this instruction, then it is implicitly assumed that, in addition to
its registers explicitly mentioned, it must have three more registers that play the
role of Registers 2, 3, and 4 in the above program.O

In fact, we can avoid the cumbersome appearance of random access Turing
machine programs such as the one in the previous example by adopting some
useful abbreviations. For example, denoting the value stored in Register 1 by
R1 , in Register 2 by R2 , and so on, we can write

as an abbreviation of the sequence

1. load 1
2. add 2
3. sub =1
4. store 1

4.4: Random Access Turing Machines 215

Once we adopt this, we could use better-looking names for the quantities stored
at Registers 1 and 2, and express this sequence of instructions simply as

x:= y + x - 1.

Here x and yare just names for the contents of Registers 1 and 2. We can even
use abbreviations like

while x > 0 do x := x - 3,

where x denotes the value of Register 1, instead of the sequence

1. load 1
2. jzero 6
3. sub =3
4. store 1
5. jump 1

Example 4.4.1 (continued): Here is a much more readable abbreviation of
the mply program in Figure 4-20, where we are assuming that x and yare to be
multiplied, and the result is w:

w:= 0
while y > 0 do

begin
z := half(y)
if y - z - z =f. 0 then w := w + x
x:= x + x
y:= z

end
halt

The correspondence between the form above and the original program in
Figure 4-20 is this: y stands for R 1 , x for R2 , z for R 3 , and w for R 4 • Notice
that we have also omitted for clarity the explicit instruction numbers; if goto
instructions were necessary, we could label instructions by symbolic instruction
labels like a and b wherever necessary.

Naturally, it is quite mechanical from an abbreviated program such as the
above to arrive to an equivalent full-fledged random access Turing machine pro
gram such as the original one.<)

Although we have explained the mechanics of random access Turing ma
chines, we have not said how they receive their input and return their output.
In order to facilitate comparisons with the standard Turing machine model, we
shall assume that the input-output conventions of random access Turing ma
chines are very much in the spirit of the input-output conventions for ordinary

216 Chapter 4: TURING MACHINES

Turing machines: The input is presented as a sequence of symbols in the tape.
That is, although the tape of a random access Turin1!; machine may contain
arbitrary natural numbers, we assume that initially these numbers encode the
symbols of some input string.

Definition 4.4.2: Let us fix an alphabet ~ ~the alphabet from which our
random access Turing machines will obtain their input~ with u E ~ and t> ~ ~
(t> is not needed here, since a random access Turing machine is in no danger of
fallin1!; off the left end of its tape). Also let E be a fixed bijection between ~ and
{O, 1, ... , I~I - II}; this is how we encode the input and the output of random
access Turing machines. We assume that E(U) = O. The initial configuration
of a random access Turing machine M = (k, II) with input w = ala2 ... an E

(~- {U})* is (K,Ro, ... ,RHT), where K = 1, Rj = 0 for all j, and T =
{(I, E(ad), (2, E(a2)), ... , (n, E(an))).

We say that M accepts string x E ~* if the initial configuration with input
x yields a halted configuration with Ro = 1. We say it rejects x if the initial
confi1!;uration with input x yields a halted configuration with Ro = O. In other
words, once M halts, we read its verdict at Register 0; if this value is 1, the
machine accepts, if it is 0, it rejects.

Let :Eo <;;; :E - {U} be an alphabet, and let L <;;; ~~ be a language. We say
that M decides L if whenever x E L, M accepts x, and whenever x ~ L M
rejects x. We say that M semi decides L if the following is true: x E L if and
only if M on input x yields some halted configuration.

Finally, let f : :Eo H ~o be a function. We say that "U computes f if, for
all x E ~o, the starting configuration of machine M with input x yields a halted
confi1!;uration with these tape contents: {(1,E(ad), (2,E(a2)), ... , (n,E(an))),
where f(x) = al ... an·

Example 4.4.2: We describe below a random access Turing machine program,
in abbreviated form, deciding the language {anbncn : n 2: O}.

aeount := bcount := ccount := 0, n := 1
while T[nJ = 1 do: n := n + 1, aeount := acount + 1
while T[nJ = 2 do: n := n + 1, beount := bcount + 1
while T[nJ = 3 do n := n + 1, aeount := acount + 1
if acount = bcount = ccount and T[nJ = 0 then accept else reject

We are assuming here that E(a) = 1, E(b) = 2, E(c) = 3, and we are using
the variables aeount, bcount, and ceount to stand for the number of a's, b's,
and e's, respectively, found so far. We are also using the abbreviation accept for
"load =1, halt" and reject for "load =0, halt." <)

Example 4.4.3: For a more substantial example, we now describe a random
access Turing machine that computes the reflexive transitive closure of a finite

4.4: Random Access Turing Machines 217

binary relation (recall Section 1.6). We are given a directed graph R <;;; A x A,
where A = {ao, ... ,an-d, and we wish to compute R*.

One important question immediately arises: Row are we to represent a
relation R <;;; A x A as a string? R can be represented in terms of its adjacency
matrix A R , an n x n matrix with 0-1 entries such that the i,jth entry is 1 if
and only if (ai, aj) E R (see Figure 4-21 for an example). In turn, the adjacency
matrix can be represented as a string in {O, 1}* of length n2 , by first arranging
the first row of the matrix, then the second row, and so on. We denote the string
representation of the adjacency matrix of a relation R as XR. For example, if R
is the binary relation shown in Figure 4-21(a), then AR and XR are as shown in
Figure 4-21(b) and (c), respectively.

0101011000011000

(c)

Figure 4-21: A graph, its adjacency matrix, and its string representation.

We must therefore design a random access Turing machine M that com
putes the function f defined as follows: For any relation R over some finite set
{aI, ... , an}, f (X R) = x R*· Notice that we are not interested in how M responds
to inputs that are not in {O, 1 }n2, that is, inputs that do not represent adjacency
matrices of directed graphs.

The program of M is shown below; we are assuming that E(O) = 1 and
E(l) = 2. As always, E(U) = O.

The first three instructions compute the number n of elements of the set A
(one less than the smallest number whose square is the address of a blank in the
input tape). From then on, the (i,j)th entry of the matrix, with 0 ~ i,j < n,
can be fetched as the (i· n + j)-th symbol on the tape of II,I. Since this program
is a straightforward implementation of the O(n3) algorithm in Section 1.6, it
is clear that it indeed computes the reflexive transitive closure of the relation
represented by its input. Naturally, an unabbreviated random access Turing
machine program can be mechanically derived from the program above.O

Evidently, the random access Turing machine is a remarkably powerful and

218

n:= 1
while T[n . n] -::f 0 do n := n + 1
n:= n-1
i:= 0
while i < n do i := i + 1, T[i . n + i] := 2
i:= j := k:= 0
while j < n do j := j + 1,

while i < n do i := i + 1,
while k < n do k:= k + 1,

Chapter 4: TURING MACHINES

if T[i . n + j] = 2 and T[j . n + k] = 2 then T[i . n + k] := 2
halt

agile model. How does its power compare to that of the standard Turing ma
chine? It is very easy to see, and not at all surprising, that the random access
Turing machine is at least as powerful as the standard Turing machine. Let
M = (K,~, 8, s, H) be a 1\lring machine; we can design a random access Turing
machine M' that simulates M. M' has a register, call it n, that keeps track of
the head position of M On its tape. Initially n points to the beginning of the in
put. Each state q E K is simulated by a sequence of instructions in the program
of M'. For example, suppose that ~ = {U, a, b}, E(a) = 1, E(b) = 2, and let q
be a state of M such that 8(q, U) = (p, -+), 8(q, a) = (p, +---), 8(q, b) = (r, U), and
8 (q, c» = (s, -+). The sequence of instructions simulating state q is this:

q: if T[n] = 0 then n := n + 1, goto p
if T[n] = 1 then if n > 0 then n := n - 1, goto p

else goto s
if T[n] = 2 then T[n] := 0, goto r

The else clause in the third line (which should be present in any line sim
ulating a +--- move) has the effect of the c> symbol, making sure that the head
never falls off the left end of M"s tape. We have shown:

Theorem 4.4.1: Any recursive or recursively enumerable language, and any
recursive function, can be decided, semi decided, and computed, respectively, by
a random access Turing machine.

The remarkable direction is the opposite:

Theorem 4.4.2: Any language decided or semidecided by a random access Tur
ing machine, and any function computable by a random access Turing machine,
can be decided, semidecided, and computed, respectively, by a standard Turing
machine. Furthermore, if the machines halt on an input, then the number of
steps taken by the standard Turing machine is bounded by a polynomial in the
number of steps of the random access Turing machine on the same input.

4.4: Random Access Turing Machines 219

Proof: Let M = (k, II) be a random access Turing machine deciding or semide
ciding a language L ~ ~* or computing a function from ~* to ~*. We will
outliue the design an ordinary Turing machine M' that simulates M. We shall
describe M' as a (k + 3)-tape machine, where k is the number ofregisters of M,
which simulates M; we know from Theorem 4.3.1 that such a machine can in
turn be simulated by the basic model.

Turing machine M' keeps track of the current configuration of the random
access Turing machine M, and repeatedly computes the next configuration. The
first tape is used only for reading the input of M, and possibly for reporting the
output at the end, in the case where M computes a function. The second tape is
used for keeping track of the T part of the configuration -the tape contents of
M. The relation T is maintained as a sequence of strings of the form (111,10),
a left parenthesis followed by the binary representation of an integer, followed
by a comma, followed by another binary integer, followed by a right parenthesis.
The intended meaning of the above string is that the seventh tape square of
M contains the integer 2. The pairs of integers in the sequence representing
T are not in any particular order, and may be separated by arbitrarily long
sequences of blanks (this necessitates an endmarker, such as $, at the end of the
representation of T, to help M' decide when it has seen all such pairs). Each of
the next k tapes of M' maintain the contents of a register of M, also in binary.
The current value of the program counter K of M is maintained in the state of
M' in a manner to be explained below.

The simulation has three phases. During the first phase, M' receives on
its first tape the input x = al a2 ... an E ~*, and converts it to the string
(1, E(ad) ... (n, E(a,,)) on the second tape. Thus M' can start the second phase,
the simulation of M, from the initial configuration of M on input x.

During the second phase M' repeatedly simulates a step of M by several
steps of its own. The precise nature of the step to be simulated depends heavily
on the program counter K of M. As we said before, K is maintained in the state of
M'. That is, the set of states of M' that are used during this phase are separated
into p disjoint sets KJ U Kl U ... U K p , where p is the number of instructions
in the program II of M. The set of states K j "specializes" in simulating the
instruction 7rj of II. The precise nature of this part of M' depends of course on
the kind of the instruction 7rj. We shall give three indicative examples of how
this is done.

Suppose first that 7rj is add 4, requiring that the contents of Register 4
be added to those of Register o. Then M' will perform binary addition (recall
Example 4.3.2) between its two tapes representing Registers 4 and 0, will leave
the result in the tape for Register 0, and then move to the first state of Kj+l
to start the simulation of the next instruction. If the instruction is, say, add
= 33, then M' will start by writing the integer 33 in binary on the (k + 3)rd
tape (the one heretofore unassigned to parts of M); the binary representation

220 Chapter 4: TURING MACHINES

of the fixed integer 33 is "remembered" by the states of K j . Then it will add
33 to the contents of Register 0, and finally it will erase the last tape and will
move to K j +1 •

Suppose next that 'Trj is write 2, requiring that the contents of the accumu
lator be copied to the tape square pointed at by Register 2. Then M' will add
at the right end of the second tape - -the one where the contents of the tape
of M are kept in the (x, y) format- the pair (x, y), where x is the contents of
Register 2 and y those of Register 0; both x and yare copied from the corre
sponding tapes of M'. M' will then scan all other pairs (x',y') on the second
tape, comparing each x', bit by bit, with the contents of Register i. If a match
is found, the pair is erased, thus maintaining the integrity of the table. Then
the state moves to KH1 , and the next instruction is executed.

Suppose now that 'Trj is jpos 19, requiring that instruction 19 be executed
next if Register 0 contains a positive integer. Turing machine M' simply scans
its tape representing Register 0; if a 1 is found in the binary representation of
the integer in it, M moves to K 19 ; otherwise it moves to Kj+l.

It is straightforward to simulate, in a very similar manner, all other kinds
of instructions in the table of Figure 4-19. Eventually, M may reach a halt
instruction. If this happens, M' enters its third phase, translating M's output
to the Turing machine output conventions. If M is deciding a language, then
M' would read the contents of Register O. If they are 1, it will halt at state y,
if they are 0 it will halt at state n. If M is semideciding a language, then M'
simply halts at state h. Finally, if M is computing a function, then M must
translate the contents of the tape of M to a string in ~*, inverting the bijection
E, and then halt.

It is clear from the preceding discussion that a k + 3-tape Turing machine
M' can be designed that performs the above tasks -and hence, by Theorem
4.3.1, a standard Turing machine can.

To prove the second part of the theorem, we shall establish that t steps of
M on an input of size n can be simulated in O(t + n)3 time. Naturally, the
constants in the 0 notation will, as usual, depend on the simulated machine
M; for example they will depend on the largest constant (as in add = 314159)
mentioned in the program of M.

The O(t + n)3 bound is based on the following three observations:
(a) At each step of M (including the addition and subtraction steps, see Prob

lem 4.4.3) can be simulated in O(m) steps of M', where m is the total length
of the nonblank parts of all tapes of M' -that is to say, the total length of
the binary encodings of all integers in the current configuration of M.

(b) The parameter m defined above can at each step increase by at most 0(1'),
where l' is the length of the longest binary representation of any integer
stored in the registers or tape squares of M. This is so because the increase
comes either from an add instruction or from a store instruction, and in

4.5: Nondeterministic Turing Machines 221

both cases it is trivial to see that the increase can only be linear in r.
(c) Finally, it is easy to see that r = O(t); that is, the length of the largest

integer represented by M can only increase by a constant at each step.
The claimed bound follows by putting these three facts together. •

Problems for Section 4.4

4.4.1. Give explicitly the full details of the random access Turing machine program
of Example 4.4.2. Give the sequence of configurations of this machine on
input aabccc.

4.4.2. Give (in our abbreviated notation) a random access Turing machine pro
gram that decides the language {wcw: wE {a,b}'}.

4.4.3. Show that, in the simulation in the proof of Theorem 4.4.2, each step can be
simulated by O(m) steps of M', where m is the total length of M"s tapes.
(You must establish that the 2-tape addition Turing machine in Example
4.3.2 operates in linear time.) Can you estimate the constant in O(m)?

4.4.4. Suppose that our random access Turing machines had an explicit instruction
mply. What goes wrong now in the second part of the proof of Theorem
4.4.2?

B NONDETERMINISTIC TURING MACHINES

We have added to our Turing machines many seemingly powerful features -
multiple tapes and heads, even random access- with no appreciative increase
in power. There is, however, an important and familiar feature that we have not
tried yet: nondeterminism.

We have seen that when finite automata are allowed to act nondetermin
istically, no increase in computational power results (except that exponentially
fewer states may be needed for the same task), but that nondeterministic push
down automata are more powerful than deterministic ones. We can also imagine
Turing machines that act nondeterministically: Such machines might have, on
certain combinations of state and scanned symbol, more than one possible choice
of behavior. Formally, a nondeterministic Turing machine is a quintuple
(K,~,~, s, H), where K, ~, s, and H are as for standard Turing machines, and
~ is a subset of ((K - H) x ~) x (K x (~ U {t-, -+})), rather than a function
from (K - H) x ~ to K x (~ U {t-, -+}). Configurations and the relations f-- M

and f--M are defined in the natural way. But now f-- M need not be single-valued:
One configuration may yield several others in one step.

222 Chapter 4: TURING MACHINES

When Thring machines are allowed to act nondeterministically, is there any
increase in computational power? We must first define what it means for a non
deterministic Turing machine to compute something. Since a nondeterministic
machine could produce two different outputs or final states from the same in
put, we have to be careful about what is considered to be the end result of a
computation by such a machine. Because of this, it is easiest to consider at first
nondeterministic Turing that semidecide languages.

Definition 4.5.1: Let M = (K,~,~, s, H) be a nondeterministic Turing ma
chine. We say that M accepts an input w E (~- {c>,U})* if (s,C>Uw) f-M
(h, uQv) for some h E H and a E ~,u, v E ~*. Notice that a nondeterministic
machine accepts an input even though it may have many nonhalting computa
tions on this input input ~as long as at least one halting computation exists.
We say that M semi decides a language L ~ (~ - {C>, U})* if the following
holds for all w E (~- {c>,u})*: wE L if and only if M accepts w.

It is a little more subtle to define what it means for a nondeterministic
Turing machine to decide a language, or to compute a function.

Definition 4.5.2: Let M = (K,~,~, s, {y, n}) be a nondeterministic Turing
machine. We say that M decides a language L ~ (~- {C>, u})* if the following
two conditions hold for all w E (~ - {C>, u})*:

(a) There is a natural number N, depending on MaJid w, such that there is
no configuration C satisfying (s, c>LJw) f-z. C.

(b) wE L if and only if (s,c>LJw) f-~f (Y,uQv) for some U,V E ~*,a E~.

Finally, we say that M computes a function f : (~ - {C>, U})* rl (~
{C>, U})* if the following two conditions hold for all w E (~ - {C>, U})*:

(a) There is an N, depending on M and w, such that there is no configuration
C satisfying (s, c>LJw) f-z. C.

(b) (s, C>LJw) f-M (h, uQv) if and only if ua = c>U, and v = f(w).

These definitions reflect the difficulties associated with computing by non
deterministic Turing machines. First notice that, for a nondeterministic machine
to decide a language and compute a fUIlction, we require that all of its computa
tions halt; we achieve this by postulating that there is no computation continuing
after N steps, where N is an "upper bound" depending on the machine and the
input (this is condition (a) above). Second, for M to decide a language, we
only require that at least one of its possible computations end up accepting the
input. Some, most, or all of the remaining computations could end up rejecting
~the machine accepts by the force of this single accepting computation. This
is a very unusual, asymmetric, and counterintuitive convention. For example, to

4.5: Nondeterministic Turing Machines 223

create a machine that decides the complement of the language, it is not enough
to reverse the roles of the y and n states (since the machine may have both ac
cepting and rejecting computations for some inputs). As with nondeterministic
finite automata, to show that the class of languages decided by nondeterministic
Turing machines is closed under complement, we must go through an equivalent
deterministic Turing machine ~and our main result in this section (Theorem
4.5.1) states that an equivalent deterministic Turing machine must exist.

Finally, for a nondeterministic Turing machine to compute a function, we
require that all possible computations agree on the outcome. If not, we would
not be able to decide which one is the right value of the function (in the cases of
deciding or semi deciding a language, we resolve this uncertainty by postulating
that the positive answer prevails).

Before showing that nondeterminism, like the features considered in the pre
vious sections, can be eliminated from Turing machines, let us consider a classic
example that demonstrates the power of nondeterminism in Turing machines as
a conceptual device.

Example 4.5.1: A composite number is one that is the product of two
natural numbers, each greater than one; for example, 4, 6, 8, 9, 10, and 12 are
composite, but 1, 2, 3, 5, 7, and 11 are not. In other words, a composite number
is a non-prime other than one or zero.

Let C = {100, 110, 1000, 1001, 1010, ... ,1011011, ... } be the set of all bi
nary representations of composite numbers. To design an "efficient" algorithm
deciding C is an ancient, important, and difficult problem. To design such an
algorithm it would seem necessary to come up with a clever way of discovering
the factors, if any, of a number ~a task that seems quite complex. Naturally,
by searching exhaustively all numbers smaller than the given number (in fact,
smaller than its square root) we would end up discovering its factors; the point
is that no more direct method is evident.

However, if nondeterminism is available, we can design a machine to semide
cide C rather simply, by guessing the factors, if there are any. This machine
operates as follows, when given as input the binary representation of integer n:

(1) Nondeterministically choose two binary numbers p, q larger than one, bit
by bit, and write their binary representation next to the input.

(2) Use the multiplication machine of Problem 4.3.5 (actually, the single-tape
machine that simulates it) to replace the binary representations of p and q
by that of their product.

(3) Check to see that the two integers, n and p . q, are the same. This can be
done easily by by comparing them bit by bit. Halt if the two integers are
equal; otherwise continue forever in some fashion (recall that at present we
are only interested in a machine that semidecides C).

224 Chapter 4: TURING MACHINES

This machine, on input 1000010 (the binary representation of 66) will
have many rejecting (nonhalting) computations, corresponding to phase 1 above
choosing pairs of binary integers, such as 101; 11101, that fail to multiply to 66.
The point is that, since 66 is a composite number, there will be at least one com
putation of M that will end up accepting -and that is all we need. In fact, there
will be more than one (corresponding to 2 . 33 = 6 . 11 = 11 . 6 = 33 . 2 = 66).
If the input were 1000011, however, no computation would end up accepting
-because 67 is a prime number.

This machine can be modified to a nondeterministic machine that decides
the language C. The deciding machine has the same basic structure, except that
in Phase (1) the new machine never guesses an integer with more bits than n
itself -obviously, such an integer cannot be a factor of n. And in Phase 3, after
comparing the input and the product, the new machine would halt at state y
if they are equal, and at state n otherwise. As a result, all computations will
eventually halt after some finite number of steps.

The upper bound N required by Definition 4.5.2 is now easy to compute
explicitly. Suppose that the given integer n has £ bits. Let N, be the maximum
number of steps in any computation by the multiplying machine on any input of
length 2£+ 1 or less; this is a finite number, the maximum of finitely many natural
numbers. Let N2 the number of steps it takes to compare two strings of length
at most 3£ each. Then any computation by M' will halt after Nl + N2 + 3£ + 6
steps, certainly a finite number depending only on the machine and the input.O

Nondeterminism would seem to be a very powerful feature that cannot be
eliminated easily. Indeed, there appears to be no easy way to simulate a non
deterministic Turing machine by a deterministic one in a step-by-step manner,
as we have done in all other cases of enhanced Turing machines that we have
examined so far. However, the languages semidecided or decided by nonde
terministic Turing machines are in fact no different from those semidecided or
decided, respectively, by deterministic Turing machines.

Theorem 4.5.1: If a nondeterministic Turing machine M semidecides or de
cides a language, or computes a function, then there is a standard Turing ma
chine Af' semi deciding or deciding the same language, or computing the same
function.

Proof: We shall describe the construction for the case in which M semidecides
a language L; the constructions for the case of deciding a language or computing
a function are very similar. So, let M = (K,~,~, s, H) be a nondeterministic
Turing machine semideciding a language L. Given an input 'W, M' will attempt
to run systematically through all possible computations by M, searching for one
that halts. When and if it discovers a halting computation, it too will halt. So
M' will halt if and only if M halts, as required.

4.5: Nondeterministic Turing Machines 225

But M may have an infinity of different computations starting from the
same input; how can M explore them all? It does so by using a dovetailing
procedure (recall the argument illustrated in Figure 1-8). The crucial observation
is the following: Although for any configuration C of M there may be several
configurations C' such that C f- C', the number of such configurations C' is
fixed and bounded in a way that depends only on M, not on C. Specifically,
the number of quadruples (q, a,p, b) E ~ that can be applicable at any point is
finite; in fact, it cannot exceed IKI· (I~I + 2), since this is the maximum number
of possible combinations (p, b) with p E K and b E ~ U {t-, --t}. Let us call r
the maximum number of quadruples that can be applicable at any point; the
number r can be determined by inspection of M. In fact, we shall assume that
for each state-symbol combination (q, a), and for each integer i E {I, 2, ... , r},
there is a well-defined ith applicable quadruple (q,a,pi,b i). If for some state
symbol combination (q, a) there are fewer than r relevant quadruples in ~, then
some may be repeated.

Since M is nondeterministic, it has no definite way to decide at each step
how to choose among its r available "choices." But suppose that we help it
decide. To be precise, let M d , the deterministic version of M, be a device with
the same set of states as M, but with two tapes. The first tape is the tape of M,
initially containing the input w, while the second tape initially contains a string
of n integers in the range 1, ... ,r, say it i2 ... in. Md then operates as follows for
n steps: In the first step, among the r possible next state-action combinations
(PI, btl, ... , (Pr, br) that are applicable to the initial configuration, Md chooses
the i 1 t h -that is, (pi), bi)), the one suggested by the currently scanned symbol
in the second tape, i}. Md also moves its second tape head to the right, so that
it next scans i2 . In the next step, Md takes the i 2 th combination, then the i3th,
and so on. When Md sees a blank on its second tape, meaning that it has run
out of "hints," it halts.

Md is an important ingredient in our design of the deterministic Turing
machine M' that simulates M. We shall describe M' as a 3-tape Turing machine;
we know by Theorem 4.3.1 that M' can be converted into an equivalent single
tape Turing machine. The three tapes of M' are used as follows:

(1) The first tape is never changed; it always contains the original input w,
so that each simulated computation of M can begin afresh with the same
input.

(2) The second and the third tapes are used to simulate the computations of
AId, the deterministic version of M, with all strings in {1,2, ... ,r}*. The
input is copied from the first tape onto the second before M' begins to
simulate each new computation. Initially, the third tape contains e, the
empty string (and therefore the simulation of Md will not even start the
first time around).

226 Chapter 4: TURING MACHINES

(3) Between two simulations of Md, M' uses a Turing machine N to generate
the lexicogmphically next string in {I, 2, ... , r} *. That is, N will generate
from e the strings 1,2, ... , r, 11, 12, ... , rr, 111, For r = 2, N is precisely
the Turing machine that computes the binary successor function (Example
4.2.3); its generalization to r > 2 is rather straightforward.

M' is is the Turing machine given in Figure 4-22. By Cl-+2 we mean a
simple Turing machine that erases the second tape and copies the first tape on
the second. B3 is the machine that generates the lexicographically next string
in the third tape. Finally, M;,3 is the deterministic version of M, operating ort
tapes 2 and 3. This completes the description of M'.

Figure 4-22

We claim that M' halts on an input w if and only if (some computation of)
M does. Suppose that M' indeed halts on input w; by inspecting Figure 4-22,
this means that Md halts with its third tape head not scanning a blank. This
implies that, for some string i 1 i2 ... in E {I, 2, ... , r} *, M d , when started with
w on its first tape and i1 i2 ... in on its second, halts before reaching the blank
part of its second tape. This, however, means that there is a computation of
M on input w that halts. Conversely, if there is a halting computation of M
on input w, say with n steps, then M', after at most r + r2 + ... + rn failed
attempts, the string in {I, 2, ... , r}' corresponding to the choices of M's halting
computation will be generated by B3, and Md will halt scanning the last symbol
of this string. Thus M' will halt, and the proof is complete .•

As we had expected, the simulation of a nondeterministic Turing machine by
a deterministic one is not a step-by-step simulation, as were all other simulations
we have seen in this chapter. Instead, it goes through all possible computations
of the nondeterministic Turing machine. As a result, it requires exponentially
many steps in n to simulate a computation of n steps by the nondeterministic

'machine -whereas all other simulations described in this chapter are in fact
polynomial. Whether this long and indirect simulation is an intrinsic feature of
nondeterminism, or an artifact of our poor understanding of it, is a deep and
important open question, explored in Chapters 6 and 7 of this book.

Problems for Section 4.5

5.1. Give (in abbreviated notation) nondeterministic 1\lring machines that ac
cept these languages.

4.6: Grammars 227

(a) a*abb*baa*
(b) {wwRuuR : w,U E {a,by}

4.5.2. Let M = (K,~, 15, s, {h}) be the following nondeterministic Turing machine:

K ={qo,ql,h},

~ ={ a, t>, U},

s =qo,

6. ={ (qO, U, ql, a), (qo, U, ql, U), (ql, U, ql, U), (ql, a, qo, ~), (ql, a, h, ~)}

Describe all possible computations of five steps or less by M starting from
the configuration (qo, t>U). Explain in words what M does when started
from this configuration. What is the number r (in the proof of Theorem
4.5.1) for this machine?

4.5.3. Although nondeterministic Turing machines are not helpful in showing clo
sure under complement of the recursive languages, they are very convenient
for showing other closure properties. Use nondeterministic Turing machines
to show that the class of recursive languages is closed under union, concate
nation, and Kleene star. Repeat for the class of recursively enumerable
languages.

B GRAMMARS

In this chapter we have introduced several computational devices, namely the
Turing machine and its many extensions, and we have demonstrated that they
are all equivalent in computational power. All these various species of Turing
machines can be reasonably called automata, like their weaker relatives -the fi
nite automata and the pushdown automata- studied in previous chapters. Like
those automata, Turing machines and their extensions act basically as language
acceptors, receiving an input, examining it, and expressing in various ways their
approval or disapproval of it. Two important families of languages, the recursive
and the recursively enumerable languages, have resulted.

But in previous chapters we have seen that there is another important fam
ily of devices, very different in spirit from language acceptors, that can be used to
define interesting classes of languages: language genemtors, such as regular ex
pressions and context-free grammars. In fact, we have demonstrated that these
two formalisms provide valuable alternative characterizations of the classes of
languages defined by language acceptors. This chapter would not be complete
without such a maneuver: We shall now introduce a new kind oflanguage genera
tor that is a generalization ofthe the context-free grammar, called the grammar

228 Chapter 4: TURING MACHINES

(or unrestricted grammar, to contrast it with the context-free grammars) and
show that the class of languages generated by such grammars is precisely the
class of recursively enumerable ones.

Let us recall the essential features of a context-free grammar. It has an
alphabet, V, which is divided into two parts, the set of terminal symbols, ~,
and the set of nonterminal symbols, V -~. It also has a finite set of rules, each
of the form A -+ u, where A is a nonterminal symbol and u E V*. A context
free grammar operates by starting from the start symbol S, a nonterminal, and
repeatedly replacing the left-hand side of a rule by the corresponding right-hand
side until no further such replacements can be made.

In a grammar all the same conventions apply, except that the left-hand sides
of rules need not consist of single nonterminals. Instead, the left-hand side of
a rule may consist of any string of terminals and nonterminals containing at
least one nonterminal. A single step in a derivation entails removing the entire
substring on the left-hand side of a rule and replacing it by the corresponding
right-hand side. The final product is, as in context-free grammars, a string
containing terminals only.

Definition 4.6.1: A grammar (or unrestricted grammar, or a rewriting
system) is a quadruple G = (V,~, R, S), where

V is an alphabet;
~ ~ V is the set of terminal symbols, and V - ~ is called the set of
nonterminal symbols;
S E V - ~ is the start symbol; and
R, the set of rules, is a finite subset of (V*(V - ~)V*) x V*.

We write u -+ v if (u, v) E R; we write u '*c v if and only if, for some
WI, W2 E V* and some rule u' -+ v' E R, u = WI U ' W2 and v = WI v' W2. As usual,
'*c is the reflexive, transitive closure of '*c. A string W E ~* is generated by
G if and only if S '*c w; and L(G), the language generated by G is the set
of all strings in ~* generated by G.

We also use other terminology introduced originally for context-free gram
mars; for example, a derivation is a sequence of the form Wo '*c WI '*c
... '*c W n ·

Example 4.6.1: Any context-free grammar is a grammar; in fact, a context-free
grammar is a grammar such that the left-hand side of each rule is a member of
V -~, rather than V*(V -~)V*. Thus, in a grammar, a rule might have the form
uAv -+ uwv, which could be read "replace A by W in the context of u and v."
Of course, the rules of a grammar may be of a form even more general than this;
but it turns out that any language that can be generated by a grammar can be
generated by one in which all rules are of this "context-dependent replacement"
type (Problem 4.6.3).0

4.6: Grammars 229

Example 4.6.2: The following grammar G generates the language {afibficfi

n 2': I}. G = (V,~, R, S), where

V = {S,a,b,c,A,B,C,Ta,Tb,Tc},

~ = {a, b, c}, and

R = {S -+ ABCS,

S -+ Tc,

CA -+ AC,

BA -+ AB,

CB -+ BC,

CTc -+ Tcc,

CTc -+ TbC,

BTb -+ Tbb,

Bn -+ Tab,

ATa -+ Taa,

Ta -+ e}.

The first three rules generate a string of the form (ABC)nTc. Then the next
three rules allow the A's, B's, and C's in the string to "sort out" themselves
correctly, so that the string becomes AnB"cnTc. Finally, the remaining rules
allow the Tc to "migrate" to the left, transforming all C's to c's, and then
becoming n. In turn, Tb migrates to the left, transforming all B's into b's and
becoming Ta, and finally Ta transforms all A's into a's and then is erased.

It is rather obvious that any string of the form anbficn can be produced this
way. Of course, many more strings that contain nonterminals can be produced;
however, it is not hard to see that the only way to erase all nonterminals is to
follow the procedure outlined above. Thus, the only strings in {a, b, c} that can
be generated by G are those in {anbficn : n 2': 1 }.o

Evidently, the class of languages generated by grammars contains certain
non-context-free specimens. But precisely how large is this class of languages?
More importantly, how does it relate to the other two important extensions of the
context-free languages we have seen in this chapter, namely, the recursive and the
recursively enumerable languages? As it happens, grammars play with respect
to Turing machines precisely the same role that context-free grammars play in
relation to pushdown automata, and regular expressions to finite automata:

Theorem 4.6.1: A language is generated by a grammar if and only if it is
recursively enumerable.

230 Chapter 4: TURING MACHINES

Proof: Only if. Let G = (V,~, R, S) be a grammar. We shall design a Turing
machine M that semidccides the language generated by G. In fact, M will be
nondeterministic; its conversion to a deterministic machine that semidecides the
same language is guaranteed by Theorem 4.5.l.

M has three tapes. The first tape contains the input, call it w, and is
never changed. In the second tape, M tries to reconstruct a derivation of W

from S in the grammar G; M therefore starts by writing S on the second tape.
Then M proceeds in steps, corresponding to the steps of the derivation being
constructed. Each step starts with a nondeterministic transition, guessing one
between IRI + 1 possible states. Each of the first IRI of these IRI + 1 states is the
beginning of a sequence of transitions that applies the corresponding rule to the
current contents of the second tape. Suppose that the chosen rule is u -+ v. M
then scans its second tape from left to right, nondeterministically stopping at
some symbol. It then checks that the next lui symbols match u, erases u, shifts
the rest of the string appropriately to make just enough space for v, and writes v
in u's place. If the check fails, M enters an unending computation -the present
attempt at generating W has failed.

The IRI + 1st choice of M entails checking whether the current string equals
w, the input. If so, M halts and accepts: w can indeed be generated by G. And
if the strings are found unequal, M again loops forever.

It is clear that the only possible halting computations of M are those that
correspond to a derivation of win G. Thus M accepts w if and only if wE L(G),
and the only if direction has been proved.

If. Suppose now that M = (K,~, 15, s, {h}) is a Turing machine. It will be
convenient to assume that ~ and K are disjoint, and that neither contains the
new endmarker symbol <1. We also assume that M, if it halts, it always does so
in the configuration (h, C>U) -that is, after having erased its tape. Any Turing
machine that semidecides a language can be transformed into an equivalent
one that satisfies the above conditions. We shall construct a grammar G =
(V, ~ - {U, C>}, R, S) that generates the language L ~ (~ - {u, C>})* semidecided
byM.

The alphabet V consists of all symbols in ~ and all states in K, plus the
start symbol S and the endmarker <1. Intuitively, the derivations of G will sim
ulate backward computations of M. We shall simulate configuration (q, c>uQw)
by the string c>uaqW<1 -that is, by the tape contents, with the current state in
serted immediately after the currently scanned symbol, and with the endmarker
<1 appended at the end of the string. The rules of G simulate backwards moves of
M. That is, for each q E K and a E ~, G has these rules, depending on b(q, a).

(1) If b(q, a) = (p, b) for some p E K and b E ~, then G has a rule bp -+ aq.
(2) If b(q, a) = (p, -+) for some p E K, then G has a rule abp -+ aqb for all

b E ~, and also the rule aU p<1 -+ aq<1 (the last rule reverses the extension

4.6: Grammars 231

of the tape to the right by a new blank).
(3) If b(q, a) = (p, f-) for some p E K, and a -:j:. U, then G has a rule pa -+ aq.
(4) If b(q, U) = (p, f-) for some p E K, then G has a rule pab -+ aqb for all

b E ~, and also the rule p<J -+ Uq<J that reverses the erasing of extraneous
blanks.

Finally, G contains certain transitions for the beginning of the computation
(the end of the derivation) and the end of the computation (the beginning of the
derivation). The rule

S -+ I> U h<J

forces the derivation to start exactly where an accepting computation would end.
The other rules are I> U s -+ e, erasing the part of the final string to the left of
the input, and <J -+ e, erasing the endmarker and leaving the input string.

The following result makes precise our notion that G simulates backward
computations of M:

Claim: For any two configurations (ql, Ul al wd and (q2, U2a2w2) of M, we have
that (ql,Ul~wd f-M (q2,U2a2w2) if and only ifu2a2q2w2<J '*G ulalqlWl<J·

The proof of the claim is a straightforward case analysis on the nature of the
move M, and is left as an exercise.

We now complete the proof of the theorem, by showing that, for all w E
(~ - {I>, u})*, M halts on w if and only if wE L(G). wE L(G) if and only if

because S -+ I> U h<J is the only rule that involves S, and the rules I> U s -+ e
and <J -+ e are the only rules that allow for the eventual erasing of the state
and the endmarker <J. Now, by the claim, I> U h<J '*c I> U sW<J if and only if
(s,l>h!w) f-M (h,I>!J), which happens if and only if M halts on w. This completes
the proof of the Theorem .•

Theorem 4.6.1 identifies grammars with an aspect of the Turing machines
that we have deemed unrealistic -semidecision, with its one-sided definition
that provides no information when the input is not in the language. This is
consistent with what we know about grammars: If a string can be generated by
the grammar, we can patiently search all possible derivations, starting from the
shorter ones and proceeding to the longer ones, until we find the correct one.
But if no derivation exists, this process will go on indefinitely, without giving us
any useful information.

As it turns out, we can also identify grammars with the more useful modes
of computation based on Turing machines.

232 Chapter 4: TURING MACHINES

Definition 4.6.2: Let G = (V,~, R, S) be a grammar, and let f : ~. H ~. be
a function. We say that G computes f if, for all w, v E ~*, the following is
true:

SwS =*0 v if and only if v = f(w).

That is, the string consisting of the input w, with a starting symbol of G on
each side, yields exactly one string in ~': the correct value of f(w).

A function f : ~* H ~. is called grammatically computable if and only
if there is a grammar G that computes it.

We leave the proof of the following result -a modification of the proof of
Theorem 4.6.1- as an exercise, see Problem 4.6.4:

Theorem 4.6.2: A function f : ~* H ~. is recursive if and only if it is
grammatically computable.

Problems for Section 4.6

4.6.1. (a) Give a derivation of the string aaabbbccc in the grammar of Example
4.6.2.
(b) Prove carefully that the grammar in Example 4.6.2 generates the lan

guage L = {anbncn : n ;::: I}.

4.6.2. Find grammars that generate the following languages:
(a) {ww: w E {a,b}'}
(b) {a 2

" : n ;::: O}
(c) {an' : n ;::: O}

4.6.3. Show that any grammar can be converted into an equivalent grammar with
rules of the form uAv -+ uwv, with A E V -~, and u, v, wE V*.

4.6.4. Prove Theorem 4.6.2. (For the only if direction, given a grammar G, show
how to construct a Turing machine which, on input w, outputs a string
U E ~* such that SwS =*0 u, if such a string u exists. For the if direction,
use a simulation similar to the proof of Theorem 4.6.1, except in the opposite
(forward) direction.)

4.6.5. An oddity in the use of grammars to compute functions is that the order in
which rules are applied is indeterminate. In the following alternative, due
to A. A. Markov (1903~1979), this indeterminacy is avoided. A Markov
system is a quadruple G = (V,~, R, Rd, where V is an alphabet; ~ <:;;; V;
R is a finite sequence (not set) of rules (UI -+ VI, ... ,Uk -+ Vk), where
Ui, Vi E V*; and RI is a set of rules from R. The relation w =*c w' is
defined as follows: If there is an i such that Ui is a substring of w, then let

4.7: Numerical Functions 233

i be the smallest such number, and let WI be the shortest string such that
W = WIUiW2; then W :::}c w' provided that w' = WIViW2. Thus if a rule
is applicable, then there is at most one rule, and it is applicable in exactly
one position. We say that G computes a function f : ~. H ~* if for all
U E~'

U = Uo :::}c UI -+c ... :::}c Un-I :::}C Un = f(u),

and the first time that a rule from RI was used was the last one, Un-I :::}C

Un. Show that a function is computable by a Markov system if and only if
it is recursive. (The proof is similar to that of Theorem 4.6.2.)

B NUMERICAL FUNCTIONS

Let us now adopt a completely different point of view on computation, one that
is not based on any explicit computational or information-processing formalism
such as Turing machines or grammars, but instead focuses on what has to be
computed: functions from numbers to numbers. For example, it is clear that the
value of the function

f(m, n) = m· n 2 + 3· m 2.m+l7

can be computed for any given values of m and n, because it is the composition of
functions -addition, multiplication, and exponentiation, plus a few constants
that can be computed. And how do we know that exponentiation can be com
puted? Because it is recursively defined in terms of a simpler function (namely,
multiplication) and values at smaller arguments. After all, mn is 1 if n = 0, and
otherwise it is m· m n-I. Multiplication itself can be defined recursively in terms
of addition -and so on.

In principle, we should be able to start with functions from natural num
bers to natural numbers that are so simple that they will be unequivocally
considered computable (e.g., the identity function and the successor function
succ(n) = n + 1), and combine them slowly and patiently through combinators
that are also very elementary and obviously computable -such as composition
and recursive definition- and finally get a class of functions from numbers to
numbers that are quite general and nontrivial. In this section we shall undertake
this exercise. Significantly, the notion of computation thus defined will then be
proved identical to the notions arrived at by the other approaches of this chap
ter -Turing machines, their variants, and grammars- that are so different in
spirit, scope, and detail.

234 Chapter 4: TURING MACHINES

Definition 4.7.1: We start by defining certain extremely simple functions from
Nk to N, for various values of k ~ ° (a O-ary function is, of course, a constant,
as it has nothing on which to depend). The basic functions are the following:
(a) For any k ~ 0, the k-ary zero function is defined as zerok(nl,"" nk) = °

for all nl, ... , nk E N.
(b) For any k ~ j > 0, the jth k-ary identity function is simply the function

idk,j(nl, ... ,nk) = nj for all nl, ... ,nk EN.
(c) The successor function is defined as succ(n) = n + 1 for all n E N.

Next we introduce two simple ways of combining functions to get slightly
more complex functions.
(1) Let k, € ~ 0, let 9 : Nk H N be a k-ary function, and let hI"", hk be

€-ary functions. Then the composition of 9 with hI, ... , hk is the €-ary
function defined as

(2) Let k ~ 0, let 9 be a k-ary function, and let h be a (k + 2)-ary function.
Then the function defined recursively by 9 and h is the (k + 1)-ary
function f defined as

f(nl, ... ,nk,O) = g(nl, ... ,nk),

f(nl, ... ,nk,m + 1) = h(nl, ... ,nk,m, f(nl, ... ,nk,m))

for all nI, ... ,nk,m EN.
The primitive recursive functions are all basic functions, and all func

tions that can be obtained by them by any number of successive applications of
composition and recursive definition.

Example 4.7.1: The function plus2, defined as plus2(n) = n+2 is primitive
recursive, as it can be obtained from the basic function succ by composition with
itself. In particular, let k = € = 1 in (1) of Definition 4.7.1, and let 9 = hi = succ.

Similarly, the binary function plus, defined as p!us(m, n) = m + n is prim
itive recursive, because it can be recursively defined from functions obtained
by combining identity, zero, and successor functions. In particular, in Part 2
of Definition 4.7.1 set k = 1, take 9 to be the idl.1 function, and let h be the
ternary function h(m, n, p) = succ(id3,3(m, n, p)) -the composition of succ with
id3,3. The resulting recursively defined function is precisely the plus function:

plus(m,O) = m,

plus(m, n + 1) = succ(plus(m, n)).

4.7: Numerical Functions 235

Why stop? The function multiplication mult(m, n) = m· n is defined recur
sivelyas

mult(m,O) = zero(m),

mult(m, n + 1) = plus(m, mult(m, n)),

and the function exp(m, n) = mn is defined as

exp(m,O) = succ(zero(m)),

exp(m, n + 1) = mult(m, exp(m, n)).

Hence all these functions are primitive recursive.
All constant functions of the form f(nl, ... , nk) = 17 are primitive recursive,

since they can be obtained by composing an appropriate zero function with
the succ function, in this example seventeen times. Also, the sign function
sgn(n), which is zero if n = 0, and otherwise it is one, is also primitive recursive:
sgn(O) = 0, and sgn(n + 1) = l.

For better readability, we shall henceforth use m + n instead of plus(m, n),
m . n instead of mult(m, n), and m t n instead of exp(m, n). All numerical
functions such as

m· (n + m2
) + 178m

are thus primitive recursive, since they arc obtained from the ones above by
successive compositions.

Since we are confined within the natural numbers, we cannot have true
subtraction and division. However, we can define certain useful functions along
these lines, such as m ~ n = max{m - n, O}, and the functions div(m, n) and
rem(m, n) (the integer quotient and remainder of the division of m by n; assume
that they are both 0 if n = 0). First define the predecessor function:

pred(O) = 0,

pred(n + 1) = n,

from which we get our "nonnegative subtraction" function

m~O=m,

m ~ n + 1 = pred (m ~ n).

The quotient and remainder functions will be defined in a subsequent example.O

It is rather clear that we can calculate the value of any primitive recursive
function for given values of its arguments. It is equally self-evident that we can
calculate the validity of assertions about numbers such as

m . n > m 2 + n + 7,

236 Chapter 4: TURING MACHINES

for any given values of m and n. It is convenient to define a primitive recursive
predicate to be a primitive recursive function that only takes values 0 and
1. Intuitively, a primitive recursive predicate, such as greater-than(m, n), will
capture a relation that mayor may not hold between the values of m and n.
If the relation holds, then the primitive recursive predicate will evaluate to 1,
otherwise to O.

Example 4.7.2: The function iszero, which is 1 if n = 0, and 0 if n > 0, is a
primitive recursive predicate, defined recursively thus:

iszero(O) = 1,

iszero(m + 1) = O.

Similarly, isone(O) = 0, and isone(n + 1) = iszero(n). The predicate positive(n)
is the same as the already defined sgn(n). Also, greater-than-or-equal(m, n),
written m ;::: n, can be defined as iszero(n '" m). Its negation, less-than(m, n)
is of course 1 '" greater-than-or-equal(m, n). In general, the negation of any
primitive recursive predicate is also a primitive recursive predicate. In fact,
so are the disjunction and conjunction of two primitive recursive predicates:
p(m,n) or q(m,n) is 1 '" iszero(p(m,n) + q(m,n)), and p(m,n) and q(m,n) is
1 '" iszero(p(m, n) . q(m, n)). For example, equals(m, n) can be defined as the
conjunction of greater-than-or-equal(m, n) and greater-than-or-equal(n, m).

Furthermore, if f and g are primitive recursive functions and p is a primitive
recursive predicate, all three with the same arity k, then the function defined
by cases

if p(nl,"" nk);
otherwise

is also primitive recursive, since it can be rewritten as:

As we shall see, definition by cases is a very useful shorthand.O

Example 4.7.3: We can now define div and rem.

rem(O, n) = 0,

rem (m + 1, n) = { 0 () 1 rem m,n +
if equal(rem(m, n), pred(n));
otherwise,

4.7: Numerical Functions

and

div(O, n) = 0,

d· (1) _ {diV(m + 1, n) + 1
IV m + ,n - d' ()

IV m,n
if equal(rem(m, n), pred(n));
otherwise.

237

Another interesting function that turns out to be primitive recursive is
digit(m, n,p), the m-th least significant digit of the base-p representation of n.
(As an illustration of the use of digit, the predicate odd(n), with the obvi
ous meaning, can be written simply as digit(l, n, 2).) It is easy to check that
digit(m, n,p) can be defined as div(rem(n,p t m),p t (m '" 1)).0

Example 4.7.4: If f(n,m) is a primitive recursive function, then the sum

sumf(n,m) = f(n,O) + f(n, 1) + '" + f(n,m)

is also primitive recursive, because it can be defined as sumf(n,O) = 0, and
sumf(n, m + 1) = sumf(n, m) + f(n, m + 1). We can also define this way the
unbounded conjunctions and disjunctions of predicates. For example, if p(n, m)
is a predicate, the disjunction

p(n,O) or p(n, 1) or p(n, 2) or '" or p(n, m)

is just sgn(sump(n, m)).O

Evidently, starting from the extremely simple materials of Definition 4.7.1,
we can show that several quite complex functions are primitive recursive. How
ever, primitive recursive functions fail to capture all functions that we should
reasonably consider computable. This is best established in terms of a diagonal
ization argument:

Example 4.7.5: The set of primitive recursive functions is enumerable. This
is because each primitive recursive function can in principle be defined in terms
of the basic functions, and therefore can be represented as a string in a finite
alphabet; the alphabet should contain symbols for the identity, successor, and
zero functions, for primitive recursion and composition, plus parentheses and
the symbols ° and 1 used to index in binary basic functions such as id 17,ll (see
Section 5.2 for another use of such indexing, this time to represent all Turing
machines). We could then enumerate all strings in the alphabet and keep only
the ones that are legal definitions of primitive recursive functions -in fact, we
could choose to keep only the unary primitive recursive functions, those with
only one argument.

238 Chapter 4: TURING MACHINES

Suppose then that we list all unary primitive recursive functions, as strings,
in lexicographic order

fo,/I,/2,/s, ...

In principle, given any number n 2 0, we could find the n-th unary primitive
recursive function in this list, f n, and then use its definition to compute the
number fn(n) + 1. Call this number g(n). Clearly, g(n) is a computable func
tion -we just outlined how to compute it. Still, 9 is not a primitive recursive
function. Because if it were, say 9 = fm for some m 2 0, then we would have
fm(m) = fm(m) + 1, which is absurd.

This is a diagonalization argument. It depends on our having a sequential
listing of all primitive recursive functions; from that listing one can define a
function which differs from all those in the list, and which, therefore, cannot
itself be in the list. Compare this argument with the proof of Theorem 1.5.2,
stating that 2N is uncountable. There we started with a purported listing of all
the members of 2N , and obtained a member of 2N not in the listing.<)

Evidently, any way of defining functions so that they encompass everything
we could reasonably call "computable" cannot be based only on simple opera
tions such as composition and recursive definition, which produce functions that
can always and reliably be recognized as such, and therefore enumerated. We
have thus discovered an interesting truth about formalisms of computation: Any
such formalism whose members (computational devices) are self-evident (that is,
given a string we can decide easily whether it encodes a computational device
in the formalism) must be either too weak (like finite-state automata and prim
itive recursive functions) or so general as to be useless in practice (like Turing
machines that mayor may not halt on an input). Any formalism that cap
tures all computable functions, and just these, must include functions that are
not self-evident (just as it is not self-evident whether a Turing machine halts
on all inputs, and thus decides a language). Indeed, we define next a subtler
operation on functions, corresponding to the familiar computational primitive
of unbounded iteration -essentially the while loop. As we shall see, unbounded
iteration does introduce the possibility that the result may not be a function.

Definition 4.7.2: Let 9 be a (k + 1)-ary function, for some k > O. The
minimalization of 9 is the k-ary function f defined as follows:

{

the least m such t.hat g(nl, .. " nk, m) = 1,
f(nl, ... ,nk) = if such an m eXIsts:

o otherwise.

We shall denote the minimalization of 9 by JL m[g(nl,"" nk, m) = 1].

4.7: Numerical Functions 239

Although the minimalization of a function 9 is always well-defined, there is
no obvious method for computing it ---even if we know how to compute g. The
obvious method

m:=O;
while g(nl,"" nk, m) i- 1 do m := m + 1;
output m

is not an algorithm, because it may fail to terminate.
Let us then call a function 9 minimalizable if the above method always

terminates. That is, a (k + 1)-ary function 9 is minimalizable if it has the
following property: For every nl, ... , nk E N, there is an mEN such that
g(nl, ... , nk, m) = l.

Finally, call a function fL-recursive if it can be obtained from the basic
functions by the operations of composition, recursive definition, and minimal
ization of minimalizable functions.

Note that now we cannot repeat the diagonalization argument of example
4.7.5 to show that there is a computable function that is not fL-recursive. The
catch is that, given a purported definition of a fL-recursive function, it is not
clear at all whether indeed it defines a fL-recursive function -that is, whether all
applications of minimalization in this definition indeed acted upon minimalizable
functions!

Example 4.7.6: We have defined an inverse of addition (the '" function), and
an inverse of multiplication (the div function); but how about the inverse of

exponentiation -the logarithm? Using minimalization,t we can define the log
arithm function: log(m, n) is the smallest power to which we must raise m + 2
to get an integer at least as big as n + 1 (that is, log(m, n) = flogm+2 (n + 1)1;
we have used m + 2 and n + 1 as arguments to avoid the mathematical pitfalls
in the definition of logm n when m ::; 1 or n = 0). The function log is defined as
follows:

log(m, n) = fL p[greater-than-or-equal((m + 2) t p, n + 1)].

Note that this is a proper definition of a fL-recursive function, since the function
g(m,n,p) = greater-than-or-equal((m + 2) t p,n + 1) is minimalizable: indeed,
for any m, n ~ 0 there is p ~ 0 such that (m + 2)P ~ n -because by raising an
integer ~ 2 to larger and larger powers we can obtain arbitrarily large integers.<)

We can now prove the main result of this section:

t The logarithm function can be defined without the minimalization operation,
see Problem 4.7.2. Our use of minimalization here is only for illustration and
convenience.

240 Chapter 4: TURING MACHINES

Theorem 4.7.1: A function f : N k H N is p,-1'ec1l1'sive if and only if it is
recursive (that is, computable by a Turing machine),

Proof: Only if: Suppose that f is a p,-recursive function. Then it is defined
from the basic functions by applications of composition, recursive definition,
and minimalization on minimalizable functions, We shall show that f is Turing
computable.

First, it is easy to see that the basic functions are recursive: vVe have seen
this for the successor function (Example 4.2.3), and the remaining functions only
involve erasing some or all of the inputs.

So, suppose that f : N k H N is the composition of the functions 9 : N< H

N and hi, ... , he : N k H N, where, by induction we know how to compute 9 and
the h;'s. Then we can compute f as follows (in this and the other cases we give
programs in the style of random access Turing machine programs that compute
these functions; it is fairly easy to see that the same effect can be achieved by
standard Turing machines):

ml:= hl(nl, ... ,nk);
'1n2 := h2(nl,'" ,Uk);

mc := he(nl, ... , nd;
output g(ml, . .. , me.

Similarly, if f is defined recursively from 9 and h (recall the definition),
then f(nl,' .. , nk, m) can be computed by the following program:

v:=g(nl, ... ,nk);
if m = 0 then output v
else for i := 1,2, ... ,m do

v:= h(nl, ... ,nk,i-1,v);
output v.

Finally, suppose that f is defined as p, m[g(nl, ... , Uk, m)], where 9 is min-
imalizable and computable. Then f can be computed by t.he program

m:=O;

while g(nl, ... ,nk,m) -::j:. 1 do m:= m + 1;
output m

Since we are assuming the 9 is minimalizable, the algorithm above will terminate
and output a number.

We have therefore proved that all basic functions are recursive, and that
the composition and the recursive definition of recursive functions, and the mini
malization of minimalizable recursive functions, are recursive; we must conclude

4.7: Numerical Functions 241

that all {t-recursive functions are recursive. This completes the only if direction
of the proof.

If. Suppose that a Turing machine M = (K,~, IS, 8, {h}) computes a function
f : N H N -we are assuming for simplicity of presentation that f is unary;
the gelleral case is an easy extension (see Problem 4.7.5). We shall show that f
is {t-recursive. We shall patiently define certain {t-recursive functions pertaining
to M and its operation until we have accumulated enough materials to define f
itself.

Assume without loss of generality that K and ~ arc disjoint. Let b = I~I +
IKI, and let us fix a mapping E from ~UK to {O, 1, ... , b-1}, such that E(O) = 0
and E(l) = 1 -recall that, since M computes a numerical function, its alphabet
must contain 0 and 1. Using this mapping, we shall represent configurations of
Al as integers in base-b. The configuration (q, ala2 ... ak ... an), where the ai's
are symbols in ~, will be represented as the base-b integer ala2 ... akqak+l ... an,

that is, as the integer

We are now ready to embark on the definition of f as a {t-recursive function.
Ultimately, f will be defined as

f(n) = num(output(last(comp(n)))).

num is a function that takes an integer whose base-b representation is a string of
O's and l's and outputs the binary value of that string. output takes the integer
representing in base b a halted configuration of the form to> U hw, and omits the
first three symbols to> U h. comp(n) is the number whose representation in base
b is the juxtaposition of the unique sequence of configurations that starts with
to> U 8W, where w is the binary encoding of n, and ends with to> U hw l

, where Wi is
the binary encoding of f (n); such a sequence exists, since we are assuming that
M computes a function-namely, f. And last takes an integer representing
the juxtaposition of configurations, and extracts the last configuration in the
sequence (the part between the last to> and the end).

Of course, we have to define all these functions. We give most of the def
initions below, leaving the rest as an exercise (Problem 4.7.4). Let us start
with, well, last. We can define lastpos(n), the last (rightmost, least significant)
position in the string encoded by n in base b where a to> occurs:

lastpos(n) = {t m[equal(digit(m, n, b), E(tO») or equal(m, n)].

Notice that, in order to make the function within the brackets minimalizable,
we allowed lastpos(n) to be n if no to> is found in n. Incidentally, this is another

242 Chapter 4: TURING MACHINES

superficial use of minimalization, as this function can be easily redefined without
the use of minimalization. We can then define last(n) as rem(n, b t lastpos(n)).
We could also define rest(n), the sequence that remains after the deletion of
last(n), as div(n, b t lastpos(n)).

output(n) is simply rem(n, b t log(b '" 2, n '" 1) '" 2) -recall our convention
that the arguments of log must be decreased by 2 and 1, respectively.

The function num(n) can be written as the sum

digit(l, n, b) . 2+digit(2, n, b) ·2 t 2 + ., .

+digit(log(b '" 2, n '" 1), n, b) . 2 t log(b '" 2, n '" 1).

This is a fL-recursive function since both the summand and the bound log(b '"
2, n '" 1) are. Its inverse function, bin(n), which maps any integer to the string
that is its binary encoding, encoded again in as a base-b integer, is very similar,
with the roles of 2 and b reversed.

The most interesting (and hard to define) function in the definition of f(n)
above is comp(n), which maps n to the sequence of configurations of M that
carries out the computation of f(n) -in fact, the base-b integer that encodes
this sequence. At the highest level, it is just

comp(n) = fL m[iscomp(m, n) and halted(last(m))], (1)

where iscomp(m, n) is a predicate stating that m is the sequence of configurations
in a computation, not necessarily halted, starting from I>~b(n). (Incidentally,
this is the only place in this pmof in which minimalization is truly, inherently
needed.) Notice that the function within the brackets in (1) is indeed minimaliz
able: Since M is assumed to compute f, such a sequence m of configurations will
exist for all n. halted(n) is simply equal(digit(log(b - 2, n '" 1) '" 2, n, b), E(h)).

We leave the precise definition of iscomp as an exercise (Problem 4.7.4).
It follows that f is indeed a wrecursive function, and the proof of the

theorem has been completed .•

Problems for Section 4.7

4.7.1. Let f : N t--t N be a primitive recursive function, and define F: N t--t N by

F(n) = f(f(f(··· f(n) .. .))),

where there are n function compositions. Show that F is primitive recursive.

4.7.2. Show that the following functions are primitive recursive:
(a) factorial(n) = nl.
(b) gcd(m, n), the greatest common divisor of m and n.
(c) prime(n), the predicate that is 1 if n is a prime number.
(d) p(n), the nth prime number, where p(O) = 2, p(l) = 3, and so on.
(e) The function log defined in the text.

References 243

4.7.3. Suppose that f is a JL-recursive bijection from N to N. Show that its inverse,
1-1, is also JL-recursive.

4.7.4. Show that the function iscomp described in the proof of Theorem 4.7.1 is
primitive recursive.

4.7.5. Which modifications must be made to the construction in the proof of the
if directions of Theorem 4.7.1 if M computes a function f : N k H N with
k> I?

4.7.6. Develop a representation of primitive recursive functions as strings in an
alphabet I: of your choice (see the next chapter for such a representation
of Turing machines). Formalize the argument in Example 4.7.5 that not all
computable functions can be primitive recursive.

REFERENCES

Turing machines were first conceived by Alan M. Turing:

o A. M. Turing "On computable numbers, with an application to the Entschei
dungsproblem," Proceedings, London Mathematical Society, 2, 42 pp. 230- 265,
and no. 43, pp. 544-546, 1936.

Turing introduced this model in order to argue that all detailed sets of instructions that
can be carried out by a human calculator can also be carried out by a suitably defined
simple machine. For the record, Turing's original machine has one two-way infinite
tape and one head (see Section 4.5). A similar model was independently conceived by
Post; see

o E. L. Post "Finite Combinatory Processes. Formulation I," Journal of Symbolic
Logic, 1, pp. 103-105, 1936.

The following books contain interesting introductions to Turing machines:

o M. L. Minsky Computation: Finite and Infinite Machines, Englewood Cliffs,
N.J.: Prentice-Hall, 1967.

o F. C. Hennie Introduction to Computability, Reading, ~1ass.: Addison-Wesley,
1977.

The following are other advanced books on Turing machines and related concepts in
troduced in this and the three subsequent chapters:

o M. Davis, ed., The Undecidable, Hewlett, N.Y.: Raven Press, 1965. (This book
contains many original articles on several aspects of the subject, including the
papers of Turing and Post cited above.)

o M. Davis, ed., Computability and Unsolvability New York: McGraw-Hill, 1958.

o S. C. Kleene, Introduction to Metamathematics, Princeton, N.J.: D. Van Nos
trand, 1952,

o W. S. Brainerd and L. H. Landweber, Theory of Computation, New York: John
Wiley, 1974,

244 Chapter 4: TURING MACHINES

o M. Machtey and P. R. Young, An Introduction to the General Theory of Algo
rithms, New York: Elsevier North-Holland, 1978,

o H. Rogers, Jr., The Theory of Recursive Functions and Effective Computability,
New York: McGraw-Hill, 1967,

o M. Sipser, Introduction to the Theory of Computation, Boston, Mass.: PWS
Publishers, 1996,

o J. E. Hopcroft and J. D. Ullman Introduction to Automata Theory, Languages,
and Computation, Reading, Mass.: Addison Wesley, 1979.

o C. H. Papadimitriou Computational Complexity, Reading, Mass.: Addison Wes
ley, 1994.

o H. Hermes, Enumerability, Decidability, Computability, New York: Springer
Verlag, 1969 (translated from the German edition, 1965).

Our notion and notation for combining Turing machines (Section 4.3) was influenced
by this last book.
Random access machines, similar in spirit to our "random access Turing machines"
in Section 2.4, were studied in

o S. A. Cook and R. A. Reckhow "Time-bounded random-access machines," Jour
nal of Computer and Systems Sciences, 7, 4, pp. 354-375, 1973.

Primitive and p,-recursive functions are due to Kleene

o S. C. Kleene "General recursive functions of natural numbers," Mathematische
Annalen, 112, pp. 727-742, 1936,

and Markov Algorithms (Problem 2.6.5) are from

o A. A. Markov Theory of Algorithms, Trudy Math. Inst. V. A.Steklova, 1954.
English translation: Israel Program for Scientific Translations, Jerusalem, 1961.

Undecidability

5.1 THE CHURCH-TURING THESIS

In this book we address this question: What can be computed? (And, more in
triguingly, what. cannot be computed?) We have introduced various and diverse
mathematical models of computational processes that accomplish concrete com
putational tasks -in particular, decide, semidecide, or generate languages, and
compute functions. In the previous chapter we saw that Turing machines can
carry out surprisingly complex tasks of this sort. We have also seen that certain
additional features that we might consider adding to the basic Turing machine
model, including a random access capability, do not increase the set of tasks
that can be accomplished. Also, following a completely different path (namely,
trying to generalize context-free grammars), we arrived at a class of language
generators with precisely the same power as Turing machines. Finally, by try
ing to formalize our intuitions on which numerical functions can be considered
computable, we defined a class of functions that turned out to be precisely the
recursive ones.

All this suggests that we have reached a natural upper limit on what a
computational device can be designed to do; that our search for the ultimate
and most general mathematical notion of a computational process, of an algo
rithm, has been concluded successfully -and the Turing machine is the right
answer. However, we have also seen in the last chapter t.hat not all Turing ma
chines deserve to be called "algorithms:" We argued that Turing machines that
semi decide languages, and thus reject by never halting, are not useful compu
tational devices, whereas Turing machines that decide languages and compute
functions (and therefore halt at all inputs) are. Our notion of an algorithm must

245

246 Chapter 5: UNDECIDABILITY

exclude Thring machines that may lIot halt on some inputs.
We therefore propose to adopt the Turing machine that halts on all inputs

as the precise formal notion corresponding to the intuitive notion of an "algo
rithm." Nothing will be considered an algorithm if it cannot be rendered as a
Thring machine that is guaranteed to halt on all inputs, and all such machines
will be rightfully called algorithms. This principle is known as the Church
Turing thesis. It is a thesis, not a theorem, because it is not a mathematical
result: It simply asserts that a certain informal concept (algorithm) corresponds
to a certain mathematical object (Turing machine). Not being a mathematical
statement, the Church-Thring thesis cannot be proved. It is theoretically possi
ble, however, that the Church-Turing thesis could be disproved at some future
date, if someone were to propose an alternative model of computation that was
publicly acceptable as a plausible and reasonable model of computation, and yet
was provably capable of carrying out computations that cannot be carried out
by any Thring machine. No one considers this likely.

Adopting a precise mathematical notion of an algorithm opens up the in
triguing possibility of formally proving that certain computational problems can
not be solved by any algorithm. We already know enough to expect this. In
Chapter 1 we argued that if strings are used to represent languages, not ev
ery language can be represented: there are only a countable number of strings
over an alphabet, and there are uncountably many languages. Finite automata,
pushdown automata, context-free grammars, unrestricted grammars, and Thr
ing machines are all examples of finite objects that can be used for specifying
languages, and that can be themselves described by strings (in the next section
we develop in detail a particular way of representing Turing machines as strings).
Accordingly, there are only countably many recursive and recursively enumer
able languages over any alphabet. So although we have worked hard to extend
the capabilities of computing machines as far as possible, in absolute terms they
can be used for semideciding or deciding only an infinitesimal fraction of all the
possible languages.

Using cardinality arguments to establish the limitation of our approach is
trivial; finding particular examples of computational tasks that cannot be ac
complished within a model is much more interesting and rewarding. In earlier
chapters we did succeed in finding certain languages that are not regular or
context-free; in this chapter we do the same for the recursive languages. There
are two major differences, however. First, these new negative results are not
just temporary setbacks, to be remedied in a later chapter where an even more
powerful computational device will be defined: according to the Church-Thring
thesis, computational tasks that cannot be performed by Turing machines are
impossible, hopeless, undecidable. Second, our methods for proving that lan
guages are not recursive will have to be different from the "pumping" theorems
we used for exploiting the weaknesses of context-free grammars and finite au-

5.2: Universal Turing Machines 247

tomata. Rather, we must devise techniques for exploiting the considerable power
of Turing machines in order to expose their limitations. The aspect of the power
of Turing machines that we will explore is a kind of introspective ability they
possess: We point out that Turing machines can receive encodings of Turing
machines as inputs, and manipulate these encodings in interesting ways. We
will then ask what happens when a Turing machine manipulates an encoding
of itself -an ingenious yet simple application of the diagonalization principle.
How to encode a Turing machine so it can be manipulated by another (or the
same!) Turing machine is thus our next subject.

liiJ UNIVERSAL TURING MACHINES

Is hardware or software the basis of computation? You may have an opinion
on the matter -and on whether the question is meaningful and productive.
But the fact is that the formalism for algorithms we introduced and developed
in the last chapter -the Turing machipe- is an "un programmable" piece of
hardware, specialized at solving one particular problem, with instructions that
are "hard-wired at the factory."

We shall now take the opposite point of view. We shall argue that Tur
ing machines are also software. That is, we shall show that there is a certain
"generic" Turing machine that can be programmed, about the same way that
a general-purpose computer can, to solve any problem that can be solved by
Turing machines. The "program" that makes this generic machine behave like a
specific machine M will have to be a description of M. In other words, we shall
be thinking of the formalism of Turing machines as a programming language, in
which we Celli write programs. Programs written in this language can then be
interpreted by a universal Turing machine -that is to say, another program in
the same language. That a program written in a language can interpret any
program in the same language is not a very novel idea -it is the basis of the
classical method for "bootstrapping" language processors. t But to continue with

t Language implementors often write translators for a programming language in the
same programming language. But how is the translator to be itself translated?
One way to do this is the following: Write the translator in a simple fragment of
the same language, leaving out the more sophisticated (and difficult to translate)
features of the language. Then write a translator for this fragment -a much
simplified task- in an even more stripped-down version of the language. Continue
this way until your language is so simple and explicit that it resembles an assembly
language, and so it can be directly translated in one.

248 Chapter 5: UNDECIDABILITY

our project in this book we must make this point precise in th0 context of Turing
machines.

To begin, we must present a general way of specifying Turing machines, so
that their descriptions can be used as input to other Thring machines. That is,
we must define a language whose strings are all legal representations of Turing
machines. One problem manifests itself already: ~o matter how large an alpha
bet we choose for this representation, there will be Thring machines that have
more states and more tape symbols. Evidently, we must encode the states and
tape symbols as strings over a fixed alphabet. We adopt the following conven
tion: A string representing a Turing machine state is of the form { q}{ 0, I} *; that
is, the letter q followed by a binary string. Similarly, a tap0 symbol is always
represented as a string in {a}{ 0, I} * .

Let !v! = (K, I:, 6, s, H) be a Turing machine, and let i and j be the smallest
integers sHch that 2i 2 IKI, and 2j 2 II:I + 2. Then each state in K will be
represented as a q followed by a binary string of length i; each symbol in I: will
be likewise represented as the letter a followed by a string of j bits. The head
directions +--- and -+ will also be treated as "honorary tape symbols" (they were
the reason for the "+2" term in the definition of j). We fix the representations
of the special symbols U, [>, +---, and -+ to be the lexicographically four smallest
symbols, respectively: U will always be represented as aOj , [> as aOj-1l, +--- as
aOj - 2 10, and -+ as aO j - 2 11. The start state will always be represented as the
lexicographically first state, qOi. Notice that we require the use of leading zeros
in the strings that follow the symbols a and q, to bring the total length to the
required level.

We shall denote the representation of the whole Turing machine M as "M".
"M", consists of the transition table 6. That is, it is a sequence of strings of
the form (q; a, p, b), with q and p representations of states and a, b of symbols,
separated by commas and included in parentheses. We adopt the convention that
the quadruples are listed in increasing lexicographic order, starting with 6(s, U).
The set of halting states H will be determined indirectly, by the absence of its
states as first components in any quadruple of "M". If M decides a language,
and thus H = {y, n}, we will adopt the convention that y is the lexicographically
smallest of the two halt states.

This way, any Thring machine can be represented. We shall use the same
method to represent strings in the alphabet of the Turing machine. Any string
w E I:* will have a unique representation, also denoted "w", namely, the juxta
position of the representations of its symbols.

5.2: Universal Turing Machines 249

Example 5.2.1: Consider the Turing machine M = (K,I:,6,s,{h}), where
K = {s,q,h}, I: = {u,c>,a}, and 6 is given in this table.

state, symbol 6

s a (q, u)
s U (h,u)
s c> (s, -+)
q a (s, a)
q U (s, -+)
q c> (q,-+)

Since there are three states in K and three symbols in I:, we have i = 2
and j = 3. These are the smallest integers such that 2i 2: 3 and 2j 2: 3 + 2. The
states and symbols are represented as follows:

state I symbol representation

s qOO
q qOI
h q11
U aOOO
c> aOOl

+--- aOlO
-+ a011
a alOO

Thus, the representation of the string c>aa U a is

"c> aa U a" = aOOlaIOOaIOOaOOOaIOO.

The representation "}VI" of the Turing machine M is the following string:

"M" = (qOO, aIOO, qOl, aOOO), (qOO, aOOO, q11, aOOO), (qOO, aOOl, qOO, a011),
(qOl, aIOO, qOO, a011), (qOl, aOOO, qOO, a011), (qOl, aOOl, qOl, 011).<>

Now we are ready to discuss a universal Turing machine U, which uses the
encodings of other machines as programs to direct its operation. Intuitively, U
takes two arguments, a description of a machine M, "}VI", and a description of
an input string w, "w". We want U to have the following property: U halts on
input "M" "w" if and only if M halts on input w. To use the functional notation
for Turing machines we developed in the last chapter,

U("AI" "w") = "M(w)".

250 Chapter 5: UNDECIDABILITY

We actually describe not the single-tape machine U, but a closely related 3-
tape machine U' (then U will be the single-tape Turing machine that simulates
U'). Specifically, U' uses its three tapes as follows: the first tape contains
the encoding of the current tape contents of M; the second tape contains the
encoding of M itself; and the third tape contains the encoding of the state of M
at the current point in the simulated computation.

The machine U' is started with some string "AI" "w" on its first tape and the
other two tapes blank. (It does not matter how U' behaves if its input string is
not of this form.) First U' moves "M" onto the second tape and shifts "w" down
to the left end of the first tape, preceding it by "c> u". Thus at this point the
first tape contains "c> Uw". U' writes in the third tape the encoding of the initial
state 8 of M, always qOi (U' can easily determine i and j by examining "M").
Now U' sets about simulating the steps of the computation of M. Between such
simulated steps, U' will keep the heads on the second and third tapes at their
left ends, and the head of the first tape scanning the a of the encoded version of
the symbol that M would be scanning at the corresponding time.

U' simulates a step of M as follows: It scans its second tape until it finds
a quadruple whose first component matches the encoded state written in its
third tape, and whose second component matches the encoded symbol scanned
in the first tape. If it finds such a quadruple, it changes the state to the third
component of that quadruple, and performs in the first tape the action suggested
by the fourth component. If the fourth component encodes a symbol of the tape
alphabet of M, this symbol is written in the first tape. If the fourth component
is aOj~210, the encoding of~, then [}' moves its first head to the first a symbol
to the left, and if it is the encoding of -+, to the right. If a U is encountered, U'
must convert it to aO j , the encoding of a blank of M.

If at some step the state-symbol combination is not found in the second tape,
this means that the state is a halting state. U' also halts at an appropriate state.
This completes our description of the operation of U'.

Problems for Section 5.2

5.2.1. Recall the Turing machine M in Example 4.1.1
(a) What is the string "M"?
(b) What is the representation of the string aaa?
(c) Suppose that the universal (3-tape) Turing machine U' described in this

chapter simulates the operation of M on input aaa. What are the contents
of the tapes of U' at the beginning of the simulation? At the beginning of
the simulation of the third step of M?

5.2.2. By analogy to the universal Turing machine, we could hope to design a
universal finite automaton U that accepts the language {"AI" "w" : w E
L(M)}. Explain why universal finite automata cannot exist.

5.3: The Halting Problem 251

liiJ THE HALTING PROBLEM

Suppose that you have written a program, in your favorite programming lan
guage, that performs the following remarkable feat: It takes as input any pro
gram P, written in the same language, and an input X of that program. By
some clever analysis, your program always determines correctly whether the pro
gram P would halt on input X (it returns "yes" if it does), or whether it would
run forever (it returns "no"). You have named this program halts(P, X).

This is a most valuable program. It discovers all sorts of subtle bugs that
make other programs run forever on certain inputs. Using it you can achieve
many remarkable things. Here is one somewhat subtle example: You can use it
to write another program, with the ominous name diagonal(X) (recall the proof
by diagonalization that 2N is not countable in Section 1.5):

diagonal(X)
a: if halts(X, X) then goto a else halt

Notice what diagonal(X) does: If your halts program decides that program
X would halt if presented with itself as input, then diagonal(X) loops forever;
otherwise it halts.

And now comes the unanswerable question: Does diagonal(diagonal) halt?
It halts if and only if the call halts(diagonal. diagonal) returns "no"; in other
words, it halts if and only if it does not halt. This is a contradiction: we must
conclude that the only hypothesis that started us on this path is false, that
program halts(P, X) does not exist. That is to say, there can be no program, no
algorithm for solving the problem halts would solve: to tell whether arbitrary
programs would halt or loop.

This kind of argument should be familiar not only from your past exposure
to computer science, but also from general twentieth-century culture. The point
is that we have now introduced all the necessary machinery for presenting a
formal, mathematically rigorous version of this paradox. We have a full-fledged
notation for algorithms, a "programming language" of sorts: the Turing ma
chine. In fact, in the last section we introduced one last feature we need: we
have developed a framework that allows our "programs" to manipulate other
programs and their inputs -exactly as our fictitious program halts(P, X) does.
We are thus ready to define a language that is not recursive, and prove that it
is not. Let

H = {"M" "w" : Thring machine M halts on input string w}.

Notice first that H is recursively enumerable: It is precisely the language semide
cided by our universal Turing machine U in the previous section. Indeed, on
input "M" "w", U halts precisely when the input is in H.

252 Chapter 5: UNDECIDABILITY

F\irthermore, if H is recursive, then every recursively enumerable language
is recursive. In other words, H holds the key to the question we asked in Section
4.2, whether all recursively enumerable languages are also Turing decidable:
the answer is positive if and only if H is recursive. For suppose that H is
indeed decided by some Turing machine Mo. Then given any particular Turing
machine M semi deciding a language L(M), we could design a Turing machine
M' that decides L(M) as follows: First, M' transforms its input tape from
c> U wl,J to c>"M" "w"l,J and then simulates Mo on this input. By hypothesis, Mo
will correctly decide whether or not M accepts w. Anticipating the issues dealt
with in Chapter 7, we could say that there are reductions from all recursively
enumerable languages to H, and thus H is complete for the class of recursively
enumerable languages.

But we can show, by formalizing the argument for halts(P, X) above, that
H is not recursive. First, if H were recursive, then

Hi = {"M" : Turing machine M halts on input string "M"}

would also be recursive. (Hi stands for the halts(X, X) part of the diagonal
program.) If there were a Turing machine Mo that could decide H, then a
Turing machine Mi to decide Hi would only need to transform its input string
c> U "AI"U to c> U "AI" "M"u and then yield control to Alo. Therefore, it suffices
to show that Hi is not recursive.

Second, if Hi, were recursive, then its complement would also be recursive:

Hi = {w : either w is not the encoding of a Turing machine, or it is

the encoding "M" of a Turing machine ~M that does not halt on "M"}.

This is so because the class of recursive languages is closed under complement
(Theorem 4.2.2). Incidentally, Hi is the diagonal language, the analog of our
diagonal program, and the last act of the proof.

But Hi cannot even be recursively enumerable ~let alone recursive. For
suppose AJ* were a Turing machine that semi decided Hi. Is "M*" in Hi? By
definition of Hi, "AI*" E Hi if and only if M* does not accept input string
"AI*". But M* is supposed to semidecide Hi, so "!v!*" E Hi if and only if M*
accepts "M*". We have concluded that M* accepts "AI*" if and only if M*
does not accept "M*". This is absurd, so the assumption that Mo exists must
have been in error.

Let us summarize the development of this section. We wanted to discover
whether every recursively enumerable language is recursive. We observed that
this would be true if and only if the particular recursively enumerable language
H were recursive. From H we derived, in two steps, the language Hi, which has
to be recursive in order for H to be recursive. But the assumption that Hi is
recursive led to a logical contradiction, by diagonalization. We have therefore
proved the following most important theorem.

5.3: The Halting Problem 253

Theorem 5.3.1: The language H is not recursive; therefore, the class of recur
sive languages is a strict subset of the class of recursively enumerable languages.

We said earlier that this argument is an instance of the diagonalization
principle used in Section 1.5 to show that 2N is not countable. To see why,
and to underscore one more time the essence of the proof, let us define a binary
relation R on strings over the alphabet used for the encoding of TUring machines:
(u, w) E R if and only if u = "M" for some Turing machine M that accepts w.
(R is a version of H.) Now let, for each string u,

Ru = {w : (u, w) E R}

(the Ru's correspond to the recursively enumerable languages), and consider the
diagonal of R, that is,

D={w:(w,w)~R}

(D is Hd. By the diagonalization principle, D -:j:. Ru for all u; that is, HI is a
language different from any recursively enumerable language.

And why is D -:j:. Ru for any u? Because D differs, by its very construction,
from each Ru (and therefore from each recursively enumerable language) on at
least one string -namely, u.

Theorem 5.3.1 answers negatively the first of the two questions we posed
in the end of Section 4.2 ("is every recursively enumerable language also re
cursive?" and "is the class of recursively enumerable languages closed under
complement?"). But the same proof supplies the answer to the other question.
It is easy to see that HI, like H, is recursively enumerable, and we have shown
that HI is not recursively enumerable. Therefore we have also proved the fol
lowing result.

Theorem 5.3.2: The class of recursively enumerable languages is not closed
under complement.

Problems for Section 5.3

5.3.1. We can find a particular example of a nonrecursive function without using
a diagonal argument. The busy-beaver function (3 : N f-+ N is defined
as follows: For each integer n, (3(n) is the largest number m such that there
is a Turing machine with alphabet {t>, U, a, b} and with exactly n states
which, when started with the blank tape, eventually halts at configuration
(h, t>1Jam

).

(a) Show that, if f is any recursive function, then there is an integer kf such
that (3(n + k f) 2: f(n). (kf is the number of states in the Turing machine
Mf, which, when started with input an, halts with af(n) on its tape.)

254 Chapter 5: UNDECIDABILITY

(b) Show that f3 is not recursive. (Suppose it were; then so would be f (n)
(1(2n). Apply the result in (a) above.)

5.3.2. We know that the class of recursively enumerable languages is not closed
under complementation. Show that it is closed under union and intersection.

5.3.3. Show that the class of recursive languages is closed under union, comple
mentation, intersection, concatenation, and Kleene star.

5.4 UNDECIDABLE PROBLEMS ABOUT TURING MACHINES

We have proved a momentous result. Let us back off a bit and see what it
says on the intuitive level, in light of the Church-Turing thesis. Since the proof
establishes that H is not recursive, and we have accepted the principle that any
algorithm can be turned into a Turing machine that halts on all inputs, we must
conclude that there is no algorithm that decides, for an arbitrary given Turing
machine AI and input string w, whether or not M accepts w. Problems for
which no algorithms exist are called undecidable or unsolvable; we shall see
many of them in this chapter. The most famous and fundamental undecidable
problem is the one of telling whether a given Turing machine halts on a given
input ~whose undecidability we just established. This problem is usually called
the halting problem for Turing machines.

Note that the undecidability of the halting problem in no way implies that
there may not be some circumstances under which it is possible to predict
whether a Turing machine will halt on an input string. In Example 4.1.2 we
were able to conclude that a certain simple machine is bound to never halt on a
certain input. Or we might examine the transition table of the Turing machine,
for example, to check whether a halt state is anywhere represented; if not, the
machine cannot halt on any input string. This and more complex analyses may
yield some useful information for certain cases; but our theorem implies that any
such analysis must ultimately either be inconclusive or yield incorrect results:
There is no completely general method that correctly decides all cases.

Once we have established, by diagonalization, that the halting problem is
undecidable, the undecidability of a great variety of problems follows. These
results are proved not by further diagonalizations, but by reductions: we show
in each case that if some language L2 were recursive, then so would be some
language L 1 , already known not to be recursive.

Definition 5.4.1: Let L1 ,L2 ~ ~* be languages. A reduction from Ll to L2
is a recursive fUIlction T : ~. r--+ ~. such that x ELl if and only if T(X) E L2.

5.4: Undecidable Problems about Turing Machines 255

The reader must take care to understand the "direction" in which a reduc
tion is to be applied. To show that a language L2 is not recursive, we must
identify a language L1 that is known to be not recursive, and then reduce L1 to
L2. To reduce L2 to L1 would achieve nothing: it would merely show that L2
could be decided if we could decide L1 -which we know we cannot.

Formally, the correct use of reductions in proofs of undecidability is the
following:

Theorem 5.4.1: If L1 is not recursive, and there is a reduction from L1 to L2,
then L2 is also not recursive.

Proof: Suppose that L2 is recursive, say decided by Turing machine M 2 , and
let T be the Turing machine that computes the reduction T. Then the Turing
machine T M2 would decide L1. But L1 is undecidable -a contradiction .•

We next use reductions to show that several problems about Turing ma
chines are undecidable.

Theorem 5.4.2: The following problems about Turing machines are undecid
able.

(a) Given a Turing machine M and an input string w, does M halt on input
w?

(b) Given a Turing machine M, does M halt on the empty tape?
(c) Given a Turing machine M, is there any string at all on which M halts?
(d) Given a Turing machine M, does M halt on every input string?
(e) Given two Turing machines M1 and M2, do they halt on the same input

strings?
(f) Given a Turing machine M, is the language that M semidecides regular?

Is it context-free? Is it recursive?
(g) Furthermore, there is a certain fixed machine M, for which the following

problem is undecidable: Given w, does M halt on w?

Proof: Part (a) was proved in the previous section.

(b) We describe a reduction from H to the language

L = {"M" : M halts on e}.

Given the description of a Turing machine M and an input x, our reduction
simply constructs the description of a Turing machine Mw that operates as
follows: M w , when started on the empty tape (that is, in configuration (s, t>W),
writes w on its tape and then starts to simulate M. In other words, if w =
a1 ... an, then Mw is simply the machine

256 Chapter 5: UNDECIDABILITY

And it is easy to see that the function T that maps "M" "w" to "Alw" is indeed
recursive.

(c) We can reduce the language L shown to be nonrecursive in Part (b) to
the language V = {"M" : M halts on some input}, as follows. Given the repre
sentation of any Turing machine 11.1, our reduction constructs the representation
of a Turing machine M' that erases any input it is given, and then simulates M
on the empty string. Clearly, M' halts on some string if and only if it halts on
all strings, if and only if M halts on the empty string.

(d) The argument for Part (c) works here as well, since M' is constructed
so that it accepts some input if and only if it accepts every input.

(e) We shall reduce the problem in Part (d) to this one. Given the descrip
tion of a machine M, our reduction constructs the string

T("M") = "M""y",

where "y" is the description of the machine that immediately accepts any input.
Clearly, the two machines M and y accept the same inputs if and only if M
accepts all inputs.

(f) We reduce the problem in Part (b) above to the present one. We show
how to modify any Turing machine M to obtain a Turing machine M' such that
M' halts either on the strings in H or on no strings, depending on whether M
halts on the empty string or not. Since there is no algorithm for telling whether
M halts on the empty string, there can be none for telling whether L(M) is 0
(which is regular, context-free, and recursive) or H (which is none of the three).
First, M' saves its input string and initiates whatever M would do on input
e. When and if M would halt, M' restores its input and carries out on that
input the operation of the universal Turing machine U. Thus M' either halts
on no input, because it never finishes imitating M on input e, or else it halts on
precisely the strings in H.

(g) The fixed machine Mo alluded to in the statement of the theorem is
precisely the universal Turing machine U .•

Problems for Section 5.4

5.4.1. Say that Turing machine Muses k tape squares on input string w if and
only if there is a configuration of M, (q, uQ,v), such that (s, t>lJw) f-Af (q, uQ,v)
and Iuavi 2: k.

(a) Show that the following problem is solvable: Given a Turing machine M,
an input string w, and a number k, does AI use k tape squares on input w?

5.4: Undecidable Problems about Turing Machines 257

(b) Suppose that f : N f-t N is recursive. Show that the following problem is
solvable: Given a Turing machine M and an input string w, does Muse
f(lwl) tape squares on input w?

(c) Show that the following problem is undecidable: Given a Turing machine
.U and an input string w. does there exist a k 2: 0 such that M does not
use k tape squares on input w? (That is, does M use a finite amount of
tape on input w?)

5.4.2. Which of the following problems about Turing machines are solvable, and
which are undecidable? Explain your answers carefully.

(a) To determine, given a Turing machine M, a state q, and a string w, whether
M ever reaches state q when started with input w from its initial state.

(b) To determine, given a Turing machine M and two states p and q, whether
there is any configuration with state p which yields a configuration with
state q, where p is a particular state of M.

(c) To determine, given a Turing machine M and a state q, whether there is
any configuration at all that yields a configuration with state q.

(d) To determine, given a Turing machine M and a symbol a, whether M ever
writes the symbol a when started on the empty tape.

(e) To determine, given a Turing machine M, whether M ever writes a nonblank
symbol when started on the empty tape.

(f) To determine, given a Turing machine M and a string w, whether M ever
moves its head to the left when started with input '/L'.

(g) To determine, given two Turing machines, whether one semidecides the
complement of the language semidecided by the other.

(h) To determine, given two Turing machines, whether there is any string on
which they both halt.

(i) To determine, given a Turing machine M, whether the language semidecided
by M is finite,

5.4.3. Show that it is an undecidable problem to determine, given a Turing ma
chine M, whether there is some string w such that M enters each of its
states during its computation on input w.

5.4.4. Show that the halting problem for Turing machines remains undecidable
even when restricted to Turing machines with some small, fixed number of
states. (If the number is required to be fixed but not small, the existence
of a universal Turing machine establishes the result, Show how any Turing
machine can be simulated, in some suitable sense, by a Turing machine
with about half a dozen states but a much larger alphabet. Actually, three
states are enough; in fact, two would be enough if we allowed our machines
to write and move in a single step.)

258 Chapter 5: UNDECIDABILITY

5.4.5. Show that any Turing machine can be simulated, in some sense we leave it
to you to specify, by an automaton with no tape hut with two counters.
A counter is a pushdown store with only one symbol, except for a distin
guishable bottom-marker, which is never removed. Thus a counter may be
thought of as a register for containing a number in unary. The possible
operations on a counter are the following: add 1; see if it contains 0; and
if it does not contain 0, subtract 1. Conclude that the halting problem for
these 2-counter machines is undecidable. (Hint: Start by showing how to
simulate a Turing machine tape hy two push-down stores with two sym
bols; show that these can be simulated by four counters, by encoding the
pushdown store contents in unary; finally, simulate four counters hy two,
hy encoding four numbers a,b,c,d as 2a 3b5c7d .)

5.5 UNSOLVABLE PROBLEMS ABOUT GRAMMARS

Unsolvable prohlems do not occur only in the domain of Turing machines, but
in virtually all fields of mathematics. For example, there are several undecidable
problems related to grammars, summarized below.

Theorem 5.5.1: Each of the following problems is undecidable.

(a) For a given grammar G and string w, to determine whether wE L(G).
(b) For a given grammar G, to determine whether e E L(G) .
(c) For two given grammars G1 and G2 , to determine whether L(Gd = L(G2).

(d) For an arbitrary grammar G, to determine whether' L(G) = 0.
(e) Furthermore, ther'e is a certain fixed grammar Go, such that it is undecidable

to determine whether any given string w is in L(Go).

Proof: We shall show a reduction from the halting prohlem to (a); very similar
reductions establish the remaining parts. Given any Turing machine M and
string w, we simply apply to M the construction given in the proof of Theorem
4.6.1 to produce a grammar G such that L(G) is the language semi decided by
M. It follows that w E L(G) if and only if M halts on input w .•

Since we had already established that grammars are exactly as powerful
as Turing machines (Theorem 4.6.1), the undecidability results above probably
came as no surprise. What is much more astonishing, however, is that similar
questions about context-free grammars and related systems -a rather simple and
limited domain- are undecidable. Naturally, the undecidable problems cannot
include telling whether wE L(G), or whether L(G) = 0 -these problems can be
solved by algorithms, and in fact efficient ones (recall Theorem 3.6.1). Several
other problems, however, are not solvable.

5.5: Unsolvable Problems about Grammars

Theorem 5.5.2: Each of the following problems is undecidable.

(a) Given a context-free grammar G, is L(G) = ~'?
(b) Given two context-free grammars G I and G 2 , is L(Gd = L(G2)?

259

(c) Given two pushdown automata ;1h and ;U2 , do they accept precisely the
same language?

(d) Given a pushdown automaton M, find an equivalent pushdown automaton
with as few states as possible.

Proof: (a) The main technical difficulty is in proving Part (a); the other parts
follow rather easily. We shall reduce to Part (a) the prohlem shown to be unde
cidable in Part (d) of Theorem 5.5.1, that is, the problem of deciding whether a
given generalized grammar generates any string at all.

Let G I = (VI, ~l, RI , Sd be a generalized grammar. We first modify this
grammar as follows: Let the rules of GI be O!i --+ !3i, for i = 1, ... , IRII. We
add to VI IRII new nonterminal symbols Ai, i = 1, ... , IRII, one for each rule
in RI , and replace the ith rule, for i = 1, ... , IRII, by the two rules O!i --+ Ai
and Ai --+ !3i. Let us call the resulting grammar G~ = (V!,~I,R~,Sd. It is
clear that L(GD = L(Gd; any derivation of a string in G I can be turned into a
standard derivation of the same string in G~, in which each odd step applies
a rule of the form Ui --+ Ai, while the subsequent even step applies a rule of the
form Ai --+ vi·

From G~ we shall construct a context-free grammar G 2 over an alphabet
~ such that L(G2) = ~. if and only L(GI) = 0. This reduction would then
establish Part (a).

Suppose that there is a derivation of a terminal string in G~; by the remark
above, we can assume that it is a standard derivation, namely,

where Xi E V!* for all i, and Xn E ~i, n is even, each Xi with i odd contains ex
actly one Aj nonterminal, while each Xi with i even contains no Aj nonterminal.
Such a derivation can be represented as a string in the alphabet ~ = V u {=>},
precisdy the string displayed above. In fact, for reasons that will be clear soon,
we shall be more interested in the boustrophedon version t of the string that
corresponds to the standard derivation, in which the odd-numbered Xi'S Xl, X3,

etc. are reversed:

t Boustrophedon, from a Greek word meaning "as the ox turns," is a way of writing

alternate lines in opposite direction, from left to right and from right to left.

260 Chapter 5: UNDECIDABILITY

Consider now the language Dc~ ~ ~* consisting of all such boustrophedon
versions of standard derivations of terminal strings in G~. It is dear that Dc\ =
o if and only if L(Gd = 0. To put it otherwise, in terms of the complement
Dc' = ~* - Dc"

1

Dc~ = ~* if and only if L(Gd = 0.

Therefore, all we have to show in order to conclude the proof is that Dc' is
1

context-free.
To this end, let us look closer at the language Dc" What does it take for

1

a string w to be in this language? That is, when does a string 1V fail to be a
boustrophedon version of a standard derivation of a terminal string in G~? It
does if and only if at least one of the following conditions holds:

(1) 1V does not start with 51 :::}.
(2) 1V does not end with:::} v, where v E ~~.
(3) 1V contains an odd number of :::}'s.
(4) 1V is of the form u :::} y :::} v or u :::} y, where

(a) u contains an even number of occurrences of:::},
(b) y contains exactly one occurrence of :::}, and
(c) y is not of the form y = Y1 A i Y2 :::} yf (3iYr for some i :::; JR1J and

Y1, Y2 E ~r, where (3i is the right-hand side of the ith rule of G1·
(5) 1V is of the form u:::} Y :::} v, where

(a) u contains an odd number of occurrf'llces of:::},
(b) Y contains exactly one occurrence of :::}, and
(c) Y is not of the form Y = Y1CJ:iY2 :::} yf Aiyr for some i :::; JR1J and

Y1, Y2 E ~r, where CJ:i is the left-hand side of the ith rule of G1·

If 1V satisfies anyone of these five conditions, and only then, 1V is in Dc' .
1

That is, Dc' is the union of the five languages L 1 , L 2 , L3, L4, and L5 described
1

in (1) through (5) above. We claim that all five languages are context-free, and
in fact that we can construct context-free grammars that generate them. For
the first three, which happen to be regular languages, this is trivial.

For L4 and L5, our argument is indirect: We shall argue that we can design
a nondeterministic pushdown automaton for each, and rely on Theorem 3.6.1
Part (b), stating that there is an algorithm for constructing from any pushdown
automaton M a context-free grammar G such that L(G) = L(M).

The pushdown automaton M4 accepting L4 works in two phases. In the
first phase, it scans input 1V from left to right, always remembering whether it
has seen an odd or even number of :::}'s (this can be accomplished by two states).
When an even-numbered:::} is encountered, M4 has two options, and chooses
between them nondeterministically: It can either continue to count :::}'s modulo
two, or it can enter the second phase.

5.5: Unsolvable Problems about Grammars 261

In the second phase, M4 accumulates its input in its stack until a :::} is
found. If no Ai symbol was pushed, or more than one, then M3 can accept
-the input is in L4. Otherwise, M4 compares its stack contents (a string of the
form y~ Aiyf when read from the top down) with the part of the input up to the
next :::}. If a mismatch is found before Ai is encountered, or if it is discovered
that Ai is not replaced in the input by (3f (a string remembered by M4 in its
state space), or if a mismatch is found after this, or if the next:::} (or the end of
the input) is not found immediately after the stack becomes empty, then again
M4 accepts. Otherwise it rejects.

This concludes the description of 1\[4, and it is clear that L(M4) = L4 • The
construction for L5 is very similar. We can thus design context-free grammars
that generate each of the languages L1 through L 5 ; hence we can design a
context-free grammar G2 for their union.

Thus, given any generalized grammar G1 , we can construct a context-free
grammar G2 such that L(G2) = DG~. But we know that DG~ = ~* if and only
if L(G1) = 0. We conclude that if we had an algorithm for deciding whether any
given context-free grammar generates all of ~*, then we could use this algorithm
for deciding whether a given generalized grammar generates the empty language,
which we know is impossible. The proof of Part (a) is complete.

(b) If we could tell whether two context-free grammars generate the same lan
guage, then we would be able to tell if a context-free grammar generates ~*:
take the second grammar to be a trivial grammar that does generate ~*.

(c) If we could tell whether any two pushdown automata are equivalent, then
we would be able to tell if two given context-free grammars are equivalent by
transforming them into two pushdown automata that accept the same language,
and then testing them for equivalence.

(d) If there were an algorithm for minimizing the number of states of a pushdown
automaton, just as there is for finite automata, then we would be able to tell if
a given pushdown automaton accepts ~*: It does if and only if the optimized
pushdown automaton has one state and accepts ~*. And it is decidable whether
a one-state pushdown automaton accepts ~* (this is established in Problem
5.5.1) .•

Problems for Section 5.5

5.5.1. Show that it is decidable, given a pushdown automaton M with one state,
whether L(M) = ~*. (Hint: Show that such an automaton accepts all
strings if and only if it accepts all strings of length one.)

5.5.2. A Post correspondence system is a finite set P of ordered pairs of
nonempty strings; that is, P is a finite subset of ~* x ~*. A match of P

262 Chapter 5: UNDECIDABILITY

is any string w E ~. such that, for some n > 0 and some (not necessarily
distinct) pairs (111, VI), (112, V2), ... , (ll n . V n), W = 111112 .. ·lln = VI V2 ... Vn ·

(a) Show that it is undecidable, given a Post correspondence system, to deter
mine whether it has a match. (Start with a restricted version, in which
matches must start with a distinguished pair in P.)

(b) Use (a) above to find an alternative proof of Theorem 5.5.2.

5.5.3. A (nondeterministic) 2-head finite automaton (THFA) consists of a finite
control, an input tape, and two heads that can read but not write on the
tape and move only left to right. The machine is started in its initial state
with both heads on the leftmost square of the tape. Each transition is of
the form (q,a,b,p), where q and p are states, and a and b are symbols or
e. This transition means that M may, when in state q, read a with its first
head and b with its second and enter state p. M accepts an input string by
moving both heads together off the right end of the tape while entering a
designated final state.

(a) Show that it is solvable, given a THFA M and an input string w, whether
M accepts w.

(b) Show that it is unsolvable, given a THFA M, whether there is any string
that M accepts. (Use the previous problem.)

B AN UNSOLVABLE TILING PROBLEM

We are given a finite set of tiles, each one unit square. We are asked to tile the
first quadrant of the plane with copies of these tiles, as shown in Figure 5-1. We
have an infinite supply of copies of each tile.

Figure 5-1

The only restrictions are that a special tile, the origin tile, must be placed
in the lower left-hand corner; that only certain pairs of tiles may abut each other

5.6: An Unsolvable Tiling Problem 263

horizontally; and that only certain pairs of tiles may abut each other vertically.
(Tiles may not be rotated or turned over.) Is there an algorithm for determining
whether the first quadrant can be tiled, given a finite set of tiles, the origin tile,
and the adjacency rules?

This prohlem can be formalized as follows. A tiling system is a quadruple
D = (D, do, H, V), where D is a finite set of tiles, do ED, and H, V C;;; D x D.
A tiling by D is a function f : N x N ..-+ D such that the following hold:

f(O,O) = do,

(f(m, n), f(m + 1, n)) E H

(f(m, n), f(m, n + 1)) E V

for all m,n E N,

for all m,n E N.

Theorem 5.6.1: The problem of determining, given a tiling system, whether
there is a tiling by that system is undecidable.

Proof: We reduce to this tiling problem the problem of determining, given a
Turing machine M, whether M fails to halt on input e. This is simply the
complement of the halting problem, and thus an undecidable problem. If this
problem can be reduced to the tiling problem, the tiling problem is surely un
decidable.

The basic idea is to construct from any Turing machine M a tiling system
D such that a tiling by D, if one exists, represents an infinite computation hy .M
starting from the blank tape. Configurations of M are represented horizontally
in a tiling; successive configurations appear one above the next. That is, the
horizontal dimension represents the tape of M, while the vertical dimension
stands for time. If M never halts on the empty input, successive rows can be
tiled ad infinitum; but if M halts after k steps, it is impossible to tile more than
k rows.

In constructing the relations H and V, it is helpful to think of the edges of
the tiles as being marked with certain information; we allow tiles to abut each
other horizontally or vertically only if the markings on the adjacent edges are
identical. On the horizontal edges, these markings are either a symbol from the
alphabet of M or a state-symbol combination. The tiling system is arranged so
that if a tiling is possible, then by looking at the markings on the horizontal edges
between the nth and (n + l)st rows of tiles, we can read off the configuration
of M after n - 1 steps of its computation. Thus only one edge along such a
border is marked with a state-symbol pair; the other edges are marked with
single symbols.

The marking on a vertical edge of a tile is either absent (it only matches
vertical edges also with no marking) or consists of a state of M, together with
a "directional" indicator, which we indicate by an arrowhead. (Two exceptions

264 Chapter 5: UNDECIDABILITY

are given under (e) below.) These markings on the vertical edges are used to
communicate a left- or right-hand movement of the head from one tile to the
next.

To be specific, let M = (K, y:" 0, s, H). Then V = (D, do, H, V), where D
contains the following tiles:

(a) For each a E y:, and q E K, the tiles illustrated in Figure 5-2, which
simply communicate any unchanged symbols upwards from configuration to con
figuration.

a

D
a

Figure 5-2

(b) For each a E y:, and q E K such that O(q, a) = (p, b), where p E K and
bEy:" the tile shown in Figure 5-3. This tile communicates the head position
upwards and also changes the state and scanned symbol appropriately.

(p,b)

D
(q,a)

Figure 5-3

(c) For each a E y:, and q E K such that O(q, a) = (p, -+) for some p E K, and
for each bEy:, - {t>} ,the tiles shown in Figure 5-4. These tiles communicate head
movement one square from left to right, while changing the state appropriately.
Notice that, naturally enough, we allow no state to enter the left-end symbol t>
from the left.

a (p, b)

EJ
(q,a) b

Figure 5-4

5.6: An Unsolvable Tiling Problem 265

(d) Tiles similar to those of (c) for the case in which 6 (q, a) = (p, +-) are
illustrated in Figure 5-5. The symbol I> is not excepted here.

a (p,b)

[j
(q,a) b

Figure 5-5

These tiles do the bulk of the simulation of M by V. It remains only to
specify some tiles to initiate the computation and ensure that the bottom row
is tiled correctly.

(e) The origin tile do is illustrated in Figure 5-6(a). It specifies on its top
edge the initial state 8 of M and the symbol 1>. That is, instead of having M
start at configuration (8, 1>1J), we instead think that it starts at (8,!:,:); by our
convention concerning 1>, its next configuration will definitely be (8, 1>1J). The
right edge of the origin tile is marked with the blank symbol; this edge can be
matched only by the left edge of our last tile, shown in Figure 5-6(b), which in
turn propagates to the right the information that the top edge of every tile in
the bottom row is marked with the blank.

Figure 5-6

This completes the construction of V. The set of tiles under (e) ensures that
the border between the first two rows is mar ked (8, 1» U U U ... ; the other tiles
force each subsequent border to be marked correctly. Note that no tile mentions
any halt state, so that if M halts after n steps, only n rows can be tiled.

Example 5.6.1: Consider the Turing machine (K,~,6,8,{h}), where ~
{I>,U}, K = {8,h}, and 6 is given by

6(8, 1» = (q, -+),

6(8, U) = (8, +-).

266 Chapter 5: UNDECIDABILITY

(. \
\' , ~ ~

<-f-S

(,\

.'" ~

q r
(. \
\. , . / ~ ~

lW lW

Figure 5-7

This machine simply oscillates its head from left to right and back again, never
moving beyond the first tape square. The tiling of the plane associated with the
infinite computation of M is shown in Figure 5-7.(>

Problems for Section 5.6

5.6.1. Let M = ({s},{a,u,I>},b,s), where b(s,u) = (s,a), and b(s,a) = (s,-+).
Find the set of tiles associated with M via the construction in this section,
and illustrate the first four rows of a tiling of the plane by means of these
tiles.

5.6.2. Show that there is some fixed set of tiles D and adjacency rules H and V
such that the following problem is undecidable: Given a partial tiling, that
is, a mapping f : S .-+ D for some finite subset S C;;; N x N such that f
obeys the adjacency rules, can f be extended to a tiling of the whole plane?

5.6.3. Suppose the rules of the tiling game are changed so that instead of fixing a
particular tile to be placed at the origin, we fix instead a particular set of
tiles and stipulate that only these tiles may be used in tiling the first row.
Show that the tiling problem remains undecidable

5.6.4. Suppose the rules of the tiling game are changed as follows: The tiles are
not perfectly square, but may have various bumps and notches along their
edges. Two tiles may be laid down next to each other only if their edges fit
together perfectly, like pieces of a jigsaw puzzle; and only tiles with perfectly
straight sides can be used at the edges. Show that the tiling problem remains

5.7: Properties of Recursive Languages 267

undecidable, even if we are now allowed to rotate tiles or turn them over.
(There is no specified "origin tile" in this version.)

5.6.5. Suppose that we think of square tiles as being determined by the colors
of their four edges, and that two edges may abut provided that they are
similarly colored. Show that if we are allowed to rotate tiles and turn them
over, then any nonempty set of tiles can be used to tile the entire first
quadrant (even when we continue to require that one special tile be placed
at the origin).

liiJ PROPERTIES OF RECURSIVE LANGUAGES

We have already seen that every recursive language is recursively enumerable,
but the two classes are not the samp: The language H is one that bears witness
to the difference. Which recursively enumerable languages are recursive? There
are many ways to answer this question; we present one next.

Theorem 5.7.1: A language is recursive if and only if both it and its complement
are recursively enumerable.

Proof: If L is recursive, then L is recursively enumerable by Theorem 4.2.1;
also, L is recursive, and hence recursively enumerable, by Theorem 4.2.2.

For the other direction, suppose that L is semidecided by M1 and L is
semidecided by M 2 • Then we can construct a Turing machine M that decides
L. For convenience, we describe M as a 2-tape machine; by Theorem 4.3.1, M
can be simulatpd by a I-tape machine. The machine M begins by putting its
input string w on both tapes and placing its heads at the right ends of both
copies of the input. Then M simulates both M1 and M2 in parallel: at each
step of the operation of lvi, one step of M1 's computation is carripd out on the
first tape, and one step of M 2 's computation is carried out on the second tape.
Since either Ml or M2 must halt on w, but not both, M eventually reaches a
situation in which the simulated version of either MI or M2 is about to halt.
When this happens, M determines which of MI and M2 was about to halt, and
halts on y or n accordingly .•

There is an interesting alternative characterization of recursively enumer
able languages: They are precisely those that can be enumerated by some Turing
machine.

Definition 5.7.1: We say that a Turing machine M enumerates the language
L if and only if, for some fixed state q of M,

L = {w: (s,I>b!) t-A! (q,l>b!w)}.

268 Chapter 5: UNDECIDABILITY

A language is Turing-enumerable if and only if it there is a Turing machine
that enumerates it.

That is, M enumerates L by starting from blank tape and computing away,
periodically passing through a special state q (not a halting state). Entering
state q signals that the string currently on M's tape is a member of L; M
may then leave state q and reenter it later on with some other member of L
on its tape. Notice that the members of L can be listed in any order and with
repetitions.

Theorem 5.7.2: A language is recursively enumerable if and only if it is Turing
enumerable.

Proof: Suppose that L is semidecided by Turing machine M. Then we can
design a machine M' which, instead of taking a string as input, starts from the
empty tape, systematically generates (for instance, in lexicographic order) all
strings over the alphabet of L, and carries out on each the same computation
that M would carry out. Unfortunately, the obvious way to achieve this goal
may not work: Our new machine M' cannot hope to finish its computation on
each string before beginning to work on the next, since it may get "hung up"
forever on some string for which the calculation by M does not terminate, even
though there are other strings M would accept that have not yet been generated.
(This strategy would of course work if L were decided by M; see the proof of the
next theorem.)

The solution is based on a version of the the "dovetailing" procedure we used
in Section 1.4 to show that a union of countably many sets is countable. Instead
of attempting to complete the computation on each string as it is generated, M'
carries out the following sequence of operations:

(Phase 1) First M' carries out one step of the computation of M on the
(lexicographically) first string over the alphabet of M.
(Phase 2) Then it carries out two steps of the computation of M on each of
the first two strings.
(Phase 3) Then it carries out three steps of the computation of M on each
of the first three strings, and so on.

The first time M' discovers that M would accept a string, say WI, M' writes
WI on its tape and pauses in state q to signal that WI E L.

In general, after the ith string in L has been discovered, call it Wi, M' first
displays it at state q, and starts all over from Phase 1, and so on, keeping Wi on
its tape. Whenever it now discovers a string accepted by M, it first compares
it with Wi; if they are unequal, it continues. If it finds that the string just
discovered is the same as Wi, then it looks for the next string accepted by M.

5.7: Properties of Recursive Languages 269

This next string will be Wi+l. Again, Wi+l is displayed at state q, remembered,
and compared. It is clear that any member of L will eventually be displayed.

The other direction is somewhat easier. If M enumerates L, then we can
modify M to semidecide L as follows: Redesign M so that it saves any input
supplied to it before beginning its enumeration process. Furthermore, every
time M would enter the distinguished state q, the modified machine compares
the current tape contents with the saved input string. If a match is found, the
input string is accepted; otherwise, the enumeration process continues. The new
machine then semidecides exactly the language enumerated by M .•

How about recursive languages? It turns out that they can be enumerated
in a more orderly fashion.

Definition 5.7.2: Let M be a Turing machine enumerating a language L. We
say that M lexicographically enumerates L if the following is true, where q is
the special "display" state: Whenever (q, t>Jdw) f-t (q, t>Jdw l

) , then Wi comes lex
icographically after w. A language is lexicographically Turing-enumerable
if and only if it there is a Turing machine that lexicographically enumerates it.

Theorem 5.7.3: A language is recursive if and only if it is lexicographically
Turing-enumerable.

Proof: Suppose that M is a Turing machine that decides L. Then the following
Turing machine MI (which was our first unsuccessful attempt at proving the
same direction of Theorem 5.7.2) lexicographically enumerates L: MI generates
one after the other in lexicographic order all strings in the alphabet of L, and
runs M on each. Whenever M accepts, MI displays the string and continues
to the next one. If M rejects, AIl simply continues to the next string without
passing through the display state.

For the other direction, suppose that L is lexicographically enumerated by
a Turing machine M. There are two cases: If L is finite, then there is nothing to
prove, since in this case L is certainly recursive (as well as context-free, regular,
etc.). So, suppose that L is infinite. The following machine MI decides L: On
input w, start the enumerating machine M. Wait until either w is displayed, or
any string that comes lexicographically after w is displayed. In the first case,
accept w; in the second, reject. Since there are finitely many strings that come
lexicographically before w (fewer than II: + lllwl) and L is infinite, we know that
one of the two will happen .•

Every Turing machine M semidecides a unique language denoted L(M)
-namely, the set of all inputs on which it halts. But L(M) is semidecided
by many other Turing machines, ranging from trivial perturbations of M (for

270 Chapter 5: UNDECIDABILITY

example, a version of M with its states renumbered, or a machine that performs
a meaningless "dance" into new states just before halting, and is otherwise
identical to M) to very subtle variants (the reader should be able to supply
a few). In other words, this function from the set of all Thring machines to
the class of recursively enumerable languages is far from an isomorphism, as it
maps an infinity of wildly different machines to the same language. In fact, we
know that it is undecidable whether two given machines are mapped to the same
language by this mapping. The following result suggests that this mapping is so
complicated, that, in some sense made precise below, all conceivable problems
about it are undecidable.

Theorem 5.7.4 (Rice's Theorem): Suppose that C is a proper, nonempty
subset of the class of all recursively enumerable languages. Then the following
problem is undecidable: Given a Turing machine M, is L(M) E C?

Proof: We can assume that 0 ¢ C (otherwise, repeat the rest of the argument
for the class of all recursively enumerable languages not in C, which is also a
proper, nonempty subset of the recursively enumerable languages). Next, since
C is nonempty, we can assume that there is a language L E C semidecided by
machine ML.

We shall reduce the halting problem to the problem of deciding whether
the language semi decided by a given Thring machine is in C. Suppose then that
we are given a Turing machine M, and input w, and we wish to decide whether
M halts on w. To accomplish this, we construct a 1\uing machine TM,w, such
that the language semi decided by TM,w is either the language L fixed above or
the language 0. On input x, TM,w simulates the universal Turing machine U on
input "AI" "w". If it halts, then TM,w, instead of halting, goes on to simulate
ML on input x: It either halts and accepts, or never halts, depending on the
behavior of ML on x. Naturally, if U("M" "w") =/, TM,w(X) =/ as well. To
review, TM,w is this machine:

TM,w(x) : if U("M" "w") ::f./ then ML(x) else /

Claim: The language semidecided by TM,w is in class C if and only if M halts
on input w.

Notice that the claim states that the construction of TM,w from M and w is
a reduction of the halting problem to the problem of telling, given a Turing
machine, whether the language semidecided by it is in C. This would conclude
the proof of the theorem

Proof of the claim: Suppose that M halts on input w. Then TM,w on input
x determines this, and then always goes on to accept x if and only if x E L.
Hence, in this case, the language semidecided by TM,w is L -which is in C.

5.7: Properties of Recursive Languages 271

Suppose then that M(w) =/. In this case TM,w never halts, and thus Mx
semidecides the language 0, known not to be in C .•

The undecidability of many problems follow from Rice's Theorem: Given a
Turing machine M, is the language semidecided by it, L(M), regular? context
free? finite? empty? ~*? recursive? -and so OIL

Problems for Section 5.7

5.7.1. Show that L is recursively enumerable if and only if, for some nondetermin
istic Turing machine M, L = {w : (8 I> W I-M (h,l>!d.w)},wheres is the initia
state of M.

5.7.2. Show that if a language is recursively enumerable, then there is a Turing
machine that enumerates it without ever repeating an element of the lan
guage.

5.7.3. (a) Let ~ be an alphabet not containing the symbol ";", and suppose that
L ~ ~*; ~* is recursively enumerable. Show that the language L' = {x E
~* : x; y E L for some y E ~*} is recursively enumerable.
(b) Is L' in (a) necessarily recursive if L is recursive?

5.7.4. A grammar is said to be context-sensitive if and only if each rule is of
the form u -+ v , where Ivl 2: lui. A context-sensitive language is one
generated by a context-sensitive grammar.

(a) Show that every context-sensitive language is recursive. (Hint: How long
can derivations be?)

(b) Show that a language is context-sensitive if and only if it is generated by
a grammar such that every rule is of the form uAv -+ uwv, where A is a
nonterminal, and w I- e.

(c) An in-place acceptor (or linear-bounded automaton) is a nondeter
ministic Turing machine such that the tape head never visits a blank square
except for the two immediately to the right and to the left of the input. Show
that a language is context-sensitive if and only if it is semidecided by an
in-place acceptor. (Hint: Both directions are specializations of the proof of
Theorem 4.6.1.)

5.7.5. The class of context-sensitive languages introduced in the previous prob
lem, and characterized alternatively by nondeterministic in-place Turing
acceptors in Part (c) above, completes the Chomsky hierarchy, an influ
ential framework for thinking about the expressiveness of language genera
tors and the power of automata, proposed by the linguist Noam Chomsky
in the 1960s. The Chomsky hierarchy consists of these five classes of lan
guages, in the order in which they were introduced in this book: regular lan
guages, context-free languages, recursive languages, recursively enumerable

272 Chapter 5: UNDECIDABILITY

languages, context-sensitive languages. Arrange these classes of languagps
in order of increasing generality (so that each class in the list properly in
cludes all previous ones), and write next to each the corresponding class of
automata and/or grammars.

5.7.6. Suppose that f : ~o 1--+ ~i is a recursive onto function. Show that there is
a recursive function g : ~i 1--+ ~o such that f(g(w)) = w for each w E ~o·

5.7.7. Show that it is undecidable to tell whether the language semidecided by a
gi ven Turing machine is

(a) finite.
(b) regular.
(c) context-free.
(d) recursive.
(e) equal to the language {ww R : wE {a,b}*}.

5.7.8. The nonrecursive languages L exhibited in this chapter havp the property
that either L or L is recursively enumerable.

(a) Show by a counting argument that there is a language L such that neither
L nor L is recursively enumerable.

(b) Give an example of such a language.

5.7.9. This problem continues Problem 3.i.1D: Extend the Venn diagram of the
(a) regular, (b) context-free, (c) deterministic context-free, and (d) comple
ments of context-free languages, to include the following three new classes:
(e) recursi ve,
(f) recursively enumerable,
(g) complements of recursively enumerable languages.

Give an example of a language in each region of the Venn diagram.

5.7.10. Describe a Turing machine M that has the property that, on any input,
it outputs "M" -its own description. (Hint: First write a program in
a programming language that prints itself. Or, for a more complicated
argument, see the next problem.)

5.7.11. (a) Argue that there is a Turing machine G which, when presented with the
description of a Turing machine M. it computes the description of another
Turing machine M2, which on any input x first simulates M on input "M",
and then, if M halts with a valid description of a Turing machine N on its
tape, it simulates N OIl input x.
(b) Argue that there is a Turing machine C which, when presented with
the description of two Turing machines Ml and M2 • it computes the Turing
machine that is the composition of Ml and M2; that is, the machine which,
on any input x, first simulates M2 on x, and then it simulates Ml on the
result.

References 273

(c) Suppose that M is a Turing machine which, when its input is a valid
description of a Turing machine, it outputs another valid description of a
Turing machine. Show that any such M has a jixpoint, that is, a Turing ma
chine F with the property that F and the machine represented by M ("F")
behave exactly the same on all inputs. (Suppose that the composition -
recall Part (b)- of M and G -recall Part (a)- is presented as an input
to G. Check that the machine whose description is output is the required
fixpoint F.)
(d) Let M be any Turing machine. Argue that there is another Turing
machine M' with the following property: For any input x, if M halts on
input x with output y, then M' also halts on input x, and its output is
y"M'" -that is, M' pads the output of M with its own description, its
"signat ure."

REFERENCES

The undecidability of the halting problem was pr'oved by A. M. Turing in his 1936 paper
referenced in the pr'cvious chapter. The undecidability of problems related to context
free grammars was proved in the paper by Bar-Hilel, Perles, and Shamir cited at the
end of Chapter 3. 1'ost's correspondence problem (see Problem 5.5.2) is from

o E. L. Post "A variant of a recursively unsolvable problem," Bulletin of the Amer
ical Math. Society, 52, pp. 264-268, 1946.

The Chomsky hierarchy (see Problem 5.7.5) is due to Noam Chomsky

o N. Chomsky "Three models for the description of language," IRE Transactions
on Information Theory, 2, 3, pp.113-124, 1956.

The tiling problem (Section 5.6) is from

o H. Wang "Proving theorems by pattern recognition," Bell System Technical
Journal, 40, pp. 1-141,1961.

For many more unsolvable problems, see the rcjerences of the last chapter", especially
the books by Marlin Davis.

6 Computational Complexity

6.1 THE CLASS P

In the previous chapter we saw that there exist well-defined decision problems
that cannot be solved by algorithms, and gave some specific examples of such
problems. We can therefore classify all computational problems into two cate
gories: those that can be solved by algorithms, and those that cannot. With
the great advances in computer technology of the last few decades, one may
reasonably expect that all the problems of the former type can now be solved in
a satisfactory way. Unfortunately, computing practice reveals that many prob
lems, although in principle solvable, cannot be solved in any practical sense by
computers due to excessive time requirements.

Suppose that it is your task to schedule the visits of a traveling sales rep
resentative to 10 regional offices. You are given a map with the 10 cities and
distances in miles, and you are asked to produce the itinerary that minimizes
the total distance traversed. This is surely the kind of task that you would like
to use a computer to solve. And, from a theoretical standpoint, the problem is
certainly solvable. If there are n cities to visit, the number of possible itineraries
is finite -to be precise, (n-1)!, that is, 1·2·3··· (n-1). Hence an algorithm can
easily be designed that systematically examines all itineraries in order to find
the shortest. Naturally, one can even design a Turing machine that computes
the shortest tour.

Still, one gets an uneasy feeling about this algorithm. There are too many
tours to be examined. For our modest problem of 10 cities, we would have to
examine 9! = 362,880 itineraries. With some patience, this can be carried out
by a computer, but, what if we had 40 cities to visit? The number of itineraries
is now gigantic: 39!, which is larger than 1045 . Even if we could examine 1015

tours per second -a pace that is much too fast even for the most powerful

275

276 Chapter 6: COMPUTATIONAL COMPLEXITY

supercomputers, existing or projected -the required time for completing this
calculation would be several billion lifetimes of the universe!

Evidently, the fact that a problem is solvable in theory does not imme
diately imply that it can be solved realistically in practice. Our goal in this
chapter is to develop a formal mathematical theory -a quantitative refinement
of the Church-Turing thesis- that captures this intuitive notion of "a practi
cally feasible algorithm." The question is, which algorithms - -and which Turing
machines- - should we consider as practically feasible?

As the introductory example of the TRAVELING SALESMAN PROBLEM re
veals, the limiting parameter here is the time or number of steps required by
the algorithm on a given input. The (n - I)! algorithm for the TRAVELING

SALESMAN PROBLEM was deemed unrealistic exactly because of the excessive
exponential growth of its time requirements (it is easy to see that the function
(n -I)! grows even faster than 2n). In contrast, an algorithm with a polynomial
rate of growth, like the algorithms we have developed in various parts of this
book, would obviously be much more attractive.

It seems that, in order to capture the notion of "practically feasible algo
rithm" we must limit our computational devices to only run for a number of
steps that is bounded by a polynomial in the length of the input. But which
computational devices exactly should we choose as the basis of this important
theory? The Turing machine, its multitape variant, the multidimensional one,
or perhaps the random access model? The simulation results in Section 4.3
tell us that, since we are interested in polynomial growths, the choice does not
matter -as long as we leave out the nondeterministic model with its apparent
exponential power, recall Section 4.5 and see Section 6.4. If a Turing machine of
anyone of these deterministic kinds halts after a polynomial number of steps,
there is an equivalent Turing machine of any other kind which also halts after a
polynomial number of steps -only the polynomials will differ. So we might as
well settle on the simplest model, the standard Turing machine. This "model
independence" is an important side benefit of the choice of the polynomial rates
of growth as our concept of "efficiency."

We are therefore led to the following definition:

Definition 6.1.1: A Turing machine M = (K,"Y:., 15, s, H) is said to be polyno
mially bounded if there is a polynomial p(n) such that the following is true:
For any input x, there is no configuration C such that (s, l>!Jx) f-~Ixll+l C. In
other words, the machine always halts after at most p(n) steps, where n is the
length of the input.

A language is called polynomially decidable if there is a polynomially
bounded Turing machine that decides it. The class of all polynomially decidable
languages is denoted P.

6.1: The Class P 277

Our quantitative refinement of the Church-Turing thesis can now be stated
as follows: Polynomially bounded Turing machines and the class P adequately
capture the intuitive notions, respectively, of practically feasible algorithms and
r-ealistically solvable problems.

In other words, we are proposing P as the quantitative analog of the class
of recursive languages. In fact, P does indeed have some of the properties of the
class of recursive languages:

Theorem 6.1.1: P is closed under complement.

Proof: If a language L is decidable by a polynomially bounded Turing machine
M, then its complement is decided by the version of M that inverts y and n.
Obviously, the polynomial bound is unaffected .•

Moreover, we can use diagonalization to exhibit certain simple recursive
languages that are not in P. Consider the following quantitative analog of the
"halting" language H (recall Section 5.3):

E = {"M" "w" : M accepts input w after at most 21wl steps}.

Theorem 6.1.2: E f. P.

Proof: The proof mimics rather faithfully that of the undecidability of the
halting problem (Theorem 5.3.1). Suppose that E E P. Then the following
language is also in P:

I" "1 E1 ={"M" : M accepts "M" after at most 2 M steps},

and, by Theorem 6.1.1 so is its complement, E1 . Therefore, there is a Turing
machine M* accepting all descriptions of Turing machines that fail to accept
their own description within time 2n (where n is the length of the description);
M* rejects all other inputs. Furthermore, M* always halts within p(n) steps,
where p(n) is a polynomial. We can assume that M* is a single-tape machine
because, otherwise, it can be converted to one with no loss of the polynomial
property.

Recall that, since p(n) is a polynomial, there is a positive integer no such
that p(n) ~ 2n for all n 2 no. Furthermore, we can assume that the length of
the encoding of M* is at least no, that is, I "M*" I 2 n~. If not, we can add to
M* no useless states that are never reached in a computation.

The question is now this: What does M* do when presented with its own
description, "M*"? Does it accept or reject? (It was constructed so that it does
one of the two.) Both answers lead to a contradiction: If M* accepts "M*" ,then

278 Chapter 6: COMPUTATIONAL COMPLEXITY

since M* decides E l , this means that M* does not accept "M*" within 21"M*"1
steps; but M* was constructed so that it always halts within p(n) steps on inputs

I" " of length n, and 2 M* 1 > p(I" M*" !); so it must reject. Similarly, by assuming
that M* rejects its own description, we deduce that it accepts it. Since the only
assumption that led to this contradiction was that E E P, we must conclude
that E f. P .•

Problems for Section 6.1

6.1.1. Show that P is also closed under union, intersection, and concatenation.

6.1.2. Show that P is closed under Kleene star. (This is harder than the proofs
of the closure properties in the previous problem. To tell whether x E L*
for some L E P, you have to consider all substrings of x, starting with the
ones of length one and progressing towards longer and longer ones -very
much like the dynamic programming algorithm for context-free recognition;
recall Section 3.6.)

B PROBLEMS, PROBLEMS ...

How well does the class P capture the intuitive notion of "satisfactorily solvable
problem?" How widely accepted is the thesis that polynomial algorithms are
precisely the empirically feasible ones? It is fair to say that, while it is the only
serious proposal in this arena, it can be challenged on various grounds t. For
example, it can be argued that an algorithm with time requirements n lOO

, or
even IO lOO n 2 , is not at all "practically feasible," even though it is a polynomial
time one. Also, an algorithm with time requirements nloglogn may be considered
perfectly feasible in practice, despite the fact that its growth is not bounded by
any polynomial. The empirical argument in defense of our thesis is that such
extreme time bounds, though theoretically possible, rarely come up in proctice:
Polynomial algorithms that arise in computational practice usually have small
exponents and palatable constant coefficients, while nonpolynomial algorithms
are usually hopelessly exponential, and are therefore of quite limited use in
practice.

t But even the Church-Turing thesis was challenged extensively during its time,
and in fact from both sides: There were mathematicians who thought that Turing
decidability is too restricted a notion, while others opined that it is too liberal.
In fact, complexity theory, the subject of this and the next chapter, can be seen
as the latest and most serious challenge of the latter type.

6.2: Problems, problems ... 279

A further criticism of our thesis is that it categorizes an algorithm based
only on its worst-case performance (the largest running time over all inputs of
length n). Arguably, an average-case approach -for example, insisting that the
time requirements of a Turing machine, when averaged over all possible inputs
of length n, be bounded by p(n)- would be a better predictor of the practical
utility of the algorithm. Although average-case analysis seems a very reasonable
alternative, it is in fact itself open to even more devastating challenges. For
example, which distribution on the inputs should we adopt in our average-case
analysis? There seems to be no satisfactory answer.

Despite these reservations, however, polynomially bounded computation is
an appealing and productive concept, and it leads to an elegant and useful theory.
By focusing on the gray areas on its boundary, one often forgets what a useful
classification tool it is, that it includes mostly practically feasible algorithms,
and excludes mostly impractical ones. But the best way to get acquainted with
polynomial-time computation, its true scope, and its limitations, is to introduce
a variety of interesting computational problems that are known to belong in P.
It is also instructive to contrast such problems with certain examples of stubborn
problems that do not seem to be in P. Often the difficult and the easy problems
look very similar.

We have already seen some very interesting specimens and subclasses of P.
For example, all regular languages and all context-free languages belong there
(recall Theorems 2.6.2 and 3.6.1, part (c)). We also know that the refiexive
transitive closure of a relation can be computed in polynomial time (Section
1.6). We next examine an interesting variant of this latter problem.

The reachability problem is the following

REACHABILITY: GivenadirectedgraphG ~ VxV, where V = {Vl,""V n }

is a finite set, and two nodes Vi,Vj E V, is there a path from Vi to Vj?

(All graphs mentioned in the context of computational problems are, of course
finite.) Is REACHABILITY in P? Strictly speaking, since P contains only lan
guages, REACHABILITY has no business there. REACHABILITY is what we call
a problem. A problem is a set of inputs, typically infinite, together with a
yes-or-no question asked of each input (a property an input mayor may not
have). In the example of REACHABILITY the set of inputs is the set of all triples
(G, Vi, Vj), where G is a finite graph, and Vi, Vj are two nodes of G. The question
asked is whether there is a path from Vi to Vj in G.

This is not the first time that we see problems. The HALTING PROBLEM

is definitely a problem: Its inputs are Turing machines and strings, and the
question asked is whether the given Turing machine halts when started on this
input string:

HALTING PROBLEM: Given a Turing machine M and an input string w, does
AI accept w?

280 Chapter 6: COMPUTATIONAL COMPLEXITY

In Chapter 5 we studied the HALTING PROBLEM in terms of its "linguistic sur
rogate," the language

H = {"M" "w" : Turing machine M halts on string w}.

Similarly, we can study the REACHABILITY problem in terms of the language

R = {t;;(G)b(i)b(j): There is a path from Vi to Vj in G},

where b(i) denotes the binary encoding of integer i, and t;; is some reasonable
way of encoding graphs as strings. Several natural encodings of graphs come
to mind. Let us agree to encode a graph G ~ V x V by its adjacency matrix,
linearized as a string (recall Example 4.4.3 and Figure 4-21). One of the main
points that will emerge from the discussion that follows is that the precise details
of encodings rarely matter.

Languages encode problems. But of course also any language L ~ ~* can
be thought of as a problem:

THE DECISION PROBLEM FOR L: Given a string x E ~*, is x E L?

It is productive to think of a problem and the associated language interchange
ably. Languages are more appropriate in connection to Turing machines, while
problems are more clear statements of practical computational tasks of interest,
for which we must develop algorithms. In the following pages we shall introduce
and discuss extensively many interesting problems; we shall treat a problem and
the corresponding language as two different aspects of the same thing. For ex
ample, we shall next point out that REACHABILITY is in P. By this we mean
that the corresponding language R, defined above, is in P.

Indeed, REACHABILITY can be solved by first computing the reflexive
transitive closure of G, in time O(n3) by the random access Turing machine
of Example 4.4.3. Inspecting the entry of the reflexive-transitive closure of G
that corresponds to Vi and Vj would then tell us whether there is a path from
Vi to Vj in G. Since we know that random access machines can be simulated by
ordinary Turing machines in polynomial time, it follows that REACHABILITY is
in P.

Notice that, since we are only interested in determining whether the time
bound is or is not a polynomial, we felt free to express it as a function not of the
length of the input, which is m = 1t;;(G)b(i)b(j)I, but as a function of n = lVI,
the number of nodes: Since it is easy to see that m = O(n3), this is yet another
inconsequential inaccuracy, one that will not interfere with the issues that we
deem important.

Eulerian and Hamiltonian Graphs

Historically the first problem concerning graphs, studied and solved by the great
mathematician of the eighteenth century Leonard Euler, is this:

6.2: Problems, problems ... 281

EULER CYCLE: Given a graph G, is there a closed path in G that uses each
edge exactly once?

The path sought can go through each node many times (or even not at all,
if the graph has isolated nodes, nodes without edges in or out of them). A
graph that contains such a path is called Eulerian or unicursal. For exam
ple. the graph shown in Figure 6-1(a) is Eulerian while the graph in Figure I
6-1(b) is not.

(a) (b)

Figure 6-1

It is not difficult to see that EULER CYCLE is in P -by this we mean, of
course, that the corresponding language

L = {I£(G) : G is Eulerian}

is in P. This follows from the following neat characterization of Eulerian graphs
due to, well, Euler. Call a node in a graph isolated if and only if it has no edges
incident upon it.

A graph G is Eulerian if and only if it has the following two properties:
(a) For any pair of nodes u, v E V neither of whieh is isolated, there is a path

from u to v; and
(b) All nodes have equal numbers of incoming and outgoing edges.

It is rather immediate that both conditions are necessary for the graph to
be Eulerian. We leave the proof of sufficiency as an exercise (Problem 6.2.1).

It is thus very easy to test whether a graph is Eulerian: We first make sure
that all nodes, except for any isolated ones, are connected; this can be done in
polynomial time by computing the reflexive-transitive closure of the graph, and

282 Chapter 6: COMPUTATIONAL COMPLEXITY

then testing whether all nodes except for the isolated ones are connected in all
possible ways (after all, the reflexive-transitive closure of a graph contains the
answer to all possible connectivity questions on the graph). We know that the
reflexive-transitive closure can be computed in a polynomial number of steps.
We then test whether all nodes have an equal number of incoming and outgoing
edges -this can be obviously done in polynomial time as well.

Incidentally, this is an instance of a pattern that will be repeated ad nauseam
in the next pages: We show that a problem (EULER CYCLE) is in P by using the
previously established fact that another problem (in our case REACHABILITY)

in P -that is, by reducing it to an already solved problem.
Perhaps the main point of this and the next chapter is that there are many

natural, decidable, simply stated problems that are not known 01' believed to be
in P. Very often, such a problem is very similar to another that is known to be
in P! Consider, for example, the following problem, studied by another famous
mathematician, this time of the nineteenth century, William Rowan Hamilton
-and many mathematicians after him:

HAMILTON CYCLE: Given a graph G, is there a cycle that passes through
each node of G exactly once?

Such a cycle is called a Hamilton cycle, and a graph that has one is called
Hamiltonian. Notice the difference: Now it is the nodes, not the edges, that
must be traversed exactly once; not all edges need be traversed. For example,
the graph in Figure 6-1(b) is Hamiltonian but not Eulerian, while the one in
Figure 6-1(a) is both Eulerian and Hamiltonian.

Despite the superficial similarity between the two problems EULER CYCLE

and HAMILTON CYCLE, there appears to be a world of difference between them.
After one and a half centuries of scrutiny by many talented mathematicians, no
one has discovered a polynomial algorithm for HAMILTON CYCLE. Naturally, the
following algorithm does solve the problem:

Examine all possible permutations of the nodes;
for each test whether it is a Hamilton cycle.

Unfortunately it fails to be polynomial, as do all simple ways of improving
it and speeding it up.

Optimization Problems

The TRAVELING SALESMAN PROBLEM, introduced informally in the beginning
of this chapter, is another simply stated problem for which, despite intense
research efforts over several decades, no polynomial-time algorithm is known.
We are given a set {Cl' C2, ... , cn } of cities, and an n x n matrix of nonnegative
integers d, where d;j denotes the distance between city Ci and city Cj. We are
assuming that d;i = 0 and dij = dji for all i,j. We are asked to find the shortest

6.2: Problems, problems ... 283

tour of the cities, that is, a bijection 7r from the set {I, 2, ... , n} to itself (where
7r(i) is, intuitively, the city visited ith in the tour), such that the quantity

c(7r) = d7r (1)7r(2) + d7r (2)7r(3) + ... + d7r(n-l)7r(n) + d7r (n)7r(l)

is as small as possible.
There is a serious obstacle for studying the traveling salesman problem

within our framework of problems and languages: Unlike all other problems we
have seen in this chapter, the traveling salesman problem is not the kind of
problem that requires a "yes" or "no" answer and can therefore be studied in
terms of a language. It is an optimization problem, in that it requires us to find
the best (according to some cost function) among many possible solutions.

There is a useful general method for turning optimization problems into
languages, so that we can study their complexity: Supply each input with a
bound on the cost function. In this case, consider the following problem:

TRAVELING SALESMAN PROBLEM: Given an integer n 2 2, an n x n distance
matrix dij , and an integer B 2 0 (intuitively, the budget of the traveling
salesman) find a permutation 7r of {I, 2, ... , n} such that c(7r) ::; B.

If we could solve the original optimization problem in polynomial time, that is, if
we had an algorithm for computing the cheapest tour, then obviously we would
be able to solve this "budget" version in polynomial time as well: Just compute
the cost of the cheapest tour and compare it with B. Thus, any negative result
about the complexity of the TRAVELING SALESMAN PROBLEM as defined just
now will reflect negatively on our prospects for solving the original, optimization
version of the problem.

We shall use this maneuver to bring many interesting optimization problems
within our language framework. In the case of maximization problems we do not
supply a budget B but instead a goal K. For example, the following is an
important maximization problem transformed this way:

INDEPENDENT SET: Given an undirected graph G and an integer K 2 2, is
there a subset C of V with 101 2 K such that for all Vi, Vj E C, there is no
edge between Vi and Vj?

INDEPENDENT SET is yet another natural and simply stated problem for which,
despite prolonged and intense interest by researchers, no polynomial-time algo
rithm has been found.

Let us introduce two more optimization problems on undirected graphs.
The next problem is in some sense the exact opposite of INDEPENDENT SET:

CLIQUE: Given an undirected graph G and an integer K 2 2, is there a
subset C of V with 101 2 K such that for all Vi, Vj E C, there is an edge
between Vi and Vj?

284 Chapter 6: COMPUTATIONAL COMPLEXITY

For the next problem, let us say that a set of nodes covers an edge if it
contains at least one endpoint of the edge.

NODE COVER: Given an undirected graph G and an integer B 2 2, is there
a subset C of V with 101 ::; B such that C covers all edges of G?

We can think of the nodes of an undirected graph as the rooms of a museum,
and each edge as a long straight corridor that joins two rooms. Then the NODE

COVER problem may be useful in assigning as few as possible guards to the
rooms, so that all corridors can be seen by a guard.

To illustrate these interesting problems, the largest independent set of the
graph in Figure 6-2 has three nodes; the largest clique has four nodes; and
the smallest node cover has six nodes. Can you find them? Can you convince
yourself that they are optimal?

Figure 6-2

Integer Partitions

Suppose that we are given several positive integers, say 38,17,52,61,21,88,25.
We are asked whether they can be divided into two disjoint sets, which include
between them all numbers, and both add up to the same number. In the above

6.2: Problems, problems ... 285

example the answer is "yes," because 38 + 52 + 61 = 17 + 21 + 88 + 25 = 151.
The general problem is this:

PARTITION: Given a set n nonnegative integers al, ... , an represented in
binary, is there a subset P ~ {I, ... , n} such that LiEP ai = LiltP ai?

This problem can be solved by a simple algorithm explained next. First, let H
be the sum of all integers in S divided by 2 (if this number is not an integer,
then the numbers in S add up to an odd number and cannot be partitioned into
two equal sums; so we can already answer "no"). For each i, ° ~ i ~ n, define
this set of numbers:

B(i) = {b S H : b is the sum of some subset of the numbers {al, ... , ain.

If we knew B(n), we could solve the PARTITION problem easily by just testing
whether H E B(n). If so, there is a partial sum that adds up to H and the
answer is "yes"; otherwise, the answer is "no."

But notice that B(n) can be computed by the following algorithm:

B(O) := {a}.
for i = 1,2, ... , n do

B(i) := B(i - 1),
for j = ai, ai + 1, ai + 2, ... , H do

if j - ai E B(i - 1) then add j to B(i)

For example, in the instance of PARTITION shown above, with al = 38, a2 = 17,
a3 = 52, a4 = 61, a5 = 21, a6 = 88, a7 = 25, the B(i) sets are as follows:

B(O) ={O}

B(l) ={O, 38}

B(2) ={O, 17, 38, 55}

B(3) ={O, 17,38,52,55,69,90, 107}

B(4) ={O, 17,38,52,55,61,69,78,90,107,113,116,130, 151}

B(5) ={0,17,21,38,52,55,59,61,69, 73,76, 78,82,90,99,107,111,113,116,128,

130, 134, 137, 151}

B(6) ={O, 17, 21, 38, 52, 55, 59, 61, 69, 73, 76, 78, 82, 88, 90, 99,105,107,109,111,

113,116,126,128,130,134,137,140,143,147, 149, 151}

B(7) ={O, 17,21,25,38,42,46, 52, 55,59,61,63,69, 73, 76, 77,78,80,82,84,86,

88,90,94,98,99,101,103,105,107,109,111,113,115,116,124,126,128,

130, 132,134, 136,137, 138, 140, 141, 143, 147, 149,151}

This instance of PARTITION is a "yes" instance, because the half-sum H = 151
is contained in B(7).

286 Chapter 6: COMPUTATIONAL COMPLEXITY

It is easy to prove by induction on i that this algorithm correctly computes
B(i), for i = 0, ... , n, and does so in O(nH) time (see Problem 6.2.5). Have we
then proved that PARTITION is in P?

The bound O(nH), despite its perfectly polynomial appearance, is not poly
nomial in the length of the input. The reason is that the integers aI, ... ,an are
given in binary, and thus their sum will in general be exponentially large when
compared to the length of the input. For example, if all n integers in an instance
of PARTITION are about 2n , then H is approximately ~ 2n , while the length of
the input is only O(n2). In fact, PARTITION is one of the notoriously hard
problems, including the TRAVELING SALESMAN PROBLEM, HAMILTON CYCLE,

and INDEPENDENT SET, for which no true polynomial algorithm is known or
expected any time soon (and which are the subject of the next chapter).

However, the above algorithm does establish that the following problem is
indeed in P.

UNARY PARTITION: Given a set of n natural numbers {al, ... , an} repre
sented in unary, is there a subset P <;;;; {I, ... , n} such that LiEP ai =

Liltpai?

This is because the input of the unary version has length about H, and so the
O(nH) algorithm suddenly becomes "efficient."

This pair of problems, PARTITION and UNARY PARTITION, with their con
trasting complexity, illustrates the following important fact about input repre
sentations: The precise representation of mathematical objects such as graphs,
automata, Turing machines, and so on, as inputs to problems makes little differ
ence in the membership of the corresponding language in P, because the lengths
of all reasonable representations of the same object are related by a polynomial.
The only encoding convention whose violation leads to misleading results, is that
integers should be encoded in binary, t and not in unary.

Equivalence of Finite Automata

In Chapter 2 we saw that the following important problem concerning finite
automata is in P (Theorem 2.6.1, part (e)):

EQUIVALENCE OF DETERMINISTIC FINITE AUTOMATA: Given two deter
ministic finite automata Ml and M2, is L(Md = L(M2)?

In contrast, we noticed that we only know how to test nondeterministic finite
automata for equivalence in exponential time. That is, we do not know whether
either of the following two problems is in P:

t Or in decimal, hexadecimal, or in any other radix system; all such representations

of the same integer have lengths that are constant multiples of each other.

6.2: Problems, problems ... 287

and

EQUIVALENCE OF NONDETERMINISTIC FINITE AUTOMATA: Given two non
deterministic finite automata Ml and M 2, is L(Md = L(M2)?

EQUIVALENCE OF REGULAR EXPRESSIONS: Given two regular expressions
Rl and R 2, is L(Rl) = L(R2)?

One could solve either problem by transforming the two given nondetermin
istic automata (or regular expressions) to deterministic ones (Theorem 2.6.1),
and then checking the resulting deterministic automata for equivalence. The
problem is, of course, that the transformation from regular expressions or non
deterministic automata to deterministic may increase exponentially the number
of states of the automaton (recall Example 2.5.4). Hence this approach fails to
establish that either one of EQt:IVALENCE OF NONDETERMINISTIC FINITE AU

TOMATA and EQUIVALENCE OF REGULAR EXPRESSIONS is in P -as do, in fact,
far more sophisticated approaches.

Problems for Section 6.2

6.2.1. Show that a graph is Eulerian if and only if it is connected and the in
degree of each node equals its out-degree. (Hint: One direction is easy.
For the other, start at a node, and traverse an edge to get to another node.
Continue traversing new edges until you cannot find a new one; at this point
you are back at the starting node (why?). Show how you can start again
and traverse the pieces of the graph you have left untraversed.)

6.2.2. Prove that the algorithm given in the text solves PARTITION in O(nH)
steps.

6.2.3. Solve the traveling salesman problem for five cities A, B, C, D, and E with
the following diHtance matrix:

BCD E

~c ~ ~ n
6.2.4. We study optimization problems in terms of their language versions, defined

in terms of a "budget" B or "target" K. Choose one of the optimization
problems introduced in this section, and show that there is a polynomial
algorithm for the original problem if and only if there is one for the "yes-no"
version. (One direction is trivial. For the other, binary search is needed,
plus a property of these problems that might be called self-reducibility.)

288 Chapter 6: COMPUTATIONAL COMPLEXITY

'""'

v
) (

'-

6.2.5. Does the undirected graph above have a Hamilton cycle? What is the largest
clique, largest independent set, and smallest node cover of this graph?

B BOOLEAN SATISFIABILITY

In the previous section we saw many interesting computational problems that
are in P, and some others that are suspected not to be in P. But perhaps the
most fundamental problems of both kinds are related to Boolean logic.

Boolean logic is a familiar mathematical notation for expressing compound
statements such as "either it is not raining now or the cane is not in the corner."
In Boolean Logic we use Boolean variables Xl, X2, ... to stand for the indi
vidual statements such as "it is raining now." That is, each variable denotes a
statement that can in principle be true or false independently of the truth value
of the others. We then use Boolean connectives to combine Boolean variables
and form more complicated Boolean formulae. For our purposes in this book
we need only consider Boolean formulae of a specific kind, defined next.

Definition 6.3.1: Let X = {Xl, X2, ... Xn} be a finite set of Boolean vari-
ables, and let X = {Xl, X2, ... X,,}, where the Xl, X2, ... ,X" are new symbols
standing for the negations, or opposites, of Xl, X2, ... ,X". 'Ve call the el-
ements of X U X literals; variables are positive literals, whereas negations
of variables are negative literals. A clause C is a nonempty set of literals:
C ~ Xu X. Finally, a Boolean formula in conjunctive normal form (or

6.3: Boolean Satisfiability 289

simply Boolean formula, since we shall treat no other kind in this book) is a
set of clauses defined on X.

Example 6.3.1: Let X = {Xl,X2,X3}, and therefore X = {Xl,X2,Xs}. C l =
{Xl, X2, X3} is a clause. Although a clause is a set of literals, we shall employ a
special notation when writing clauses: We shall use parentheses instead of our
usual set brackets; and we shall separate the various literals in the clause (if there
are more than one) by the delimiter V (pronounced or), instead of a comma.
As always with sets, order is not important, and repetition of elements is not
tolerated. For example, the clause C above will be written C = (Xl V X2 V X3).

The following is a Boolean formula in conjunctive normal form:

(1)

It consists of three clauses, one of which is C above.<)

Definition 6.3.2: So far we have only defined the syntax, or apparent structure,
of Boolean formulae. We next define the semantics, or meaning, of such a
formula. Let F be a Boolean formula in conjunctive normal form defined over
the variables in X = {Xl, X2, ... x n }. A truth assignment for F is a mapping
from X to the set {T, J.. }, where T and J.. are two new symbols pronounced
true and false, respectively. We say that a truth assignment T satisfies F if
the following holds: For each clause C E F there is at least one variable Xi such
that either (a) T(Xi) = T, and Xi E C, or (b) T(Xi) = J.., and Xi E C. That is,
a clause is satisfied if it contains at least one true literal, where Xi is considered
true if and only if T(Xi) = T, and Xi is considered true if and only if T(Xi) = ...L.

Finally, F is called satisfiable if there is a truth assignment that satisfies
it.

Example 6.3.2: The Boolean formula F in (1) above is satisfied by the truth
assignment T, where T(xd = J.., T(X2) = T, and T(X3) = T. This truth
assignment satisfies the clause C1 = (Xl V X2 V X3) because T(X3) = T, and
X3 E C1; T satisfies the clause C2 = (xd because Xl E C2, and T(xd = J..; and
it finally satisfies the third clause C3 = (X2 V X2) (this is not too surprising, as
any truth assignment would satisfy C3). There are many truth assignments that
fail to satisfy F: For example, any truth assignment T' with T'(xt) = J.. would
fail to satisfy C2 and thus fail to satisfy F. Still, F is satisfiable, because there
is at least one truth assignment that satisfies it.<)

Example 6.3.3: Consider now this formula:

290 Chapter 6: COMPUTATIONAL COMPLEXITY

Is it satisfiable? The correct answer here is "no." Let us prove it.
The clause (Xl V X2 V X3) requires that at least one of the variables Xl, X2,

and X3 be T. Similarly, the last clause requires that at least one of them be .1.
Consider then the remaining three clauses, and suppose that T(xt) = T. Then
in order for the clause (Xl V X2) to be satisfied, T(X2) must be T; and to satisfy
(X2 V X3) we must have T(X3) = T. On the other hand, if T(xt) = .1 then
the (X3 V xt) clause forces T(X3) to be .1, and the (X2 V X3) clause then makes
T(xz) necessarily .i. So, no matter what T(Xl) is, the truth values of the three
variables must be the same if the formula is to be satisfied.

To summarize, for a truth assignment to satisfy pi it must (a) map at
least one variable to T; (b) map at least one variable to .1; and (c) map all
three variables to the same truth value. This is clearly impossible, and thus pi
encodes a contradiction: It is unsatisfiable.<)

This suggests the following important problem:

SATISFIABILITY: Given a Boolean formula F in conjunctive normal form, is
it satisfiable?

As it perhaps became apparent in the previous example, it is a fairly tricky
problem. Indeed, there is no known polynomial-time algorithm to date for this
fundamental and very well-studied problem, and it is widely believed that no
such algorithm exists.

2-SATISFIABILITY
Suppose that we restrict the instances of SATISFIABILITY to ones in which all
clauses have two or fewer literals. What results is a new problem, which we call
2-SATISFIABILITY. We say that 2-SATISFIABILITY is a special case of SATISFIA

BILITY. By this we mean that the set of all possible inputs is a subset of the set
of inputs for SATISFIABILITY, and the answers to each common input in the two
problems are the same. A typical instance of 2-SATISFIARILITY is shown below.

We shall next describe a sensible method for searching for a satisfying truth as
signment for such a formula. During the course of our method, several variables
will have been assigned T or .1, while the rest are not yet assigned. Initially no
variable is assigned a truth value.

Suppose that there is in our formula a clause with just one literal, say the
third clause (xd in the example in (2). Then clearly this literal must be T
in any satisfying truth assignment, and therefore we can immediately decide
on the value of this variable. That is, in our example we immediately decide

6.3: Boolean Satisfiability 291

that T(xt) = T, and proceed. Now that we know that T(xt) = T, we can omit
from the formula all clauses that contain Xl as one of their literals, because these
clauses are already satisfied (in our example we omit the first clause). If however
a clause contains the opposite literal Xl, then we omit the literal from the clause,
because this literal is ..1 and thus it is of no use in satisfying the clause. In our
example, the first clause is omitted, and the fourth clause is replaced by (X2).
Thus, assigning a truth value to a literal that appears alone in a clause, may
result in new single-literal clauses, and we must repeat (in our example (2) we
next set T(X2) = ..i).

We call this process of pursuing one-literal clauses until none exists a purge.
If at any point of the purge the empty clause is produced -presumably because
both clauses (Xi) and (Xi), for some i, were present at the previous step- then
we say that the purge has failed. In any event, after O(n) steps of this sort,
where n is the number of clauses in the given formula, the purge must indeed
either fail (in which case we decide that the formula is unsatisfiable), or halt
with a set of clauses each of which has two distinct literals. In (2), for example,
the initial purge ends up setting T(xt) = T, T(X2) = ..1, and deleting the first
four clauses.

We can therefore assume that we have a formula with precisely two literals
in each clause. How can we look for a satisfying truth assignment? Here is a
simple idea: Take any variable whose truth value has not been assigned yet, try
setting its truth value to T, and perform the purge; then restore the formula in
its original form, set the same variable to ..1 and perform the purge again. If
both purges fail, we give up; the formula is unsatisfiable. If however at least one
of the two purges succeeds, then we set the variable to the successful truth value
and continue. In our example trying the value T(X3) = T in the four clauses
that remain after the first purge,

(3)

starts a new purge that fails after setting T(X5) = T (the clauses (X4) and (X4)
result); so we must restore the four clauses in (3) and try T(X3) =..l. This
succeeds in finding a satisfying truth assignment for the whole formula (there
are no clauses left), namely T(X4) = T and T(X5) = ..l.

It is easy to see (Problem 6.3.2) that this simple algorithm correctly solves
the satisfiability problem when there are at most two literals per clause. Since
the algorithm performs at most two purges for each variable, and each purge
can be performed in polynomial time, it follows that 2-SATISFIABILITY is in P.

Problems for Section 6.3

6.3.1. Find all satisfying truth assignments of the Boolr~an formula consisting of
these clauses: (:1:1 V X2 V X3), (Xl V X4), (X2 V X3 V X4).

292 Chapter 6: COMPUTATIONAL COMPLEXITY

6.3.2. (a) Show that the purge algorithm described in the text correctly solves any
instance of 2-SATISFIABILITY in polynomial time. (Hint: Suppose the purge
algorithm decides the formula is unsatisfiable, and yet a satisfying truth
assignment exists. How did the purge algorithm miss this assignment?)
(b) What is the lowest polynomial bound you can show for this algorithm?
(c) How would the purge algorithm work on this formula? (Xl V X2), (Xl V

X4), (X2 V X3)(XI V X4), (X3 V X4).

6.3.3. This is an alternative proof that 2-SATISFIABILITY is in P. Any clause with
two literals, say (x V y), can be thought of as two implications, namely
(x -+ y) and Cfi -+ x) (the clause (x) can be thought of as (x -+ x)). Thus,
starting from any instance of 2-SATISFIABILITY, we can construct a directed
graph with all literals as nodes that depicts all these implications. Show
that an instance of 2-SATISFIABILITY is un satisfiable if and only if there is
a variable x such that there is a path from x to x and a path from x to x
in this graph. Conclude that 2-SATISFIABILITY is in P.

B THE CLASS NP

One of the main goals of complexity theory is to discover mathematical methods
that will help us prove that problems of interest are not in P. We have already
seen such a method: The diagonalization argument used to establish, in full
analogy with the unsolvability of the halting problem H, that E ~ P, where E
is the language

E = {"M" "w" : M accepts input w after at most 21wl steps}

(Theorem 6.1.2). However, this result is hardly satisfying. The reason is that,
unlike the notion of decidability, P and polynomial-time computation are con
cepts of earthy, practical motivation. It is not enough to exhibit an artificial
halting-like problem like E and argue that it is not in P. We want to identify
natural, reasonable, practically important problems that are not in P.

We saw in the last section a plethora of natural, reasonable problems, quite
plausibly of practical interest, that appear not to belong in P: HAMILTON Cy

CLE, the TRAVELING SALESMAN PROBLEM, INDEPENDENT SET, PARTITION,

SATISFIABILITY. Despite prolonged, intense efforts by mathematicians and com
puter scientists to discover a polynomial-time algorithm for each of these prob
lems, none has been found. It would be most worthwhile, then, to use the ideas
and methods of computational complexity to establish that no such polynomial
time algorithm is possible, thus saving our fellow scientists from further ill-fated
attempts.

6.4: The Class NP 293

Unfortunately, there is a subtle difficulty in coming up with such an impos
sibility proof. The reason is that, as we shall see next, all of these problems can
be solved by polynomially bounded nondeterministic Turing machines. And sep
arating determinism from nondeterminism at the polynomial-time level is one
of the most important and deep unsolved problems in computer science today.

It was established in Chapter 4 that if a language L is decidable in polyno
mial time by a Turing machine of one of several varieties (single-tape, multiple
tape, two-dimensional, even random access), then L is decidable in polynomial
time by a machine of any of the other kinds. What about the last variant of
the Turing machine model that we have introduced in Chapter 4, namely the
nondeterministic Turing machine (Section 4.6)? Is it also equivalent to the re
maining kinds, up to a polynomial? In order to discuss this important issue, let
us first define formally what we mean by saying that a language is decided by a
nondeterministic Turing machine within a polynomial time bound; the definition
is a straightforward extension of that for deterministic machines.

Definition 6.4.1: A nondeterministic Turing machine M = (K, '5:., 1:1, H) is
said to be polynomially bounded if there is a polynomial p(n) such that for
any input x, there is no configuration C of M with (s, C>1Jx) f--~IXIl+l C; that
is, no computation of this machine continues for more than polynomially many
steps. And define NP (for nondeterministic polynomial) to be the class
of all languages that are decided by a polynomially bounded nondeterministic
Turing machine.

It is important at this point to recall the peculiar definition of what it means
for a nondeterministic machine to decide a language L: For each input not in
L, all computations of the machine must reject the input; for each input in L,
we only require that there be at least one computation that accepts the input
-none, some, most, or all of the other computations may reject the input, as
long as there is at least one accepting one.

The set of all possible computations of a nondeterministic Turing machine
on a given input is best pictured by a treelike structure (see Figure 6-3). Nodes
represent configurations, and downward lines are steps. Nondeterministic choices
are represented by nodes that have more than one downward line leaving them.
Time is measured in the vertical dimension. In Figure 6-3, for example, the
input is accepted after five steps.

Such a picture makes it transparent why nondeterminism is such a powerful
mode of computation: There are astronomically many configurations that are
produced in very short time (vertical distance from the root). As we shall see in
the next examples, this power of nondeterminism can be put to use in "solving"
some of the formidable problems we have seen in the last section.

Example 6.4.1: We mentioned in the previous section that it is widely believed

294 Chapter 6: COMPUTATIONAL COMPLEXITY

n n n n n n nnynn nnnn y n nn n n n n

Figure 6-3

that SATISFIABILITY is not in P. Let us now show that it is in Np. We shall
design a nondeterministic TUring machine M that decides in polynomial non
deterministic time all encodings of satisfiable Boolean formulae in conjunctive
normal form.

M operates as follows: On input w, it first checks to see whether w is indeed
the encoding of a Boolean formula in conjunctive normal form (if not, it rejects
immediately), and counts the number of variables, n, that appear in it. This is
easy to accomplish deterministically in polynomial time. At the end of this first
stage, the second tape of M contains the string r>Jn, with as many J's as the
formula has variables.

Then M goes into a nondeterministic phase, during which it writes on
its second tape a sequence of n T's and ..l's over the 1's. Which sequence
of T's and ..l's, exactly? The answer is "any sequence, nondeterministically."
A more precise answer is perhaps "all sequences, each in a different branch
of the tree of nondeterministic computations." It is easy to design a nonde
terministic machine that does this: Just add a new state q to K, and add
to ~ the transitions (ignoring the other tapes, where no activity takes place)
(q,I,q, T), (q,J,q,..l), (q, T,q,-+),(q,..l,q,-+),(q,U,q',U), where q' is the state
that continues the computation.

The final phase of M is deterministic: M interprets the string in {T, ..l } n in
its second tape as a truth assignment for the input formula. It then visits each
clause of the input one by one, and checks whether it contains a literal that is

6.4: The Class NP 295

T under the truth assignment. If it finds that all clauses have a T literal, M
accepts. Otherwise, if an unsatisfied clause is found, M rejects.

It is straightforward to see that M, as described above, establishes that
SATISFIABILITY is in NP. First, all computations are of length bounded by
some small polynomial. For the crucial part, if the input encodes a satisfiable
Boolean formula, then M will "guess" the satisfying truth assignment at some
branch of the nondeterministic computation, and will therefore have at least one
accepting computation -in addition to possibly many rejecting ones. Hence the
input will be accepted. If the input formula is unsatisfiable, or not a formula at
all, then all computations will end up rejecting. <)

Example 6.4.2: The TRAVELING SALESMAN PROBLEM (as defined in Section
6.2 with the "budget" B given) is also in Np. The nondeterministic Turing
machine that achieves this writes in its second tape, nondeterministically, a
string of zeros, ones, and u's of length equal to that of the input. Then the
machine enters a deterministic phase, in which it checks to see if the string
written on its second tape happens to be the encoding of a bijection 7r of the
integers 1, ... , n where n is the number of cities in the given input -bijection
7r is encoded by writing 7r(1), 7r(2), ... in binary, separated by U's. If the string
is indeed the encoding of a bijection, the machine goes on to deterministically
calculate the cost of the tour, and compare it with the "budget" B in its input. If
the cost is smaller, the machine accepts; in all other eventualities (if the guessed
string is not the encoding of a bijection, or if it represents a tour with cost greater
than B) the machine rejects. It is clear that a string is in the language decided
by this machine if and only if it encodes a "yes" instance of the TRAVELING

SALESMAN PROBLEM.

Similarly, it is easy to show that the other apparently difficult problems
we encountered in the previous section, INDEPENDENT SET, HAMILTON CYCLE,

and PARTITION (though not EQUIVALENCE OF NONDETERMINISTIC FINITE AU

TOMATA) are also in NP.<)

Notice how cleverly the nondeterministic "algorithms" of the two previous
examples exploit the fundamental asymmetry in the definition of nondeterminis
tic time-bounded computation. They tryout all possible solutions to the prob
lem in hand in independent computations, and accept as soon as they discover
one that works -oblivious of the others that do not.

The analogy with the class of recursively enumerable languages, another
class whose definition had an asymmetry of a similar kind between acceptance
and rejection, is tempting here. As with that class, it is not at all clear that Np
is closed under complement (while it is clear in the case of P, as well as the class
of recursive functions). Also, it is immediate that P ~ NP (the analog of the
fact that every recursive language is recursively enumerable). This is because

296 Chapter 6: COMPUTATIONAL COMPLEXITY

deterministic machines are simply nondeterministic ones in which the transition
relation happens to be a function.

Is P equal to NP? In other words, are nondeterministic Turing machines
yet another version of Turing machines equivalent to the rest with respect to the
class of languages decided in polynomial time? At first glance, one gets the in
tuitive feeling that nondeterminism is such a strong and "different" feature that
this should not be the case. The trees that represent the set of computations
of a nondeterministic Turing machine (recall Figure 6-3) have many nodes (that
is, configurations), all at a moderate depth. The only way that a deterministic
Turing machine can compete with the nondeterministic one with respect to the
number of reachable configurations is by operating for an exponential number
of steps. The nondeterministic machines that decide SATISFIABILITY and the
TRAVELING SALESMAN PROBLEM above search quite effortlessly an exponen
tially large population of possibilities; it would be truly remarkable if the same
effect could be achieved in a methodical deterministic manner in polynomial
time.

This difficulty of using a deterministic Turing machine to search a large set of
"solutions" was also reflected in the proof of Theorem 4.5.1. It was shown there
that a nondeterministic Turing machine can be simulated by a deterministic
one; but that simulation was not a direct step-by-step simulation, like the ones
of Theorems 4.3.1 and 4.3.2 (for which we were able to prove polynomial bounds).
The simulation of a nondeterministic Turing machine resorted to an exhaustive
examination of all possible computations. Again, one gets the intuitive feeling
that this is inherent in nondeterminism, since it allows multiple choices at each
step, and so there is an exponentially large multitude of possible computations
to be checked.

In order to compare nondeterministic and deterministic machines in terms
of their time performance, we must first define a much more general class of
languages:

Definition 6.4.2: A Turing machine M = (K,~, S, s, H) is said to be ex
ponentially bounded if there is a polynomial p(n) such that the following is

true: For any input x, there is no configuration C such that (s, C>!Jx) f-;;(1'1)+1 C.
That is, the machine always halts after at most exponentially many steps.

Finally, define E XP to be the class of all languages that are decided by
some exponentially bounded Turing machine.

Theorem 6.4.1: If L E Np, then L E EXP.

Proof: Suppose that we are given a nondeterministic polynomially bounded
Turing machine M deciding L with time bound p(n). We shall show how to

6.4: The Class NP 297

construct a deterministic Turing machine M' that decides the same language
in time cp(n) for some constant c (the theorem then follows, by considering the
polynomial k· p(n), for some k such that 2k > c). M' is precisely the machine
constructed in the proof of Theorem 4.5.1. M' simulates M on all possible
computations of length 1, then on all possible computations of length 2, and
so on, up to length p(n) + 1, at which point either an accepting computation
has been discovered, or all computations have halted rejecting. To simulate
a computation of M of length £, M' needs 0(£) steps -to copy the input, to
produce the next string in {I, 2, ... , r}C (where r is the degree of nondeterminism
of M, a fixed number depending only on M and equal to the maximum possible
number of quadruples in ~ that share the same first two components), and to
simulate M following the choices suggested by this string. Thus, M' can carry
out the simulation of M on an input of length n in time

p(n)+1

L rC:S (r + 1)p(n)+1,

{=1

which completes the proof with c = r + 2 .•

As we have already mentioned, whether P = NP is a question of central
importance to complexity theory that is presently unresolved. Whether NP =
EXP, that is, whether the inclusion in the above corollary is proper, is another
question which, although quite a bit less important, is equally open. We do
know the following, however: In the chain of inclusions

P ~ NP ~ EXP,

the third class properly -includes the first. The reason is that the language E,
shown in Theorem 6.1.2 not to be in P, is certainly in EXP: A Turing machine
can in exponential time simulate M on input w for 21wl steps. Thus, although we
suspect that both of the inclusions displayed above are proper, all we can currently
prove is that at least one of them is proper -and we do not know which . ..

Succinct Certificates
The nondeterministic Turing machines we devised in Examples 6.4.1-2 for decid
ing SATISFIABILITY and the TRAVELING SALESivIAN PROBLEM are quite simple,
and somewhat similar: They start by nondeterministically generating a string,
and then check deterministically whether the generated string has a certain re
quired property in relation to the input. If the input is in the language, then at
least one appropriate string exists. If the input is not in the language, then no
string with the required property can be found.

Such a string is called a certificate, or a witness. As we shall see, all
problems in NP have certificates, and only problems in NP do. A certificate

298 Chapter 6: COMPUTATIONAL COMPLEXITY

must be polynomially succinct, that is, of length that is at most a polynomial
in the length of the input. It must also be checkable in polynomial time. In the
case of SATISFIABILITY, checking the certificate entails testing whether the truth
assignment satisfies all clauses of the input formula; in the case of the TRAVELING

SALESMAN PROBLEM, testing whether the proposed tour has a total cost within
the budget; for INDEPENDENT SET, whether the given set of nodes is of the right
size and free of edges; and so on. Finally, all "yes" inputs of a problem must
have at least one certificate, while all "no" inputs mllst have none.

The idea of certificates can be formalized in the domain of languages, pro
viding an interesting alternative definition of NP.

Definition 6.4.3: Let L be an alphabet, and let ";" be a symbol not in L.
Consider a language L' 5;; L*; L*. We say that L' is polynomially balanced
if there exists a polynomial p(n) such that if x; y E L', then Iyl ::; p(lxl).

Theorem 6.4.2: Let L 5;; L* be a language, where i rf- L, and ILl 2' 2. Then
L E NP if and only if there is a polynomially balanced language L' 5;; L*; L*
such that L' E P, and L = {x : there is ayE L* such that x; y E L' }.

Proof: Intuitively, language L' summarizes all certificates of all inputs. That
is,

L = {x; y: y is a certificate for x}.

For each x E L*, there is a set of y's such that Xi y E L'; this set is the set of
certificates of x. If x is in L, then its set of certificates has at least one element;
if x rf- L, then this set of certificates is empty.

If such a language L' exists, then a nondeterministic Turing machine could
decide L by trying all certificates (very much like the nondeterministic Turing
machine that decides SATISFIABILITY does) and then utilizing the deterministic
1\lring machine that decides L'. And conversely, any nondeterministic Turing
machine M deciding L provides a solid framework for certificates for L: A
certificate for an input x is precisely any accepting computation of AI on input
x -both concise and polynomially checkable.

The formal proof is left as an exercise (Problem 6.4.5) .•

This concept of succinct certificates is best illustrated in terms of the set
C 5;; N of composite numbers (recall the discussion in Example 4.5.1). Suppose
that we are given a natural number in its usual decimal representation -for
instance, 4,294,967,297 -and asked whether it is composite. There is no clear,
efficient way of answering such questions. However, every number in C does have
a succinct certificate. For example, the number 4,294,967,297, which happens
to be composite, has as a certificate the pair of integers 6,700,417 and 641 that

References 299

have a product of 4,294,967,297. To check the validity of the certificate, one just
has to carry out the multiplication to be convinced that 4, 294, 967,297 E C. And
this is the !-iubtlety of a certificate: Once you have found it, you can efficiently
exhibit its validity. But finding it may not be easy: The above factorization of
4,294,967,297 was first discovered by the mathematician Leonard Euler (1707-
1783) in 1732, a full 92 years after Pierre de Fermat (1601-1665), another great
mathematician, had conjectured that no such factorization existed!

Problems for Section 6.4

6.4.1. Show that NP is closed under union, intersection, concatenation, and
Kleene star. (The proofs for NP are much simpler that those for P.)

6.4.2. Define coNP to be the following class of languages fE : L E NP}. It is
an important open problem whether NP =coNP, that is, whether NP is
closed under complement. Show that if Np ;j:. coNP, then P ;j:. NP.

6.4.3. Call a homomorphi!-im h (recall Problems 2.3.11 and 3.5.3) nonerasing if
it map!-i no symbol to e. Show that NP is closed under nonerasing homo
morphisms.
You may want to think about these question!-i: Is NP closed under general
homomorphisms? How about the class of recursive languages? How about
the recursive enumerable ones? How about P? See Problem 7.2.4 in the
next chapter for the last one.

6.4.4. Define appropriate !-iuccinct certificates for PARTITION and CLIQUE.

6.4.5. Prove Theorem 6.4.2.

REFERENCES

The theory of computational complexity, much anticipated in the late 1950s and early
1960s, was formally developed by Hartmanis and Steams in this paper

o J. Hartmanis and R. E. Stearns "On the computational complexity of algo
rithms," Transactions of the American Mathematical Society, 117, pp 285-305,
1965;

Theorem 6.1.2 follows from results in that paper. The thesis that the class P adequately
captures the notion of an "efficiently solvable problem," also implicit in much earlier
work, emerged in the mid 1960s mainly in these two works:

o A. Cobham "The intrinsic computational difficulty of functions," Proceedings of
the 1964 Congress for Logic, Mathematics and the Philosophy of Science, pp. 24-
30, New York: North Holland, 1964, and

300 Chapter 6: COMPUTATIONAL COMPLEXITY

o J. Edmonds "Paths, trees and flowers," Canadian Journal of Mathematic8, 17,
3, pp. 449--467, 1965.

In the last paper, the clas8 Np was also informally introduced (in terms of certificates,
recall Theorem 6.4.2), and it was first conjectured that P -::j:. Np. For a much more
extensive treatment of computational complexity, see

o C. H. Papadimitriou Computational Complexity, Reading, Massach.: Addison
Wesley, 1994.

NP-completeness

7.1 POLYNOMIAL-TIME REDUCTIONS

Many of the concepts and techniques we use in complexity theory are time
bounded analogs of the concepts and techniques that we developed for studying
undecidability. We have already seen in the proof of Theorem 6.1.2 that we can
use the polynomial-time analog of diagonalization in order to show that certain
languages are not in P. We shall next introduce polynomial-time reductions, the
analog of the reductions we employed for establishing undecidability in Chapter
5. We shall use polynomial-time reductions to study the complexity of several
important and seemingly difficult problems in NP introduced in the previous
chapter: SATISFIABILITY, the TRAVELING SALESMAN PROBLEM, INDEPENDENT

SET, PARTITION, and others. As we shall see, these problems have the following
important completeness property: All problems in NP can be reduced to them
via polynomial-time reductions -in much the same way that all recursively
enumerable languages reduce to the halting problem. We call such problems
NP-complete.

Unfortunately, the analogy with the halting problem breaks down after this
point. There seems to be no simple diagonalization argument which establishes
that these NP-complete problems are not in P; diagonalization arguments ap
pear to apply only to languages that are too hard and unnatural to matter, such
as the exponential-time language E in Theorem 6.1.2.

Despite the fact that these NP-complete problems fail to provide a proof
that P ;j:. NP, they do occupy an important place in our study of complexity: If
we assume that P ;j:. NP -a conjecture that is very widely accepted, although
still far from proved- then all NP-complete problems are indeed not in P (this
is articulated in Theorem 7.1.1 below). This somewhat indirect evidence of
difficulty is the most we can expect for a problem in NP, short of proving that

301

302 Chapter 7: NP-COMPLETENESS

P i-NP.
But we must now define the polynomial-time variant of reduction (compare

with Definition 5.4.1):

Definition 7.1.1: A function f : I;* H I;* is said to be polynomial-time
computable if there is a polynomially bounded Turing machine !vI that com
putes it.

Let now L1, L2 <:;;: I;* be languages. A polynomial-time computable function
T : I;* H I;* is called a polynomial reduction from L1 to L2 if for each
x E I;* the following holds: x E L1 if and only if T(X) E L"2'

Polynomial reductions are important because they reveal interesting re
lationships between computational problems. Strictly speaking, a polynomial
reduction as defined above relates two languages, not two problems. However,
we know from the discussion in Section 6.2 that languages can be used to en
code all kinds of important computational problems, such as HAMILTON CYCLE.

SATISFIABILITY, and INDEPENDENT SET. In this sense we can say that T is a
polynomial reduction from Problem A to Problem B if it is a polynomial
reduction between the corresponding languages. That is, T transforms in poly
nomial time instances of Problem A to instances of Problem B in such a way
that x is a "yes" instance of Problem A if and only if T(X) is a "yes" instance of
Problem B.

Instance
of A

r-----------

ofB

Figure 7-1

~lgorithm for A

Algorithm
for B

"yes"

~~no"

When we have a polynomial reduction T from Problem A to Problem B, it
is possible to adapt any polynomial-time algorithm for B to obtain one for A
(see Figure 7-1). To tell whether any given instance x of Problem A is actually
a "yes" instance of A, one can start by computing T(X), and testing whether or
not it is a "yes" instance of B. If we have a polynomial algorithm for B, this
method for solving A is also polynomial, since both the reduction step and the
algorithm for solving the resulting instance of B can be done in polynomial time.
In other words, the existence of a polynomial reduction from A to B is evidence

7.1: Polynomial-time Reductions 303

that B is at least as hard as A. If B is efficiently solvable, then so must be A;
and, if A requires exponential time, then so does B.

We give several examples of reductions below.

Example 7.1.1: Let us describe a polynomial reduction from HAMILTON CYCLE

to SATISFIABILITY. Suppose that we are given an instance of HAMILTON CYCLE,

that is, a graph G ~ V x V, where V = {I, 2, ... , n}. We shall describe an
algorithm T that produces a Boolean formula in conjunctive normal form T(G),
such that G has a Hamilton cycle (a closed path visiting each node of G exactly
once) if and only if T(G) is satisfiable.

Formula T(G) will involve n Z Boolean variables, which we shall denote Xij,

with 1 ::; i, j ::; n. Intuitively, Xij will be a Boolean variable with this intended
meaning: "Node i of G is the jth node in the Hamilton cycle of G." The
various clauses of T(G) will then express in the language of Boolean logic the
requirements that a Hamilton cycle must satisfy.

What requirements must the Xii'S satisfy so that they indeed define a Hamil
ton cycle of G? We shall cast each such requirement as a clause. First, for
j = 1, ... , n we have the clause

(Xlj V XZj V ... V Xnj).

For a truth assignment to satisfy this clause, it must set at least one of the
variables Xlj, XZj, ... ,Xnj to T; thus this clause expresses, under the "intended
meanings" of the Boolean variables, the requirement that at least one node
should appear ith in the Hamilton cycle.

But of course, only one node of G can appear ith in the Hamilton cycle.
Thus, we add to our Boolean formula all O(n3) clauses of the form

(Xij V Xik)

for i, j, k = I, ... ,n and j i- k. Since at least one literal in this clause must be
satisfied, these clauses successfully express the requirement that not both node
j and node k can appear ith on the cycle.

The clauses so far guarantee that exactly one node appears ith in the Hamil
ton cycle. But we must also require that node i appear exactly once in the cycle.
This is done by the clauses

for i = I, ... ,n and
(Xij V Xkj)

for i, j, k = 1, ... ,n and i i- k.

304 Chapter 7 NP-COMPLETENESS

So far these clauses express the requirement that the xij's represent a bijec
tion or permutation of the nodes of G. We must next express by new clauses the
requirement that this permutation is indeed a cycle of C. We do this by adding
the clause

(Xij V Xk,j+l) (1)

for j = 1, ... , n and for each pair (i, k) of nodes such that (i, k) is not an edge
of G. Here by Xk,n+l we mean the Boolean variable Xkl; that is, addition in
the second index is assumed to be modulo n. Intuitively, the clauses in (1) state
that, if there is no (i, k) edge in G, then it cannot be the case that i and k
appear consecutively in this order in the alleged Hamilton cycle. This completes
the construction of T(G).

It is easy to argue that the construction of T(G) can be carried out in
polynomial time. There are O(n3) clauses to be constructed, with a total number
of O(n3) literals. The structure of these clauses is extremely simple, and either
depends on n alone, or depends on the edges of G in a rather straightforward
way. It would be straightforward to construct a polynomial-time Turing machine
that computes the function T.

Next we have to argue that G has a Hamilton cycle if and only if T(G) is
satisfiable. Suppose that there is a truth assignment T that satisfies T(G). Since
T must make at least one literal T in each of the clauses other than those in (1)
above, it follows that T encodes a bijection on the nodes of G, that is, for each i
exactly one T(xij) is T, and for each j exactly one T(xij) is T. Denote by 1f(i)
the unique j for which T(Xi.rr(il) = T.

The set of clauses in (1) above must also be satisfied. This means that
whenever i = 1f(j) and k = 1f(j + 1) (where again n + 1 means 1) then (j,k)
must be an edge of G. It follows that (1f(1), 1f(2), ... , 1f(n)) is indeed a Hamilton
cycle of G. The if direction has been proved.

Conversely, suppose that G has a Hamilton cycle, say (1f(1), 1f(2), ... , 1f(n)).
Then it is easy to see that the truth assignment T, where T(Xij) = T if and only
if j = 1f(i), satisfies all clauses of T(G), and the proof is complete.

Later in this chapter we shall see a reduction in the opposite direction (The
orems 7.3.1 and 7.3.2).

Correctly interpreting polynomial reductions as to the information they
reveal with respect to the difficulty of the problems involved can be confusing,
and requires some care and experience. The reader is encouraged at this point
to ponder these issues: Is this reduction good news or bad news about the
complexity of HAMILTON CYCLE? of SATISFIABILITY? Suppose that we have a
polynomial-time algorithm for HAMILTON CYCLE; what can we conclude about
SATISFIABILITY in the light of this reduction? What if we had a polynomial
time algorithm for SATISFIABILITY? What can we conclude if we know that
HAMILTON CYCLE is a difficult problem? that SATISFTABTLITY is a difficult
problem"? <;

7.1: Polynomial-time Reductions 305

Example 7.1.2: You must schedule n tasks on two machines. Both machines
have the same speed, each task can be executed on either machine, and there
are no restrictions on the order in which the tasks have to be executed. You are
given the execution times aI, ... ,an of the tasks and a deadline D, all in binary.
Can you complete all these tasks on the two machines within this deadline?

Another way to state this question is the following: Is there a way to parti
tion the given binary numbers into two sets so that the numbers in each set add
up to D or less? We call this problem, whose relation to the PARTITION prob
lem defined in the last chapter is perhaps clear, TWO-MACHINE SCHEDULING.

We also introduce another problem, also closely related to PARTITION:

KNAPSACK: Given a set S = {a1, ... , an} of nonnegative integers, and an
integer K, all represented in binary, is there a subset P ~ S such that

I::aiEP ai = K?

(This graphic name is supposed to bring to mind a hiker who is trying to fill her
knapsack to its limit with items of varying weights.)

How are these three problems (PARTITION, KNAPSACK, and TWO-MACHINE

SCHEDULING) related by polynomial reductions? We shall show that there are
six polynomial reductions, reducing anyone of these three problems to any other!

Suppose that we have an instance of KNAPSACK, with integers aI, ... ,an
and K; we must reduce it to an equivalent instance of PARTITION. If K happens
to be equal to H = ~ I::7=1 ai, the half-sum of the given integers, then all our
reduction has to do is to erase K from the input: The resulting instance of
partition is equivalent to the given instance of KNAPSACK. The problem is, of
course, that K will not in general be equal to H. But this is easy to fix: Add
to the set of ai's two large new integers an+1 = 2H + 2K and an+2 = 4H
(notice that these numbers are integers even if H fails to be one). Consider now
the resulting set of integers {a1, .. . ,an+2} as an instance of PARTITION -the
reduction is complete. It is obvious that this reduction can be carried out in
polynomial time.

We must now show that the reduction works; that is, that the instance of
partition has a solution if and only if the original instance of knapsack had one.
Notice first that if the new set of integers can be partitioned into two sets with
equal sums, then the two new integers an+1 and an+2 must be on opposite sides
of the partition (their sum exceeds that of the remaining integers). Let P be
the set of integers among the original ones aI, ... ,an that are on the same side
as a,,+2 = 4H. We have that

4H + 2: ai = 2H + 2K + 2: ai·
aiEP a,ES-P

306 Chapter 7: NP-COMPLETENESS

Adding LaiEP ai to both sides, we get (since LaiES ai = 2H)

4H + 2 2: ai = 4H + 2K,
aiEP

or LaiEP ai = K. Hence, if the resulting instance of PARTITION has a solution,
then the original instance of KNAPSACK has one. And conversely, if we have a
solution of KNAPSACK, then adding an +2 to it yields a solution of the instance
of PARTITION.

This was the reduction from KNAPSACK to PARTITION. We started with
an arbitrary instance of KNAPSACK and constructed an equivalent instance of
PARTITION. A reduction in the opposite direction is trivial, because PARTITION

is a special case of KNAPSACK. Given any instance of PARTITION with inte
gers al, ... ,an, the reduction to KNAPSACK transforms the given instance of
PARTITION to the instance of KNAPSACK with the same numbers, and bound
}

,r 1 ",n
I, = 2" L...i=l ai·

But what if K is not an integer (that is, the given integers add to an odd
number)? Then we can have the reduction produce any impossible instance of
KNAPSACK we wish, such as the one with n = 1, al = 2, and K = 1 -the given
ip.stance of PARTITION was also impossible.

The reduction from PARTITION to TWO-MACHINE SCHEDULING is also easy:
Given an instance of PARTITION with integers al, ... , an, the reduction pro
duces an instance of TWO-MACHINE SCHEDULING with n tasks, execution times
aI, ... , an, and deadline D = l ~ L~=l ad (if ~ L~= 1 ai is not an integer, then
this is already an impossible instance). It is easy to see that the resulting instance
of TWO-MACHINE SCHEDULING is solvable if and only if the original instance of
PARTITION was. This is because the tasks can be partitioned into two sets with
sums at most D if and only if they can be partitioned into two sets with sums
exactly D.

-.~--------------- D--------------------~·-

Machine 1 " ,
) I

~;

Machine 2 " .. !;

Figure 7-2

The reduction from TWO-MACHINE SCHEDULING to PARTITION is a lit
tle more involved. Suppose that we are given an instance of TWO-MACHINE

SCHEDULING with task lengths aI, ... ,an, and deadline D. Consider the num
ber I = 2D - L~=l ai. Intuitively, I is the total idle time in any legal schedule

7.1: Polynomial-time Reductions 307

(see Figure 7-3). 1t is the amount of slack that we have in solving the scheduling
problem. We add now several new numbers to the set of lengths of tasks, such
that (a) the sum of these new numbers is I; and (b) moreover, we can make up
any sum between 0 and I by adding a subset of these new numbers. It is not
hard to see that, if we were able to do this, the resulting instance of PARTITION

would be equivalent to the original instance of TWO-MACHINE SCHEDULING, be
cause we could then transform any feasible schedule of the original ta.sks into an
equitable partition of the new set of numbers by adding to each of the two sets
a subset of the newly introduced numbers that will bring the sum of both to D.

All we ha\'e to do now is supply integers, adding up to I, so that any number
between zero and I is the sum of a set of these numbers. Superficially, this looks
trivial to do: Add I copies of the integer 1. What is wrong with this reduction,
however, is that it is not a polynomial-time reduction, for the sanle reason for
which the algorithm for PARTITION we sketched in the previous chapter failed to
be polynomial: The integer I is not bounded by a polynomial in the size of the
input -since the input consists of the task lengths and the deadline, all encoded
in binary, the number I could be exponentially large in the size of the input.

The solution is a little more complicated: The numbers we add are all
powers of 2 that are smaller than ~I, plus another integer to bring the sum to I.
For example, if 1= 56, then the n~wly added integers would be 1,2,4,8,16, and
25. All integers bdween 0 and 56, and only these, can be made up as the sum
of some subset of these integers. This completes the description of the reduction
from TWO-MACHINE SCHEDULING to PARTITION; the reduction is polynomial,
because the number of integers we introduce is bounded by the logarithm of I
-which is less than the size of the input.\>

In the above example we did not discuss direct reductions from KNAPSACK

to TWO-MACHINE SCHEDULING and back. But there is no need: As we show
next, polynomial reductions compose in a transitive fashion. Recall that the
composition of two functions f : A I--t Band 9 : B I--t C is the function fog :
A I--t C, where for all x E A, f 0 g(x) = g(f(x)).

Lemma 7.1.1: If 71 is a polynomial reduction from L1 to L2 and 72 is a poly
nomial reduction from L2 to L 3 , then their' composition 71 072 is a polynomial
reduction from Ll to L 3 •

Proof: Suppose that 71 is computed by a Turing machine Ml in time PI, a
polynomial, and 72 is computed by M2 in time P2. also a polynomial. Then
71 072 can be computed by the machine Jl,h M 2 . On input x E I:i, Ml M2 will
output 71 0 72 (x) in time bounded by pdlxl) + P2(PI (Ixl)) -a polynomial. The
latter term reflects the fact that 171(X)1 cannot be larger than Pl(lxl).

It remains to show that x E Ll if and only if 71 0 72 (x) E L 3 • But this is
trivial: x E L1 if and only if 71 (x) E L 2 , if iUld only if 71 0 72 (x) E L 3 .•

308 Chapter 7: NP-COMPLETENESS

We finally arrive at the following important definition.

Definition 7.1.2: A language L ~ ~* is called NP-complete if
(a) L E NP; and
(b) for every language L' E NP, there is a polynomial reduction from L' to L.

Just as the decidability of H captured the whole question of the decidability
of Turing-acceptable languages, so the question of whether anyone NP-complete
language is in P turns out to be equivalent to the whole P = NP question:

Theorem 7.1.1: Let L be an NP-complete language. Then P = NP if and
only if L E P.

Proof: (Only If) Suppose that P = NP. Since L is NP-complete, and hence
L E NP (recall that an NP-complete language must be in NP), it follows that
LEP.

(If) Suppose that L is an NP-complete language that is decided by a determin
istic Turing machine MI in time PI (n), a polynomial, and let L' be any language
in NP; we shall show that L' E P.

Since L is NP-complete and L' E Np, then there is a polynomial reduction
T from L' to L (we are now using the second part of the definition of an NP
complete language). Suppose that T is computed by some Turing machine M2
in time P2(n), also a polynomial. Then we claim that the Turing machine M2MI
decides L' in polynomial time. To see that M2MI decides L', notice that M2MI
accepts input x if and only if T(X) E L; and since T is a polynomial reduction,
T(X) E L if and only if x E L'.

Finally, to analyze the time requirements of M2 M I , notice that its initial
M2 part takes, on input x, time P2(lxl) to produce an input for MI. This
input will have length at most P2(lxl), because M2 cannot write more than one
symbol per step. Hence, the computation of MI on this input will take time
at most PI (P2(1XI)). The overall machine will halt, on input x, within time
P2(lxl) + PI(P2(lxl) + Ixl), and this is a polynomial in Ixl·

Since L' was taken to be any language in NP and we concluded that L' E P,
it follows that NP = P .•

Problems for Section 7.1

7.1.1. In 3-COLORING we are given an undirected graph, and we are asked whether
its nodes can be colored with three colors such that no two adjacent nodes
have the same color.

(a) Show that 3-COLORING is in NP.
(b) Describe a polynomial-time reduction from 3-COLORING to SATISFIABILITY.

7.2: Cook's Theorem 309

7.1.2. Some authors define a more general notion of reduction, often called poly
nomial Turing reduction. Let Ll and L2 be languages. A polynomial
Turing reduction from Ll to L2 is a 2-tape Turing machine with three
distinguished states, q?, ql, and qo, that decides L2 in polynomial time,
and whose computation is defined in a rather peculiar way. The yields
relation of M for all configurations with states other than q? is defined
exactly as for ordinary Turing machines. For q?, however, we say that
(q?,I>Ul~hVl,I>U2Q2V2) I-M (q,I>U~Q~v~,I>U~Q~v~) if and only if

(1) Ul = u~, a~ = aI, v~ = VI, U2 = U~, a~ = a2, v~ = V2, and
(2) one of the following holds: either

(2a) U2a2V2 E Ll and ql = ql, or
(2b) U2a2v2 ~ Ll and ql = qo.
In other words, from state q?, M never changes anything on its tapes; it
just goes to state ql or qo, depending on whether or not the string in its
second tape is in L l . Furthermore, this counts as one step of M.
(a) Show that if there is a polynomial Turing reduction from Ll to L 2, and

one from L2 to L3, then there is a polynomial Turing reduction from
Ll to L3.

(b) Show that if there is a polynomial Turing reduction from Ll to L 2, and
L2 E P, then Ll E P.

(c) Give a polynomial Turing reduction from HAMILTON CYCLE to HAMIL

TON PATH (the version in which we are not requiring that the path
that visits each node exactly once is closed). Can you find a direct
(that is, not using the reduction in the proof of Theorem 7.3.2 below)
polynomial reduction between the two problems?

liiJ COOK'S THEOREM

We have not yet established that NP-complete languages exist -but they do.
During these past two decades research in computational complexity has dis
covered literally hundreds of such NP-complete languages (or NP-complete
problems, as we shall continue to blur the distinction between computational
problems such as SATISFIABILITY and HAMILTON CYCLE and the languages that
encode them). Many of these NP-complete problems are important practical
problems from operations research, logic, combinatorics, artificial intelligence,
and other seemingly unrelated application areas. Prior to the discovery of Np
completeness, much research effort had been devoted in vain to finding polyno
mial algorithms for many of these problems. The concept of NP-completeness
unified the experiences of researchers in these diverse areas by showing that none
of these problems is solvable by a polynomial-time algorithm unless P = Np -
a circumstance that appears to contradict both intuition and experience. This

310 Chapter 7: NP-COMPLETENESS

realization has had the beneficial effect of diverting the research effort previ
ously focused on solving particular NP-complete problems towards other, more
tractable goals, which are the subject of Section 7.4. This redirection of re
search effort has been the most profound effect of the theory of computation on
computational practice.

Bounded Tiling
Once we have proved the first NP-complete problem, more problems can be
shown NP-complete by reducing to them a problem already known to be NP
complete, and using the transitivity of polynomial reductions, recall Lemma
7.1.1. But the first NP-completeness proof must be an application of the defini
tion: We must establish that all problems in NP reduce to the problem in hand.
Historically, the first problem to be shown NP-complete by Stephen A. Cook
in 1971 was SATISFIABILITY. Instead of giving that proof directly, we shall start
with a version of the tiling problem that was shown to be undecidable in Chapter
5.

In the original tiling problem we were given a tiling system D, and we were
asked whether there is a way to tile the infinite first quadrant so that any two
vertically or horizontally adjacent tiles are related as prescribed, and a given tile
is placed at the origin. We can define a less ambitious problem, called BOUNDED

TILINC, in which we are asked whether there is a legal tiling, not of the whole
quadrant, but of an 8 x 8 square, where 8 > 0 is a given integer. This time,
instead of specifying only the tile placed at (0,0), we specify the entire first row
of tiles. That is, we are given a tiling system D = (D, H, V) (where we omit
the starting tile do, which is now irrelevant), an integer 8 > 0, and a function
fo : {O, ... , 8 - I} I--t D. We are asked whether there is an 8 x 8 tiling by D
extending fo, that is, a function f : {O,I, ... , 8 -I} x {O,I, ... , 8 -I} I--t D such
that

f(m,O) = fo(m) for all m < s;
(f(m, n), f(m + 1, n)) E H for all m < 8 - I, n < s;
(f(m,n),f(m,n + 1)) E V for all Tn < 8,n < 8-l.

The BOUNDED TILING problem is this:

BOUNDED TILING Given a tiling system D, an integer 8, and a function fo :
{O, ... , s - I} I--t D, represented by its sequence of values (/0(0), ... , fO(8-
1)), is there an 8 x s tiling by D extending fo?

Theorem 7.2.1: BOUNDED TILING is NP-complete.

Proof: Let us first argue that it is in NP. The certificate in this case is a
complete listing of the S2 values of a tiling function f. Such a function can be
checked in polynomial time for compliance with the three requirements. Fur
thermore, it is succinct: Its total length is S2 times the number of symbols it

7.2: Cook's Theorem 311

takes to represent a tile, and s is bounded from above by the length of the input
because the input includes the listing 01 10. Actually, the purpose of this twist
to our tiling formalism was precisely to ensure that the problem is in Np; if we
only specify one starting tile, the problem becomes much harder -it is provably
not in P; see Problem 7.2.2.

We must now show that all languages in NP reduce via polynomial reduc
tions to BOUNDED TILING. SO, consider any language L E Np. We must produce
a polynomial reduction from L to BOUNDED TILING, that is, a polynomial-time
computable function T such that for each x E 1:', T(X) is the encoding of a tiling
system D = (D, H, V), plus an integer s > 0 and the encoding of a function 10,
with this property: There is an 8 x 8 tiling with D extending 10 if and only if
x E L.

To obtain this reduction, we must somehow exploit the little information
we have about L. All we know about L is that it is a language in NP; that
is, we know that there is a nondeterministic Turing machine M = (K, 1:, J, s)
such that (a) all computations of M on input x halt within p(lxl) steps for some
polynomial p, and (b) there is an accepting computation on input x if and only
if x E L.

We start by describing the integer 8 constructed by T on input x: it is
s = p(lxl) + 2, two more than the time bound of M on input x.

The tiling system D described in T(X) will be very similar to the one con
structed in the proof of the undecidability of the unbounded tiling problem
(Theorem 5.6.1). We shall describe the tiles in D, as in that construction, by
their edge markings; once more, the markings of the horizontal edges between
rows t and t + 1 will represent the tape contents of M in a legal computation
with input x right after the tth step (since M is nondeterministic, there may
be several such computations, and therefore there may now be several possible
legal ways to tile the 8 x 8 square).

The Oth row of the s x s square, prescribed by 10, will be occupied by tiles
spelling the initial configuration (8,I>UX). That is, 10(0) is a tile with upper edge
marking 1>, 10(1) is a tile with upper edge marking (s, u), and for i = 1, ... , Ixl
lo(i + 1) is a tile with upper edge marking Xi, the ith letter of the input x.
Finally, for all i > Ixl + 1, lo(i) is a tile with upper edge marking U (see Figure
7-3). Thus, the horizontal edge markings between the Oth and the first rows will
spell the initial configuration of M on input x.

Figure 7-3

The remaining tiles in D are exactly as in the proof of Theorem 5.6.1. Since

312 Chapter 7: NP-COMPLETENESS

the machine is nondeterministic, there may be more than one tile with bottom
horizontal marking (q, a) E K x ~, corresponding to the possibly many choices
of action when M scans an a in state q, and each of them is constructed as
in that proof. There is only one minor difference: There is a tile with both
upper and lower marking (y, a) for each symbol a, effectively allowing the tiling
to continue after the computation has halted at state y ~but not if it halts
at state n. This completes the construction of the instance T(X) of BOUNDED

TILI~G. It should be clear that the construction of the instance can be carried
out in time polynomial in Ixi.

We must now show that there is an s x s tiling by V if and only if x E

L. Suppose that an s x s tiling exists. Our definition of fa ensures that the
horizontal edge markings between the Oth and the first rows must spell the
initial configuration of M on input x. It then follows by induction that the
horizontal edge markings between the nth and the n + 1st rows will spell the
configuration right after the nth step of some legal computation of M on input
x. Since no computation of M on input x continues for more than p(lxl) = s - 2
steps, the upper markings of the s - 2nd row must contain one of the symbols
y and n. Since there is an s - 1st row, and there is no tile with lower marking
n, we must conclude that the symbol y appears, and thus the computation is
accepting. We conclude that if a tiling of the s x s square with V exists, then
M accepts x.

Conversely, if an accepting computation of M on input x exists, it can be
easily simulated by a tiling (possibly by repeating the last row several times, if
the computation terminates in fewer than p(lxl) steps at state y). The proof is
complete .•

We can now use BOUNDED TILING to prove the main result of this section:

Theorem 7.2.2 (Cook's Theorem): SATISFIABILITY is NP-complete.

Proof: We have already argued that the problem is in NP; we shall next reduce
BOUNDED TILING to SATISFIABILITY.

Given any instance of the BOUNDED TILING problem, say the tiling system
V = (D,H,V), side s, and bottom row fa, where D = {d1, ... ,dk}, we shall
show how to construct a Boolean formula T(V, s, fa) such that there is an s x s
tiling f by V if and only if T(V, s) is satisfiable.

The Boolean variables in T(V, s, fa) are Xmnd for each 0 ~ m, n < .9 and
d E D. The intended correspondence between these variables and the tiling
problem is that variable Xmnd is T if and only if f(m, n) = d. We shall next
describe clauses which guarantee that f is indeed a legal s x s tiling by V.

We first have, for each m, n < s, the clause

(Xmnd 1 V :Emnd2 V ... V Xmnd k V),

7.2: Cook's Theorem 313

st.at.ing that each posit.ion has at least. one tile. For each m, n < s and each
t.wo distinct. tiles d::j:. dt E D, we have t.he clause (Xmnd V Xmnd'), stating t.hat a
position cannot have more than one tile. The clauses described so far guarantee
that the Xmnd'S represent a function f from {O, ... , s - I} x {O, ... , s - I} to D.

We must next construct clauses stating that the function described by the
Xmnd'S is a legal tiling by V. We first have clauses (XiO!o(i)) for i = 0, ... , s - 1,
forcing f(i, 0) to be fo(i). Then, for each n < sand m < s - 1, and for each
(d, dt

) E D2 - H, we have the clause

(Xmnd V Xm+l,n,d'),

which forbids two tiles that are not horizontally compatible to be horizontally
next to each other. For vertical compatibility, we have for each n < s - 1 and
m < 8, and for each (d, dt

) E D2 - V, the clause (Xmnd V Xm,n+l,d'). This
completes the construction of the clauses in T(V, s). It. remains to show that
T(V, s, fa) is satisfiable if and only if there is an s x s tiling by V that extends

fa.
Suppose then that T(V, s, fa) is satisfiable, say by the truth assignment T.

Since the big disjunctions are satisfied by T, for each m and n there is at. least
one d E D such that. T(Xmnd) = T. Since the clauses (Xmnd V Xmnd') are all
satisfied by T, there is no m and n such that two or more Xmnd'S are T under
T. Hence T represents a function f : {O, ... , s - I} x {O, ... , s -I} I--t D.

We claim that f (m, n) is a legal s x s tiling that extends fa. First, since
the clauses (XiO!o(i)) are all satisfied, it must be the case that f(i,O) = fo(i),
as required. Then the horizontal adjacency constraint must be satisfied, be
cause, if it is not sat.isfied at positions (m, n) and (m + 1, n), then one of the
clauses (Xmnd V Xm+l,n,d') is left unsat.isfied. Similarly for vertical adjacency;
thus f (m, n) is indeed a legitimate s x s tiling extending fa.

Conversely, suppose that an s x s tiling f extending fa exists. Then define
the following truth assignment T: T(Xmnd) = T if and only if f(m, n) = d. It is
easy to check that T satisfies all clauses, and the proof is complete .•

Thus there is no polynomial-time algorithm for SATISF'IABILITY, unless P =
NP. As we have seen in Section 6.3, the special case of 2-SATISFIAB[LITY

can be solved in polynomial time. The following theorem suggests that the
immediately next most involved case is already intractable. In analogy with
2-SATISFIABILITY, let 3-SATISFIABILITY be the special case of SATISFIAB[LITY

in which all clauses happen to involve three or fewer literals.

Theorem 7.2.3: 3-SATISFIABILITY is NP-complete.

Proof: It is of course in NP, as it is the special case of a problem in NP.
To show completeness we shall reduce SATISFIABILITY to 3-SATISFIABILITY.

This is a rather common kind of reduction, in which a problem is reduced to

314 Chapter 7: NP-COMPLETENESS

its own special case. Such reductions work by showing how, starting from any
instance of the general problem, we can get rid of the features that prevent this
instance from falling within the special case. In the present situation we must
show how, starting from any set of clauses F, we can arrive in polynomial time
at an equivalent set of clauses T(F) with at most three literals in each clause.

The reduction is simple. For each clause in F with k > 3 literals, say

we do the following: We let Yl, ... , Yk-3 be new Boolean variables, appearing
nowhere else in the Boolean formula T(F), and we replace clause C with the
following set of clauses:

We break up all "long" clauses of F this way, using a different set of Yi variables
in each. We leave "short" clauses as they are. The resulting Boolean formula is
T(F). It is easy to see that T can be carried out in polynomial time.

We claim that T(F) is satisfiable if and only if F was satisfiable. The
intuition is this: Interpret the variable Yi as saying, "at least one of the literals
Ai+2' ... ,Ak is true," and the clause (Yi V Ai+2 V Yi+d as saying, "if Yi is true,
then either Ai+2 is true, or Yi+l is true."

formally, suppose that truth assignment T satisfies T(F). We shall show
that T also satisfies each clause of F. This is trivial for the short clauses; and if
T maps all k literals of a long original clause to .1, then the Yi variables would
not be able by themselves to satisfy all resulting clauses: The first clause would
force Yl to be T, the second Y2 to be T, and finally the next-to-last clause would
cause Yk-3 to be T, contradicting the last clause (incidentally, notice that this
is precisely the purge algorithm solving this instance of 2-SATISFIABILITY).

Conversely, if there is a truth assignment T that satisfies F, then T can
be extended to a truth assignment that satisfies T(F), as follows: For each long
clause C = (AI V A2 V ... V Ak) of F, let j be the smallest index for which
T (Aj) = T (since T was assumed to satisfy F, such a j exists). Then we set the
truth values of the new variables Yl, ... , Y k-3 to be T' (Yi) = T if i ~ j - 2, and
to be T'(Yi) = .1 otherwise. It is easy to see that T now satisfies T(F), and the
proof of equivalence is complete. •

Consider finally the following optimization version of SATISFIABILITY:

MAX SAT: Given a set F of clauses, and an integer K, is there a truth
assignment that satisfies at least K of the clauses?

7.2: Cook's Theorem 315

Theorem 7.2.4: MAX SAT is NP-complete.

Proof: Membership in NP is obvious. We shall reduce SATISFIABILITY to MAX

SAT.

This reduction is an extremely simple one, but of a kind that is very com
mon and very useful in establishing NP-completeness results (see Problem 7.3.4
for many more examples). We just have to observe that MAX SAT is a general
ization of SATISFIABILITY; that is, every instance of SATISFIABILITY is a special
kind of instance of MAX SAT. And this is true: An instance of SATISFIABILITY

can be thought of as an instance of MAX SAT in which the parameter f{ happens
to be equal to the number of clauses.

Formally, the reduction is this: Given an instance F of SATISFIABILITY

with m clauses, we construct an equivalent instance (F, m) of MAX SAT by just
apending to F the easily calculated parameter K = m. Obviously, there is a
truth assignment satisfying at least K = m clauses of F (of which there are
exactly m) if and only if there is one that satisfies all clauses of F .•

As it turns out, the restriction of MAX SAT to clauses with at most two
literals can be shown to be also NP-complete (compare with 2-SATISFIABILITY).

Problems for Section 7.2

.2.1. Let us consider what happens in the reduction from L to BOUNDED TILING

when L is in P -that is to say, when the machine M in the proof of
Theorem 7.2.1 is actually deterministic. It turns out that, in this case, the
resulting tiling system can be expressed as a closure of a set under certain
relations.
Let Al be a deterministic Turing machine deciding language L in time
p(n), a polynomial; let x be an input of M; and let s, (D, H, V), and
fa be the components of the bounded tiling instance resulting from the
reduction in the proof of Theorem 7.2.1 applied to x. Consider the sets
p = {O, 1, 2, ... , s - I} and 5 = P x P x D. Let 50 ~ 5 be the following
set:

{(m,O,fo(m)): ° ~ m < s}.

Let RH ~ 5 x 5 be the following relation:

R{((m -1,n,d),(m,n,d')): 1 ~ m,n < s, (d,d') E H},

and Rv ~ 5 x 5 be this:

R{((m,n -I,d), (m,n,d')): ° ~ 'In < s, 2 ~ n < s, (d,d') E V}.

316 Chapter 7: NP-COMPLETENESS

Show that x E L if and only if the closure of So under RH and Rv contains,
for each 0 :; i, j < s, a triple (i, j, d) for some d ED. In other words, not
only can any closure property can be computed in polynomial time (this
was shown near the end of Section 1.6), but also, conversely, any polynomial
computation can be expressed as a closure property. Of course, the use of
huge relations such as RH makes this result seem a little artificial; but it
turns out that it also holds in a much more meaningful setting (see the
references at the end of the chapter).

7.2.2. Consider BINARY BOUNDED TILING, the version of BOUNDED TILING where
we are not given the first row of tiles, but only the tile at the origin, do; the
size of the square to be tiled, 8, is given in binary.

(a) Show that there is a reduction from the language

I" "I EI = {"M": M halts on the empty string within 2 M steps}

to BIi'.'ARY BOUi'.'DED TILmG.

(b) Conclude that BINARY BOUNDED TILING is not in P.
(c) Let NEXP be the class of all languages decided by a nondeterministic

Turing machine in time 2nk for some k > O. Show that (i) BINARY BOUNDED

TILING is in NEXP, and (ii) all languages in NEXP are polynomially
reducible to nINARY BOUNDED TILING. That is to say, BINARY BOUNDED

TILING could be termed NEXP-complete.

7.2.3. (a) Show that SATISFIABILITY remains NP-complete even if it is restricted
to instances in which each variable appears at most three times. (Hint:
Replace the occurrences of variable, say, x, by new variables Xl, ... , X k.

Then add a formula in which each of these variables appears twice, stating
that "all these variables are equivalent.")
(b) What happens if each variable appears at most twice?

7.2.4. Recall from Problem 6.4.3 that the class Np is closed under nonerasing
homomorphisms. Show that P is closed under nonerasing homomorphisms
if and only if P = NP. (Hint: One direction follows from (a). For the
other, consider the following language, which is obviously in P:

L = {xy : X E {O, I} * is the encoding of a Boolean formula F,
and y E {T,.l}* is a truth assignment that satisfies F}.)

7.2.5. Consider the following special case of MAX SAT:

MAX 2-SAT: Given a set F of clauses, with at most two literals each, and
an integer K, is there a truth assignment that satisfies at least K of the
clauses?

7.3: More NP-complete Problems 317

Show that MAX 2-SAT is NP-complete. (This is hard. Consider the clauses
(x), (y), (z), (w), (xVy) , (fiVz) , (zVx), (xVw), (yVw), (zVw). Show that this
set of ten clauses has the following property: All satisfying truth assignment
on x, y, z can be extended to satisfy seven clauses and no more, except for
one, which can only be extended to satisfy six. Can you use this "gadget"
to reduce 3-SATISFIABlLITY to MAX 2-SAT?)

liiJ MORE NP-COMPLETE PROBLEMS

Once we have proved our first NP-complete problem, we can reduce it to other
problems, and those to still others, proving them all NP-complete. See Figure
7-4 for a depiction of the reductions proved in this section and the last, and see
the problems and the references for many more NP-complete problems.

BOUNDED TILING

SA TISFIABILITY

~-----
3SAT MAXSAT INDEPENDENT SET

EXACT COVER

/ ~CLIQUE NODE COVER

HAMILTON CYCLE

/
UNDIRECTED HAMILTON CYCLE

TRA VELING SALESMAN PROBLEM

KNAPSACK

PARTITION TWO MACHINE
SCHEDULING

Figure 7-4

INEQUIV ALENCE OF *-FREE
REGULAR EXPRESSIONS

NP-complete problems arise in all fields and applications in which so
phisticated computation is done. It is an important skill to be able to spot
NP-complete problems -either by recognizing them as known NP-complete

problems,t or by proving them NP-complete from scratch. Such knowledge

t This is not always easy, because NP-complete problems tend to come up in ap

plications under all sorts of confusing guises.

318 Chapter 7: NP-COMPLETENESS

saves researchers and programmers from futile attempts at impossible goals,
and redirects their efforts to more hopeful venues (reviewed in Section 7.4 on
coping with NP-completeness). NP-complete problems such as GRAPH COLOR

ING (see Problem 7.1.1), SATISFIABILlTY, and INDEPENDENT SET are important
because they come up frequently, and under various guises, in applications. Oth
ers, like the TRAVELING SALESMAN PROBLEM, are important not only because
of their practical applications, but because they have been studied so much. Still
others, such as the problem we introduce next, are important because they are
often handy starting points for NP-cornpleteness reductions (SATISFIABILITY is
important for all three reasons).

We are given a finite set U = {u[, ... , un} (the universe), and a family ofm
subsets of U, F = {51"'" 5 m }. We are asked whether there is an exact cover,
that is, subfamily C ~ F such that that the sets in C are disjoint and have U as
their union. We call this problem EXACT COVER.

}or example, let the universe be U = {U[,U2,U3,U4,U5,U6} and the family
of subsets F = {{U[,U3},{U2,U3,U6},{U[,U5},{U2,U3,U4},{U5,U6},{U2,U4}}'
An exact cover exists in this instance: It is C = { { U[, ud, { U5, U6}, { U2, u.t} }.

Theorem 7.3.1: EXACT COVER is NP-complete.

Proof: It is clear that EXACT COVER is Np: Given an instance (U, F) of the
problem, the subfamily sought is a valid certificate. The certificate is polyno
mially concise in the size of the instance (since it is a subset of F, which is a
part of the input), and it can be checked in polynomial time whether indeed all
elements of U appear exactly once in the sets of C.

To prove NP-completeness, we shall reduce SATISFIABILlTY to the EX

ACT COVER problem. That is, we are given a Boolean formula F with clauses
{CI , ... , Ct} over the Boolean variables Xl, ... , X n , and we must show how to
construct in polynomial time an equivalent instance T(F) of the EXACT COVER

problem. We shall denote the literals of clause Cj by Ajk, k = 1, ... , mj, where
m j is the number of literals in Cj .

The universe of T(F) is the set

U= {Xi: 1 ~i ~n}U{Cj:j = 1, ... ,£}U{Pjk: 1 ~j ~£,k= 1, ... ,mj}.

That is, there is one element for each Boolean variable, one for each clause, and
also one element for each position in each clause.

Now for the sets in :F. First, for each element Pjk, we have in F a set {pjd.
That is to say, the Pjk'S are very easy to cover. The difficulty lies in covering
the elements corresponding to the Boolean variables and clauses. Each variable
Xi belongs to two sets in F, namely, the set

Ti,T = {x;} U {Pjk : Ajk = x,},

7.3: More NP-complete Problems 319

which also contains all negative occurrences of Xi, and

with the positive occurrences (notice the reversal in signs). Finally, each clause
Ci belongs to mj sets, one for each literal in it, namely {Cj , pjd, k = 1, ... , mj.
These are all the sets in F, and this completes the description of T(F).

Let us illustrate the reduction for the given Boolean formula F, with clauses
CI = (Xl V X2), C2 = (Xl V X2 V X3), C3 = (X2), and C4 = (X2 V X3). The universe
of T(F) is

and t.he family of sets F consists of these sets:

{PII}, {PI2}, {P21}, {P22}, {P23}, {P31,}{P41},{P42},

TI,l.. = {XI,Pll},

TI,T = {XI,P2d,

T2,l.. = {X2,P22,P3d,

T2,T = {X2,PI2,P4d,

T3,l.. = {X3,P23},

T3,T = {X2,P42},

{CI,Pll}, {CI,PI2}, {C2,P2d, {C2,P22},

{C2,P23}, {C3,P31,}, {C4,P41}, {C4,P42}.

We claim that T(F) has an exact cover if and only if F is satisfiable. Suppose
that an exact cover C exists. Since each Xi must be covered, exactly one of the
two sets Ti, T and Ti,l.. containing Xi must be in C. Think of Ti, T E C as meaning
that T(Xi) = T, and Ti,l.. E C as meaning that. T(Xi) = ..l; t.his defines a truth
assignment T. We claim that T satisfies F. In proof, consider a clause Cj . The
element in U corresponding to this clause must be covered by a set {Cj,pjd,
for 1 :::; k :::; mj. This means that the element pjk is not cont.ained in any other
set in the exact cover C; in particular, it is not in the set in C that contains the
variable that occurs (negated or not) at the kth literal of Cj . But this means
that T makes the kth literal of Cj T, and thus Cj is satisfied by T. Hence F is
satisfiable.

Conversely, suppose that there is a truth assignment T that satisfies F. We
then construct the following exact cover C: For each Xi, C contains the set Ti , T

if T(Xi) = T, and it contains the set Ti,l.. if T(Xi) = ..l. Also, for each clause Cj ,

C contains a set {Cj,pjd such that the kth literal of Cj is made T by T, and
thus Pjk is not contained in any set selected in C so far -we know that such a k

320 Chapter 7: NP-COMPLETENESS

exists by our assumption that T satisfies F. Finally, having covered all Xi'S and
C/s, C includes enough singleton sets to cover any remaining Pjk elements that
are not covered by the other sets. In the illustration above, the exact cover that
corresponds to the satisfying truth assignment T(xJ) = T, T(:r2) = T, T(:r3) =
..l contains these sets: TI,T, T2,T, T3,J.., {CI,Pll}, {C2,P22}' {C3,P3d, {C4,P42},
plus the singletons {PI2}, {p2d, {P23}, {p4d. We conclude that T(F) has an exact
cover, and the proof is complete .•

The Traveling Salesman Problem

We can use the EXACT COVER problem to establish the NP-completeness of
HAMILTON CYCLE.

Theorem 7.3.2: HAMILTON CYCLE is NP-complete.

Proof: We already know that it is NP. We shall now show how to reduce EXACT

COVER to HAMILTON CYCLE. We shall describe a polynomial-time algorithm
which, given an instance (U, F) of EXACT COVER, produces a directed graph
G = T(U, F) such that G has a Hamilton cycle if and only if (U, F) has an exact
cover.

The construction is based on a certain simple graph that has interesting
properties vis a vis the Hamilton cycle problem -in NP-completeness jargon
such graphs are called gadgets. Figure 7-5(a) shows this gadget. Imagine that
it is a part of a larger graph G, connected to the rest of G via the four nodes
shown as solid dots. In other words, there are other nodes and edges to the
graph, but no edges other than the ones shown are adjacent to the three nodes
in the middle. Further, suppose that G has a Hamilton cycle, a cycle which
traverses each node of G exactly once. The question is, via which edges is the
Hamilton cycle going to traverse the three middle nodes? It is easy to see that
there are really only two possibilities: Either the edges (a, u), (n, v), (v, w), (10, b)
are a part of the Hamilton cycle, or the edges (c, w), (w, v), (v, u), (u, d) are. All
other possibilities leave some of the three nodes untraversed by the Hamilton
cycle, which therefore is not Hamilton at all.

To put it otherwise, this simple device can be thought of as two edges (a, b)
and (c, d) with the following additional constraint: In any Hamilton cycle of
the overall graph G, either (a, b) is traversed, or (c, d) is, bl1,t not both. This
situation can be depicted as in Figure 7-5(b), where the two otherwise unrelated
edges are connected by an exclusive or sign, meaning that exactly one of them is
to be traversed by any Hamilton cycle. Whenever we show this construct in our
depiction of a graph, we know that in fact the graph contains the full subgraph
shown in Figure 7-5(a). In fact, we can have several edges connected by such
subgraphs with the same edge (see Figure 7-5(c)). The result is the same: Either
all edges on one side are traversed, or the edge on the other, but not both.

a

7.3: More NP-complete Problems 321

a b

c .~------~-------
c

(a)
(b)

• • •

•
(c)

Figure 7-5

This device is central to our construction of the graph G = T(U, F), cor
responding to the instance of EXACT COVER with U = {Ul ... ,Un} and F =
{S] , ... ,Sm}' We describe the graph G next. There are nodes Uo, Ul, ... ,Un and
So, SI, ... ,Sm, that is, one for each element of the universe, and one for each
set in the given instance, plus two more nodes. For i = 1, ... ,m, there are two
edges (Si-l, Si). Of course, in graphs it makes no sense to have two different
edges connecting the same pair of nodes. The only reason we allow it in the
present case is that the edges will be later joined by "exclusive or" subgraphs
as in Figure 7-4, and thus there will be no "parallel" edges at the end of the
construction. One of the two edges (Si-l, Si) is called the long edge, and the
other is the .short edge. For j = 1, ... ,n, between the nodes Uj-l and Uj there
are a.s many edge.s a.s there are .set.s in F containing the element Uj. This way,
we can think that each copy of the edge (Uj -1, U j) corresponds to an appearance
of Uj in a set. Finally, we add the edges (un, So) and (Sm, uo), thus "closing the
cycle."

Notice that the construction so far only depends on the size of the universe
and the number and sizes of the sets; it does not depend on preci.sely which

d

322 Chapter 7: NP-COMPLETENESS

Figure 7-6

sets contain each element. This fine structure of the instance will influence
our construction as follows: As each copy of edge (Uj -1 , Uj) corresponds to an
appearance of element Uj in some set 5 i E F such that Uj E 5 i , we join by an
"exclusive or" subgraph this copy of edge (Uj-1, Uj) with the long edge (5i - 1 , 5i)

(see Figure 7-6 for an illustration). This completes the construction of the graph
T(U, F).

We claim that the graph T(U, F) has a Hamilton cycle if and only if T(U, F)
has an exact cover. First, suppose that a Hamilton cycle exists. It must traverse
the nodes corresponding to the sets in the order 50 ,5], ... , 5m , then traverse
the edge (5m , uo), then the nodes uo, U1, ... , Un, and finally finish along the edge
(un ,50) (see Figure 7-6). The question is, will it traverse for each set 5 j the
short or the long edge (5j - 1 , 5j)? Let C be the set of all sets Tj such that the
short edge (5 j - 1 , 5 j) is traversed by the Hamilton cycle. We shall show that C is
a legitimate set cover; that is, it contains all elements without overlaps. But this
is not hard to see: By the property of the "exclusive or" subgraph, the elements
in the sets in C are precisely the copies of edges of the form (Ui-1, Ui) that are

7.3: More NP-complete Problems 323

traversed by the Hamilton cycle; and the Hamilton cycle traverses exactly one
such edge for each element Uj E U. It follows that each Uj E U is contained in
exactly one set in C, and thus C is an exact cover.

Conversely, suppose that an exact cover C exists. Then a Hamilton cycle
in the graph T(U,:1") can be constructed as follows: Traverse the short copies of
all edges (Sj-l,Sj) where Sj E C, and the long edges for all other sets. Then
for each element Ui, traverse the copy of the edge (Ui-l, Ui) that corresponds to
the unique set in C that contains Ui. Complete the Hamilton cycle by the edges
(Un' So) and (Sm,UO) .•

Once a problem is shown to be NP-complete, research often is focused on
solving interesting yet tractable special cases of the problem. NP-completeness
proofs often produce instances of the target problem that are complex and "un
natural." The question often persists, whether the instances that are of interest
in practice, being much less complex, may not be solvable by some efficient al
gorithm. Alternatively, it can be often shown that even substantially restricted
versions of the problem remain NP-complete. We have already seen both pat
terns in connection to SATISFIABILITY, whose special case 2-SATISFIABILITY can
be solved in polynomial time, whereas the special case 3-SATISFIABILITY is Np
complete. To introduce an interesting special case of HAMILTON CYCLE, define
UNDIRECTED HAMILTON CYCLE to be the HAMILTON CYCLE problem restricted
to graphs that are undirected, that is, symmetric without self-loops.

Theorem 7.3.3: UNDIRECTED HAMILTON CYCLE is NP-complete.

Proof: We shall reduce the ordinary HAMILTON CYCLE problem to it. Given a
graph G <;;;; V x V, we shall construct a symmetric graph G' <;;;; V' X V', without
self-loops, such that G has a Hamilton cycle if and only if G' has one. The
construction, illustrated in Figure 7-7, is this: First, V' = {VO,Vl,V2: v E V},
that is, G' has three nodes va, VI, and V2 for each node v of G. Of these va is,
informally, the entry node, to which edges coming into v will be directed, and
V2 is the exit node, from which edges going out of v will emanate.

Figure 7-7

Thus, the edges in G' are these (see Figure 7-7; recall that undirected graphs
are more conveniently depicted by undirected lines connecting the nodes):

{(U2' va), (va, U2) : (u, v) E G} U {(va, vr), (VI, va), (VI, V2), (V2, vI) : v E V)}.

324 Chapter 7: NP-COMPLETENESS

That is, the nodes vo, VI, V2 are connected by a path in this order, and there is
an undirected edge between U2 and Vo whenever (u, v) E G. This completes the
construction of G'.

We must now prove that G' has a Hamilton cycle if and only if G has one.
Suppose that a Hamilton cycle of G' arrives at node Vo from an edge of the form
(U2, vo). If the Hamilton cycle leaves Vo through an edge other than (Vo, VI),

then it cannot "pick up" node VI in any other way, and thus it was erroneously
assumed to be a Hamilton cycle. Thus, edge (VO,Vl) must be a part of the
cycle, and so is (Vt, V2). Then the cycle must continue through one of the edges
(V2,1[10), where (v,w) E G, from there to WI, W2, to some zo where (w,z) E G,
and so on. Therefore, the edges of the form (uo, V2) in the Hamilton cycle of
G' constitute in fact a Hamilton cycle of G. Conversely, any Hamilton cycle
(VI, v2

, ••• , vlVl) of G can be converted into a Hamilton cycle of G' as follows:

(1 1 1 2 2 2 IVI IVI IVI) HI I d h G h H·l vo , VI' V2, Vo , VI' V2 , ... , Vo , VI , V2 . He conc u e t at as a amI ton
cycle if and only if G' has a Hamilton cycle, and the proof is complete .•

Our next result concerns the notorious TRAVELING SALESMAN PROBLEM

-its "yes-no" version, in which each instance is supplied with a budget B, as
defined in Section 6.2.

Theorem 7.3.4: The TRAVELING SALESMAN PROBLEM is NP-complete.

Proof: We already know that the problem is in Np. To show completeness,
we shall reduce UNDIRECTED HAMILTON CYCLE to the TRAVELING SALESMAN

PROBLEM. Given a symmetric graph G, where without loss of generality V =
{VI, ... , VIVI}, we construct the following instance of the TRAVELING SALESMAN

PROBLEM: n, the number of cities, is lVI, and the distance dij between any two
cities i and j is

{

0 if i = j;
dij = 21 if (Vi, Vj) E G;

otherwise.
Since G is a symmetric graph without loops, this distance function is itself
symmetric; that is to say, dij = dji for all cities i and j, as required. Finally,
the budget is B = n.

Obviously, any "tour" of the cities has cost equal to the number of n plus
the number of the intercity distances traversed that are not edges of G. Thus,
a tour of cost B or less exists if and only if the number of "nonedges" used is
zero, that is, if and only if the tour is a Hamilton cycle of G .•

Partitions and Cliques

EXACT COVER also provides a nice proof of the NP-completeness of PARTITION.

It is easiest to start from the closely related KNAPSACK problem, in which an
arbitrary sum K to be achieved is given (recall its definition in Example 7.1.2):

7.3: More NP-complete Problems 325

Theorem 7.3.5: KNAPSACK is NP-complete.

Proof: That KNAPSACK is in /lfp is clear: Given an instance of KNAPSACK

a1, ... ,an, and K, a subset P of {I, ... ,n} such that L:iEP ai = K can serve as
a eertificate that the answer to the given instance is "yes." It is polynomially
succinct, and it can be tested in polynomial time by binary addition.

We shall now reduce EXACT COVER to KNAPSACK. We are given a universe
U = {U1 ... ,u,,} and a family F = {51, ... ,5m } of subsets of U. We shall con
struct an instance T(U, F) of KN APSACK, that is, nonnegative integers a1, ... , ak,

and another K such that there is a subset P ~ {I, ... , k} with L:iE P ai = K if
and only if there is a set of sets C ~ F that are disjoint and collectively cover
all of U.

This construction is particularly simple, because it relies on an unexpected
relationship between set union and integer addition. Subsets of a set of n ele
ments, such as those in F, can be represented as strings over {O, l}n (see Figure
7-8). In turn such strings can be interpreted as integers between zero and 211 -1,
written in binary. Now taking the union of such sets, provided that they are dis
joint, is the same as adding the corresponding integers. Since in EXACT COVER

we are asking whether the disjoint union of the teams makes up the whole U,
this seems to be the same as asking whether there are integers among the given
ones that add up to K = 1 + 2 + 4 + ... + 2n - 1 -the binary number with n
ones. And this is very close to an instance of KNAPSACK.

0011 V
51 = {u3, u4 } 51 = 001 1 0111
52 = {u2, u3, u4 } 52 = 01 1 1 + 1100 V
53 = {u j ,u2} 53 = 1 100 1 1 1 1

(a) (b) (c)

Figure 7-8: From sets (a) to bit vectors (b) to integer addition in base m (c)

There is one problem with this simple reduction: The close correspondence
between set union and integer addition breaks down because in integer addition
we may have carry. Consider, for example, the sum 11 + 13 + 15 + 24 = 63; in
binary OOlOll + OOllOI + 001111 + OllOOO = llllll. If we translate back to
subsets of {Uj, ... ,U6}' the sets {U3,U5,U6}, {U3,U4,U6}, {U3,U4,U5,U6}, and
{U2,U3} are neither disjoint, nor do they cover all of U. In other words, carry
makes the translation between union and addition faulty.

This problem can be very easily resolved as follows: Instead of considering
the strings in {O, l}n as integers in binary, consider them as integers in m-ary,

326 Chapter 7: NP-COMPLETENESS

where m is the number of sets in:1". That is, we have m integers aI, ... ,am,
where ai = L:UjESi m j - 1

. We ask whether there is a subset that adds up to

K = L:7=1 m j - 1. This way carry is not a problem, because the addition of
fewer than m digits in m-ary, with each of the digits either 0 or 1, can never
result in carry. It is now clear that the resulting instance of KNAPSACK has a
solution if and only if the original instance of EXACT COVER has a solution .•

Corollary: PARTITION and TWO-MACHINE SCHEDULING are NP-complete.

Proof: There are polynomial reductions from KNAPSACK to both of these prob
lems; recall Example 7.1.2 .•

We next turn to three graph-theoretic problems introduced in Section 6.2:
INDEPENDENT SET, CLIQUE, and NODE COVER.

Theorem 7.3.6: INDEPENDENT SET is NP-complete.

Proof: It is clearly in NP; and we shall reduce 3-SATISFIABILITY to it.
Suppose that we are given a Boolean formula F with clauses C1 , ... , Cm ,

each with at most three literals. In fact, we shall assume that all clauses of F
have exactly three literals; if a clause has only one or two literals, then we allow
a literal to be repeated to bring the total number to three. We shall construct
an undirected graph G and an integer K such that there is a set of K nodes in
G with no edges between them if and only if F is satisfiable.

The reduction is illustrated in Figure 7-9. For each one of the clauses
C1 , ... ,Cm of F, we have three nodes in G, connected by edges so that they form
a triangle -call the nodes of the triangle corresponding to clause Ci Cil, Ci2, Ci3.

These are all the nodes of G -a total of 3m nodes. The goal is K = m, equal
to the number of clauses. For defining the remaining edges of G, node Cij is
identified with the jth literal of clause C i . Finally, two nodes are joined by an
edge if and only if their literals are the negation of one another. This completes
the description of the reduction; see Figure 7-9 for an example.

Suppose that there is an independent set I in G with K = m nodes. Since
any two nodes from the same triangle are connected by an edge, evidently there is
exactly one node in I from each triangle. Recall that nodes correspond to literals.
Consider now the fact that a node is in I to mean that the corresponding literal
is T. Since there are no edges between nodes in I, it follows that no two such
literals are the negation of one another, and therefore they can be the basis of
a truth assignment T. Notice that T may not be fully defined on all variables,
because the set of nodes in I may fail to involve all variables; for example, in
Figure 7-9 the independent set indicated by the full circles does not determine
the value of variable X3. T may take any truth value on such "missing" variables;
the resulting truth assignment T satisfies all clauses, because each clause has at

7.3: More NP-complete Problems 327

Figure 7-9

least one literal satisfied by T. And conversely, given any truth assignment
satisfying F, we can obtain an independent set of size m by picking for each
clause a node corresponding to a satisfied literal .•

The NP-completeness of two other graph-theoretic problems is now imme
diate:

Theorem 7.3.7: CLIQUE and NODE COVER are NP-complete.

Proof: They are both clearly in NP.

Figure 7-10

CLIQUE, requiring that all edges between any two nodes in the set be present,
is in some sense the exact opposite of INDEPENDENT SET. The reduction makes
this sense precise. Given an instance (G, K) of INDEPENDENT SET, where G ~
V x V is an undirected graph and K 2': 2 is the goal, we create an equivalent
instance (QI, K') of CLIQUE by just taking G' = V x V - {(i, i) : i E V} - G,
and keeping the same goal, K' = K. This works because, as it is fairly easy to
check, the maximum independent set of G is precisely the maximum clique in

328 Chapter 7: NP-COMPLETENESS

the complement of G, the graph that contains all non-loop edges that are not in
G (see Figure 7-10).

Finally, NODE COVER is the exact opposite of INDEPENDENT SET in a dif
ferent senSe: since the nodes in a node cover N <; V "hit" between them all
edges, the set V - N must have no edges between its elements, and is thus an
independent set (see Figure 7-11). Hence, N <; V is a node cover of G if and
only if V - N is an independent set of G. Thus, the maximum independent set
of G has size K or more if and only if the minimum node cover of G has size
IVI - K or less. The reduction from INDEPENDENT SET to NODE COVER leaves
the graph the same, and simply replaces K by IVI - K .•

Figure 7-11

Finite Automata
Our last NP-completeness result concerns some of the first, and apparently
simplest, mathematical objects studied in this book: nondeterministic finite
automata and regular expressions.

Among all problems we introduced in the last chapter, there are only two
whose membership in NP is not obvious: EQUIVALENCE OF REGULAR EXPRES

SIONS, and the closely related problem EQUIVALENCE OF NONDETERMINISTIC

FINITE AUTOMATA. Given two regular expressions, what would be a convincing
certificate of their equivalence? Nothing succinct comes to mind.

If, however, we defined the complement problem

INEQUIVALENCE OF REGULAR EXPRESSIONS: Given two regular expressions
RI and R2 , is L(Rd =I- L(R2)?

then certificates seem to become possible: A certificate of the inequivalence of
two regular expressions is a string belonging to the language generated by one
but not the other, that is, any element of (L(Rd - L(R2)) U (L(R2) - L(Rd).
Indeed, this set is nonempty if and only if the expressions are inequivalent.

But now the real difficulty reveals itself: Such certificates are legitimate in
all respects except for the crucial polynomial succinctness property. Given two
regular expressions RI and R2 , there is no obvious polynomial upper bound on
the length of the shortest string that belongs in (L(Rd - L(R2)) U (L(R2) -
L(Rd). For such a bound to qualify, it should be polynomial in the length

7.3: More NP-complete Problems 329

of the two expressions, I RII + I R21 -that is, the number of symbols, such as
a, b, U, *, and parentheses, needed to represent them. In fact, there are families
of pairs of inequivalent regular expressions which differ only in strings that are
exponentially long in the size of the expressions!

To obtain a problem in Np we must look at a restricted special case: *-free
regular expressions, that is, regular expressions over union and concatenation,
not containing any occurrences of Kleene star. Consider a *-free regular expres
sion, such as

R = (0 U 1)00(0 U 1) U 010(0 U 1)0.

It is now easy to see that, if x is a string in the language generated by it (say,
x = 1001 for R above), then Ixl :::; IRI. As a result of this observation, the
following problem is in NP:

INEQUIVALENCE OF *-FREE REGULAR EXPRESSIONS: Given two *-free reg
ular expressions RI and R2, is L(Rd =I- L(R2)?

A valid certificate is any string in (L(Rd - L(R2» U (L(R2) - L(Rd), and all
such strings are succinct, shorter than IRII + IR2 1. For an analogous problem in
the domain of nondeterministic finite automata, see Problem 7.3.7.

In fact, we can prove this result:

Theorem 7.3.8: INEQUIVALENCE OF *-FREE REGULAR EXPRESSIONS is NP
complete.

Proof: We have already argued that the problem is in NP. We shall show that
SATISFIABILITY reduces to INEQUIVALENCE OF *-FREE REGULAR EXPRESSIONS.

Given any Boolean formula with Boolean variables Xl, ... ,Xn and clauses
CI , ... ,em, we shall produce two regular expressions RI and R2 over the alpha
bet ~ = {O, I}, neither of which contains an application ofthe Kleene star, such
that L(Rd =I- L(R2) if and only if the given Boolean formula is satisfiable.

The second regular expression, R 2 , is very simple:

(0 U 1)(0 U 1)··· (OU 1),

with the expression (0 U 1) repeated n times. The language generated by R2 is
obviously the set of all binary strings of length n, that is to say, L(R2) = {O, 1 }n.

Now for the construction of RI . In contrast to R 2 , RI depends heavily on the
given Boolean formula. In particular, RI is the union of m regular expressions

where regular expression D:i depends on clause Ci . Each D:i is the concatenation
of n regular expressions:

330

where

{

0,

D:ij= ~6UI),

Chapter 7: NP-COMPLETENESS

if Xj is a literal of Gi ;

if Xj is a literal of Gi ;

otherwise.

If we disregard for a moment the distinction between ° - 1 and T - 1., then
strings in {O, I}n can be thought of as truth assignments to the Boolean vari
ables {Xl,' .. ,xn }. In this interpretation, L(D:i) is precisely the set of all truth
assignments that fail to satisfy Gi . Thus L(Rd is the set of all truth assign
ments that fail to satisfy at least one of the clauses of the given Boolean formula.
Thus, the given Boolean formula is satisfiable if and only if L(RI) is different
from {O, I}n -which is precisely L(R2). The proof is complete .•

The equivalence problem for general regular expressions and for nondeter
ministic finite automata can, of course, only be harder (see the references for
information about their precise complexity), and similarly for the state mini
mization problems for nondeterministic finite automata. None of these simply
stated problems about t.he most primitive of computational modds can be solved
efficiently unless P = Np.

But how about the following less ambitious goal: Suppose that we wish,
given a nondeterministic finite automaton, to find the equivalent deterministic
one with the minimum number of states. We know that any such algorithm
must be exponential in the worst. case because the output may have to be ex
ponentially long in the size of the input (recall Example 2.5.4). But is there an
algorithm that runs in time polynomial in t.he size of the input and the output?
Such an algorithm would spend exponential time when the output is large, but
would swiftly output small automata. (The obvious algorithm which first car
ries out the subset construction and then minimizes the resulting deterministic
aut.omaton does not qualify, because the subset construction may yield an in
termediate result that is exponentially large, even though the final output -the
minimum equivalent deterministic automaton- may be polynomial.)

Unfortunately, we can show that even such an algorithm is unlikely to exist:

Corollary: Unless P = NP, there is no algorithm which, given a regular
expression or a nondeterministic finite automaton, constructs the minimum
state equivalent deterministic finite automaton in time that is polynomial in the
input and the output.

Proof: Let A1n denote the simple n+ I-state finite aut.omaton accepting {O, 1 }n.
In the reduction in the proof of the theorem, the given Boolean formula with
n variables is unsatisfiable if and only if the minimum-state deterministic finite
aut.omaton equivalent to RI is exactly Mn.

Suppose now that an algorithm as described in the statement. of the corollary
exists, with a time bound of the form p(lxl + lyD, where P is a polynomial, X is the

7.3: More NP-complete Problems 331

input of the algorithm, and y is its output. Then we could solve SATISFIABILITY
as follows.

Given any Boolean formula F with n variables, we first perform the reduc
tion described in the proof of the theorem to obtain a regular expression R I .

Then we run, on input RI , the purported algorithm for P(IRII + IMnl) steps,
where IMnl is the length of the encoding of Mn. If the algorithm terminates
within the allotted time, then we know how to answer the original SATISFIA
BILITY question: We answer "no" if the output is]l.In , and we answer "yes" in
the event of any other output. If, however, the algorithm does not halt after
p(IRII + IMnU steps, and since we know that it always halts after p(lxl + Iyl)
steps, we can conclude that its output would be longer than IMnl. Hence the al
gorithm's output is not M n , and we can confidently answer "yes" to the original
SATISFIABILITY question.

What we described in the previous paragraph is a polynomial-time algo
rithm for SATISFIABILITY-the time bound p(IRll + 1M!) is polynomial in the
size of the Boolean formula F. Since SATISFIABILITY is NP-complete, we must
conclude by Theorem 7.1.1 that P = NP, completing the proof .•

Problems for Section 7.3

7.3.1. (a) Show that EXACT COVER remains NP-complete even if all sets have no
more than three elements, and each element appears in at most three sets.
(b) What happens if either number is two?

7.3.2. Give the full graph (without the abbreviation of the exclusive-or gadget)
that would result from the reduction from EXACT COVER to HAMILTON CY
CLE if the given instance of EXACT COVER consists of the universe {Ul, U2}
and the family of sets :F = {{ uI}, { UI, U2}}'

7.3.3. (a) Show that the HAMILTON PATH problem is NP-complete, (1) by re
ducing the HAMILTON CYCLE problem to it; (2) by modifying slightly the
construction in the proof of Theorem 7.3.2.
(b) Repeat for the problem HAMILTON PATH BETWEEN TWO SPECIFIED
NODES (the obvious definition).

7.3.4. Each of the following problems is a generalization of an NP-complete
problem, and is therefore NP-complete. That is, if certain parameters of
the problem are fixed in a certain way, then the problem in hand becomes
a known NP-complete problem (recall the proof of Theorem 7.2.4). One
can reduce any problem to its generalization by simply introducing a new
parameter, and otherwise leaving the instance as it is.
For each of the problems below, prove that it is NP-complete by showing
that it is the generalization of an NP-complete problem. Give the appro
priate parameter restriction in each case.

332 Chapter 7: NP-COMPLETENESS

(a) LONGEST CYCLE: Given a graph and integer K, is there a cycle, with
no repeated nodes, of length at least K? (Hint: What happens to this
problem if K is restricted to be equal to the number of nodes of the
graph?)

(b) SUBGRAPH ISOMORPHISM: Given two undirected graphs G and H, is
G a subgraph of H? (That is, if G has nodes VI, ... , Vn , can you
find distinct nodes 11,1, .. . ,Un in H such that [Ui, Uj 1 is an edge in H
whenever [Vi, Vj] is an edge in G?)

(c) INDUCED SUBGRAPH ISOMORPHISM: Given two undirected graphs G
and H, is G an induced sub graph of H? (That is, if G has nodes
VI, ... , Vn , can you find distinct nodes 11,1, ... , Un in H such that [Ui' Uj]

is an edge in H if and only if [Vi, Vj] is an edge in G?)
(d) RELIABLE GRAPH: Given an undirected graph G with nodes VI, ... ,Vn ,

an n x n symmetric matrix Rij of natural numbers, and an integer B,
is there a set S of B edges of G with the following property: Between
nodes Vi ::j:. Vj there are at least Rij disjoint paths (that is, paths sharing
no other node except for the endpoints) with edges in S. (Hint: What
happens if Rij = 2 for all i,j, and B = n?)

(e) INTEGER PROGRAMMING: Given m equations

n

L aij x j = bi , i = 1, ... , m
i=1

in n variables, with integer coefficients aij and bi , does it have a solution
in which all xi's are either zero or one? (Actually, this is a common
generalization of many of the NP-complete problems we have seen;
how many can you find?)

(f) TAXICAB RIPOFF: Given a directed graph G with positive lengths dij

on its edges, two nodes 1 and n, and an integer K, is there a path from
1 to n, not repeating any node twice, with total length K or more?

(g) HITTING SET: Given a family of sets {SI, S2, ... , Sn}, and an integer
B, is there a set H with B or fewer elements such that H intersects all
sets in the family?

(h) BIN PACKING: Given a set of positive integers A. = {al, ... , an}, and
two more integers Band K, can the integers in A. be partitioned into
B subsets ("bins") such that the numbers in each bin sum up to K or
less?

(i) SET COVER: Given a family :F of subsets of a universe U, and an integer
K, are there K sets in :F whose union equals U?

7.3.5. Show that INDEPENDENT SET remains NP-complete even if the size K
of the INDEPENDENT SET sought equals r n/21, where n is the number of
nodes.

7.4: Coping with NP-completeness 333

7.3.6. Show that the following problem is NP-complete. DOMINATING SET: Given
a directed graph G and an integer B, is there a set S of B nodes of G such
that for every node u ~ S of G, there is a node v E S such that (v, u) is an
edge of G.

7.3.7. Call a nondeterministic finite automaton M = (K,~,~, s, F) acyclic if
there is no state q and string w =I- e such that (q, w) ~M (q, e). Show that
the problem of telling whether two acyclic nondeterministic finite automata
are inequivalent is NP-complete.

B (OPING WITH NP-(OMPLETENESS

Problems do not go away when they are proved NP-complete. But once we
know that the problem we are interested in is an NP-complete problem, we are
more willing to lower our sights, to settle for solutions that are less than perfect,
for algorithms that are not always polynomial, or do not work on all possible
instances. In this section we review some of the most useful maneuvers of this
sort.

Special Cases

Once our problem has been shown NP-complete, the first question to ask is
this: Do we really need to solve this problem in the full generality in which it
was formulated -and proved NP-complete? NP-completeness reductions often
produce instances of the problem that are unnaturally complex. Perhaps what
we really need to solve is a more tractable special case of the problem.

For example, we have already seen that there is an important special case
of SATISFIABILITY that can be easily solved efficiently: 2-SATISFIABILITY (recall
Section 6.3). If all instances of SATISFIABILITY that we must solve have clauses
of this kind, then the fact that the general problem is NP-complete is rather
irrelevant. But often a special case of interest turns out to be itself NP-complete
-for example, 3-SATISFIABILITY is such a case, recall Theorem 7.2.3. We next
see another example.

Example 7.4.1: Most problems involving undirected graphs become easy when
the graph is a tree -that is to say, it has no cycles, see Figure 7-12. Looking
back at our collection of NP-complete graph problems, HAMILTON CYCLE is of
course trivial in trees (no tree has a cycle, Hamilton or otherwise), but so is
HAMILTON PATH -a tree has a Hamilton path only if it is a Hamilton path.
The CLIQUE problem also becomes trivial-no tree can have a clique with more
than two nodes.

The INDEPENDENT SET problem is also easy when the graph is a tree. The
method used for its solution takes advantage of the "hierarchical structure" of

334 Chapter 7: NP-COMPLETENESS

trees. It is often useful in a tree to pick an arbitrary node and designate it as
the root (see Figure 7-12); once this has been done, each node u in the tree
becomes itself the root of a subtree T(u) -the set of all nodes v such that the
(unique) path from v to the root goes through u; see Figure 7-12. Then problems
can be solved bottom up, by going from the leaves (subtrees with one node) to
larger and larger subtrees, until the whole tree (the subtree of the root) has
been dealt with. For each node u we can define the set of its children C (u) -the
nodes in its subtree that are adjacent to it, excluding u itself-- and its set of
grandchildren G(u) -the children of its children. Naturally, these sets could be
empty. For example, in Figure 7-12, the root, denoted r, has two children and
five grandchildren. Nodes with no children are called leaves.

(1) (1) (1) (1) (1)

Figure 7-12

The size of the largest independent set of the tree can now be found by
computing, for each node u, the number I(u), defined to be the size of the
largest independent set of T(u). It is easy to see that the following equation
holds:

I(u) = maxi L I(v), 1 + L I(un (2)
vEC'(,,) vEG(,,)

What this equation says is that, in designing the largest independent set ofT(u),
we have two choices: Either (this is the first term in the max) we do not put
u into the independent set, in which case we can put together all maximum
independent sets in the subtrees of its children, or (and this is the second term)
we put u in the independent set, in which case we must omit all its children, and
assemble the maximum independent sets of the subtrees of all its grandchildren.

It is now easy to see that a dynamic programming algorithm can solve the
INDEPENDENT SET problem in the special case of trees in polynomial time. The
algorithm starts at the leaves (where I(u) is trivially one) and computes I(u) for

7.4: Coping with NP-completeness 335

larger and larger subtrees. The value of I at the root is the size of the maximum
independent set of the tree. The algorithm is polynomial, because for each node
u, all we have to do is compute the expression in (2), which only takes linear
time. For example, in the tree of Figure 7-12, the values of l(u) are shown in
parentheses. The largest independent set of the tree has size 14.

Needless to say, the closely related NODER COVER problem can also be
solved the sarre way (recall the reductions between NODE COVER and INDEPEN

DENT SET). SO, if the graphs we are interested in happen to be trees, the fact
that NODE COVER and INDEPENDENT SET are NP-complete is irrelevant. Many
other NP-complete problems on graphs are solved by similar algorithms when
specialized to trees, see for example Problem 7.4.1.0

Approximation Algorithms
,

When facing an NP-complete optimization problem, we may want to consider
algorithms that do not produce optimum solutions, but solutions guaranteed to
b~ close to the optimum. Suppose that we wish to obtain such solutions for
an optimization problem, maximization or minimization. For each instance x
of this problem, there is an optimum solution with value opt(x); let us assume
that opt (x) is always a positive integer (this is the case with all optimization
problems we study here; we can easily spot and solve instances in which opt is
zero).

Suppose now that we have a polynomial algorithm A which, when presented
with instance x of the optimization problem, returns some solution with value
A(x). Since the problem is NP-complete and A is polynomial, we cannot realis
tically hope that A(x) is always the optimum value. But suppose that we know
that the following inequality always ~olds:

lopt(x) - A(x)1
opt(x)

where E is some positive real number, hopefully very small, that bounds from
above the worst-case relative error of algorithm A. (The absolute value in this in
equality allows us to treat both minimization and maximization problems within
the same framework.) If algorithm A satisfies this inequality for all instances x
of the problem, then it is called an E-approximation algorithm.

Once an optimization problem has been shown to be NP-complete, the fol
lowing question becomes most important: Are there E-approximation algorithms
for this problem? And if so, how small can E be? Let us observe at the outset
that such questions are meaningful only if we assume that P ::j:. NP, because, if
P = NP, then the problem can be solved exactly, with E = O.

All NP-complete optimization problems can therefore be subdivided into
three large categories:

336 Chapter 7: NP-COMPLETENESS

(a) Problems that are fully approximable, in that there is an E-approximate
polynomial-time algorithm for them for all I' > 0, however small. Of the
NP-complete optimization problems we have seen, only TWO-MACHINE

SCHEDULING (in which we wish to minimize t.he finishing time D) falls
into this most fortunate category.

(b) Problems that are partly approximable, in that there are E-approximate
polynomial-time algorithms for them for some range of E'S, but -unless of
course P = NP- this range dops not reach all the way down to zero, as
with the fully approximable problems. Of the NP-complete optimization
problems we have seen, NODE COVER and MAX SAT fall into t.his interme
diate class.

(c) Problems that are inapproximable, that is, there is no E-approximation
algorithm for them, with however large I' -unless of course P = NP. Of
the NP-complete optimization problems we have seen in this chapter, un
fortunately many fall into this cat.egory: the TRAVELING SALESMAN PROB

LEM, CLIQUE, INDEPENDENT SET, as well as the problem of minimizing the
number of states of a detPrministic automaton equivalent to a given regu
lar expression in output polynomial time (recall the corollary to Theorem
7.3.8).

Example 7.4.2: Let us describe a I-approximation algorithm for NODE COVER

-·that is to say, an algorithm which, for any graph, returns a node cover that is
at. most twice the optimum size. The algorithm is very simple:

C:=0
while there is an edge [u, v] left in G do

add u and v to C, and delete them from G

For example, in the graph in Figure 7-13, the algorit.hm might start by
choosing edge [a, b] ane! inserting both endpoints in C; both nodes (and their
adjacent edges, of course) are then deleted from G. Next [e, fl might be chosen,
and finally [g, h]. The resulting set C is a node cover, because each edge in G
must touch one of its nodes (either because it was chosen by the algorithm, or
because it was deleted by it). In the present example, C = {a,b,e,f,g,h}, has
six nodes, which is at most twice the optimum value -in this case, four.

To prove the "at most twice" guarantee, consider the cover C returned by
the algorithm, and let 6 be the optimum node cover. ICI is exactly twice the
number of edges chosen by the algorithm. However, t.hese edges by the very way
they were chosen, have no vertices in common, and for each of them at least
one of its endpoints must be in 6 -because 6 is a node cover. It follows that
the number of edges chosen by the algorithm is no larger than the optimum set
cover, and hence ICI :S 2 '161, and this is indeed a I-approximation algorithm.

7.4: Coping with NP-completeness

b
ao--------o--------oc

e
d~----~----~f

t>"----¢h

Figure 7-13

337

Can we do better? Depressingly, this simple approximation algorithm is the
best one known for the NODE COVER problem. And only very recently have we
been able to prove that, unless P = NP, there is no E-approximation algorithm
for NODE COVER for any E < ~.<>

Example 7.4.3: However, for TWO-MACHINE SCHEDULING, there is no limit to
how close to the optimum we can get: For any E > 0 there is an E-approximation
algorithm for this problem.

This family of algorithms is based on an idea that we have already seen:
Recall that the PARTITION problem can be solved in time O(nS) (where n is the
number of integers, and S is their sum; see Section 6.2). It is very easy to see
that this algorithm can be rather trivially adapted to solve the TWO-MACHINE

SCHEDULING (finding the smallest D): The B(i) sets are extended to include
sums up to S (not just up to H = ~S). The smallest sum in B(n) that is 2;. ~S
is the desired minimum D.

One more idea is needed to arrive at our approximation algorithm: Consider
an instance of TWO-MACHINE SCHEDULING with these task lengths

45362,134537,85879,56390,145627,197342,83625,126789,38562,75402,

with n = 10, and S:::::: 106 . Solving it by our exact O(nS) algorithm would cost
us an unappetizing 107 steps. But suppose instead that we round up the task
lengths to the next hundred. We obtain the numbers

45400,134600,85900,56400,145700,197400,83700,126800,38600,75500,

which is really the same as

454,1346,859,564,1457,1974,837,1268,386,755,

338 Chapter 7: NP-COMPLETENESS

(normalizing by 100); thus we can now solve this instance in about 105 steps.
By sacrificing a little in accuracy (the optimum of the new problem is clearly
not very far from the original one), we have decreased the time requirements a
hundredfold!

It is easy to prove that, if we round up to the next kth power of ten, the
difference between the two optimal values is no more than nlOk. To calculate the
relative error, this quantity must be divided by the optimum, which, obviously,
can be no less than ~. We have thu~ a 2n1ok -approximation algorithm, whose

running time is O(~). By setting 2n1ok equal to any desirable f > 0, we arrive

at an algorithm whose running time is O(~2) -certainly a polynomial.<>

Example 7.4.4: How does one prove that a problem is inapproximable (or not
fully approximable)? For most optimization problems of interest, this question
had been one of the most stubborn open problems, and required the development
of novel ideas and mathematical techniques (see the references at the end of this
chapter). But let us look at a case in which such a proof is relatively easy, that
of the TRAVELING SALESMAN PROBLEM.

Suppose that we are given some large number f, and we must prove that,
unless P = Np, there is no f-approximation algorithm for the TRAVELING

SALESMAN PROBLEM. We know that the HAMILTON CYCLE problem is NP
complete; we shall show that, if there is an f-approximation algorithm for the
TRAVELING SALESMAN PROBLEM, then there is a polynomial-time algorithm
for the HAMILTON CYCLE problem. Let us start with any instance G of the
HAMILTON CYCLE problem, with n nodes. We apply to it the simple reduction
from HAMILTON CYCLE to TRAVELING SALESMAN PROBLEM (recall the proof
of Theorem 7.3.4), but with a twist: The distances dij are now the following
(compare with the proof of Theorem 7.3.4):

{

0 if i = j;
dij = 1 if (Vi,Vj) E G;

2 + nf otherwise.

The instance constructed has the following interesting property: If G has a
Hamilton cycle, then the optimum cost of a tour is n; if, however, there is no
Hamilton cycle, then the optimum cost is greater than n(l + f) -because at
least one distance 2 + nf must be traversed, in addition to at least n - 1 others
of cost at least 1.

Suppose that we had a polynomial-time f-approximation algorithm A for
the TRAVELING SALESMAN PROBLEM. Then we would be able to tell whether G
has a Hamilton cycle as follows: Run algorithm A on the given instance of the
TRAVELING SALESMAN PROBLEM. Then we have these two cases:

7.4: Coping with NP-completeness 339

(a) If the solution returned has cost::::: n(l + €) + 1, then we know that the
optimum cannot be n, because in that case the relative error of A would
have been at least

In(l + €) + 1 - nl -'---'-----'-------'- > €,
n

which contradicts our hypothesis that A is an €-approximation algorithm.
Since the optimum solution is larger than n, we conclude that G has no
Hamilton cycle.

(b) If, however, the solution returned by A has cost:::; n(l + €), then we know
that the optimum solution must be n. This is because our instance was
designed so that it cannot have a tour of cost between n + 1 and n(l + €).
Hence, in this case G has a Hamilton cycle.

It follows that, by applying the polynomial algorithm A on the instance of
the TRAVELING SALESMAN PROBLEM that we constructed from G in polynomial
time, we can tell whether G has a Hamilton cycle --which implies that P = Np.
Since this argument can be carried out for any € > 0, however large, we must
conclude that the TRAVELING SALESMAN PROBLEM is inapproximable.<>

Ways of coping with NP-completeness often mix well: Once we realize
that the TRAVELING SALESMAN PROBLEM is inapproximable, we may want to
approximate special cases of the problem. Indeed, let us consider the special case
in which the distances dij satisfy the triangle inequality

dij :::; d ik + d kj for each i,j, k,

a fairly natural assumption on distance matrices, which holds in most instances
of the TRAVELING SALESMAN PROBLEM arising in practice. As it turns out, this
special case is partly approximable, and the best known error bound is ~. What
is more, when the cities are restricted to be points on the plane with the usual
Euclidean distances -another special case of obvious appeal and relevance
then the problem becomes fully approximable! Both special cases are known
to be NP-complete (see Problem 7.4.3 for the proof for the triangle inequality
case).

Backtracking and Branch-and-Bound
All NP-complete problems are, by definition, solvable by polynomially bounded
nondeterministic Turing machines; unfortunately we only know of exponential
methods to simulate such machines. We examine next a class of algorithms that
tries to improve on this exponential behavior with clever, problem-dependent
stratagems. This approach typically produces algorithms that are exponential
in the worst case, but often do much better.

340 Chapter 7: NP-COMPLETENESS

A typical NP-complete problem asks whether any member of a large set
So of "candidate certificates", or "candidate witnesses" (truth assignments, sets
of vertices, permutations of nodes, and so onrecall Section 6.4) satisfies certain
constraints specified by the instance (satisfies all clauses, is a clique of size K,
is a Hamilton path). We call these candidate certificates or witnesses solutions.
For all interesting problems, the size of the set So of all possible solutions is
typically exponentially large, and only depends on the given instance x (its size
depends exponentially on the number of variables in the formula, on the number
of nodes in the graph, and so on).

Now, a nondeterministic TUring machine "solving" an instance of this NP
complete problem produces a tree of configurations (recall Figure 6-3). Each
of these configurations corresponds to a subset of the set of potential solutions
So, call it S, and the "task" facing this configuration is to determine whether
there is a solution in S satisfying the constraints of x. Hence, So is the set
corresponding to the initial configuration. Telling whether S contains a solution
is often a problem not very different from the original one. Thus, we can see
each of the configurations in the tree as a subproblem of the same kind as the
original (this useful "self-similarity" property of NP-complete problems is called
self-reducibility). Making a nondeterministic choice out of a configuration, say
leading to r possible next configurations, corresponds to replacing S with r sets,
S1,"" Sr, whose union must be S, so that no candidate solution ever falls
between the cracks.

This suggests the following genre of algorithms for solving Np-complete
problems: We always maintain a set of active subproblems, call it A; initially,
A contains only the original problem So; that is, A = {So}. At each point we
choose a subproblem from A (presumably the one that seems most "promising"
to us), we remove it from A, and replace it with several smaller subproblems
(whose union of candidate solutions must cover the one just removed). This is
called branching.

Next, each newly generated subproblem is submitted to a quick heuristic
test. This test looks at a subproblem, and comes up with one of three answers:

(a) It may come up with the answer "empty," meaning that the subproblem un
der consideration has no solutions satisfying the constraint of the instance,
and hence it can be omitted. This event is called backtracking.

(b) It may come up with an actual solution of the original problem contained
in the current subproblem (a satisfying truth assignment of the original
formula, a Hamilton cycle of the original graph, etc.), in which case the
algorithm terminates successfully.

(c) Since the problem is NP-complete, we cannot hope to have a quick heuristic
test that always comes up with one of the above answers (otherwise, we
would submit the original subproblem So to it). Hence, the test will often
reply"?" , meaning that it cannot prove that the subproblem is empty, but it

7.4: Coping with NP-completeness 341

cannot find a quick solution in it either; in this case, we add the subproblem
in hand to the set A of active subproblems. The hope is that the test will
come up with one of the two other answers often enough, and thus will
substantially reduce the number of subproblems we will have to examine
-and ultimately the running time of the algorithm.

We can now show the full backtracking algorithm:

A:= {So}
while A is not empty do

choose a subproblem S and delete it from A
choose a way of branching out of S, say to subproblems S1, ... ,Sr
for each subproblem Si in this list do

if test(Si) returns "solution found" then halt
else if test(Si) returns "?" then add Si to A

return "no solution"

The backtracking algorithm terminates because, in the end, the subprob
lems will become so small and specialized that they will contain just one can
didate solution (these are the leaves of the tree of the nondeterministic compu
tation); in this case the test will be able to decide quickly whether or not this
solution satisfies the constraints of the instance.

The effectiveness of a backtracking algorithm depends on three important
"design decisions:"

(1) How does one choose the next subproblem out of which to branch?
(2) How is the chosen subproblem further split into smaller subproblems?
(3) Which test is used?

Example 7.4.5: In order to design a backtracking algorithm for SATISFIABIL

ITY, we must make the design decisions (1) through (3) above.
In SATISFIABILITY the most natural way to split a subproblem is to choose

a variable x and create two subproblems: one in which x = T, and one in
which x =.1... As promised, each subproblem is of the same sort as the original
problem: a set of clauses, but with fewer variables (plus a fixed truth assignment
for each of the original variables not appearing in the current subproblem). In
the x = T subproblem, the clauses in which x appears are omitted, and x is
omitted from the clauses in which it appears; exactly the opposite happens in
the x = .1.. subproblem.

The question regarding design decision (2) is, how to choose the variable
x on which to branch. Let us use the following rule: Choose a variable that
appears in the smallest clause (if there are ties, break them arbitrarily). This is
a sensible strategy, because smaller clauses are "tighter" constraints, and may
lead sooner to backtracking. In particular, an empty clause is the unmistakable
sign of unsatisfiability.

342 Chapter 7: NP-COMPLETENESS

Now for design decision (1) -how to choose the next subproblem. In line
with our strategy for (2), let us choose the subproblem that contains the smallest
clause (again, we break ties arbitrarily).

Finally, the test (design decision (3)) is very simple:

if there is an empty clause, return "subproblem is empty;"
if there are no clauses, return "solution found;"
otherwise return "7"

See Figure 7-14 for an application of the backtracking algorithm described
above to the instance

(x V Y V z), (x V y), (y V z), (z V x), (x V y V z),

which we know is unsatisfiable (recall Example 6.3.3). As it turns out, this
algorithm is a variant of a well-known algorithm for SATISFIABILITY, known
as the Davis-Putnam procedure. Significantly, when the instance has at
most two literals per clause, the backtracking algorithm becomes exactly the
polynomial purge algorithm of Section 6.3.0

"empty"

"empty" "empty" "empty" "empty"

Figure 7-14

Example 7.4.6: Let us now design a backtracking algorithm for HAMILTON

CYCLE. In each subproblem we already have a path with endpoints a and b, say,
and going through a set of nodes T ~ V - {a, b}. We are looking for a Hamilton
path from a to b through the remaining nodes in V, to close the Hamilton cycle.
Initially a = b is an arbitrary node, and T = 0.

Branching is easy --we just choose how to extend the path by a new edge,
say [a, el, leading from a to a node c rf:. T. This node e becomes the new value

7.4: Coping with NP-completeness 343

of a in the subproblem (node b is always fixed throughout the algorithm). We
leave the choice of the subproblem from which to branch unspecified (we pick
any subproblem from A). Finally, the test is the following (remember that in a
subproblem we are looking for a path from a to b in a graph G - T, the original
graph with the nodes in T deleted).

if G - T - {a, b} is disconnected, or if G - T has a degree-one node
other than a or b, return "subproblem is empty;"

if G - T is a path from a to b, return "solution found;"
otherwise return "?"

Figure 7-15: Execution of backtracking algorithm for HAMILTON CYCLE on the
graph shown in the root. Initially both a and b coincide with the dotted node.
In the leaf (backtracking) nodes the degree-one nodes are circled (in the middle
leaves there are many choices). A total of nineteen subproblems is considered.

The application of this algorithm to a simple graph is shown in Figure

344 Chapter 7: NP-COMPLETENESS

7-15. Although the number of partial solutions constructed may seem large
(nineteen), it is minuscule compared to the number of solutions examined by
the full-blown nondeterministic "algorithm" for the same instance (this number
would be (n - I)! = 5,040). Needless to say, it is possible to devise more
sophisticated and effective branching rules and tests than the one used here.<>

Determining the best design decisions (1) through (3) depends a lot not
only on the problem, but also on the kinds of instances of interest, and usually
requires extensive experimentation.

Backtracking algorithms are of interest when solving a "yes-no" problem.
For optimization problems one often uses an interesting variant of backtracking
called branch-and-bound. In an optimization problem we can also think that
we have an exponentially large set of candidate solutions; however, this time
each solution has a cost t associated with it, and we wish to find the candidate
solution in So with the smallest cost. The branch-and-bound algorithm is in
general the one shown below (the algorithm shown only returns the optimal
cost, but it can be easily modified to return the optimal solution).

A:= {So}, bestsofar:= 00

while A is not empty do
choose a subproblem S and delete it from A
choose a way of branching out of S, say to subproblems SI, ... ,Sr
for each subproblem Si in this list do

if ISil = 1 (that is, Si is a complete solution) then update bestsofar
else if 10werbound(Si) <bestsofar then add Si to A

return bestsofar

The algorithm always remembers the smallest cost of any solution seen so
far, initially 00 (performance often improves a lot if bestsofar is initialized to
the cost of a solution obtained by another heuristic). Every time a full solution
to the original problem is found, bestsofar is updated. The key ingredient of a
branch-and-bound algorithm (besides the design decisions (1) and (2) it shares
with backtracking) is a method for obtaining a lower bound on the cost of any
solution in a subproblem S. That is, the function 10werbound(S) returns a
number that is guaranteed to be less than or equal to the lowest cost of any
solution in S. The branch-and-bound algorithm above will always terminate with
the optimal solution. This is because the only subproblems left unconsidered are
those for which 10werbound(Si) 2bestsofar -that is, those subproblems of which
the optimal solution is provably no better than the best solution we have seen
so far.

t We shall assume that the optimization problem in question is a minimization

problem; maximization problems can be treated in a very similar way.

7.4: Coping with NP-completeness 345

Naturally, there are many ways of obtaining lower bounds (lowerbound(S) =
o would usually do ...). The point is that, if 10werbound(S) is a sophisticated
algorithm returning a value that is usually very close to the optimum solution
in S, then the branch-and-bound algorithm is likely to perform very well, that
is, to terminate reasonably fast.

Example 7.4.7: Let us adapt the backtracking algorithm we developed for
HAMILTON CYCLE to obtain a branch-and-bound algorithm for the TRAVELING

SALESMAN PROBLEM. As before, a subproblem S is characterized by a path from
a to b through a set T of cities. What is a reasonable lower bound? Here is
one idea: For each city outside T U {a, b}, calculate the sum of its two shortest
distances to another city outside T. For a and b, calculate their shortest distance
to another city outside T. It is not hard to prove (see Problem 7.4.4) that the
half sum of these numbers, plus the cost of the already fixed path from a to b
through T, is a valid lower bound on the cost of any tour in the subproblem S.
The branch-and-bound algorithm is now completely specified.

There are far more sophisticated lower bounds for the TRAVELING SALES

MAN PROBLEM.<>

Local Improvement

Our final family of algorithms is inspired by evolution: What if we allow a
solution of an optimization problem to change a little, and adopt the new solution
if it has improved cost? Concretely, let So be the set of candidate solutions in
an instance of an optimization problem (again, we shall assume that it is a
minimization problem). Define a neighborhood relation N on the set of
solutions N ~ So x So ~it captures the intuitive notion of "changing a little."
For s E So, the set {s' : (s, s') E N} is called the neighborhood of s.

The algorithm is simply this (see Figure 7-16 for a suggestive depiction of
the operation of local improvement algorithms):

s :=initialsolution
while there is a solution s' such that

N(s, s') and cost(s') <cost(s) do: s := s'
return s

That is, the algorithm keeps improving s by replacing with a neighbor s'
with a better cost, until there is no s' in the neighborhood of s with better cost;
in the latter case we say that s is a local optimum. Obviously, a local optimum
is not guaranteed to be an optimal solution ~unless of course N = So x So.
The quality of local optima obtained and the running time of the algorithm
both depend critically on N: the larger the neighborhoods, the better the local
optimum; on the other hand, large neighborhoods imply that the iteration of
the algorithm (an execution of the while loop, and the ensuing search through

346 Chapter 7: NP-COMPLETENESS

the neighborhood of the current solution s) will be slower. Local improvement
algorithms seek a favorable compromise in this trade-off. As usual, there are no
general principles to guide us in designing a good neighborhood; the choice seems
very problem-dependent, even instance-dependent, and is best made through
experimentation.

local optima

Figure 7-16: Once the neighborhood relation has been fixed, the solutions of
an optimization problem can be pictured as an energy landscape, in which local
optima are depicted as valleys. Local improvement heuristics jump from solution
to solution, until a local optimum is found.

Another issue that affects the performance of a local improvement algorithm
is the method used in finding s'. Do we adopt the first better solution we find in
the neighborhood of s, or do we wait to find the best? Is the longer iteration jus
tified by the speed of descent -and do we want speedy descent anyway? Finally,
the performance of a local improvement algorithm also depends on the proce
dure initialsolution. It is not clear at all that better initial solutions will result
in better performance --often a mediocre starting point is preferable, because it
gives the algorithm more freedom to explore the solution space (see Figure 7-16).
Incidentally, the procedure initialsolution should best be randomized -that is,
able to generate different initial solutions when called many times. This allows
us to restart many times the local improvement algorithm above, and obtain

7.4: Coping with NP-completeness 347

many local optima.

Example 7.4.8: Let us take again the TRAVELING SALESMAN PROBLEM. When
should we consider two tours as neighbors? Since a tour can be considered
as a set of n undirected inter-city "links," one plausible answer is, when they
share all but very few links. Two is the minimum possible number of links
in which two tours may differ, and this suggests a well-known neighborhood
relation for the TRAVELING SALESMAN PROBLEM that we call 2-change (see
Figure 7-17). That is, two tours are related by N if and only if they differ in just
two links. The local improvement algorithm using the 2-change neighborhood
performs reasonably well in practice. However, much better results are achieved
by adopting the 3-change neighborhood; furthermore, it is reported in the
literature that 4-change does not return sufficiently better tours to justify the
increase in iteration time.

Figure 7-17

Perhaps the best heuristic algorithm currently known for the TRAVELING

SALESMAN PROBLEM, the Lin-Kernighan algorithm, relies on 'x-change,
a neighborhood so sophisticated and complex that it does not even fit in our
framework (whether two solutions are neighbors depends on the distances). As
its name suggests, 'x-change allows arbitrary many link changes in one step
(but of course, not all possible such changes are explored, this would make the
iteration exponentially slow).O

Example 7.4.9: In order to develop a local improvement algorithm for MAX

SAT (the version of SATISFIABILITY in which we wish to satisfy as many clauses
as possible; recall Theorem 7.2.4), we might choose to consider two truth as
signments to be related by N if they only differ in the value of a single variable.
This immediately defines an interesting, and empirically successful, local im
provement algorithm for MAX SAT. It is apparently advantageous in this case to
adopt as s' the best neighbor of s, instead of the first one found that is better
than s. Also, it has been reported that it pays to make "lateral moves" (adopt
a solution even if the inequality in the third line of the algorithm is not strict).

348 Chapter 7: NP-COMPLETENESS

This heuristic is considered a very effective way of obtaining good solutions to
MAX SAT, and is often used to solve SATISFIABILITY (in this use, it is hoped
that in the end the algorithm will return a truth assignment that satisfies all
clauses).O

An interesting twist on local improvement algorithms is a method called
simulated annealing. As the name suggests, the inspiration comes from the
physics of cooling solids. Simulated annealing allows the algorithm to "escape"
from bad local optima (see Figure 7-18, and compare with 7-17) by performing
occasional cost-increasing changes.

Figure 7-18: Simulated annealing has an advantage over the basic local improve
ment algorithm because its occasional cost-increasing moves help it avoid early
convergence in a bad local optimum. This often comes at a great loss of efficiency.

8 :=initialsolution, T := To
repeat

generate a random solution s' such that N(8, 8'),
and let ~ :=cost(8')-cost(s)

if ~ < 0 then 8 := 8', else
8 :: 8' with probability e-~

update(T)
until T = 0

7.4: Coping with NP-completeness 349

return the best solution seen

Intuitively, the probability that a cost-increasing change will be adopted is
determined by the amount of the cost increase ~, as well as by an important
parameter T, the temperature. The higher the temperature, the more aggres
sively more expensive solutions are pursued. The way in which T is updated in
the penultimate line of the algorithm -the annealing schedule of the algorithm,
as it is called- is perhaps the most crucial design decision in these algorithms
-besides, of course, the choice of neighborhood.

There are several other related genres of local improvement methods, many
of them based, like the ones we described here, on some loose analogy with
physical or biological systems (genetic algorithms, neural networks, etc.; see the
references) .

From the point of view of the formal criteria that we have developed in
this book, the local improvement algorithms and their many variants are to
tally unattractive: They they do not in general return the optimum solution,
they tend to have exponential worst-case complexity, and they are not even
guaranteed to return solutions that are in any well-defined sense "close" to the
optimum. Still, for many NP-complete problems, in practice they often turn
out to be the ones that perform best! Explaining and predicting the impres
sive empirical success of some of these algorithms is one of the most challenging
frontiers of the theory of computation today.

Problems for Section 7.4

7.4.1. Give a polynomial algorithm for the DOMINATING SET problem (recall Prob
lem 7.3.6) in the special case of trees (considered as symmetric directed
graphs).

7.4.2. Suppose that all clauses in an instance of satisfiability contain at most one
positive literal; such clauses are called Horn clauses. Show that, if all
clauses of a Boolean formula are Horn clauses, then the satisfiability ques
tion for this formula can be settled in polynomial time. (Hint: When does
a variable in a Horn formula have to be assigned T?)

7.4.3. Show that the TRAVELING SALESMAN PROBLEM remains NP-complete
even if the distances are required to obey the triangle inequality. (Hint:
Look back at our original proof that the TRAVELING SALESMAN PROBLEM

is NP-complete.)

7.4.4. Suppose that, in an instance of the traveling salesman problem with cities
1,2, ... ,n and distance matrix dij , we only consider tours that start from
a, traverse by some path of length L the cities in a set T ~ {I, 2, ... ,n},
end up in another city b, and then visit the remaining cities and return to
a. Let us call this set of tours S.

350 Chapter 7: NP-COMPLETENESS

(a) Foreachcityi E {1,2, ... ,n}-T-{a,b},letmi be the sum of the small-
est and next-to-smallest distances from i to another city in {I, 2, ... , n} -
T -{ a, b}. Let s be the shortest distances from a to any city in {I, 2, ... , n}-
T - {a, b}, plus the corresponding shortest distance from b. Show that any
tour in S has cost at least

1
L + 2"[L mi + s].

iE{1,2, ... ,n}-T-{ a,b}

That is, the formula above is a valid lower bound for S.
(b) The minimum spanning tree of the n cities is the smallest tree that
has the cities as set of nodes; it can be computed very efficiently. Derive a
better lower bound for S from this information.

7.4.5. How many 2-change neighbors does a tour of n cities have? How many
3-change neighbors? 4-change neighbors?

7.4.6. (a) Suppose that in the simulated annealing algorithm the temperature is
kept at zero. Show that this is the basic local improvement algorithm.
(b) What is the simulated annealing algorithm with the temperature kept
at infinity?
(c) Suppose now that the temperature is zero for a few iterations, then
infinity for a few, then zero again, etc. How is the resulting algorithm
related to the basic version of local improvement?

REFERENCES

Stephen A. Cook was the first to exhibit an NP-complete language in his paper

o S. A. Cook "The Complexity of Theorem-Proving Procedures," Proceedings of
the Thir·d Annual ACM Symposium on the Theory of Computing pp. 151-158).
New York: Association for Computing Machinery, 1971.

Richard M. Karp established the scope and importance of Np-completeness in his paper

o R. M. Karp "Reducibility among Combinatorial Problems," in Complexity of
Computer Computations, (pp. 85-104), ed. R. E. Miller and J. W. Thatcher.
New York: Plenum Press, 1972,

where, among a host of other results, Theorems 7.3.1-7.3.7, and the results in problems
7.3.4 and 7.3.6, are proved. NP-completeness was independently discovered by Leonid
Levin in

o L. A. Levin "Universal Sorting Problems," Problemi Peredachi Informatsii, 9,
3, pp. 265-266 (in Russian), 1973.

The following book contains a useful catalog of over 300 NP-complete problems from
many and diverse areas; many more problems have been proved NP-complete since its
appearence.

o M. R. Garey and D. S. Johnson Computers and Intractability: A Guide to the
Theory of NP-completeness, New York: Freeman, 1979.

References 351

This book is also an early source of information on complexity as it applies to concrete
problems, as well as on approximation algorithms. For much more recent and extensive
treatment of this latter subject see

o D. Hochbaum (ed.) Approximation Algorithms for· NP-hard Froblems, Boston,
Mass: PWS Publishers, 1996,

and for more information about other ways of coping with NP-completeness see, for
example,

o C. R. Reeves, (ed.) Modern Heuristic Techniques for Combinatorial Froblems,
New York: John Wiley, 1993, and

o C. H. Papadimitriou and K. Steiglitz Combinatorial Optimization: Algorithms
and Complexity Englewood Cliffs, N.J.: Prentice-Hall, 1982; second edition, New
York: Dover, 1997.

Index

a

acceptance, 57
by finite automata, 57, 66
by nondeterministic finite automata,

66
by pushdown automata, 132
by empty store, 136
by final state, 135
by Turing machines, 194
by random access Turing ma

chines, 216
by nondeterministic Turing ma-

chines, 222
accepting configuration, 194
Aho, A. V., 177
alphabet, 42, 116, 181
algorithms 2-4, 31-41

for finite automata 102-10
for context-free grammars 150-8
Turing machines as -, 179, 245-

7
efficient, 275-92
polynomial-time, 276-92
approximation, or E-approximation,

335--9
dynamic programming, 154, 334
backtracking and branch-and-bound,

339-45

local improvement and simulated
annealing, 345-9

ambiguous grammar, 128
antisymmetric relation, 15
approximation algorithm, 335-7
arguments of a function, 11
arithmetic progression, 89

b

backtracking algorithm, 341-3
Bar-Hillel, V., 110, 176
basic functions, 234
bijection, 11
BIN PACKING, 332
binary alphabet, 42
binary relation, 10
binary representation of the integers,

196-7, 219-20, 284-5, 316
BINARY BOUNDED TILING, 316
Bird, M., 111
blank symbol, U, 181
Boolean variable, 288
Boolean connectives, 288
Boolean formula, 288--9

in conjunctive normal form, 288
Boolean logic, 288
bottom-up parsing, 169-72

354

BOUNDED TILING, 310-2, 315-6
boustrophedon language, 259
Brainerd, W. S., 244
branch-and-bound algorithm, 343-5
Brassard, G., 53
Bratley, P., 53
busy-beaver function, 253

c

Cantor, G., 27, 53
Cartesian product, 10
certificate, or witness, 297
Chomsky hierarchy, 272
Chomsky, N., 175-7, 273
Chomsky normal form, 151
Church-Thring thesis, 245-47

quantitative refinement, 276
clause, 288
CLIQUE, 283, 326-7, 333, 336
closure, 30, :37-39
closure property, 39, 75-7, 143-5
Cobham, A., 299
compatible transitions, 158
compiler, 2, 56, 117, 162-70
complement of a set, 45

regular languages closed under
-,76

context-free languages not closed
under -,147

recursive languages closed under
-,199-200

recursively enumerable languages
not closed under -, 253

P close4, under -, 76
composite number, 223, 298-9
composition of functions, 234
computation, 1-4,

by grammars and other systems,
232

by a random access Turing ma
chine, 216-8

Index

by a Turing machine, 185, 194-
200

concatenation of strings, 42
concatenation of languages, 45
configuration,

of a finite automaton, 57, 66
of a pushdown automaton, 131
of a Thring macchine, 202-4
of a random access Thring ma-

chine, 211
consistent strings, 158
context, 115, 228, 232
context-free grammar, 114-5

ambiguous, 128
self-embedding, 149
-s and pushdown automata, 136-

42
LL(I), 167
weak precedencl(, 173
undecidability of problems about

--s, 259-62
context-free language, 115-75

deterministic, 157
inherently ambiguous 129

context-sensitive language, 271
Cook, S. A., 244, 350
Cook's Theorem, 312-3
Cormen, T. H., 53
countable set, 21
count ably infinite set, 21
counter machine, 258
cycle in a graph, 18

d

Euler cycle 281-2
Hamilton cycle 282, 320-4

Davis, M., 243-4
Davis-Putnam procedure, 342
dead-end configuration, 160-1
decides, 195, 216, 222

Index

definite language, 85
definition by induction, 43
derivation, 116, 228
derivation, 228

leftmost, 127
rightmost, 127

deterministic finite automaton, 57
deterministic finite-state transducer,

60
deterministic pushdown automaton,

158
deterministic context-free language,

159
difference of sets, 7
directed graph, 14
disjoint sets, 8
disjunctive normal form of a regular

expression, 52
domain of a function, 11
DOMINATING SET, 333, 349
dynamic programming algorithm, 154,

278,334

e

E-approximation algorithm, 335
Earley, J., 176
edge of a graph, 14
Edmonds, J., 299
element of a set, 5
empty set, 5
empty string, 42
enumerating Thring machine, 268
equinumerous sets, 20
equivalence class, 16
EQUIVALENCE OF DETERMINISTIC FI

NITE AUTOMATA, 286
EQUIVALENCE OF NONDETERMINIS

TIC FINITE AUTOMATA, 286,
295, 328

EQUIVALENCE OF REGULAR EXPRES

SIONS, 287, 328

355

equivalence relation, 16
equivalent finite automata, 69
equivalent strings with respect to L,

94
equivalent strings with respect to M,

95
erasing move of a Thring machine,

182
Euler, L., 281, 299
EULER CYCLE, 281-2
Eulerian graph, 281
Evey, J., 176
EXACT COVER, 318-21, 324-5, 331
exponentially bounded Thring ma-

chine, 296
[XP, or exponential time, 296-7

f

false, .1, 289
fanout of a context-free grammar, 145
Fermat, P. de, 299
final states, 57, 66, 131
finite set, 20
finite automaton, 55

nondeterministic, 65
two-way, 101
2-head, 91, 262
2-tape, 62-3

finite control, 56
finite-state machine, 55
4-change neighborhood, 347
fully approximable problem, 336
function, 10

basic, 234
defined by cases, 236
defined recursively, 234
primitive recursive, 234
IL-recursive, 239

356

g

Garey, M. R., 351
generalization of a problem, 315
generates, 115
gadget, 320
Ginsburg, S., 111, 177
grammar, or unrestricted grammar,

228-32
grammatically computable function,

232
graph, 15
GRAPH COLORING, 318
Greibach normal form, 149
Greibach, S., 177

h

Halmos, P., 52
halted configuration, 183, 211
HALTING PROBLEM, 279-80
halting problem for Turing machines,

251-4
halting states, 181
Hamilton, W. R., 282
HAMILTON CYCLE, 282-6, 292, 295,

302-4, 309, 320, 323, 331,
333, 338, 342-3

HAMILTON PATH, 309, 331, 333
HAMILTON PATH BETWEEN TWO SPEC-

IFIED NODES, 331
Harrison, M. A., 53, 177
Hartmanis, J., 299
height of a parse tree, 145
Hennie , F. C., 243
Hermes, H., 244
HITTING SET, 332
Hochbaum, D., 351
homomorphism, 85, 148,316

nonerasing, 299
Hopcroft, J. E., 111, 244

Horn clause, 349

Ichbiah, J. D., 177
identity function, 234
image of a function, 11

Index

in approximable problem, 336
INDEPENDENT SET, 283, 286, 292,

296, 298, 301-2, 318, 326-
8, 332-6

INDUCED SUBGRAPH ISOMORPHISM,

332
INEQUIVALENCE OF *-FREE REGULAR

EXPRESSIONS, 329
INEQUIVALENCE OF REGULAR EXPRES-

SIONS, 328
infinite set, 21
inherently ambiguous language, 129
initial configuration, 194, 216
initial state, 56--7, 66, 131, 181
in-place acceptor, or linear-bounded

automaton, 271
input alphabet, 194
input symbols, 131
input tape, 56
instructions of a random access Tur-

ing machine, 211
INTEGER PROGRAMMING, 332
intersection of sets, 6
inverse of a function, 12

J

Johnson, D. S., 351

k

Karp, R. M., 350
Kasami, T., 176
Kleene, S. C., 110, 244

Index

Kleene star, 45
KNAPSACK, 305~7, 324~6

Knuth, D. E., 53, 111, 177
k-tape 'lUring machine, 202

label, 123
Landweber, 1. H., 244
language, 44-52,

regular 47~51, 77~80
context-free 114-75
deterministic context-free, 159~

75
recursive, 195, 199, 267~271
recursively enumerable, 199, 267~

271
accepted by a finite automaton,

57, 66
accepted by empty store, 136
accepted by final state, 135
generated by a grammar, 115,

228
-s vs. problems, 279~81

language generator, 51, 113
language recognition device, 51, 113
A-change neighborhood, 347
leaves of a parse tree, 123
left-end symbol, [>, 181
left factoring, 165
left recursion, 166
left-linear grammar, 122
leftmost derivation, 127
Leiserson, C. E., 53
length,

of a sequence 10,
of a path, 18,
of a string 42,
of a computation 132, 145, 185
of a derivation 116

Levin, L. A., 350

357

Lewis, P. M., II, 177
lexicographic enumeration, 269
lexicographic ordering, 44
lexicographically 'lUring-enumerable

language, 269
Lin-Kernighan algorithm, 347
linear, 143
linear-bounded automaton, 271
literal, positive and negative, 288
Liu, C. L., 52
LL(l) grammar, 167
LONGEST CYCLE, 332

m

Machtey, M., 244
Markov, A. A., 244
Markov system, or Markov algorithm,

232
MAX 2-SAT, 316~7

MAX SAT, 314-6, 336, 347
McNaughton, R., 110
Mealy, G. H., 110
member, or element, of a set, 5
Miller, G. A., 175
minimal element of a partial order,

18
minimalizable function, 239
minimalization, 238
minimum equivalent finite automa-

ton, 105, 330--1
minimum spanning tree, 350
Minsky, M. L., 243
Moore, E. F., 110
Morris, J. H., Jr., 111
Morse, S. P., 177
jl-recursive function, 239

n

n-ary relation, 10

358

Nam., -e., \1;)

negative literal, 288
neighborhood, or neighborhood rela-

tion, 345
Nerode, A., 111
n-fold Cartesian product, 10
node, 14, 123
NODE COVER, 284, 327~8, 335~7
nondeterminism, 2, 63, 158, 221, 292
nondeterministic finite automaton, 65
nondeterministic 2-tape finite automa-

ton, 85
nondeterministic 'lUring machine, 221

~~~~"~""'~"\.'"~~~"'~"~ 
N'P,293 

nonterminal, 115, 228 
nonerasing homomorphism, 299 
NP,293 
NP-complete problems, 301~350 

o 

occurrence, 42 
Oettinger, A. G., 175 
Ogden, W. G., 176 
one-to-one function, 11 
onto function, 11 
OI, \.}, '2'6~ 

order of a function, 0(·), 32 
ordered pair, 9 
ordered triple, 10 
ordered tuple, 10 
output of a machine, 196 

p 

P, 275~277 
Papadimitriou, C. H., 244, 300, 351 
parse tree, 123 
parser, 58, 163~70 
partial order, 17 

Index 

\' ~~~\~\.<:)~ ;l.~ 1. ;l.~~ ,'l.~~ ;~\.,~ 
7, 326~7 

partition of a set, 8 
partly approximable problem, 336 
path, 18, 145 
Perles, M., 110, 176 
Polya, G., 52 
polynomially balanced language, 298 
polynomially bounded 'lUring machine, 

276, 293 
polynomially decidable, 276 
polynomial-time algorithm, 276 
polynomial red uction between two lan-

~~,,~~~~~'\.. 
polynomial Turing reduction, 309 
pop, 131 
positive literals, 288 
Post correspondence system, 262 
Post, E. L., 243, 273 
power set, 8 
Pratt, V. R., 111 
precedence relation, 172 
precedes, -<, 124~6 
prefix, 43, 83 
primitive recursive function, 234 
primitive recursive predicate, 236 
problem, 279 
program counter, 211 
program of a random access Turing 

machine, 211 
proper subset, 6 
push, 131 
purge algorithm for 2-SAT, 291, 342 
pushdown automaton, 131~9 

deterministic, 158-75 
and context-free languages, 136~ 

42 
simple, 139~41 

pushdown store, or stack, 131 



Index 

q 

quadruple, 10 
quintuple, 10 
quotient of languages, 98 

r 

Rabin, M. 0., 110 
random access 'lUring machine, 211 
range of a function, 11 
rate of growth of a function, 32 
REACHABILITY, 279-80 
reading head, 56 
Reckhow, R. A., 244 
recursive function, 196 
recursive language, 195 
recursively enumerable language, 198 
reduce move of a parser, 171 
reduction from a language to another, 

254 
polynomial, 302 

Reeves, C. R., 351 
refinement of an equi valence relation, 

20, 95 
reflexive relation, 14 
reflexive transitive closure, 30 
register of a random access Turing 

machine, 211 
regular expression, 48 
regular language, 50, 75-91, 119 
rejecting configuration, 194 
rejects, 194, 216 
RELIABLE GRAPH, 332 
reversal, R, 43 
rewriting system, 228 
right quotient of languages, 83, 148 
right-linear grammar, 122 
rightmost derivation, 127 
Rivest, R. 1., 53 
Rogers, H., Jr., 244 

root of a parse tree, 123 
root of a tree, 334 
rule of a grammar, 114-5, 227-8 

5 

Salomaa, A., 53 

359 

SATISFIABILITY, 290-8, 301-4, 308-
18 

satisfiable Boolean formula, 289 
satisfying truth assignment, 289 
Schutzenberger, M. P., 176-7 
Scott, D., 110 
self-embedding grammar, 149 
self-reducibilityy, 287, 340 
semidecides, 198, 216, 222 
sequence, 10 
set, 5 
SET COVER, 332 
Sethi, R., 177 
sextuple, 10 
Shamir, E., 110, 176 
Shepherdson, J. C., 111 
shift move of a parser, 171 
similar, 125 
simple, 139 
simulated annealing, 348-9 
singleton, 5 
single-turn pushdown automaton, 143 
Sipser, M., 244 
solution of a problem, 340-9 
stack symbols, 131 
standard automaton for a regular lan

guage, 96 
standard derivation, 259 
star height of a regural expression, 

52 
*-free regular expressions, 329 
start symbol, 115, 228 
state, 56-7, 65, 115, 131, 181 
state diagram, 59 



360 

Stearns, R. E., 177, 299 
Steiglitz, K., 351 
step, 116, 132, 185, 276 
string, 42 
string matching, 108 
SUBGRAPH ISOMORPHISM, 332 
subsequence, 83 
subset, 6 
substring, 43 
successor function, 234 
suffix, 43, 83 
symbol, 42 
symmetric relation, 14 

t 

tape, 57, 180,201-9,212 
TAXICAB RIPOFF, 332 
temperature, 349 
terminal symbol, 115, 228 
ternary relation, 10 item Thompson, 

K.,111 
3-COLORING, 308 
3-SATISFIABILITY, 313, 317, 323, 326, 

333 
tile, 262 
tiling problem, 263-7, 310-3 
tiling system, 262 
top-down parser, 163 
total order, 18 
transformation of a configuration, 189 
transition, 66, 131 
transition function, 57, 181, 202, 
transition relation, 66, 131, 222 
transitive relation, 16 
TRAVELING SALESMAN PROBLEM, 276, 

282-3,297-8,301,318,324, 
338-9, 345-9 

tree, 333 
true, T, 289 
truth assignment, 289 

Turing, A. M., 2, 179, 243 
Turing machine, 179-226, 

Index 

as algorithm, 179, 245-7 
computation by a -, 194-200 
k-tape, 201-8 
with multiple heads, 208 
with two-dimensional tapes, 208 
with random access, 210-9 
nondeterministic, 221-6, 292-4 
universal, 247-50 
efficient, 275-92 
polynomially bounded 276-92 
exponentially bounded, 296 

Turing-enumerable language, 268 
TWO-MACHINE SCHEDULING, 305-7, 

326, 336-7 
two-way finite automaton, 101 
2-change neighborhood, 347 
2-head finite automaton, 91, 262 
2-SATISFIABILITY, 290-2, 313-5, 323, 

333 
2-tape finite automaton, 62-3 

u 

Ullian, J. S., 177 
Ullman, J. D., 177,244 
unary function, 10 
unary notation, 90 
UNARY PARTITION, 286 
uncountable set, 21, 28-9 
universal Turing machine, 247-50 
undecidable language, 254-71 
undirected graph, 15 
UNDIRECTED HAMILTON CYCLE, 322-

4 
unicursal, 281 
union of sets, 6 
unrestricted grammar, 228 
unsatisfiable Boolean formula, 290 
unsolvable problem, 254-71 



Index 

v 

Valiant, L. G., 176 
value of a function, 11 

w 

Wang, H., 273 
Warshall, S., 53 
weak precedence grammar, 173 
witness, or certificate, 297 

y 

Yamada, H., 110 
yield of a parse tree, 123 
yields, f-*, 58, 185, 212 
yields in one step, f-, 66, 132, 212 
Young, P. R., 244 
Younger, D. H., 176 

z 

zero function, 234 

361 


