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ABSTRACT

In this paper, we examine a replacement problem for a system subject to stochastic deterioration.
Upon failure the system must be replaced by a new one and a failure cost is incurred. If the system
is replaced before failure a smaller cost is incurred. The failure of the system depends both on
its age and also on values of a diagnostic stochastic process observable at discrete points of time.
Cox's proportional hazards model is used to describe the failure rate of the system. We consider
the problem of specifying a replacement rule which minimizes the long-run expected average cost
per unit time. The form of the optimal replacement policy is found and an algorithm based on a
recursive computational procedure is presented which can be used to obtain the optimal policy and
the optimal expected average cost.

Keywords: Replacement policy, dynamic programming, optimization, proportional hazards mod-
elling.

RESUME

Dans cet article on considere un probleme de remplacement pour un systeme sujet a une deteriora-
tion aleatoire. Lorsque le systeme tombe en panne, il doit etre remplace par un nouveau systeme
et on encourt alors un cout de def aillance. Si le systeme est remplace avant de tomber en panne, un
cout moins eleve est encouru. Les pannes du systeme dependent de son age et de valeurs prises par
un processus stochastique de diagnostic observable de fagon ponctuelle dans le temps. On utilise le
modele des taux de defaillance proportionnels (^'proportional hazards model") de Cox pour decrire
le taux de panne du systeme. On considere le probleme de la determination d'une politique de
remplacement qui minimise l'esperance mathematique du cout moyen par unite de temps sur une
longue periode. La forme de la politique optimale est obtenue et Ton presente un algorithme base
sur un processus de calcul recursif dont on peut se servir pour calculer la politique optimale et
l'esperance du cout moyen optimal.

Mots-des : politique de remplacement, programmation dynamique, optimisation, modelisation
avec taux de defaillance proportionnels.

1. INTRODUCTION

We consider a system that is subject to failure. The failure rate of the system is a function of age but
can also depend on the values of concomitant variables describing the effect of the environment in
which it operates.

In engineering applications usually additional concomitant information is available such as
that obtained through SOAP (Spectrometric Oil Analysis Program). This information should then
be taken into consideration by a decision maker, who must decide when to suspend operations to
perform preventive maintenance.

To model the efEect of concomitant variables on failure time, we consider the proportional haz-
ards model which has been widely used in medical research but only recently applied to engineering
reliability problems {e.g. Bendell (1985), and Jardine et al. (1987)). In the PHM, it is assumed that
the

failure rate of a system is the product of a baseline failure rate ho{-) dependent on the age of
the system and a positive function ^ ( ) dependent only on the values of concomitant variables.

We study the problem of optimal replacement in the PHM, le., the problem of specifying a
replacement rule which minimizes the long-run expected average cost per unit time. Optimal re-
placement problems have been studied by many researchers. Considerable attention has been paid
to optimal replacement problems in shock models with additive damage {e.g. Taylor (1975), Got-
tlieb (1982), Posner and Zuckerman (1986)). The form of optimal replacement policy was found
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and conditions were determined under which a control limit policy is optimal. Bergman (1978)
studied an optimal replacement problem with a nondecreasing dameige process.^. He showed
that the optimal replacement policy is a control limit policy with respect to the process X, Le., a
replacement is

performed either at failure or when^ first reaches or exceeds a given level ^. A more detailed
survey can be found in Valdez-Flores and Feldman (1989).

In our model, the failure of the system depends both on the age of the system and on the
values of a diagnostic stochastic process Z. We assume that the values of process Z are Ibiown
only at discrete time points and decisions are made only at these points, which is the case in most
real situations. The classical cost function is assumed. Thus each replacement costs C, while each
failure costs C+K,C >0,K >0. The problem is to find the replacement poUcy which minimizes
the expected average cost.

TRvo variants of the model are examined. In variant 1, the system can be preventively replaced
at any time (but the decision has to be made at a decision instant), while in variant 2 the system is
available for preventive replacement only at the decision instants. In both variants, it is assumed
that the system deteriorates continuously over time and can fail at any instant. Thiis distinguishes
our model from the shock models with additive damage in which failures can occur only at times
of shocks (see e.g. Posner and Zuckerman (1986) and references in their paper) and also from the
models with continuous observations of the damage process. The transition times in our model are
random variables dependent on the present state and action taken so that the decision processes
{Xn,an, Tn}, where Xn is the «* state, an is the n* action chosen and Tn is the time between the
(n — 1)* and the n* transition, are semi-Markov decision processes for both variants (see e.g. Ross
(1970), p.l56).

We derive the average-cost optimality equations, examine the structure of stationary optimal
policies and propose an algorithm for finding optimal replacement policies for both variants.

2. DEVELOPMENT OF THE MODEL

Let Z = {Zt,t > 0} be a right continuous stochastic process with state space /?+ — [0, +oo) that
can influence the time to failure of the equipment. We assume that the failure rate is the product of
a baseline failure rate dependent only on the age of the unit and a positive function ^p(^) dependent
on the values of the stochastic process Z. The process Z is a diagnostic (damage) process that
refiects the effect of the operating environment on the system (e.g. Z can be the level of metal
particle in engine oil). Thus the failure rate at time t can be expressed as

:0 (1)

and the survivor function is given by

P(T > t\Zs, 0 < s < 0 = exp ( - / ho(s)i)(Zs) ds\,t>0 (2)
V Jo J

where T is the time to failure of the system (e.g. Cox and Oakes (1984)).
In most real situations the values of Z are usually known only in some discrete points of time

to,ti,t2,... Then we can approximate the stochastic process {Z,,t > 0} by the riight continuous
jump process {Z*,t > 0} which increases and decreases by jumps at times fo,?i,..., otherwise is
constant.

In our model, we assume that concomitant information is available at time points 0, A, 2A,
. . . , A > 0 in a given replacement cycle and let Zk be the value of concomitant variable at time A: A
after the last replacement, Zo = 0 and let

P(Zk+i <y\Zi,... ,Zk) = G()'\k,Zk) (3)
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where G{y\k,z) is the conditional distribution function measurable in all arguments. From (2), we
have for t e [0, A]

P{T >kA + t\T>kA,Zi,...,Zk) = exp —0(2^) / ho{s)ds

= R{k,Zk,t). (4)

Our objective is to find the replacement policy which minimizes the long-mn expected average cost
per unit time. For both variants, the decisions can be made at times nA, n = 0,1,2,. . . in a given
replacement cycle and the system is in state {k,z) if the age of the unit is kA and the present value
of concomitant variable is z. Thus the state space

S=NxR+, whereAr = {0,l,2,...},i?+ = [0,-Foo). (5)

For variant 1, the action space includes three kinds of actions: (i) planned replacement after a time
units (0 <a < A), (ii) no replacement (a — -t-oo), and (iii) an immediate replacement followed by
a future replacement after a time units (this action is denoted by the doubleton (0, a)).

Therefore, the action space is

A =BU{{O,a),aeB}, whereB = (0, A) U {-foo}. (6)

The reason why we consider actions (0, a) is that if an immediate replacement takes place in state
X and no other action is taken (say action 0) then the next state is 0 and the sojoum time in states
is equal to zero. However, we will show in Section 3, that the replacement problem for variant 1 is
equivalent to the problem of solving an optimality equation with action spaceyl' = [0, A) U {+oo}.

For variant 2, there are only 2 possible actions {0, +00} at each decision instant where 0 cor-
responds to an immediate replacement and +(X) corresponds to non-replacement.

Denote
F{t\k,z) = l-R{k,z,t) for t>0. (7)

If we take an action aeBin state {k,z) then, for variant 1, the mean sojoum time is

T{k,z,a)= f tF{dt\k,z)+aR{k,z,a)= [ R{k,z,t)dt,
Jo Jo

T{k,z,+00)= f R{k,z,t)dt = T{k,z,A)
Jo

and
T{k,z,{O,a))=T{O,O,a), r(/c,z, (0,+oo» = r(0,0,+oo). (8)

For variant 2,
T2{k,z, +00) = T{k,z, +00), T2{k,z, 0) = T(0, 0, +00). (8')

In the next section, we derive the average cost optimality equations for both variants under certain
assumptions and show that optimal replacement policies can be found in the class of stationary
policies.

3. DERIVATION OF THE OPTIMALITY EQUATIONS

In this section, we introduce the following assumptions.

1. In order to insure that the transitions do not take place too quickly, we assume that there exist
a- > 0,77 > 0 such that the conditional probability of survival

R{k,z,a)>riioT{k,z)£S.
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2. R{k,z, A) < a < 1, {k,z) G S, which means that in each state the probability of failure in the
next period is positive.

3. The state of the process Z is stochastically increasing in {k,z), Le., the distribution function
G{-\k,z) is a decreasing function in {k,z).

4. ho{t) is nondecreasing, Le., the system deteriorates with age.
5. ip{z) is nondecreasing, i/)(0) = 1, which means that the hazard rate of the system is a nonde-

creasing function of the state of the process Z.

In the following theorem, we derive the average cost optimality equations for both variants.

Theorem 1: Let assumptions 1-5 be satisfied. Then, for variant i, i = 1,2, there exist a bounded
nondecreasing measurable function v" defined on S with values in R^ and a constant g^ > 0 such that

\ inf {V{k,z,a,g\v')},W{k,z,+oo,g\v^)}, (9)
aG[O,A)

+ v\0,0), W{k,z,+oo,g\v^)} (9')
where

V{k,z,a,g,v) = {K + C + v(0,0))(l -R{k,z,a)) + {C + v(0,0))R{k,z,a)
-gT{k,z,a) forae(0,A), (10)

W{k,z,+oo,g,v) = [K + C + v{O,O)][l -R{k,z,I^)] + jv{k + l,y)G{dy\k,z)

•R{k,z,A)-gr{k,z,+(x,) (11)

for {k,z) e 5.

First, we prove the monotonicity of functions V and W.

Lemma 1: Let assumptions 3-5 be satisfied. Then functions V{k,z,a,g,v) and W{k,z,-\-oo,g,v)
defined by (10) and (11) are nondecreasing in {k,z) for any nonnegative, nondecreasing function v
such that v{k,z) <K + C-\- v{0,0) for {k,z) € S and for any positive constant g.

Proof: It follows from assumptions 4 and 5 that ftmctionsi?(A;,2, a) and T{k,z, a) defined by (4) and
(8) are nonincreasing in {k,z) for any a eA. Next, since v{k,z) is nondecreasing in {k,z), it follows
from assumption 3, that

Hk + l,y) -K-C-v{0,0)]G{dy\k,z)R{k,z,A)

is nondecreasing in {k,z) {e.g. Ross (1983), p. 154), so that W{k,z, +oo,g,v) is nondecreasing for
anyg > 0. For function V, we have

V{k,z,a,g,v) =K -I-C + v{0,0) -KR{k,z,a) -gT{k,z,a)

and the restxlt follows, since R and T are nonincreasing in {k,z). This completes the proof. •

Proof of Theorem 1: First, we examine variant 1. Since for a-* 0, T{k,z,a) -^ 0, we first establish
the optimality equation for restricted action space ̂  ,̂ where

A,=B,U{{O,a),aeB,}, 5 , = [e, A) u {+00} for e > 0. (12)

It follows from assumption 1 that

T{k,z,a)=m< sup T{k,z,a) =M <+00 (13)
(^k)eSeA
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For (k,z) e S,a eAe define conditional probability measure Q on Borel subsets of 5 by

QiD\{k,z),a) =P(Xn+ieD\Xn = {k,z), an=a) (14)

n and «„ is the state and action at the nth decision instant. We have

Q({0,0}\(k, z),a) = l{ore<a<A
= 1- R(k,z, A) for a = +oo

and

(15)

For any Borel set D c S, define measure 7 by

7(£)) - (1 - a)/M, if {0,0} e D
= 0 otherwise (16)

and let 1 > /3 > 1 — (1 — a)m/M, where m andM are defined in (13).
To establish the optimality equation for restricted action space^e, it suffices to verify the fol-

lowing inequalities (see Kurano (1985)).

Q{D\(k,z),a)>T(k,z,a)^(D)
k,z,a) (17)

for (k,z) G S,a GA^ and for any Borel set D c S.
Obviously, if {0,0} e D,

Q{D\(k,z),a) >l-R(k,z,A) > (1 - a)T(k,z,a)/M

and if {0,0} ^ D then j(D) = 0 so that the first inequalify in (17) holds. Next,

7(5) - (1 - a)/M > (1 - 13)/m > (1 - 0)/T(k,z,a)

so that the second inequalify in (17) is also satisfied. Kurano (1985) showed, using the idea of
successive approximations, that if (17) holds then there exist a bounded function v̂  and a constant
ge satisfying the optimalify equation

v,(x) = inf {c{x,a) + f v,(x')Q(dx'\c,a) -geT(x,a)} (18)
aeAc J

where c(x, a) is the expected cost incurred in the next transition interval if an action a eA^is taken
in state jc. For variant 1 of our model

c(k,z,a) = (K + C){1 -R{k,z,a)) + CR(k,z,a) fora G [e,A)

c(k,

and
{ , , ) B ^ . (19)

From (18) and (19), we have

v^(k,z) =min^C + W{0,0,+oo,ge,v;), M {C + V(O,O,a,g^,Ve)},

W{k,z,+oo,g,,Ve), mi {V(k,z,a,g,,v,)}\ (20)
fle[£,A) ->
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where V and W are defined by (10) and (11), respectively. The first term on the right-hand side of
(20) corresponds to an immediate replacement and a non-replacement for the next period (action
(0, +oo)), the second term corresponds to an immediate replacement and the next replacement
after a time units (action (0, a)), the third term corresponds to a non-replacement and the last term
to a replacement after a time units. Since C > 0, we have from (20)

v,(0,0) = min(w^(0,0,+oo,ge,ve), M {V{0,0,a,g,,v,)}] . (21)

From (20) and (21), we get

v,(A;,z) = m i n ( c + v,(O,O), W{k,z,+(x^,g,,Ve), M {V{k,z,a,g,,v,)\. (22)

It can be showiti, by using Lemma 1 and the approach in Kurano (1985), that Ve{k,z) is nonde-
creasing in {k,z). The rest of the proof for variant 1 is similar to the proof of Proposition 4.1 in
Kurano (1985) and can be omitted. (9) is obtained from (22) by lim , realizing that C + v(0,0) =

V{O,O,O,g,v).
For variant 2, since we have only 2 possible actions at each decision instant, we get

= mm{C
\v^) (23)

so that (9') holds. This completes the proof. •

In the next section, we find the form of optimal replacement policies for both variants by anjJyzing
the optimality equations (9) and (9').

4. FORM OF OPTIMAL REPLACEMENT POLICIES

First, we examine variant 1.

Theorem 2: Let assumptions 1-5 be satisfied and let sequence {Zn} be nondecreasing with probability
one. Then the optimal replacement policy f^ for variant 1 is a nonincreasing function of state and is
given by

f*{k,z) = inf{0 < fl < A : ho{kA + a)ip{z) > g^/K} (24)

where f^{k,z) = +oo if the set in (24) is an empty set. Thus the optimal replacement rule is fully
determined by g^, which is the optimal expected average cost per unit time.

Proof: First, we shall show that \ihQ{kA+a)il){z) < g^/K for 0 < a < A, then the optimal decision
in state {k,z) is no planned replacement. By taking the derivative of V{k,z,a,g^,v^) in (10) with
respect to a, we get

^^^''%y''^ K -g']R{k,z,a). (25)

From (25) and from assumptions 4 and 5, we have that function V is nonincreasing for a <a*{k,z)
and nondecreasing for a >a*{k,z), where

a*{k,z) = inf{a > 0 : ho{kA + a)^p{z) > g^/K}. (26)

> A,thenV{k,z,A,g\v^) = Jnf^ {F(fc,z,a,gi,vi)} andfrom (10) and (11)

W{k,z, +oo,g\v^) - V{k,z, A,g\v^) = f{v\k + 1,̂ ;) - C - v\0,0))G{dy\k,z)

•R{k,z,A) <0
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so that an optimal decision is non-replacement.
Now assume that 0 < a*{k,z) < A. First, we show that if a'* = 0 then the optimal decision is

an immediate replacement.
Suppose that this is not true, Le., a*{k,z) = 0 and

v\k,z) = W{k,z,+cx,,g\v^)<C-\-v\O,O)= inf {V{k,z,a,g\v')}.
fle[o,A)

Then from (11)

v\k + l,z)- v\k, z) = j[v\k + l,z)- v\k + l,y)]G{dy\k,z)R{k,z, A)

+ [v\k + l,z)-K- C-v\O,O)][l-R{k,z,A)\
+ g^T{k,z,+oo) < -K{l-R{k,z,A))
-\-gW{k,z,+cx>)<0. (27)

The last inequality follows from (26). So that v^{k + l,z) - v^{k,z) < 0 and since v^{k,z) is nonde-
creasing in (A:,z), we must have vi(A;+l,2r)-vi(^,z) = 0. However, since we assumed that v̂  (A:, 2-) <
C+vi(O,O)andvi(A:+l,z) =vi(A:,z), we have sharp inequalityin(27), so thatvi(A:+l,z) < v\k,z),
which is a contradiction. Thus ifho{kA)ilj{z) > g^/K, then v^{k,z) = C + v^{0,0) and the optimal
decision is an immediate replacement.

Now, let 0 < a*{k,z) < A. Then ho{{k + l)A)V'(z) > g^/K and since {Zn} is nondecreasing
a.s. and V'(-) is nondecreasing, we have

/ -g'] •R{k,z,t)dt > 0

SO that v^{k,z) = V{k,z,a*,g^,v^) and an optimal decision is the replacement after a*{k,z) time
units. This completes the proof. •

Now, consider variant 2.

Theorem 3: Under the assumptions in Theorem 2, the optimal replacement policy f 2 for variant 2 is a
nonincreasing function of state and is given by

f^{k, z) = +00 if i^[l - R{k,z, A)] < g\{k,z, +00)

= OiiK[l-R{k,z,A)]> g\{k,z,-^oo)

where g^ is the optimal expected average cost per unit time and r{k,z, +00) is given by (8).

Proof: It follows from the optimality equation (9') and from (11) that if A:(1 - R{k,z,A)) <
g^T{k,z, +00) then

W{k, z, +00,5^ v^)-C- v^{0,0) = K[l - R{k,z, A)] -gV(A:,z, +00)

l,y) - C-v''{O,O)]G{dy\k,z)R{k,z,A) < 0

so that in this case/2*(A:,z) = +00 and the optimal decision is non-replacement.
Consider the case K{1 - R{k,z,A)) > g^T{k,z,-^00) and assume that v'^{k,z) = W{k,z,
,g2, v )̂ < C + v2(0,0). Then, as in (27),

0 < v^{k + l,z) - v^{k,z) < -K{1 - R{k,z, A)) +g^T{k,z, +00) < 0

which is a contradiction. So that ifK{l - R{k,z, A)) > g^T{k,z, +00) then f^{k,z) = 0 and the
optimal decision is an immediate replacement. This completes the proof. •

To find optimal replacement policies for both variants, we need to compute optimal average costs
g^ and^^. This problem will be examined in the next section.
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5. COMPUTATION OF OPTIMAL POLICIES

We have from Theorem 2 and Theorem 3 that the optimal replacement rules can be found in the
class of stopping times {Td,d> 0}, where

Td = inf {f >O:Kh(t, Z,) > d} (28)

for variant 1 and

Td = A.inf{« > 0 :iC[l -R(n,Zn, A)] > d • T(n,Zn, +oo)} (29)

for variant 2. Then it follows from renewal theory that for both variants the expected average cost
associated with replacement rule Td is of the form

<PT, = [C +KP(Td > T)]/Emin(T, Td) (30)

where T is the time to failure of the system. We first examine the propeities of function (f)(d) = ̂ T^.
The approach is as in Weiss and Pliska (1982).

Theorem 4: For both variants, function (f){d) isnonincreasingford < g* and nondecreasing ford > g*,
where g* is the optimal expected average cost. ̂ ( ) is minimized atg*, which is the unique fixed-point

Proof: We shall prove the properties of function ^ for variant 1. The same approach can be used
for variant 2. First, we show that for any 0 <x <y <z

>(x),<p(z)}. (31)

From (30), we have

(<j>(x) -y)Emin(T,T,)/Emin(T,Ty)
+ {yErmn(T,T,) +K[P(T < Ty)-P(T < T,)]}/Emm(T,Ty) (32)

and
<P(z) - <P(y) + {K[P(T, > T) -P(Ty > T)] + <j>(y)[E vmn(T, Ty)

--Emin(T,T,)]}/Emin(T,T,). (33)

Let P(.) and E(.) be the corresponding conditional probability and expectation given a realization
of the process {(f,Z<), t > 0} where Z, is the value of concomitant variable at time ^

= First, assume that 4)(y) < y. Then, with probability one, since Tx, Ty and T^ are stopping times
with respect to process {(t,Zt), t >0}

(l>(y)iEmin(T,T^) -Emin(T,Ty)) <y P(T > t) dt
JT,

<K h(t,Zt)P{T >t)dt
JT,

= K(P(T < T,) -P(T < Ty)) (34)

and from (33) and (34) we have (f)(z) > (j)(y). The second inequality in (34) follows from the fact
that for f > Ty,Kh{t,Z,) >y.

Now, consider the case (j)(y) > j . As in (34), with probability one

y(E min(T, Ty) - E min(r, T^)) > K(P(T < Ty) - P(T < 7i)) (35)
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so that we have from (32) and (35)

{(f>{x) -y)Emm{T, T^)/Emm{T, Ty) -\-y. (36)

It follows from (36) that if ̂ {y) > y then necessarily 4>{x) > y and, since T^ < Ty a.s. for x <y,
4>(y) < H^). Thus, in both cases, (l)(y) < max{4>{x), (f>{z)}. From this and from Theorem 2, we have
for any 0 <xi <X2 <g*

and for any;c4 > X3 >g*

so that function (j) is nonincreasing for x < g* and nondecreasing for x > g*.
We know from Theorem 2 that ^ ( ) is minimized at g* and that g* is a fixed point of </>. If

p is another fixed point, then/? must be greater than g*, otherwise 4>{p) = p < g*, which is a
contradiction. Then from (36), setting jc =g*,y =p,we have

< (g* -p)Eram{T,Tg.)/Emm{T,Tp) +p<p

which is again a contradiction. This completes the proof. •

To find the unique fixed-point of (p for both variants, we can use the following algorithm {e.g. Weiss
and Pliska (1982), Aven and Bergman (1986)):

For any;i:i > 0, define
Xn = (t>{xn-i), for n = 2 , 3 , . . . (37)

We show that sequence {xn} is nonincreasing and

Hm xn=g* (38)

n—^+00

From (36), settings =g*,y = Xn, we have for « > 2

> {Xn -g*)Emm{T, Tg,)/Emm{T, TJ > 0 (39)
so that {Xn} is nonincreasing and !;„ > Tx^^i for n>2. From this and from (39), we can conclude
that

{Xn -g*)Emm{T,Tg,)/E

so that lim Xn =g*.

To apply this algorithm, it is necessary to compute <p{d) for d > 0, or, as it follows from (30),
we need to compute E min{r, T4} and P{Td > T).

Next, we derive a recursive computational procedure that can be used to obtain ^(d), d > 0
numerically for any baseline failure distribution.

Generally, the computation of .Bmin{r, Tu} and P{Td > T) numerically for a given d > 0
requires discretization. We examine variant 1. Variant 2 can be treated similarly.

Assume that Zn € 5 = {0,1,2,. . . , w} for n > 0 and let the sequence {ti, i G S} be defined by

ti = ini{t>O:Kh{t,i)>d} (40)

for a given d > 0. Let {A:,, / e S} be such integers, that

{ki - 1)A < ti < kiA, i e S. (41)

Define for; > 0 and r £ S
) = £[min{r, T^} -jA\{j,r)] (42)
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which is the expected residual time to replacement given that the age of the system is; A and Zj = r.
It follows from (28), (40) and (41) that

W{j,i) = 0 for j>ki, (43)

/

i-{ki-l)A

R{ki-l,i,s)ds (44)

and forj < ki — 1, conditioning on the failure time yields

/
jA

m

, Td}\{},i), T > {j + l)A,Zy+i = r)

= / {s -jA)F{d{s -jA)\{j,i)) + AR{j,i,A)+ (45)
JjA

m

Pi^{j)R{j,i,A)

- / R{j,i,s)ds + Y,W{j + l,r)Pi,r{j)R(j,i,A)

where

PiAJ) = P{Zj+i = r\T >{j + 1)A,Zj = i), (46)

F{s\{j,i)) = l-R{j,i,s).
The backward recursion (43)-(45) can be used to obtain

W{O,O)=E{mm{T,Td}).

A similar procedure can be derived to obtain the probability F(rd > T). Denote for / € 5

Q{j,i)=P{Ta>T\{j,i)) (47)

and let ti and k, he given by (40) and (41), respectively. Then

Q{j,i) = 0 for j>ki (48)

Q{ki -l,i) = l - R{ki -l,i, ti - {ki - 1) A ) (49)
and for j <ki — 1

l,r)Pi,r{j)R{j,i, A) (50)

eiePi^d) is given by (46). TheprobabUityi'(rd >T) = (2(0,0). Since the hazard rate/i(j,z) in
{1) is assumed to be nondecreasing in both t andz, it follows from (40) that the sequence {ti, i e S}
is nonincreasing,

t0>tl>--->tn, (51)

To illustrate the recursive procedures (43)-(45) and (48)-(50), we consider the following example.

Example: Assume that the baseline distribution is a WeibuU distribution with hazard function

Btl^-'^
ho{t) = ^^-g-, t > 0
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Table 1. An Illustration of the Computational Procedure for Variant 1

Xi

5
8.245
8.160
8.150

to

1.250
2.060
2.040
2.038

ti

0.760
1.250
1.240
1.236

ko

2
3
3
3

ki

1
2
2
2

W(Q,Qi)

0.7750
0.8350
0.8346
0.8342

2(0,0)

0.695
0.905
0.902
0.901

4>{xi)

8.245
8.160
8.150
8.150

where a = 1, /? = 2 and let ^^(z) = e^-^', AT - 2, C = 5, A = 1. We assume that {Zn,n > 0} is a
homogeneous Markov chain with two states {0,1} and with the transition probability matrix

P =
0.4
0

O.f

We start e.g. with value jci = 5 in (37) and find to and ti from (40). We get to = 1.25, ti = 0.758 and
from (41), ko = 2,ki = 1. Further results are in Table 1.

From Table 1, the optimal expected average cost^* = 8.15 and the optimal replacement time
is given by

T* = min{T, inf{t > 0 : 4 • f • ê -̂ '̂ > 8.15}

6. CONCLUSIONS AND SUMMARY

We have studied an optimal replacement problem for a deteriorating system subject to random
failure. The proportional hazards model has been used to describe the failure rate of the system
which is a function of age but can also depend on values of a diagnostic stochastic process. It has
been assumed that the process can be observed only at discrete points of time. In engineering
applications this additional information can usually be obtained through inspections. The aim of
the paper has been to show how this information can be utilized to improve decision-making in
preventive replacement. Two variants of the model have been considered. In variant 1, the system
can be preventively replaced at any time and in variant 2, the system is available for preventive
replacement only at discrete points of time. The form of the optimal replacement policy has been
established for both variants directly by analyzing the optimality equations.

A computational procedure based on a backward recursion has been developed which can be
applied to obtain the optimal average cost and the optimal policy for any baseline failure distribu-
tion.
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