Engranajes

Profesor: Roberto Corvalán P. Auxiliar: Fernando Torres F.

Universidad de Chile

Otoño 2010

Universidad de Chile, Departamento de Ingeniería Mecánica ME56A-Diseño de Elementos de Máquinas

- Engranaje con menos dientes es denominado piñon (subíndice P).
- Engranaje con más dientes es denominado Corona (subíndice G).

Nomenclatura General

• *d*: Diámetro primitivo.

•
$$P = \frac{N}{d} \left[\frac{dientes}{in} \right]$$
: Paso diametral.
• $m = \frac{d}{N} [mm]$: Módulo.
• $p = \frac{\pi \cdot d}{N} = \pi \cdot m$: Paso circular.
• $m_G = \frac{N_G}{N_P}$. Relación de velocidades.

•
$$W_t = P/V$$

•
$$V = \pi dn$$

• $T = W_t \frac{d}{2}$

•
$$P = T \cdot \omega$$

Engranaje Recto

Carga transmitida por engranajes rectos, $W_t = F_{32}^t$

Engranaje Helicoidal

W: Fuerza Total, sus componentes son $W_r = W \sin(\phi_n)$ $W_t = W \cos(\phi_n) \cdot \cos(\psi)$ $W_a = W \cos(\phi_n) \sin(\psi)$ En función de W_t $W_r = W_t \tan(\phi_t)$ $W_a = W_t \tan(\psi)$ $W = \frac{W_t}{\cos(\phi_n)\cos(\psi)}$

En unidades Inglesas:

 $W_t = 33000 \frac{H}{V}$

- W_t [*lbf*]: Carga transmitida.
- *H* [*Hp*]: Potencia transmitida.
- $V \left[\frac{ft}{min}\right]$: Velocidad de linea de paso $\left(V = \frac{\pi \cdot d \cdot n}{12}\right)$.

En SI:

$$W_t = 60000 \frac{H}{\pi \cdot d \cdot n}$$

- W_t [kN]: Carga transmitida.
- *H* [*kW*]: Potencia transmitida.
- *d* [*mm*]: Diámetro del engranaje.
- n [rpm]: Velocidad.

ANSI/AGMA 2001-D04, Flexión de Engranajes

Esfuerzo de flexión (unidades Inglesas):

$$\sigma = W_t K_O K_v K_s \frac{P_d}{F} \frac{K_m K_B}{J} \quad (\text{ec.14-15})$$

- *K*_O: Factor de sobrecarga (fig.14-17)
- K_v: Factor dinámico (depende de Q_v, nivel de exactitud en la transmisión, que va de 3 a 7 para engranajes comerciales y de 8 a 12 para engranajes de presición)(ec.14-27).
- *K*_s: Factor de tamaño (depende del factor de forma de Lewis *Y*, tab.14-2).
- P_d: Paso diametral.
- *K_m*: Factor de distribución de carga (ec.14-30).
- K_B : Factor de espesor de aro (ec.14-40).
- F: Ancho de Cara (tab.13-3).
- J: Factor geométrico (fig.14-6).

ANSI/AGMA 2001-D04, Flexión de Engranajes

Esfuerzo de flexión permisible (unidades Inglesas):

$$\sigma_{perm} = \frac{S_t Y_N}{K_T K_R} \quad \text{(ec.14-17)}$$

- S_t: Esfuerzo de flexión permsible (tab.14-3, 14-4).
- *Y_N*: Factor de ciclos de esfuerzo del esfuerzo de flexión (fig.14-14).
- K_T : Factor de temperatura ($K_T = 1 \Leftrightarrow T^\circ < 120^\circ C(250^\circ F)$).
- K_R : Factor de confiabilidad (tab.14-10).
- S_F:Factor de seguridad

$$S_F = rac{\sigma_{perm}}{\sigma}$$

Esfuerzo de contacto (unidades Inglesas):

$$\sigma_{c} = C_{p} \cdot \sqrt{W_{t} K_{O} K_{V} K_{s} \frac{K_{m}}{d_{p} F} \frac{C_{f}}{I}} \quad (\text{ec.14-16})$$

- C_p: Coeficiente elástico (tab.14-8)
- C_f : Factor de la condición superficial ($C_f = 1$, no investigado).
- d_p : Diámetro de paso $(d_P = \frac{N_P}{P_d})$.
- *I*: Factor geométrico (depende de *m_N*, ec.14-21)(ec.14-23).

ANSI/AGMA 2001-D04, Desgaste de Engranajes

Esfuerzo de contacto permisible (unidades Inglesas):

$$\sigma_{c,perm} = \frac{S_c Z_N C_H}{K_T K_R} \quad (ec.14-18)$$

- *S_c*: Resistencia de contacto repetidamente aplicada (tab.14-6, 14-7).
- Z_N : Factor de ciclos de esfuerzo (fig-14-15).
- C_H: Factor de relación de la dureza (fig.14-12).
- S_H : Factor de seguridad de desgaste.

$$S_H = rac{\sigma_{c,perm}}{\sigma_c}$$

Para determinar el modo crítico de falla, se compara S_F con S_H^2 .

Table of Overload Factors, K_o							
Driven Machine							
Power source Uniform Moderate shock Heavy sho							
Uniform	1.00	1.25	1.75				
Light shock 1.25 1.50 2.00							
Medium shock 1.50 1.75 2.25							

Factor de Tamaño, tabla 14-2

Number of Teeth	Ŷ	Number of Teeth	Ŷ		
12	0.245	28	0.353		
13	0.261	30	0.359		
14	0.277	34	0.371		
15	0.290	38	0.384		
16	0.296	43	0.397		
17	0.303	50	0.409		
18	0.309	60	0.422		
19	0.314	75	0.435		
20	0.322	100	0.447		
21	0.328	150	0.460		
22	0.331	300	0.472		
24	0.337	400	0.480		
26	0.346	Rack	0.485		
$\mathcal{K}_{\mathcal{S}} = 1,192 \cdot \left(rac{F\sqrt{Y}}{P} ight)^{0,0535}$					

ltem	Formula			
Working depth	$h_k = 2.0/P$			
Clearance	c = (0.188/P) + 0.002 in			
Addendum of gear	$a_G = \frac{0.54}{P} + \frac{0.460}{P(m_{90})^2}$			
Gear ratio	$m_G = N_G/N_P$			
Equivalent 90° ratio	$m_{90}=m_G$ when $\Gamma=90^\circ$			
	$m_{\rm 90} = \sqrt{m_G {\cos \gamma \over \cos \Gamma}}$ when $\Gamma \neq 90^\circ$			
Face width	$F = 0.3A_0$ or $F = \frac{10}{P}$, whichever is smaller			
Minimum number of tooth	Pinion 16 15 14 13			
	Gear 16 17 20 30			

Universidad de Chile, Departamento de Ingeniería Mecánica ME56A-Diseño de Elementos de Máquinas

Factor Geométrico, figura 14-6

Universidad de Chile, Departamento de Ingeniería Mecánica

ME56A-Diseño de Elementos de Máquinas

Esfuerzo de Flexión Permisible, tabla 14-3

Material	Heat	Minimum Surface	Allowable Bending Stress Number St, ² psi		
Designation	Treatment	Hardness ¹	Grade 1	Grade 2	Grade 3
Steel ³	Through-hardened	See Fig. 14–2	See Fig. 14–2	See Fig. 14–2	_
	Flame ⁴ or induction hardened ⁴ with type A pattern ⁵	See Table 8*	45 000	55 000	_
	Flame ⁴ or induction hardened ⁴ with type B pattern ⁵	See Table 8*	22 000	22 000	_
	Carburized and hardened	See Table 9*	55 000	65 000 or 70 000 ⁶	75 000
	Nitrided ^{4,7} (through- hardened steels)	83.5 HR15N	See Fig. 14–3	See Fig. 14–3	—
Nitralloy 135M, Nitralloy N, and 2.5% chrome (no aluminum)	Nitrided ^{4,7}	87.5 HR15N	See Fig. 14–4	See Fig. 14–4	See Fig. 14–4

Esfuerzo de Flexión Permisible, tabla 14-4

Material	Material Designation ¹	Heat Treatment	Typical Minimum Surface Hardness ²	Allowable Bending Stress Number, <i>S_t</i> , ³ psi
ASTM A48 gray	Class 20	As cast	_	5000
cast iron	Class 30	As cast	174 HB	8500
	Class 40	As cast	201 HB	13 000
ASTM A536 ductile	Grade 60–40–18	Annealed	140 HB	22 000-33 000
(nodular) Iron	Grade 80–55–06	Quenched and tempered	1 <i>7</i> 9 HB	22 000-33 000
	Grade 100–70–03	Quenched and tempered	229 HB	27 000-40 000
	Grade 120–90–02	Quenched and tempered	269 HB	31 000-44 000
Bronze		Sand cast	Minimum tensile strength 40 000 psi	5700
	ASTM B-148 Alloy 954	Heat treated	Minimum tensile strength 90 000 psi	23 600

Factor de Ciclos de Esfuerzo, figura 14-14

Factor de Confiabilidad, tabla 14-10

Reliability	K _R (Y _Z)
0.9999	1.50
0.999	1.25
0.99	1.00
0.90	0.85
0.50	0.70

Universidad de Chile, Departamento de Ingeniería Mecánica ME56A-Diseño de Elementos de Máquinas

Elastic Coefficient C_p (Z_E), $\sqrt{\text{psi}}$ ($\sqrt{\text{MPa}}$) Source: AGMA 218.01

		Gear Material and Modulus of Elasticity E _G , Ibf/in ² (MPa)*					
Pinion Material	Pinion Modulus of Elasticity E _P psi (MPa)*	Steel 30 × 10 ⁶ (2 × 10⁵)	Malleable Iron 25 × 10 ⁶ (1.7 × 10 ⁵)	Nodular Iron 24 × 10 ⁶ (1.7 × 10 ⁵)	Cast Iron 22 × 10 ⁶ (1.5 × 10 ⁵)	$\begin{array}{c} \text{Aluminum} \\ \text{Bronze} \\ 17.5 \times 10^6 \\ (1.2 \times 10^5) \end{array}$	Tin Bronze 16 × 10 ⁶ (1.1 × 10 ⁵)
Steel	30×10^{6}	2300	2180	2160	2100	1950	1900
	(2 × 10 ⁵)	(191)	(181)	(179)	(174)	(162)	(158)
Malleable iron	25 × 10 ⁶	2180	2090	2070	2020	1900	1850
	(1.7 × 10 ⁵)	(181)	(1 <i>7</i> 4)	(172)	(168)	(158)	(154)
Nodular iron	24×10^{6}	2160	2070	2050	2000	1880	1830
	(1.7 × 10 ⁵)	(1 <i>7</i> 9)	(172)	(1 <i>7</i> 0)	(166)	(156)	(152)
Cast iron	22×10^{6}	2100	2020	2000	1960	1850	1800
	(1.5 × 10 ⁵)	(174)	(168)	(166)	(163)	(154)	(149)
Aluminum bronze	17.5×10^{6}	1950	1900	1880	1850	1750	1700
	(1.2 × 10 ⁵)	(162)	(158)	(156)	(154)	(145)	(141)
Tin bronze	16 × 10 ⁶	1900	1850	1830	1800	1700	1650
	(1.1 × 10 ⁵)	(158)	(154)	(152)	(149)	(141)	(137)

Poisson's ratio = 0.30.

*When more exact values for modulus of elasticity are obtained from roller contact tests, they may be used.

Material	Heat	Minimum	Allowable Contact Stress Number, ² S _c , psi			
Designation	Treatment	Hardness ¹	Grade 1	Grade 2	Grade 3	
Steel ³	Through hardened ⁴	See Fig. 14–5	See Fig. 14–5	See Fig. 14–5	_	
	Flame ⁵ or induction	50 HRC	170 000	190 000	_	
	hardened ⁵	54 HRC	175 000	195 000	_	
	Carburized and hardened ⁵	See Table 9*	180 000	225 000	275 000	
	Nitrided ⁵ (through hardened steels)	83.5 HR15N	150 000	163 000	175 000	
		84.5 HR15N	155 000	168 000	180 000	
2.5% chrome (no aluminum)	Nitrided ⁵	87.5 HR15N	155 000	172 000	189 000	
Nitralloy 135M	Nitrided ⁵	90.0 HR15N	170 000	183 000	195 000	
Nitralloy N	Nitrided ⁵	90.0 HR15N	172 000	188 000	205 000	
2.5% chrome (no aluminum)	Nitrided ⁵	90.0 HR15N	176 000	196 000	216 000	

Resistencia de Contacto Repetidamente Aplicada, tabla 14-7

Material	Material Designation ¹	Heat Treatment	Typical Minimum Surface Hardness ²	Allowable Contact Stress Number, ³ S _c , psi
ASTM A48 gray cast iron	Class 20 Class 30 Class 40	As cast As cast As cast		50 000–60 000 65 000–75 000 75 000–85 000
ASTM A536 ductile (nodular) iron	Grade 60–40–18 Grade 80–55–06	Annealed Quenched and tempered	140 HB 179 HB	77 000–92 000 77 000–92 000
	Grade 100–70–03	Quenched and tempered	229 HB	92 000-112 000
	Grade 120–90–02	Quenched and tempered	269 HB	103 000-126 000
Bronze	_	Sand cast	Minimum tensile strength 40 000 psi	30 000
	ASTM B-148 Alloy 954	Heat treated	Minimum tensile strength 90 000 psi	65 000

Esfuerzo de Flexión Permisible, figura 14-2

Resistencia de Contacto Repetidamente Aplicada, figura 14-5

Factor de Ciclos de Esfuerzo, figura 14-15

Factor de Relación de Dureza, figura 14-12

