
Synopsis
The Mathews method of predicting open-stope stability
was first proposed in 1980. The initial stability graph
was based on a limited number of case studies, prim-
arily from deep, North American, steeply dipping open
stopes in strong rocks of medium to good quality. Since
then new data have been added by various practitioners
to modify, update and validate the method and support
its use as a preliminary open-stope design tool.

The original Mathews method has been extended
with use of a significantly increased database of mining
case histories. The format of the Mathews stability
graph has been changed to reflect the broader range of
stope geometries and rock mass conditions now cap-
tured within the database. The extended database now
contains in excess of 400 case histories.

Logistic regression has been performed on this larger
database to delineate and optimize placement of the
stability zones statistically. Isoprobability contours
have been generated for all stability outcomes. The
advantage of the logistic regression lies in its ability to
minimize the uncertainties reflected in the method
through the use of maximum likelihood estimates. The
risks associated with use of the Mathews method can
now be quantified and the true statistical significance
of the stability zones understood.

Mathews stability graph method

The Mathews method1 is based on a stability graph relating
two calculated factors: the Mathews stability number, N,
which represents the ability of the rock mass to stand up
under a given stress condition; and the shape factor, S, or
hydraulic radius, which accounts for the geometry of the sur-
face.

The principal concept behind the stability graph is that the
size of an excavation surface can be related to the rock mass
competency to give an indication of stability or instability.
The stability graph presents numerous excavation surfaces
that have a specified range of stabilities. The stability number
forms the y-axis of the stability graph and is a measure of rock
mass quality around the excavation, several adjustments
being applied to take into consideration induced stresses and
excavation orientation.

Stability graphs deal with the individual surfaces of an
excavation rather than entire excavations. For a typical rec-
tangular excavation five stope surfaces are considered for the
stability graph—four sidewalls and the crown (or back). Once
plotted the stability data can be zoned and boundary lines can
be drawn on to the graph to define the stability zones.

The initial stability zones and graph devised by Mathews

were based on 50 case histories.1 The zones of stability were
defined from the scatter of the real mining data and these
zones were then used to predict the stability of planned exca-
vations. The original Mathews stability graph was divided
into stable, potentially unstable and potential caving zones
according to the scatter of the stability data (Fig. 1). The
three stability zones were separated by transitional zones to
reflect the transition between stability classes and uncertainty
in the boundaries.

The Mathews method utilizes a modified form of the
Norwegian Geotechnical Institute’s (NGI) engineering classi-
fication,2 the Q system, to characterize rock mass quality.
The modified Q value, Q ¢ , is calculated from the results of
structural mapping or geotechnical core logging of the rock
mass according to the Q classification system, but with the
assumption that the joint water reduction parameter and the
stress reduction factor are both equal to one (equation 1).
The quality of the rock mass is defined by

(1)

where RQD is the rock quality designation index developed
by Deere in 1964 and is based on a modified core recovery
percentage,3 Jn is joint set number, Jr is joint roughness and
Ja is joint alteration.

The Mathews stability number is determined by adjusting
the Q ¢ value for induced stresses, discontinuity orientation
and the orientation of the excavation surface (equation 2).
The stability number  is defined as

N = Q ¢ ´ A ´ B ´ C (2)
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Fig. 1 Three stability zones of original Mathews stability graph.
After Stewart and Forsyth8



where Q ¢ is NGI modified Q value, A is rock stress factor, B is
joint orientation adjustment factor and C is surface orienta-
tion factor.

The rock stress factor is determined from the ratio of the
intact rock strength (unconfined compressive strength) to the
induced compressive stress at the centre-line of the stope
surface. The induced stresses can be determined by use of a
two-dimensional stress–displacement analysis package or esti-
mated from published two-dimensional stress distributions. A
graph relating the strength to stress ratio and rock stress fac-
tor was developed by Mathews et al.1 (Fig. 2). In the original
Mathews graph1 the joint orientation adjustment factor is a
measure of the relative difference in dip between the stope
surface and the critical joint set. The surface orientation fac-
tor considers the inclination of the excavation surface and its
influence on stability (Fig. 2).

The geometry of the excavation is considered by calculat-
ing the shape factor or hydraulic radius of the surface. The
shape factor of an excavation surface is defined as the area of
the stope surface divided by the length of its perimeter (in
metres).

Historical overview

The Mathews stability graph method for open-stope design
was first proposed for mining at depths below 1000 m.1

A number of authors have since collected new data from a
variety of mining depths and rock mass conditions to extend
the method and test its validity.4–9 The modifications to and
developments of the Mathews method since its inception
relate largely to changes in the position and number of the
stability zones represented on the stability graph with the
addition of more data and changes to the formulation of the
Mathews factors.9

The original Mathews graph contained three distinct zones
separated by transitions.8 In the Potvin4 modified stability
graph the number of zones was reduced to a stable and a
caved zone separated by a transition (Fig. 3). The choice of
the word ‘caved’ by Potvin to represent what is essentially an
unstable zone was challenged by Stewart and Forsyth,8 who
noted that the term has a fixed meaning in mining termino-
logy from which Potvin’s modified graph appears to depart.8

Potvin4 collected additional case histories and modified the
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Fig. 2 Adjustment factors for determination of Mathews stability number. After Mathews et al.1

Fig. 3 Potvin’s modified Mathews stability graph based on 175
case histories. After Potvin4



way in which the joint orientation factor and the gravity
adjustment factor were calculated. This variant of the original
Mathews method is referred to as Potvin’s modified stability
graph method. Potvin also extended the method to consider
supported excavations, a development that was taken further
by Nickson.5 Nickson5 and Hadjigeorgiou and co-workers6

added further supported and unsupported case histories to
the stability database using Potvin’s modified method and
were the first to consider statistical zone definition.

Stewart and Forsyth8 updated the Mathews stability graph
in 1995 and proposed four stability zones—potentially stable,
potentially unstable, potential major failure and potential cav-
ing zones—separated by three transitions (Fig. 4). The zone
of potential caving approximated by Stewart and Forsyth was
based on Laubscher’s caving stability graph.10 No data were
available to validate the position of the caving line on the
updated Mathews graph, which is meant to represent the true
caving situation, as opposed to Potvin’s caved zone.4 As part
of an international study of block and panel caving, the
authors have back-analysed a number of caving case histories
and delineated a caving zone on the Mathews graph that
reflects the true caving case defined as continuous cave pro-
pagation. At this stage the results remain confidential to
sponsors of the project.

Significant developments and modifications have been
made to the stability graph method, extending its use into
cable-supported excavations4–7 and, more recently, to take
account of fault-driven instability.11 Potvin’s modified
approach, as applied to unsupported stopes, was compared
with the original Mathews method for 180 case histories from
Mt. Charlotte.9 The variability of the results, the apparent
predictive accuracy and the accuracy of the defined stability
zones (in terms of misclassification) of the two methods were
investigated. From these case studies Trueman et al.9 con-
cluded that Potvin’s modifications to the method of
calculating the stability number resulted in no appreciable
difference in the predictive capability of the technique for
unsupported excavations—a conclusion that was in general
agreement with that of Stewart and Forsyth.8 The original
method of determining the Mathews stability number and the

adjustment factors, as proposed by Mathews et al.,1 has
therefore been followed here.

Historically, the stability zones on the Mathews graph have
been defined by eye.1,4 As new data were added the nature
and placement of the stability zones were modified accord-
ingly. Nickson5 was the first to attempt to determine the
position of the boundaries statistically. He applied a discrimi-
nant analysis to the three-dimensional multivariate stability
database and utilized Mahalanobis’ distance to separate the
data into two groups. Nickson derived a linear separation
between stable and caved unsupported histories using a loga-
rithmic transformation. Again, it should be noted that the
term ‘caved’ does not represent true caving. No unstable
cases were considered in the analysis and separation lines
between stable and unstable or unstable and caving zones
were not determined. Nickson compared his statistically
determined stable–caved boundary with Potvin’s proposed
transition zone. Nickson recommended on the basis of his
results that Potvin’s transition zone be used for the design of
unsupported stope surfaces. Hadjigeorgiou and co-workers6

collected further stability data, repeated the discriminant
analysis and obtained similar results. Again, no changes to
Potvin’s transition zone were proposed. The transition case
histories were not included in either statistical analysis and
the calculated boundary was only between the stable and
caved case histories.

The position of the stability zones on the stability graph is
critical to the reliability of the method and a technique was
sought to optimize their positioning. Mathematical calcula-
tion of the width and position of the stability zones is an
important step towards improving the reliability of the
Mathews method. Removal of the subjectivity involved in
zone definition is important in maximizing the value of the
method as a design tool.

Extension of the Mathews method

Back-analyses of 180 open-stope surfaces at Mt. Charlotte by
the Mathews method confirmed the validity of using the tech-
nique as a predictive tool.9 These data, when combined with
other Australian case histories in 1998, resulted in a com-
bined stability database for more than 400 stope surfaces.
The additional case histories included much larger stopes
than had previously been documented for the method and
they extend the Mathews graph to a hydraulic radius of 55 m,
compared with the previous maximum hydraulic radius of
23 m.8 The expanded database covers a broader spectrum of
rock mass and in-situ stress conditions, with stability numbers
in the range from 0.005 to 700. The background to the Mt.
Charlotte data has already been given by Trueman et al;9 the
purpose of the present contribution is to communicate a new
approach for the statistical treatment of stability data and for
the calculation of stability zones and isoprobability contours
on stability graphs.

A logistic regression analysis12 was carried out on the
extended database to delineate the zones of stability statisti-
cally and to determine isoprobability contours for stable,
minor failure and major failure scenarios. All the case histo-
ries adhere to the original Mathews method of determining
the adjustment factors. By the use of logistic regression the
uncertainties in the application of the Mathews method can
be quantified over a larger range of stope geometries and rock
mass conditions than was previously possible. The extended
Mathews stability graph (Fig. 5) contains the new data and
statistically determined stability zones. A log–log graph has
been used rather than the traditional log–linear plot of the
Mathews method as it was found to give a clearer picture of
the zoning. The log–log plot has linear stability boundaries
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Fig. 4 Mathews stability graph as modified by Stewart and
Forsyth8



and the shape factor range of the case histories is separated
better on a log shape factor x-axis. The new log–log stability
graph enables individual cases to be clearly distinguished as
well as presents the increased range of shape factors captured
within the stability database.

Logistic regression analysis
Logistic regression12 provides a method of calculating the
probability that a particular stope of a given dimension and
geometry will be stable. It also shows how the probability of
stability is altered by a change in rock mass quality or induced
stress. The regression analysis allows statistical definition of
the different zones of stability by optimizing the number of
data points that report to the correct zones and minimizing
misclassification.

Logistic regression analyses are typically used to analyse
true or false values of the dependent variable, but can easily
be extended to include estimates of the proportion true/false.
A logistic regression analysis was undertaken because prob-
lems with ordered outcomes are not easily modelled by
traditional regression techniques and ordinary linear regres-
sion does not consider the interval nature of the dependent
variable.13

The stability data were specified in terms of three variables:
shape factor (or hydraulic radius), Mathews stability number
and stability (whether it was stable, a failure or a major
failure). Logistic regression of these values fits a maximum
likelihood model, calculates a separation line of best fit
and produces a predicted stability value. The maximum
likelihood method is used to maximize the value of the log-
likelihood function by estimating the value of the parameters.
Determination of the maximum likelihood estimates for the
logistic regression model is an iterative process.12 The stabil-
ity data do not separate perfectly into each stability zone and,

hence, the actual values of the dependent variable (stability)
differ from the logit values. The logit probability values are
used to optimize the boundaries of the three stability zones on
the stability graph. The predicted stability values can be com-
pared with the original values and the nature of the residuals
can be analysed to delineate the stability zones and to con-
sider misclassification.

One of the benefits of logistic regression is that it provides
the predicted probabilities of event occurrence based on the
logit model. By using the predicted probabilities of event
occurrence calculated for each stability class isoprobability
contours of risk can be generated for the stability data.
Isoprobability contours are an important component of the
Mathews stability graph method as they represent the esti-
mated probability of event occurrence on the stability graph.

Logit model
Several models can be applied to the data when logistic
regression is undertaken. For the stability data a modified
binary logit model was used in which the logit function is a
type of probability distribution.13 For the interpretation of
probabilities the logit model is more appropriate than the tra-
ditional linear model given by ordinary least squares.12,13,14

Logit analysis produces probabilities after a nonlinear trans-
formation for a categorical response; for the stability data two
main discrete categories can be identified (stable and major
failure)14 and in-between probability values can be inter-
preted as the failure zone. The logit probability value is the
natural logarithm of the odds, where the odds indicate the
relative probability of falling into one or two categories on
some variable of interest.14 The logit model of the stability
data was produced in MATLAB (version 5.1) using a routine
developed by Holtsberg.15 The regression procedure enabled
the optimization of the stability zone boundaries and the gen-
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Fig. 5 Extended Mathews’ stability graph based on logistic regression



eration of isoprobability contours by use of the predicted logit
probability values determined from the logit model.

A three-level logit model was used in the investigation of
the Mathews stability data to reflect the three stability classes.
Logit models are typically applied to yes/no outcomes (giving
a binary model), but for the present analysis a third, inter-
mediate, category was used. The three-level logit model
produced two separation lines between the three stability
classes. The fact that the two lines were parallel is a function
of the three-level model. The use of a three-level logit model
to investigate the stability data was verified by running dual
binary logit models to determine the stable–failure and the
failure–major failure boundaries separately. These boundaries
were found to be very close to parallel.

For a binary logit model the dependent variable is assigned
a value of either zero or one. With three separate stability cat-
egories an intermediate value needed to be determined.
A value of 0.5 was used for the failure region, which was con-
sidered intermediate between stable and major failure. The
logit model was run for different values of the dependent vari-
able categories and the distribution of the logit values so
obtained was examined closely to consider overlap and spac-
ing between the stability classes. The values assigned to each
stability class as a result are: stable, 0.6–1; failure, 0.4–0.6;
and major failure, 0–0.4.

Initial values of 1, 0.5 and 0 were used to define the three
stability categories and for each point a logit probability value
was calculated. The boundaries between the stability classes
can then be determined at an appropriate probability for
given site conditions or design requirements. Alternatively,
given the equal probability lines, actual counts of the number
of points in each class can be made, giving a distribution of
points versus the probability value. A graph of these results is
a useful way of determining the stability zone boundaries.

The inclination, position and probabilities of the two
boundaries determined from the two separate binary logit
models were compared with the two boundaries determined
from the single three-level logit model. The observed differ-
ences in the position and inclination of the boundaries were
minor and the three-level model was adopted.

The general form of the logit function can be seen in
equation 3. The logit model is similar to the traditional linear
regression model, or the general linear model for ANOVA,
except that the response is the log odds rather than the metric
dependent variable.14 In logit modelling the conditional log

odds of the dependent variable are expressed as a linear func-
tion of a set of explanatory variables (equations 3 and 4).14 In
the logit model of the stability data the probability of stability
is expressed as a linear function of the shape factor, the
Mathews stability number and a constant (equation 5).

To fit the logit model the unknown parameters a , b 1, b 2 …
b k (in equation 3) are estimated by the maximum likelihood
method. With the use of the estimated values for a , b 1 and b 2
(equation 5) the estimated probability or predicted risk can
be determined (equation 4). The general form of the logit
function is

z = a + b 1X1 + b 2X2 + b 3X3 + … + b kXk
= a + å b kXk (3)

(4)

where z is predicted log odds value, a is a constant, b 1,2 are
numerical coefficients and ƒ(z) is predicted logit probability
value. For the case of open-stope stability equation 3
becomes

z = a + b 1 lnS + b 2 lnN (5)

The maximum likelihood statistic is used to define the incli-
nation of the stability zone boundaries. By examination of the
cumulative and probability density functions of the logit values
for each class the position of the lines delineating each of the
stability zones can be optimized according to the needs of par-
ticular applications. The criteria used to place the zones can be
specified and the resulting probabilities for each stability class
will then be known. By using the cumulative density functions
for each class as determined in Fig. 7 the position of the sta-
bility zones can be optimized for certain criteria—for example,
minimized misclassification (either numerically or propor-
tionally) or, similarly, a more conservative limit of zero
misclassification. This method is a significant improvement on
earlier methods of delineating stability zones in that the prob-
able stability outcomes for a boundary at any position of the
stability graph can be quantified statistically. The probability
density functions provide data on the degree of misclassifica-
tion of the stability data, which is an important consideration
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Fig. 6 Cumulative frequency graph of logit values for stable, failure and major failure points



when evaluating the confidence of a stability estimate and the
potential for misclassification.

Delineation of stability zones
A cumulative distribution curve can be plotted for the logit
probability values of the data for each stability class (Fig. 6).
The inverse cumulative distribution curve of each class is also
plotted. The point of intersection of the stable line and the
inverse failure line is termed the crossover point. The
crossover points on the cumulative distribution graph repre-
sent the logit probability value that will define the separation
line that will have the same proportion of misclassified points
on either side of the line. The cumulative frequency graph in
Fig. 6 shows that for a logit probability of 0.865 there is a
20% mismatch of stable and failure cases. This means that
20% of the stable points lie below the separation line defined
by a logit value of 0.865 (in either the failure or the major
failure zone) and 20% of the failures lie above the line in the
stable zone.

The true significance of the stable–failure line can be deter-
mined from the probability density functions for each stability
class shown in Fig. 7. On the stable–failure boundary, with a
logit value of 0.865, there is 48% probability of both stable
conditions and failure and a 4% probability of a major failure.
This can be directly converted into misclassification propor-
tions, i.e. if a designed surface classed as stable plotted
exactly on the line, there is a 52% probability that it would be

a failure or major failure, i.e. would have been misclassified.
The positions of the separation lines on the stability graph

were determined from the logit value at the crossover points
on the cumulative frequency plots. Data of the type used
here, originating from multiple sources, typically include the
possibility of outliers. The location of outliers needs to be
considered because the optimized location of the boundary
obtained from the cumulative plot does not specifically con-
sider the distribution of the outliers within the other stability
zones. If a slight shift in the stable boundary would remove a
significant number of failure points from the stable zone for a
correspondingly lower number of stable points moving into
the failure zone, a better boundary could exist than the opti-
mized one indicated by the cumulative crossover logit value.
The accuracy of the model can be assessed through signifi-
cance testing, goodness-of-fit measures and by considering

the magnitude of the residuals. Measures that have been pro-
posed for the assessment of predictive efficiency in logistic
regression have been detailed in the work of DeMaris.14

Ultimately, the decision on the criteria for placing the separa-
tion lines will depend on the degree of confidence in the
accuracy of the data and the cost of failure for a given
scenario.

The consequences of failure and major failure are highly
site-specific and the level of certainty required in a stable
excavation must be determined by considering the cost of an
unplanned failure or major failure. The consequences of
misclassification and the probabilities of a given stability
outcome determined from the isoprobability contours will
depend on the data available. First, sufficient failure and
major failure case studies must be available to define the sta-
bility zone boundaries accurately on the stability graph; and,
second, adequate site-specific cases are required for accurate
prediction of the consequences. The lower number of failure
and major failure case histories compared with stable cases
within the stability database causes a range of confidence in
the accuracy of predicted stability zones. Fewer case histories
reduce confidence in the results. Mining (with the exception
of caving) is focused principally on the production of stable
excavations. The stable zone on the stability graph is defined
by the greatest number of case histories and, accordingly, our
confidence is highest for designs that utilize this region of the
stability graph.

Size bias is an issue for the stable, failure and major failure
classes within the stability database. Mining is focused on
stability, so the imbalance in subset sizes mirrors the real
distribution of stability cases within operational mines. The
Mathews stability graph method is, moreover, a non-rigorous
technique. The quality of the end-product—in this case a sta-
bility estimate (including probabilities)—can only be as good
as the quality of the underlying data on which the method
was formulated. One suggestion has been to apply a second
optimization to consider size bias effects on the definition of
the stability zones. This could be undertaken on a larger data-
base and investigated by considering a random subsample
from the stability database.

The logit model allows the direct effect of moving the
stability zone boundaries to be quantified in terms of risk or
probability of a specified stability outcome. Once a cost–risk
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Fig. 7 Probability density functions for stability data determined from logit probability values



relationship has been developed for a site an appropriate level
of risk can be determined and the stability zone boundaries
and isoprobability contours on the Mathews graph can be
tailored to the specific site. A cost–risk analysis is now possi-
ble and the optimal design limits can be chosen for individual
operations.

Isoprobability contours
Although the stability zones can be defined statistically, a
number of case histories report to the wrong zones. This is to

be expected, given the inherent variability of rock masses,
data that can be somewhat subjective and the fact that the
design technique is non-rigorous. Diederichs and Kaiser16

proposed the drawing of isoprobability contours to account
for the uncertainties inherent in the design limits.
Isoprobability contours allow the probabilities of stability,
failure and major failure for a design surface to be obtained
directly off the stability graph (an example is given in the
Appendix).

The probability density functions have been determined
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Fig. 8 Isoprobability contours for stable excavation based on logistic regression

Fig. 9 Isoprobability contours for failure based on logistic regression



for each of the stability classes (Fig. 7) from the predicted
logit values. From the probability density functions the iso-
probability contours were produced for the three separate
levels of stability—stable (Fig. 8), failure (Fig. 9) and major
failure (Fig. 10).

Accuracy and use of extended Mathews
method

The Mathews stability graph encompasses a broad range of
open-stoping experience and is essentially a self-validating
model. Nevertheless, the validity and accuracy of the
Mathews method depend on the quality and quantity of the
stability data that it contains. The value of the documented
stability data has been effectively increased by undertaking a
least-squares regression to treat the uncertainties and subjec-
tivity of the data.

The application of statistical methods in delineating stabil-
ity zones and generating isoprobability contours has removed
the subjectivity from the delineation of the zones. The appli-
cation of regression techniques to a sufficiently large stability
database is currently the best option for minimizing the influ-
ence of subjective data.

Major advantages of statistical determination of the zones
on the stability graph are optimization of the design curves
and the ability to evaluate the accuracy of the model. The
precise nature of the risks associated with the position of the
stability zone boundaries can be quantified. This removes the
need for intermediate transition zones to be defined on the
stability graph as general indicators of higher variability in
the stability outcomes. Through the logit model the exact
meaning of the stability zone boundaries, in terms of the
probability of a given stability outcome, is precisely known.

Continual improvement of the accuracy of the model for
all subsequent modifications is critical for optimization of the
future use of the Mathews method in stope design. Through
statistical techniques the value of the stability data can be
maximized despite the inherent subjectivity. From the results
objective interpretations can be made to improve what is
acknowledged to be an empirical, non-rigorous, yet increas-
ingly powerful design tool.

An example of how to use the Mathews stability graph
method to assess the stability of an open stope is outlined in
the Appendix.

Conclusions

The database for the Mathews method has been extended to
more than 400 case histories, such that it now includes open-
stoping experience for a broad range of surface geometries
and rock mass conditions. The extended Mathews graph is a
log–log plot with linear stable, failure and major failure zones
rather than the traditional log–linear format with multiple
curvilinear stability boundaries. The extension of the data-
base has provided a wide-ranging  data-set to which statistical
methods can be applied.

Logistic regression was used to optimize the placement of
stability zones and produce isoprobability contours for the
prediction of stope surfaces that are stable or exhibit minor or
major failures. The advantage of logistic regression lies in its
ability to minimize the uncertainties reflected in the method
through the use of maximum likelihood estimates.

The application of statistics does not change the subject-
ivity, degree of reliability or lack of rigour inherent in the
Mathews method. Statistics can be used to take into account
some of the inherent variability within the data, but the use of
statistical regression must not be mistaken as adding a greater
level of rigour to the Mathews stability graph method.
Logistic regression should be viewed as an objective means to
calculate zone boundaries and isoprobability contours for the
available stability data. Through logistic regression the risks
associated with using the technique can be quantified and the
statistical significance of the stability zones becomes known.

The authors caution that both the Mathews stability graph
method and subsequent statistical treatment rely on data that
are not precise and care must be taken not to promote over-
confidence in a result without recognizing the nature of the
data underlying the method. The preferred approach to
increasing the accuracy of the method is to increase the size
and quality of the stability database and the authors are pur-
suing this.

The strength of the extended Mathews method lies in the
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Fig. 10 Isoprobability contours for major failure based on logistic regression



improved stability graph with statistically determined stability
zone boundaries and isoprobability contours. The uncertain-
ties inherent in the design technique can now be quantified
over a larger range of stope surface geometries and rock mass
conditions than was previously the case. This makes the
extended Mathews method a powerful tool for risk assess-
ment and optimization of open-stope design.
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Appendix

Using the Mathews stability graph method

The use of the stability graph for stability assessment in open-
stope design is outlined here in an example from CSA mine
in Cobar taken from the work of Stewart and Forsyth.8 The
example has been extended to illustrate the use of isopro-
bability contours in quantifying the uncertainty of stability
within the stope design process.

An open stope is planned at a depth of 1000 m in an ore-
body that is 25 m wide and dips at 80°. Because of
operational constraints the preferred stope length is 30 m and

the stope height is 75 m. The geometry of the planned open
stope is shown in Fig. 1 below.

The average unconfined compressive strength of the intact
rock is 120 MPa. The principal joint set is flat-dipping and
closely spaced (average spacing is 10 cm). The joint surfaces
are unaltered but display surface staining. Rock mass quality
data have been collected and are summarized in Appendix
Table 1 to the requirements of the NGI Q classification
system.2

The first consideration when looking at the use of the
Mathews stability graph in excavation design is to consider
how current conditions compare with the data on which the
technique was based. The non-rigorous and empirical nature
of the Mathews method must be considered, and the strength
and predictive capability of the method relies accordingly on
the extent of the stability database: the method should not be
used to predict stability outside the range of experience from
which it was developed.

The first step in use of the Mathews method at the design
stage is to determine the S and N values for each surface of
the excavation. In this example four surfaces are examined—
the footwall, hanging-wall, crown (or roof) and end-walls of
the stope. As the principal joint set is flat-lying, the two end-
walls of the stope are identical cases; however, if this were not
so, the stability of each end-wall would need to be investi-
gated separately.
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Fig. 1 Diagram of stope layout. After Stewart and Forsyth8

Table 1 Rock mass quality data used to determine Q ¢ value

Item Description Value

Rock quality Good RQD = 85%
Joint sets One joint set and random Jn = 3
Joint roughness Rough or irregular undulating Jr = 3
Joint alteration Unaltered with surface staining Ja = 1

http://www.maths.lth.se/matstat/stixbox/contents.html
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0008-3674^281996^2933L.431[aid=1276968]
http://gessler.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0008-3674^281996^2933L.431[aid=1276968]


Q ¢ value
Application of equation 1 of the main text to the rock mass
quality data in Table 1 yields a Q ¢ value of 85.

Shape factor
The shape factor is the ratio of the area of the stope surface to
the length of the perimeter of the surface. The S values calcu-
lated for the stope surfaces are given in Table 2.

Stress factor
To determine the stress factor for a surface the induced
stresses at the mid-point of the surface must first be calcu-
lated. The induced stresses are rarely measured and thus
must usually be estimated. If virgin in-situ stress measure-
ments have been undertaken, these should be used as the
basis for calculation of the induced stresses. If this is not the
case, the in-situ stress state must be estimated from regional
conditions. The induced stresses can be determined from
elastic formulae, stress distribution plots, design curves or by
running a simple elastic model in an appropriate numerical
modelling package.

In this example the in-situ stresses have not been measured
so the stress values must be estimated. As the stope is at a
depth of 1000 m, the vertical stress is estimated to be
27 MPa. The ratio of the average horizontal to vertical stress,
K, is estimated to be 1.4. This means that the average hori-
zontal stress is calculated to be 38 MPa. The in-situ stresses
used in determining the stress factor are shown in Fig. 2.

The next step, after estimation of the in-situ stresses before
the stope is extracted, is to determine the induced stresses for
each surface once the stope has been mined (Fig. 2). The
magnitude of the induced stresses relative to the unconfined
compressive strength of the rock is an important component
of the stability assessment and is used to determine the rock
stress factor.

Crown
Considering the top of the mid-stope vertical plane:

s V = 27 MPa; s H2
= 38 MPa

K = s H2
/ s V = 1.4

Surface height = 75; Surface span = 25
Height to span ratio = 3

With a height to span ratio of 3 and a K value of 1.4 (from
Fig. 3) s 1/s V is estimated at 2.6. From this relationship it can
be calculated that

s 1 = 2.6 ́ 27 = 70 MPa

Once s 1 is known the ratio of the unconfined compressive
strength of the rock to the induced stresses can be calculated;
in this case

s c/s 1 = 120/70 = 1.7
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Table 2 Calculated S values

Stope surface Area, m2 Perimeter, m Shape factor, S , m

Crown 750 110 6.8
Hanging-wall 750 210 10.7
Footwall 2250 210 10.7
Endwall 1875 200 9.4

Fig. 2 In-situ (virgin) and induced stress diagrams showing mid-stope planes used to calculated rock
stress factors for each surface. After Stewart and Forsyth8

Fig. 3 Curves for estimation of induced stresses in backs and end-
walls. After Stewart and Forsyth8



The final stage in determining the magnitude of the stress
factor consists in applying the value of s c/s 1 to Fig. 2 and
reading off the rock stress factor, which in this case is 0.1.

End-wall
Considering the strike end of the mid-stope horizontal plane:

s H1
= 38 MPa; s H2

= 38 MPa
K = s H2

/ s H1
= 1

Surface height = 30; Surface span = 25
Height to span ratio = 1.2

For a height to span ratio of 1.2 and a K value of 1 s 1/s H1
is

estimated at 1.0 (from Fig. 3). Accordingly,

s 1 = 1.0 ́ 38 = 38 MPa

By reference to Fig. 2

s c/s 1 = 120/38 = 3.2

and the rock stress factor for the end-wall is 0.25.

Hanging-wall and footwall
The next step is to determine the induced stresses in the
hanging-wall and footwall considering the vertical and hori-
zontal mid-stope planes. In the case where two estimates of
the stress factor, A, are obtained (downdip and along strike)
the lower value is used.

Considering the mid-stope vertical plane (downdip):

s V = 27 MPa; s H2
= 38 MPa

K = s H2
/ s V = 1.4

Surface height = 75; Surface span = 25
Height to span ratio = 3

For a height to span ratio of 3 and a K value of 1.4 (from Fig.
4) s 1/s V is estimated at –0.1. As the value is negative, s 1/ s V
is set to zero and s 1 becomes zero. This makes s c/ s 1 greater
than 10 and, therefore, the stress factor is equal to 1.

Note that the horizontal joints intersecting the hanging-
wall will open because the induced stress at the centre of the
hanging-wall span is tensile.

Considering the mid-stope horizontal plane (along strike):

s H1
= 38 MPa; s H2

= 38 MPa
K = s H2

/ s H1
= 1

Surface height = 30; Surface span = 25
Height to span ratio = 1.2

For a height to span ratio of 1.2 and a K value of 1 s 1/s H1
is

estimated to be 0.75 (from Fig. 4). Accordingly,

s 1 = 0.75 ́ 38 = 27.8 MPa.

From Fig. 2

s c/s 1 = 120/27.8 = 4.3

and the rock stress factor is 0.35.
The hanging-wall and footwall are both in compression in

the direction of strike and in tension near the mid-span in the
direction of dip. This gives two values on induced stress and
two corresponding A values. Since the lower value is adopted,
the rock stress factor for the hanging-wall and footwall of the
stope is 0.35. The rock stress factors determined for each
excavation surface are summarized in Table 3.

Joint orientation factor
The relative dip of the principal joint set and the excavation
surface is used to determine the orientation factors (Table 4)
for the individual surfaces (cf. Fig. 2). The principal joint set
is defined as the feature that predominantly influences stabil-
ity. In this case the dominant structure set has been identified
as flat-dipping.

Surface orientation factor
The orientation of the stope surface influences the stability
and, accordingly, a gravity adjustment factor, C (Table 5), is
determined (cf. Fig. 2).
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Fig. 4 Curves for estimation of induced stresses in hanging-walls.
After Stewart and Forsyth8

Table 3 Rock stress factors, A, determined for each excava-
tion surface

Stope surface A value

Crown 0.1
Hanging-wall 0.35
Footwall 0.35
End-wall 0.25

Table 4 B values

Stope surface Orientation, degrees B value

Crown 0 0.5
Hanging-wall 100 1.0
Footwall 80 1.0
End-wall 90 1.0

Table 5 C values

Stope surface Dip of stope surface, C value
degrees from C = 8 –7 cos (Dip 
horizontal from horizontal)

Crown 0 1
Hanging-wall 80 6.8
Footwall +90 8.0
End-wall 90 8.0



Mathews stability number
The Mathews stability number for the exposed surfaces is
determined from

N = Q ¢ ´ A ´ B ´ C

Predicted stability outcome from stability graph
Once the shape factor and stability number are known the
surfaces are plotted on the Mathews graph (Fig. 5). All the
stope walls plot high in the stable zone, but the stope crown
lies within the failure zone. This illustrates the quick, preli-
minary use of the stability chart; a more detailed assessment
of the predicted risk of instability for each surface can be
determined from isoprobability contours.

Estimation of probability of stability from isoprob-
ability contours
Once the stability number and shape factor for the stope sur-
faces have been determined the probability of stability can be
estimated from the plots of isoprobability contours for the
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Fig. 5 Positions of surfaces can be plotted on stability graph to determine in which stability zones
they lie

Fig. 6 Positions of surfaces can be plotted on stable isoprobability contours to determine probability
of stope surface being stable

Table 6 N values

Stope surface N value

Crown 4.3
Hanging-wall 200
Footwall 240
End-wall 170



different stability outcomes. In this way a measure of the
confidence in a stable estimate can be incorporated into the
design process.

From consideration of the plotted position of the hanging-
wall, footwall, end-wall and crown on the isoprobability
contours in Figs. 8, 9 and 10 it is possible to estimate the
probability of stability for the respective stope surfaces. The
hanging-wall, footwall and end-walls have an estimated 100%
probability of being stable (Fig. 6). In contrast, the crown of
the stope has a high risk of failure—the surface has 18% prob-
ability of being stable, 64% probability of being a failure and
18% probability of being a major failure.

Discussion of probability results
For this example the stability of the stope walls is high. The
predicted instability of the crown of the excavation is consid-
erable and acceptability of the risk of failure of the crown will
depend on the consequences of failure. The predicted cost
and consequences of a crown failure are highly site-specific
and should be developed from historical records for a given
site.

The probabilities of instability determined for the crown
can drive the design process in several directions. If 82%
probability of failure or major failure is acceptable, the stope
design can be implemented. If 82% probability of crown
failure is unacceptable, the design of the stope needs to be
readdressed. One option would be to reduce the stope height
to lessen the roof stress or reduce the crown area. Previous
experience will indicate whether a more conservative redesign
of the stope or acceptance of the risk of crown failure is the
better option in terms of safety, economic and operational
issues. A second case may arise where the concern is not with
failure but with a major failure in the crown. In this case the
18% probability of major failure may be unacceptable and
could necessitate a redesign of the stope. This could be the
case if a major failure were predicted to have consequences
for the whole operation.

Conclusions
Knowing the probability of stability of a designed excavation
allows the engineer to consider the level of risk that is accept-
able on the basis of the probable extent and cost of failure.
Estimation of the probabilities of stability enables a risk
analysis to be undertaken, and if the cost of the varying
degrees of failure can be approximated by reference to histor-
ical events, the design of the excavation can be optimized
economically with true regard for the probability and cost
outcomes.
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